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Abstract. Average properties of the cloud field, such as cloud
size distribution and cloud fraction, have previously been
observed to evolve periodically. Identifying this behaviour,
however, remains difficult due to the intrinsic variability
within the boundary-layer cloud field. We apply a Gaussian
process (GP) machine-learning model to the regression of
the oscillatory behaviour in the statistical distributions of in-
dividual cloud properties. Individual cloud samples are re-
trieved from high-resolution large-eddy simulation, and the
cloud size distribution is modelled based on a power-law fit.
We construct the time series for the slope of the cloud size
distribution b, a slope that is consistent with satellite obser-
vations of marine boundary-layer clouds, by observing the
changes in the slope of the modelled cloud size distribu-
tion. Then, we build a GP model based on prior assump-
tions about the cloud field following observational studies:
a boundary-layer cloud field goes through a phase of rela-
tively strong convection where large clouds dominate, fol-
lowed by a phase of relatively weak convection where pre-
cipitation leads to formation of cold pools and suppression
of convective growth. The GP model successfully identifies
the oscillatory behaviour from the noisy time series, within
a period of 95± 3.2 min. Furthermore, we examine the time
series of cloud fraction fc and average vertical mass flux M ,
whose periods were 93± 2.5 and 93± 3.7 min, respectively.
The oscillations reveal the role of precipitation in governing
convective activities through recharge–discharge cycles.

1 Introduction

Cumulus convection plays a central role in regulating the
moisture and energy budget in the atmosphere. However, rep-
resenting the effect of moist convection remains difficult for
general circulation and weather prediction models (Bony and
Dufresne, 2005; Bony et al., 2006); for example, the cloud ra-
diative feedback remains the largest source of uncertainty in
the estimates of equilibrium climate sensitivity (Ceppi et al.,
2017; Mauritsen and Roeckner, 2020; Zelinka et al., 2020),
and radiative effects of moist convection remain poorly con-
strained. These models make widely differing assumptions
about the dynamics and thermodynamics of boundary-layer
clouds (Ceppi et al., 2017; Lipat et al., 2018; Myers and Nor-
ris, 2016) that cannot be directly resolved.

The resolution required to accurately model shallow cu-
mulus convection, of the order of 10 m in the boundary layer
(Sato et al., 2017, 2018), still remains computationally pro-
hibitive (cf. Fig. 2 in Schneider et al., 2017), as short-term
simulations of the global climate with spatial resolutions of
the order of a few kilometres have only recently been in-
troduced (Stevens et al., 2019). As such, the role of high-
resolution large-eddy simulation (LES) models in improving
our understanding of convective effects continues to be es-
sential.

To improve the indirect representation of the effects of
moist convection, large-scale models of the atmosphere must
account for the large variability in the dynamics and ther-
modynamics of the sub-grid-scale cloud field. For example,
a sub-grid-scale radiation scheme that approximates the ra-
diative effects of shallow convection would greatly benefit
from having a better estimate of the geometrical structure
and the distribution of clouds, which can be used to improve
our estimate of the shortwave radiative effects of low clouds
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(Ceppi et al., 2017). An important aspect of the cloud field in
this context is the distribution of cloud sizes (Neggers et al.,
2003), which has long been the main topic for observational
studies, from aircraft measurements and satellite imagery
(Benner and Curry, 1998; Berg and Stull, 2002; Machado
et al., 1992; Machado and Rossow, 1993; Plank, 1969; Pe-
ters et al., 2009; Raga et al., 1990; Rodts et al., 2003; Wilcox
and Ramanathan, 2001; Zhao and Di Girolamo, 2007) to nu-
merical simulations (Brown et al., 2002; Garrett et al., 2018;
Neggers et al., 2003) of the cloud field.

Marine boundary-layer clouds have been observed to or-
ganize themselves into cellular patterns (Malkus and Riehl,
1964; Nair et al., 1998; Seifert and Heus, 2013) as a response
to the formation of cold pools, formed by evaporative cooling
due to precipitation (Zuidema et al., 2012). The cold pools
promote the formation of negatively buoyant downdrafts that
inhibit further growth of thermals (Seifert and Heus, 2013;
Seifert et al., 2015; Seigel, 2014a). At the boundaries of
these open cells, convective formation is promoted due to the
moistening of downdrafts (Seifert and Heus, 2013) and me-
chanical lifting due to the convergence of cold-pool outflows
(Xue et al., 2008).

These dynamics between the formation of cold pools from
precipitation and the subsequent formation of clouds have
been observed to manifest as temporal oscillations; the cloud
field goes through a phase of relatively weak convection, un-
til multiple downdrafts from the cold pools collide into a con-
vergence zone, where convective growth begins anew. For
mesoscale marine boundary-layer stratocumulus clouds, the
spatial organization of precipitation is found to be impor-
tant in promoting subsequent cloud formation and the evo-
lution of open-cell convection (Feingold et al., 2010; Ko-
ren and Feingold, 2013; Wang and Feingold, 2009; Yam-
aguchi and Feingold, 2015). High-resolution large-eddy sim-
ulations have shown that the formation of cold pools is the
main mechanism that drives organized marine stratocumulus
convection, which corresponds well to long-term satellite ob-
servations (Bretherton and Blossey, 2017; Seifert and Heus,
2013; Zuidema et al., 2012).

Temporal oscillation has also been observed in modelling
studies of precipitating cumulus convection (Dagan et al.,
2018; Feingold et al., 2017). For both shallow and deep
clouds, the dominant mechanism that drives this oscillatory
evolution is found to be the formation of cold pools due
to evaporative cooling from precipitation in the sub-cloud
layer (Seifert and Heus, 2013; Yano and Plant, 2012; Tomp-
kins, 2001). This mechanism is referred to as the recharge–
discharge cycle of thermodynamic instability by Dagan et al.
(2018), motivated by Bladé and Hartmann (1993), where the
evaporative cooling due to precipitation charges instability in
the atmosphere, which is discharged by convection.

Precipitation facilitates both the spatial organization and
the temporal oscillation of the cloud field and is governed
by a number of factors, including cloud microphysics and
cloud layer depth. Aerosols, acting as cloud condensation nu-

clei (CCN), can influence the cloud microphysics by enhanc-
ing the cloud droplet number concentration but suppress-
ing droplet growth (Twomey, 1974), and LES studies have
shown that when the aerosol concentration is increased, the
cloud layer deepens, which then affects rain formation (Da-
gan et al., 2017; Seifert et al., 2015). Furthermore, modelling
studies have shown that an increase in aerosol concentration
influences both the amount and the timing of precipitation; in
a polluted environment, the efficiency of precipitation forma-
tion is reduced, and as a result, rain formation is suppressed
and delayed (Dagan et al., 2018; Seigel, 2014b; Seifert et al.,
2015; Yamaguchi et al., 2019).

This study is motivated by these observations of the peri-
odic evolution of the cloud size distribution; if the cloud size
distribution evolves periodically over time, the dynamic and
thermodynamic properties of the cloud field, such as mass
flux and cloud cover, must also oscillate accordingly as the
cloud field alternates between the two phases of strong and
weak convection. However, numerical algorithms used to de-
tect the period of such oscillations suffer from the presence
of noise. Because of this, earlier studies concerning the os-
cillatory growth of the cumulus field relied on manual in-
spections (Dagan et al., 2018; Koren and Feingold, 2011) or
spectral analysis (Feingold et al., 2017), although an accurate
estimate of the period of this oscillatory behaviour is yet to
be found. Therefore, we use a kernel-based machine-learning
method using the Gaussian process (GP) model and apply it
to the regression of the periodicity in the observed time series
of the cloud size distribution. GP is a flexible non-parametric
Bayesian machine-learning model that is well suited to be
used to infer useful information from a noisy dataset.

GP models have been used for this specific purpose in as-
tronomy (Angus et al., 2017) and medical studies (Cheng
et al., 2020; Durrande et al., 2016) to estimate the period-
icity in a time series with observational noise and extract an
underlying trend in the observed data. Likewise, we propose
the use of a GP model to obtain the underlying trend of a
time series in the presence of observational noise. We use
LES model results to sample cloud size densities, construct a
cloud size distribution, and follow the evolution of the cloud
field properties. Based on the periodic behaviour estimated
by the GP model, we re-construct the periodic time series
f (x) without noise, which is compared to the original time
series of cloud size distribution. Lastly, we repeat the GP re-
gression for mass flux and cloud cover to test our hypothesis.

Details of the LES model run is given in Sect. 2.1. Sec-
tion 2.2 illustrates how the individual clouds are sampled
from the model output. Section 2.3 gives the methods used
to construct the time series of the slope b from the cloud
size distribution. Section 2.4 examines the traditional Fourier
spectral analysis to identify the oscillatory behaviour within
the time series. A brief introduction of the GP regression
method is given in Sect. 2.5, as well as the construction of
kernels, which is further explained in Sect. 2.6, where we
present the method used to estimate the periodicity from the
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time series. The fully Bayesian model used to estimate the
uncertainty in the periodicity estimate is given in Sect. 2.7.
The results are discussed in Sect. 3 and summarized in
Sect. 4.

2 Methods

2.1 Model description

The System for Atmospheric Modeling (SAM; Khairoutdi-
nov and Randall, 2003) version 6.11.8 was used to simu-
late the CFMIP/GASS Inter-comparison of Large-Eddy and
Single-Column Models (CGILS) case (Blossey et al., 2013;
Zhang et al., 2013). In this study, we use the large-scale forc-
ing and thermodynamic tendencies of the CGILS S6 regime,
representing marine sub-tropical shallow cumulus convec-
tion.

The model grid size was set to 25 m in all directions over a
43.2 km× 12.8 km× 4.8 km model domain. This elongated,
bowling-alley domain was employed to minimize the effect
of periodic boundaries. Because the mean air flows along the
elongated axis, most of the convective activity occurs without
being spatially recycled as clouds rarely veer from the mean
airflow. The temporal resolution of the model was 1 s, and
the output was written every minute. We performed a total
of 36 h of simulation, although the first 24 h was used for the
model spin-up and was therefore excluded from the analysis,
and the last 720 time steps for the remaining 12 h of simula-
tion were used for the analysis. A long spin-up time was nec-
essary for the boundary layer to reach (quasi-)stability across
the domain. The cloud field was then sampled every minute.
Details of conditional cloud sampling are presented in the
following section.

Doubly periodic domains were employed with a soft top
to exclude gravity waves as the possible cause of oscillatory
behaviour (Dagan et al., 2018). A two-moment microphysics
scheme (Morrison et al., 2005a, b) was used, although the
cloud layer remained shallow within 2 km of the boundary
layer, and no ice formation was observed. The microphysics
scheme was initialized with a cloud droplet number con-
centration (CDNC) value of 120 cm−3, which is typical for
maritime convection (Rasmussen et al., 2002). Compared to
other relevant studies of aerosol–cloud interactions, this rep-
resents a relatively pristine environment (Dagan et al., 2018;
Seigel, 2014b; Yamaguchi et al., 2019). Other parameters
used in the LES model run are based on the CGILS S6 con-
trol run (Blossey et al., 2013; Tan et al., 2016; Zhang et al.,
2013). A diurnally averaged solar insolation was applied,
and both shortwave and longwave radiative effects were cal-
culated using the Rapid Radiative Transfer Model (RRTM)
(Clough et al., 2005; Iacono et al., 2008).

To make accurate measurements of vertical mass flux, we
implemented the tetrahedral interpolation scheme (Dawe and
Austin, 2011). Every time instantaneous cloud fields are sam-

pled, mass flux rates are integrated over a cloudy surface.
This is done by interpolating each grid cell using 48 tetrahe-
drons and calculating the changes in the three-dimensional
cloud surface. Recent studies suggest a grid size of roughly
10 m to achieve meaningful statistical accuracy even for shal-
low convective clouds (Sato et al., 2017, 2018), but the re-
sults from the LES model run with 12.5 m grids did not ap-
pear to cause significant changes in average vertical mass
flux distributions compared to 25 m grids. Since computa-
tional resources are limited and keeping a large domain size
(and hence a large number of statistically independent cloud
samples) and a longer simulation time is more important for
the purpose of this study, we only examine the results from
the 25 m resolution LES run.

Figure 1 shows a three-dimensional snapshot from the
LES model run. Clouds are generally scattered over the
model domain, and the distribution of smaller clouds appears
to be granular. However, areas of vigorous convective activi-
ties accompanying precipitation often form in clusters (right
side of Fig. 1) between areas that are either devoid of clouds
or dominated by scattered small clouds (middle of Fig. 1).
Earlier studies of cloud patterns (Seifert and Heus, 2013;
Stevens et al., 2020) have suggested that such gravel-like pat-
terns could be due to the formation of cold pools. Evapora-
tive cooling due to precipitation can form cold pools, and
such patterns can manifest as pronounced convective activi-
ties followed by a weak, scattered cloudy regime on the lee-
ward side. There are signs of cloud clustering in the sim-
ulated cloud field where the strongest convective activities
(right side of Fig. 1, for example) mostly occur in clusters.

2.2 Cloud sampling

In order to obtain the cloud size distribution, individual
clouds need to be sampled conditionally. In this study, hor-
izontally contiguous regions (grid cells) containing con-
densed liquid water (ql > 0) are considered to be the cloud
region. The size of a cloud is then defined as the area of the
horizontal cross-section, which is the number of grid cells
containing condensed liquid water multiplied by the hori-
zontal grid size (25 m× 25 m). The size distribution con-
tains multiple horizontal cross-sections of the same cloud.
However, randomly sampling 60 % of the cloud samples did
not result in significant changes in the time series, likely at-
tributable to the sheer number of samples and the shallow
nature of the modelled clouds in comparison to the size of
the domain, as well as the numerical methods used to reduce
the statistical uncertainties.

An alternative method by Neggers et al. (2003) is to verti-
cally project each cloud volume onto a two-dimensional sur-
face. This resembles two-dimensional images taken from a
high altitude, which can be useful when comparing the LES
output to satellite images, for example. However, the focus
of the study is to evaluate the dynamic and thermodynamic
properties of the clouds, and simply taking the horizontal
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Figure 1. A three-dimensional overview of the LES-modelled cloud field from SAM model output, taken 24 h into the simulation. The
shaded regions indicate cloudy cells that contain condensed liquid water. The darker regions are low in altitude, and the brighter regions are
closer to the cloud top at 2 km. Regions shaded in pink represent areas containing column-integrated precipitable water.

cross-section allows us to directly compare the distribution
of cloud sizes to that of mass flux. There is another bene-
fit to this approach: when the cloud field is projected onto a
two-dimensional surface, the number of smaller clouds sam-
pled from the cloud field increases. This is because smaller
clouds are less likely to be projected onto each other. Hence,
vertically projected cloud size distribution tends to overesti-
mate the number of smaller clouds, while using a horizontal
cross-section (e.g. Brown, 1999) gives a better representation
of the realistic three-dimensional cloud size distribution.

Once individual cloud sizes are extracted from the LES
output field, we define the cloud size distribution. The cloud
size distribution C(a) is a cumulative distribution defined as
an integral over the cloud size density c(a). The cloud size
density is a type of probability density function (PDF) that
defines the probability of a cloud having a certain size.

Typically, the probability density function is calculated us-
ing a histogram with a discrete bin size for a piecewise esti-
mate, where the density is defined as the frequency of clouds
within each discrete bin. However, the choice of bin size has
a large effect on the resulting distribution and can yield dif-
ferent results with qualitatively independent features depend-
ing arbitrarily on the choice of bin size.

To alleviate these issues, we use the kernel density estima-
tor (KDE; Parzen, 1962a) to reliably estimate the distribution
of cloud size density. A kernel density estimator k̂(x) at a
point x given a set of n observations X1, . . .,Xn is defined as

k̂(x)=
1
nh

n∑
i=1

K

(
x−Xi

h

)
, (1)

which is governed by a kernel function K and its bandwidth
h that control the amount of smoothing applied by the kernel.

We will use a Gaussian kernel K(x) for this purpose, de-
fined as

K(x)=
1

2π
e−x

2/2, (2)

which is used to smooth the cloud size density function. Each
cloud size sample is added to a distribution, not as a single

Figure 2. A comparison of the histogram (blue) and the kernel den-
sity estimate (KDE; orange line) showing log10 of normalized den-
sity based on the cloud size distribution over log10 of cloud size in
square metres.

point of observation but a probability distribution based on a
Gaussian distribution. It can be regarded as an uncertainty in
the measurement; that is, each cloud sample is considered to
be a Gaussian probability distribution whose width is defined
by the bandwidth h.

The KDE integrates these probability distributions of
cloud sizes, which gives the cloud size distribution C(a).
Figure 2 shows the histogram and the cloud size distribution
based on the KDE using cloud samples taken 12 h into the
simulation.

The cloud size distribution C(a) in Fig. 2 shows a decreas-
ing slope with a scale break for the smallest clouds. The prob-
ability density for the smallest clouds is nearly constant. The
distribution resembles that of Brown (1999) (cf. Fig. 12 in
Neggers et al., 2003) but with a greater number of smaller
clouds. This could be because smaller clouds appear near the
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cloud base, which is lower than the sampling height used in
Brown (1999), reproduced in Neggers et al. (2003). Since
the cloud samples in Fig. 2 have been taken at all heights, the
transition between the smaller and larger clouds appears to
be much less abrupt than previously observed.

2.3 Cloud size model

Given the cloud size distribution C(a), a model of the prob-
ability density function needs to be constructed in order
to study its temporal evolution. In this paper, we use the
power-law distribution (Benner and Curry, 1998; Cahalan
and Joseph, 1989; Feingold et al., 2017; Kuo et al., 1993;
Neggers et al., 2003; Zhao and Di Girolamo, 2007), which
has been widely used to represent the observed distribution
of clouds. Here, the cloud size density c(a) is defined as a
function of cloud size, or

c(a)= c0 a
b, (3)

where a is the cross-sectional cloud area in square metres,
and c0 is the coefficient used for the power-law fit. Integrat-
ing the cloud size density c(a) over all observed cloud sizes
a yields the cloud size distribution C(a).

From Fig. 2, we observe that the cloud size distribution
can roughly be divided into two parts, defined by a scale
break; the cloud density appears to be relatively constant for
the smallest clouds before it decreases linearly. This is a use-
ful feature for the purpose of this paper. As smaller clouds
are short-lived and their contribution to the upward mass flux
M is very small, we are interested in the oscillation between
the two phases of the cloud field where there is a relative
abundance of intermediate-sized clouds, which contributes
the most to the mass flux, and where there is a relative abun-
dance of large clouds, which contributes the most to precipi-
tation and formation of cold pools.

We isolate the (quasi-)linear portion by first taking the
derivative of the cloud size distribution C(a). A decision tree
regression algorithm (Breiman et al., 1984) is used to divide
the distribution into two parts by limiting the maximum num-
ber of possible branches to two, corresponding to the portion
of the distribution with a relatively constant slope and the rest
of the distribution. This is effectively done by fitting a simple
piecewise-constant function C(a) to the derivative of C(a),
as shown in Fig. 3a, where the breakpoint â minimizes the
error between the distribution C(a) and C(a). For this pur-
pose, we make use of the mean square error (MSE) defined
as

MSE=
1
N

N∑
i=1

(
C(ai)−C(ai)

)2
(4)

for N samples in the cloud size distribution C(a). As shown
in Fig. 3a, by minimizing MSE, the decision tree regression
algorithm isolates the linear portion of the distribution (green
region).

Figure 3. The decision tree regression algorithm is applied to the
derivative of cloud size distribution (a), which is divided into a re-
gion of relatively constant slope (a; green region) and the rest of
the distribution (a; red region). The green region is chosen by the
algorithm, which is then used to separate the linear portion of C(a)
(b; green region) from the non-linear portion (b; red region). The
green region, defined as the part of the distribution with a constant
slope (b; green region), is used to fit a linear curve (b; orange line),
while the rest of the distribution is ignored (b; red region) in order
to estimate the slope of the cloud size distribution.

Figure 3b shows how the decision tree splits the distribu-
tion based on the derivative of C(a). Once we isolate the
relatively linear portion of the distribution, we use the Theil–
Sen estimator (Theil, 1950; Sen, 1968) to perform a robust
linear regression, which does well in the presence of outliers
and small deviations from the linear trend, as seen in Fig. 3a,
where the slope represents the ratio between medium-sized
and the largest clouds. The cloud size distributionC(a) given
in Fig. 3b represents a normalized probability density func-
tion, which differs from that of the histograms obtained from
observations. Here, the slope is measured to be roughly b ≈
−0.65. We calculated b for non-normalized values of C(a),
and the time series is found to vary roughly between −1.4
and −1.7, which corresponds to a range of −0.7 to −0.85
based on the method by Neggers et al. (2003) and −1.7 to
−1.85 by Benner and Curry (1998). The measured slopes
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are slightly smaller in magnitude but comparable to the slope
of b =−1.7 found in a large-eddy simulation (Neggers et al.,
2003) and the slope of b =−1.98 from remote sensing ob-
servations (Cahalan and Joseph, 1989; Benner and Curry,
1998).

We repeat the calculation of the slope b for 720 time steps
(or the entire duration of the simulation excluding the spin-up
time). The resulting time series of the slope b for the cloud
size distribution C(a) can be seen in Fig. 4. The use of a
robust linear regressor along with a decision tree regression
algorithm helps isolate the linear segment of the distribution,
which better represents the slope of the size distribution of
the cloud field and reduces numerical uncertainties involved
in the linear regression to obtain the slope b.

We are interested in determining whether the fluctuations
in the time series of the cloud size distribution in Fig. 4 are
consistent with a periodic behaviour. The oscillatory evolu-
tion in b is not immediately obvious in Fig. 4, and perform-
ing an augmented Dickey–Fuller (ADF; Dickey and Fuller,
1979; Hamilton, 1994) test shows that the time series is non-
stationary. We would like to quantify the extent to which the
time series is consistent with earlier studies regarding oscil-
lations in the cloud size distribution. In the following section,
we follow Feingold et al. (2017) and perform Fourier spec-
tral analysis to identify the underlying periodic behaviour in
the observed time series.

2.4 Fourier spectral analysis

Given the noisy, non-stationary time series of the slope b(t)
(Fig. 4), we tested traditional spectral analysis based on dis-
crete Fourier transform (DFT) to capture possible oscillatory
behaviour (Feingold et al., 2017). Here, given a discrete time
series fk = f (k/N) for (k = 0,1, . . .,N−1), the correspond-
ing DFT, (F(f0),F(f1), . . .,F(fN−1)), can be obtained by

F(fk)=
1
√
N

N−1∑
n=0

f (n) · exp
(
−2πi

kn

N

)
, (5)

where k = 0,1, . . .,N − 1.
Equation (5) translates the observed time series fk into a

function of frequency k/N that is a linear combination of
oscillatory, or sinusoidal, components. The strength of each
component can then be observed by examining the power
spectral density of the time series. The oscillatory compo-
nents showing the strongest signals represent the dominant
modes of oscillation in the observed time series.

The power spectral density for a DFT on a discrete se-
quence can be estimated by a periodogram, defined as the
squared modulus of DFT, or

P (fk)= |F(fk)|2 (6)

=
1
N

(
N−1∑
n=0

f (n) · exp
(
−2πi

kn

N

))2

, (7)

where k = 0,1, . . ., (N − 1)/2 for a real-valued input se-
quence.

Figure 5 shows the estimate of the power spectral density
using the periodogram (blue) and the 95 % confidence inter-
val (red) obtained from the noisy time series b(t), plotted
as a function of period T (k)=N/k. The 95 % confidence
interval defines the threshold that separates oscillatory sig-
nals from noise, against the null hypothesis that all signals in
the periodogram are Gaussian noise, and is based on a chi-
squared distribution χ2 with 2 degrees of freedom (Panofsky
and Brier, 1958).

There are two prominent periods on the periodogram, one
at T = 100 min and the other at T = 233 min, but only the
latter signal is above the 95 % confidence interval. Both sig-
nals have periods longer than the 80 min period observed
by Feingold et al. (2017), and no significant signals can
be found at shorter periods. The signals are found in the
low-frequency regime, and because of that, the frequency
bin width is too large to pinpoint the exact period from the
periodogram, especially for T = 233 min. Each coefficient
in the periodogram corresponds to period T (k)=N/k for
k = 0,1, . . .,N−1. The longer the period, the coarser the res-
olution, which greatly reduces the effectiveness of the peri-
odogram in isolating oscillatory components from the noisy
time series. This period is also much longer than the expected
oscillatory behaviour (Dagan et al., 2017; Yamaguchi et al.,
2019), and it is possible that it is a harmonic of a fundamental
frequency hidden by noise and non-stationarity.

We also tested other methods to estimate power spectral
density, such as the circular autocorrelation function (ACF;
Parzen, 1962b), but the (partial) autocorrelation function of
the observed time series b(t) decreases slowly over time, and
no significant lag can be found. The presence of noise and
the non-stationary nature of the time series make it difficult
to examine the behaviour of the time series.

2.5 Gaussian process regression

As shown in the previous section, traditional methods strug-
gle to identify the underlying oscillatory behaviour in the ob-
served time series. Internal fluctuations in the cloud field and
the uncertainties from the numerical methods used in the es-
timation for the slope of the cloud size distribution can mask
the underlying trend in the observation. To handle the uncer-
tainty, we make use of the Gaussian process (GP) regression
(Rasmussen and Williams, 2006). A Gaussian process is a
set of random variables, any finite number of which have a
joint Gaussian distribution. GP models can explicitly model
and learn the noise level directly from the data by introduc-
ing an explicit noise term that we use to represent numerical
uncertainties involved in sampling and constructing the time
series b(t) of the cloud size distribution.

The time series can be considered a regression problem
for a latent function f over observations y = y(x) made at
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Figure 4. The time series of slope b of the cloud size distribution C(a) for the 12 h simulation. The slope is calculated every minute (blue
line) for the duration of the entire simulation, but the first 9 h is used to train the GP model.

Figure 5. The power spectral density (blue) and 95 % confidence interval for the time series b(t) based on the slope of the cloud size
distribution C(a), obtained from Fourier spectral analysis.

points x = x1, . . .,xn with noise εy , or

y = y(x)= f (x)+ εy . (8)

Assuming no prior knowledge about the noise εy , we for-
malize this uncertainty as an additive independent identically
distributed Gaussian distribution with zero mean and a vari-
ance of σ 2

y (i.e. N (0,σ 2
y )). The subscript indicates that the

uncertainty comes from the noisy observation y.
In this framework, the prior p(y|f ) can be formalized as

a (Gaussian) probability distribution, defined uniquely by its
mean µ(x) and a covariance function k(xi,xj ):

p(y|f )∼N
(
µ(x),K

)
, (9)

where K is an n× n matrix of covariances (Kij = k(xi,xj ))
of the joint distribution p(x) evaluated at two arbitrary
points, which can then be used to define a Bayesian prior

that reflects our belief about how the model should behave
prior to observing any data points.

For a set of observation points x = x1, . . .,xn, we can write
the covariance matrix K(x,x) as

K(x,x)=


k(x1,x1) k(x1,x2) · · · k(x1,xn)

k(x2,x1) k(x2,x2) · · · k(x2,xn)
...

...
. . .

...

k(xn,x1) k(xnx2) · · · k(xn,xn)

 , (10)

and because the noise is assumed to be independent, we can
modify the covariance function to include the noise term. Be-
cause the additive, independent noise term only applies to the
diagonal elements of the covariance matrix,

cov(x,x)=K(x,x)+ σ 2I, (11)

where σ 2 is the variance of our (independent Gaussian) noise
term.
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To make predictions, we need to obtain the posterior dis-
tribution by conditioning the prior distribution using the ob-
servations. To this end, we set up a joint distribution between
the observations made at training points y = f (x) and the
function values at testing points f ∗ = f (x∗) as

p

([
y
f ∗

])
=N

([
µ(x)
µ(x∗)

]
,

[
K(x,x)+ σ 2I K(x,x∗)

K(x∗,x) K(x∗,x∗)

])
,

(12)

which can be conditioned by the observations y to yield the
posterior distribution, which is also Gaussian, as

p(f ∗|x∗,y)=N (E[f ∗],V[f ∗]). (13)

This is fully specified by the respective mean and variance:

E[f ∗] = µ(x∗)+K(x∗,x)
(

K(x,x)+ σ 2I
)−1

(y−µ(x)), (14)

V[f ∗] =K(x∗,x∗)−K(x∗,x)
(

K(x,x)+ σ 2I
)−1

K(x,x∗). (15)

A crucial step in Gaussian process regression is determin-
ing the covariance K, also called the kernel, which embod-
ies prior knowledge or our assumptions about the observed
processes. A kernel function k(x,x′) determines how an ar-
bitrary pair of sample points x and x′ are related to each
other. Essentially, it reflects our belief about how the prob-
ability distribution (the target function f (x) under the ob-
served data, as seen in Eq. 8) behaves.

The most widely used covariance function is the square
exponential (SE), defined as

kSE = exp
(
−
(x− x′)2

2λ2

)
, (16)

where λ is typically defined as a length scale or a timescale
for the time series data. The timescale λ is one of the hyper-
parameters in our GP model that determines how smoothly
the resulting process varies over time. The SE kernel is most
widely used as it gives enough freedom to model a wide
range of timescales, and it has an added benefit of being in-
finitely smooth, which is useful later.

For the purpose of this study, we also use a periodic ker-
nel that assumes a sinusoidal process, which was originally
defined by MacKay (1997) as

kper = exp

(
−

2sin2 (π |x− x′|T −1)
λ2

)
, (17)

where λ is a timescale, and T is the period of oscillation.
The timescale λ and the period T are the hyper-

parameters, which control the shape of the posterior distri-
bution. These hyper-parameters are initially unknown, al-
though the prior distribution can be specified based on do-
main knowledge, initial observations, or some prior assump-
tions about the data. In order to determine a better estimate

of the hyper-parameters, we need to perform inference based
on the marginal likelihood, which is defined as the integral
of the likelihood and the prior, or

p(y|x)=

∫
p(y|f ,x)p(f |x)df , (18)

where the term marginal refers to the process of taking an
integral over y, or marginalizing over the observations, in
order to obtain p(y|x).

Note that under the Gaussian process model, both the prior
and the likelihood must also be Gaussian (MacKay, 1997;
Rasmussen and Williams, 2006). The integral above reduces
to

logp(y|x)=−
1
2
y>(K+ σ 2I)−1y−

1
2

log |K+ σ 2I|

−
n

2
log2π, (19)

which defines the marginal log likelihood (MLL). A more
detailed derivation can be found in Chap. 2 of Rasmussen and
Williams (2006). By maximizing the marginal log likelihood,
we can find the hyper-parameters that maximize MLL, which
can best explain the observed data.

Based on the time series of cloud size distribution in Fig. 4,
we can assume that a simple periodic kernel is not enough to
model the complexity of the observed time series. Therefore,
we added an SE kernel to the periodic kernel to model numer-
ical instability and uncertainty (MacKay, 1997; Rasmussen
and Williams, 2006), which we can use to customize our GP
model to better reflect the underlying assumptions about the
observed dataset. In this case,

k̂ = kSE+ kper, (20)

where the SE kernel has been added to account for the non-
stationarity. With no prior assumptions about the underlying
dynamics, we also tested different combinations of k̂, such as
adding two periodic kernels together in order to model two
oscillations at different timescales (Dagan et al., 2018), but
using a single periodic kernel for periodicity detection has
been proven to be sufficient in our case.

The GP model uses a gradient descent algorithm to find the
hyper-parameters that optimize the (log) marginal likelihood.
However, there is no guarantee that it will reach the point that
maximizes the marginal likelihood, which will define the best
set of hyper-parameters. It is possible that even with multiple
experiments, the GP model might be fitted to local maxima,
as the gradient descent cannot evaluate the full posterior dis-
tribution (see Sect. 2.7 for more information). Fortunately, at
least for the timescale in the periodic kernel kper, we can de-
fine a reasonable range of values that can represent the oscil-
lation in the cloud size distribution. To demonstrate that the
95 min period is not a local minimum, we repeatedly trained
our GP model with different initial periods, ranging from 5
to 150 min at 5 min intervals, and all of these tested periods
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converged to the 95 min period after training. We also tested
periods longer than 150 min, but the resulting posterior distri-
bution ignores most of the variability in the time series with
T > 150 min. In most cases, the initial period only affected
the number of steps that needed to be taken for the gradi-
ent descent algorithm to reach the 95 min period; the farther
the initial period was from 95 min, the longer it took for the
algorithm to optimize the periodic kernel.

Therefore, we chose an initial period of 90 min, which
corresponds to the previously observed period of oscillation
(Dagan et al., 2018). We set a lower bound of 15 min to
timescale λ to avoid overfitting and to ensure that most of
the variability in the observed time series can be explained
by the periodic kernel kper. If the timescale λ is allowed to be
small, the GP regression model will simply fit the observed
data as close as possible regardless of the periodicity.

The GP models are implemented in GPytorch (Gardner
et al., 2018), and the hyper-parameters are trained using the
Adam optimizer (Kingma and Ba, 2014). The resulting GP
posterior distribution with the kernel k̂ can be seen in Fig. 7.
The initial application of the GP model serves two purposes.
First, by assuming a smooth variation in the slope b, we rele-
gate the uncertainty involved in calculating the slope b from
the cloud size distribution C(a) to the noise term. Second, as
we assume no prior knowledge about the periodic evolution
of b, the hyper-parameters can be used as a preliminary esti-
mate for the following procedure, which is described in the
next section.

2.6 Periodicity detection

The smoothly modelled distribution b̃(t) from the mean
GP posterior distribution b(t) in Fig. 6 corresponds well to
the observed time series, showing the oscillatory behaviour
within the noisy observation with a period T = 95 min. In
this particular case, the initial regression attempt yields a
good estimate of the hyper-parameters for the observed time
series. However, in situations where a general, long-term
trend breaks the quasi-stability assumption, additional steps
should be taken in order to better isolate the oscillatory be-
haviour of the cloud field, which still remains noisy and non-
stationary.

The standard practice to account for non-stationarity is to
take the derivative of the time series ∂tb̃(t)= ∂b̃(t)/∂t . If
the oscillation is dominated by a single frequency, the fre-
quency should also characterize the derivative of the oscilla-
tion. Given this, we build a GP regression model to estimate
the period of the oscillation in ∂tb̃(t), which can be seen in
Fig. 7.

We found that taking the derivative of b(t) also success-
fully normalizes the observed time series, which is useful
for statistical analysis. Applying the ADF test (Dickey and
Fuller, 1979; Hamilton, 1994) to ∂tb̃(t) also confirms that the
resulting time series is now stationary. As shown in Fig. 7, the
values of ∂tb̃(t) vary with zero mean, with no obvious trend

over time. There are small variations in the amplitude, but
we can now drop the SE kernel to account for the variability
in the y axis and only use the periodic kernel (i.e. k̂ = kper)
to estimate the periodicity T . This reduction in the number
of hyper-parameters is also necessary to perform Bayesian
inference, which is described in more detail in Sect. 2.7.

Figure 7 shows the target observation ∂tb̃(t) and randomly
drawn samples from the posterior distribution. These sam-
ples are drawn from the posterior distribution and represent
possible realizations of our GP model trained by the obser-
vations. The variability in the periodicity seems to be small
relative to the uncertainties in the observed time series.

The results of applying the periodic GP model can be seen
in Fig. 8, showing the mean posterior distribution for our
Gaussian process based on a periodic kernel kper with noise.
Most of the variability comes from deviations in ∂tb̃(t), and
the use of a simple periodic kernel is sufficient to isolate the
underlying oscillatory behaviour from the observation. The
mean posterior distribution in Fig. 8 based on the GP model
again yields a period of T ≈ 95 min, which is close to the
90 min period observed by Dagan et al. (2018) in tropical ma-
rine shallow cumulus clouds under precipitating conditions.

Next, we compare the mean posterior distribution from the
GP derivative model to b(t). We integrate the mean poste-
rior distribution ∂tb̃(t) in Fig. 8 to obtain an estimate for b(t)
within a constant. For a direct comparison with b(t), we ap-
plied the min–max normalization algorithm:

ỹ =
y−min(y)

max(y)−min(y)
, (21)

where ỹ is the normalized time series, and y is the original
observation. This can be used to perform a quick comparison
between the integral of the mean posterior distribution b̃(t)
and the observed time series b(t), which is shown in Fig. 9.
The normalization, however, makes it more difficult to see
that the time series of the slope b(t) of the cloud size dis-
tribution has a negative sign (see Fig. 6). A small value in
the normalized slope b̃ indicates a more negative slope or a
steeper slope where there is a relative abundance of smaller
clouds. On the other hand, a large value in b̃ represents a less
negative slope where there is a relative abundance of larger
clouds.

2.7 Fully Bayesian Gaussian process

While the GP regression model yields posterior distribu-
tions with confidence bounds, as shown in Fig. 9, we can-
not obtain a measure of uncertainty for the hyper-parameters
because the gradient descent algorithm cannot evaluate the
entire hyper-parameter space. We can instead use a fully
Bayesian GP model to estimate the uncertainties in the hyper-
parameters of the GP model by stochastically modelling
the full posterior distribution. This is done by assuming a
prior over model hyper-parameters θ ∼ p(θ), also called the
hyper-prior, that is, the prior over the hyper-parameters. We
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Figure 6. Mean posterior of the trained GP model (orange line) compared to the observed slope b of the cloud size distribution C(a) (blue
line) for the first 9 h of simulation used for training.

Figure 7. Samples from the posterior distribution of the trained GP model (orange line) compared to the observed time series of ∂tb̃(t) (blue
line) for the first 9 h of simulation used for training.

can then define the joint posterior with the hyper-prior p(θ)
as

p(f ,θ |y)∝ p(y|f )p(f |θ ,x)p(θ), (22)

where we have omitted input data x and x∗ for the sake of
simplicity. For a full, illustrative description of the Bayesian
model selection, refer to Chap. 5.2 in Rasmussen and
Williams (2006).

Given the test input data x∗, we retrieve the predictive pos-
terior by integrating the joint posterior

p(f∗|y)=
∫∫

p(f ∗|f ,θ)p(f ,θ |y)df dθ , (23)

=

∫∫
p(f ∗|f ,θ)p(f |θ ,y)p(θ |y)df dθ , (24)

whose inner integral reduces to the standard GP posterior,
which has the same structure as Eq. (14). Using the same

formalization in Sect. 2.5, the outer integral can be estimated
as

p(f∗|y)=
∫
p(f ∗|y,θ)p(θ |y)dθ , (25)

'
1
N

N∑
k=1

p(f ∗|y,θk), (26)

where θk ∼ p(θ |y). The integral p(θ |y)∼ p(θ |y)p(θ) re-
mains intractable. In order to estimate this integral and ob-
tain the predictive posterior as described in Eq. (25), we use
a modern variant of the Hamiltonian Monte Carlo (HMC)
algorithm called the No-U-Turn-Sampler (NUTS; Hoffman
and Gelman, 2014) in Pyro (Bingham et al., 2019).

The fully Bayesian GP model was applied to the time se-
ries of ∂tb̃(t). We initially employed normal priors for the
characteristic timescale λ and periodicity T for the periodic
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Figure 8. Mean posterior distribution of the periodic GP model (orange line) compared to the derivative of time series b̃(t) used as the
observation (blue line). Shaded regions show the (pointwise) 95 % confidence interval.

Figure 9. Normalized time series of slope b of the cloud size distribution C(a) (blue line; same as Fig. 4) compared to the mean posterior
from the periodic GP model (orange line), representing the 95 min oscillation. The full time series includes the 9 h training set used for the
GP model fit (blue region) and the 3 h testing set used for the GP model evaluation (orange region).

kernel, but the GP model quickly converged to the previously
observed 95 min period. To avoid over-fitting, we initialized
the Bayesian GP model with an uninformative, uniform prior
that allows any quasi-realistic values for the period of oscil-
lation. Unfortunately, the characteristic timescale λ fails to
converge with the uniform prior in the presence of periodic-
ity, which confirms that the Bayesian GP model can explain
the observed time series solely with a periodic kernel kper
and that the post-processing steps taken in Sect. 2.6 are use-
ful for the Bayesian inference. The characteristic periodicity
T was given a uniform prior U(30,130), and Bayesian infer-
ence via MCMC was performed, with four chains generating
700 samples, including 300 warm-up samples.

The resulting histogram of the characteristic periods taken
from 700 samples can be seen in Fig. 10, which shows that

the most probable period that can be inferred from the time
series ∂tb̃(t) is 95±3.2 min. It is not surprising that the fully
Bayesian GP model converged to the same period from the
previous section, and it confirms that the non-Bayesian GP
model is a reliable framework that can identify oscillatory
motions in noisy time series observations of moist convec-
tion.

3 Discussion

3.1 Cloud size distribution

We estimated the periodicity in the evolution of the slope of
the cloud size distribution; the estimated periodicity in b̃(t) is
T = 95± 3.2 min, which corresponds well to previous stud-
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Figure 10. A histogram (blue) and the corresponding kernel density
estimate (orange) of periods retrieved from Markov chain Monte
Carlo (MCMC) experiments. Fitting the Gaussian distribution to
KDE (black dots) infers 95± 3.2 min for the observed periodicity
in the time series.

ies involving marine shallow cumulus clouds (Dagan et al.,
2018). This periodicity is slightly longer than 80 min esti-
mated by a Fourier spectral analysis of an LES cloud field
(Feingold et al., 2017). This could be due to the differences in
precipitation strength, aerosol concentration, or domain size.
In the bowling-alley domain, clouds are allowed to develop
along the direction of the mean wind, which corresponds to
the elongated axis of 42 km. Therefore, we expect the devel-
opment of the cloud field to resemble the larger model run
by Dagan et al. (2018). Moreover, the lower-frequency mode
of oscillation found in these studies makes it difficult to ac-
curately determine the periodicity, as described in Sect. 2.4.

The simulated time series of the mean posterior distri-
bution for b̃(t) generally corresponds well to the observed
changes in b(t), except 4 and 10 h from the beginning of
the time series. Small-scale fluctuations within the cloud do-
main could disrupt large-scale convective and precipitative
patterns, even with a large model domain. To gain more in-
sight into the internal variations within the cloud field, we
visualized the three-dimensional cloud field for the duration
of the simulation. Figure 11 shows a snapshot of the mod-
elled cloud field taken 250 min into the simulation.

Based on Fig. 9 at around t = 4 h, the cloud field is ex-
pected to go towards a phase of relatively weak convection
where there is a relative abundance of smaller clouds. Small
normalized values correspond to more negative slopes of the
cloud size distribution. However, upon inspecting the evolu-
tion of the cloud field during this time, large structures form
at the top of the cloud layer (light grey regions in Fig. 11) as a
result of strong convective activity, which persist until t = 5 h
into the simulation. Once the large, thin layer of clouds at the

top dissipates, the deviation in the observed time series of b
becomes much smaller. During this time, as shown in Fig. 11,
the cloud field is dominated by the growth of small clouds.
However, a thin layer of clouds persists and skews the slope
b of the cloud size distribution.

On the other hand, around 9 h into the simulation, the
cloud field is expected to go towards a phase of relatively
strong convection where there is a relative abundance of
larger clouds. Visually inspecting the development of the
cloud field (Fig. 12) suggests that strong convective activities
occur in groups, and clouds tend to merge and become much
larger, which reduces the relative number of large clouds
compared to small ones that are less likely to merge with
other clouds or reach the cloud top layer. Because of this, the
normalized value of b of the cloud size distribution becomes
smaller, indicating a much steeper slope despite the strong
convective activity.

As shown in Fig. 12, clouds form in groups and merge
into large convective columns. The successive formation of
clouds can also be seen, where clouds appear in a line fol-
lowing the advection of the large clouds (Moser and Lasher-
Trapp, 2017). This can also be attributed to the effect of spa-
tial organization, where the cloud field in Fig. 12 can be di-
vided into regions of strong convection, followed by regions
devoid of clouds. The development of large clouds can be
seen, as expected by our GP model, but these clouds could
have been merged into small regions due to the spatial or-
ganization of the cloud field. Features of organized shal-
low convection have been observed in large-eddy simulations
with small to moderate domain sizes (Seifert and Heus, 2013;
Xue et al., 2008). However, such features are sporadic, and
the clouds become scattered again at t = 11 h into the simu-
lation.

We were not able to reliably isolate a high-frequency oscil-
lation reported in previous studies, both for T ≈ 10 min (Da-
gan et al., 2018) and for T ≈ 15 min (Feingold et al., 2017),
with a modified prior distribution. This is likely due to the
large noise in the time series b(t) (cf. Fig. 4), as well as small
variations in the amplitude of the oscillation. Over-fitting of
noisy time series becomes an issue in such cases as the GP
model quickly adheres to random noise, or observational un-
certainties, but not necessarily to high-frequency oscillation.

Given that the primary mode of oscillation found in this
study has a period of 95 min, we suspect that the size of
the domain used for the LES run (43.2 km× 12.8 km) might
have made it more difficult to isolate the evolution of indi-
vidual clouds (Dagan et al., 2018), as we expect the 15 min
period to be correlated to the convective timescale for indi-
vidual clouds rather than changes in the mean cloud field
(Feingold et al., 2017; Heus et al., 2009). It is also possi-
ble that such convective oscillation exists, but due to the na-
ture of non-linear oscillation at small scales, our attempt to
resolve the time series with a periodic kernel did not ade-
quately capture the complex dynamics of non-linear oscilla-
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Figure 11. Same as Fig. 1 but seen from the top of the atmosphere 250 min into the simulation.

Figure 12. Same as Fig. 1, taken 600 min into the simulation.

tors (Koren and Feingold, 2011; Koren et al., 2017; Seifert
and Heus, 2013) at the scale of individual clouds.

Lastly, using a fully Bayesian GP model to estimate the
uncertainty in the characteristic periodicity T (Fig. 10) con-
firms that without any prior knowledge, except with an as-
sumption that a reasonable period value would lie somewhere
between 30 and 130 min, we could reliably retrieve a time se-
ries oscillation that is statistically significant, with a period of
T = 95± 3.2 min.

3.2 Cloud fraction

As the oscillation is assumed to be driven mainly by the spa-
tial and temporal organization of precipitating clouds, we
make an assumption that the same periodic evolution in the
dynamic and thermodynamic properties of the mean cloud
field, such as cloud cover fc (Feingold et al., 2017) and ver-
tical mass flux M , can also be observed. Therefore, we ap-
plied the GP regression method for the cloud fraction over
the model domain fc, which is simply the fraction of the do-
main that is covered by clouds. Cloud fraction is calculated
by projecting the three-dimensional clouds onto the ground
and calculating the fraction of the two-dimensional grid cells
that are covered by a cloudy region (with condensed liquid

water, or ql > 0). We repeat the calculation every minute to
construct the cloud fraction time series fc(t).

We applied the same numerical techniques presented in
Sect. 2, including the uncertainty estimate for the hyper-
parameters using the fully Bayesian GP model (Sect. 2.7).
The results of applying the GP regression method can be seen
in Fig. 13, where the period of oscillation estimated by the
fully Bayesian GP model is shown to be Tf = 93± 3.7 min.

The period lies well within the range of estimated periods
for b̃(t), even when the modelled oscillatory evolution b̃(t)
deviates from the observed values of b(t). This is because
merging and splitting of clouds do not significantly change
the area that is covered by those clouds. Likewise, persistent
clouds forming at the top of the cloud layer tend to form over
shallower clouds near the bottom of the cloud layer, and they
do not seem to affect the oscillatory evolution in fc.

The proposed GP regression model can accurately esti-
mate the periodic evolution of cloud fraction, but cloud frac-
tion fc cannot account for internal variations in the cloud
size distribution. The estimated mean posterior distributions
of b and fc are well correlated, but the deviations noted in
Sect. 3.1 are hidden in the time series of fc. Large values
of fc are normally associated with a relative abundance of
large clouds, but the actual state of the cloud size distribution
could differ; for example, the cloud field can be dominated
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Figure 13. Same as Fig. 9 but for cloud fraction fc.

by small clouds near the cloud base but covered by a thin
layer of clouds at the top (Fig. 11), in which case the radia-
tive properties of the cloud field will be different from those
of a cloud field that is dominated by large clouds, despite
both having a large cloud fraction.

3.3 Average cloud vertical mass flux

We also applied the GP regression method to vertical mass
flux M , which is defined at each grid cell as

M = ρwA, (27)

where ρ is the air density [kgm3], w is the vertical velocity
of the air [ms−1], and A is the activity field that is 1 for
the cloudy cell (containing condensed liquid water, or ql > 0)
and 0 otherwise.

The average mass flux M(t) can then be obtained by cal-
culating the average mass flux across the cloud field and tak-
ing the average value over the vertical column as the vertical
distribution of mass flux remains relatively consistent within
the cloud layer. We use this value as a proxy for convective
vigour in the modelled cloud field. We calculate M at each
time step to construct the time series of average mass flux
M(t) for the simulated 12 h period (Fig. 14).

For vertical mass flux over the mean cloud field, the period
is estimated to be TM = 93±2.5 min, which agrees well with
the estimated ranges for both b̃ and fc. Figure 14 shows both
the normalized mass flux time seriesM(t) and the integrated
mean posterior of the periodic GP model. The time series of
M(t) tends to be much smoother than that of the cloud size
distribution because the fluxes have been averaged over the
model domain.

The mean posterior distribution shown in Fig. 14 follows
the observed time series quite closely for the training set,
except around t = 4 h and t = 9 h into the simulation. The
suppression of vertical mass flux around t = 4 h is connected

to the deviation in b̃ (Fig. 9). Small clouds form across the
model domain during this period, which corresponds to large
values of average vertical mass flux M(t), but a thin layer
of clouds persists near the top and reduces overall values of
M(t). On the other hand, the oscillatory behaviour inM(t) is
disrupted between t = 7 and t = 10 h of simulation. As noted
in Sect. 3.1, spatial organization of clouds could influence
the deviation; during this time, clouds tend to form close to
existing convective columns, which can be seen as regions
of strong convective activities followed by regions devoid of
clouds (cf. Fig. 12). The formation of cold pools from con-
vective precipitation will result in a convergence of descend-
ing moist air, which can disrupt the oscillatory evolution of
the cloud field and force the formation of large, organized
groups of clouds.

In both cases, it would be useful to diagnose the changes
in the vertical distribution of mass flux M to examine the
factors contributing to internal fluctuations and gain more in-
sight into how vertical distributions of moisture and momen-
tum periodically re-arrange over time. This also allows us to
examine how the clouds mix in terms of the entrainment and
detrainment rates, where

∂

∂z
M = e− d (28)

for rates of entrainment e and detrainment d [kgm−2 s−1],
but a preliminary examination of domain-average vertical
mass flux profiles reveals that the variability within the cloud
field is too large, and more work needs to be done, which is
outside the scope of this study.

3.4 Precipitation flux

As shown in Figs. 13 and 14, oscillations in b̃ and fc are well
correlated, while the oscillation in M seems to be lagging.
That is, the peaks in M correspond roughly to the troughs
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Figure 14. Same as Fig. 9 but for average vertical mass flux M(t).

in both b̃ and fc. To visualize the relationship, we plotted
normalized mean posterior distributions from our GP model
for the three variables in Fig. 15.

Figure 15 shows the oscillatory evolutions of the mean
posterior distributions for b̃, fc, and M , which gives more
insight into how the marine boundary-layer cumulus clouds
evolve over time in a high-resolution model. When there is
a relative abundance of larger clouds, the normalized slope b̃
of the cloud size distribution and cloud fraction fc becomes
larger, which corresponds to a less negative (less steep) slope
b of the cloud size distribution. Hence, the changes in cloud
fraction fc are correlated to the number of large clouds; that
is, the number of large clouds (mostly observed as anvil-like
structures near the cloud layer top) determines how much of
the model domain is covered by clouds.

On the other hand, peaks in mass flux M , averaged across
the model domain, are associated with smaller values of b̃.
This corresponds to a more negative (steeper) slope b of the
cloud size distribution, which suggests a relative abundance
of smaller clouds, associated with smaller values of cloud
fraction fc. The formation of smaller clouds is connected
to an average increase in vertical mass flux across the do-
main, while the formation of larger clouds is associated with
weak overall mass flux. This is indicative of the recharge–
discharge mechanism, where strong convective activities are
associated with precipitation and the formation of cold pools,
which in turn suppress cloud formation. As the larger clouds
dissipate and surface fluxes introduce atmospheric instabil-
ity, average vertical mass flux across the model domain in-
creases and small clouds develop, which then promote the
formation of larger clouds (Dagan et al., 2018). The increase
in average vertical mass flux can also be attributed to the dy-
namic lifting at the boundaries of cold pools, where descend-
ing moist air from cold pools merges to promote the growth
of large clouds.

To further examine the relationship between the strength
of convection, inferred from average mass flux M , and pre-
cipitation, we plot the time series of the average vertical
mass flux M compared to the precipitation flux, averaged
over the cloud layer, in Fig. 16. It is clear that periods of
strong vertical mass flux are followed by vigorous precipita-
tion, where latent heat gets released, warms the cloud layer,
and promotes the formation of large clouds. As large clouds
form and begin to precipitate, the sub-cloud layer cools due
to evaporation, and warming of the cloud layer and cooling
of the sub-cloud layer reduce (discharge) atmospheric insta-
bility within the boundary layer, rapidly weakening convec-
tion and precipitation until surface fluxes re-introduce atmo-
spheric instability.

Hence, the time series of mass flux M and precipitation in
Fig. 16 are consistent with the proposed recharge–discharge
cycle (Dagan et al., 2018), which is primarily driven by pre-
cipitation and latent heat release due to convection. That is,
each recharge–discharge cycle consists of a 95 min oscil-
lation where atmospheric instability is charged by surface
fluxes and discharged by convection and precipitation over
the 95 min period. This period, however, can be disrupted
by internal fluctuations and spatial organization of the cloud
field (cf. Sect. 3.1). Furthermore, changes in aerosol concen-
trations will affect precipitation efficiency, where rain forma-
tion in polluted environments tends to be less efficient and
therefore slower (Seigel, 2014b; Yamaguchi et al., 2019).

To isolate the role of precipitation in driving the proposed
recharge–discharge cycle, we performed a follow-up simula-
tion of the CGILS case, in which rain formation in the cloud
microphysics scheme is artificially suppressed. Likewise, we
applied the GP regression method to the mass flux time se-
ries in shallow convection during the BOMEX (Holland and
Rasmusson, 1973) case, with precipitation turned off as well.
In both cases, the GP regression method described in Sect. 2
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Figure 15. Normalized time series of slope b̃ of the cloud size distribution C(a) (blue), average vertical mass flux M(t) (red), and cloud
fraction fc (orange), based on the periodic GP model.

Figure 16. Normalized time series of average vertical mass flux M(t) [kgm−2 s−1] and precipitation flux [mm d−1].

failed to converge towards a single periodicity, and no promi-
nent oscillatory behaviour could be found.

4 Conclusions

We performed a high-resolution, large-eddy simulation of
tropical marine boundary-layer clouds and implemented nu-
merical methods to analyze the temporal changes in the slope
b of the cloud size distribution C(a) that reflects the state
of moist convection across the modelled cloud field. LES-
modelled boundary-layer clouds were conditionally sam-
pled, and the probability distribution of cloud sizes was de-
fined by the kernel density estimator (KDE; Parzen, 1962a).
The slope b of the cloud size distribution at each time step
was then obtained by a decision tree algorithm and a robust
linear regression method. By applying these numerical meth-
ods to every model output, we constructed the time series of
the changes in the slope b(t) for the cloud size distribution,

which can be used as a proxy for the state of the modelled
cloud field.

The numerical steps described in this study are taken pri-
marily to reduce noise and numerical uncertainties involved
in calculating the slope b. We also tested the cloud size dis-
tributions of a vertically projected three-dimensional cloud
field (Neggers et al., 2003; Feingold et al., 2017) using a his-
togram, but this resulted in a very noisy time series and an
unsuccessful attempt at estimating the underlying oscillation
(e.g. Fig. 9 in Feingold et al., 2017). We also examined other
criteria from the literature, but obtaining a stable time series
for the slope b remains difficult.

Under the assumption that the noisy time series b(t) con-
sists of a single periodic oscillation with large observational
variability (Eq. 20), we retrieve the underlying trend from the
observation using a GP regression model, which is then used
to estimate the period of oscillation with a GP model with
a periodic kernel kper. The kernel defines our a priori belief
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of the underlying behaviour, and the GP model optimizes the
hyper-parameters, especially the period T of the oscillation,
which maximizes the likelihood of the posterior distribution
against the observations. We further calculate the uncertainty
in the estimated periodicity using a fully Bayesian GP infer-
ence. The smooth gradient ∂tb̃(t) of the slope of the cloud
size distribution C(a) is used as a proxy to determine the un-
derlying behaviour of cloud size distribution, whose period
is estimated to be T = 95± 3.2 min.

We also applied this technique to total cloud cover fc and
average vertical mass flux M . Using the fully Bayesian GP
model, we identified TM = 93± 2.5 min as the period of os-
cillation for average vertical mass flux and Tf = 93±3.7 min
for total cloud cover. Dynamic properties of the cloud field,
therefore, are found to oscillate along with the cloud size dis-
tribution. The estimated periods agree well with the study
involving a satellite observation of open cells (Koren and
Feingold, 2013). There are other studies where the cloud
field properties can be seen to show similar oscillatory be-
haviour, which can be identified by the GP regression method
presented here; for example, the time series of cloud cover
and liquid-water path (LWP) (Fig. 2 from Seifert and Heus,
2013), as well as mass flux (Fig. 4 from Plant and Craig,
2008), also appear to oscillate over time (Fig. 4).

The oscillation in the time series of the precipitation flux
(Fig. 16) is also consistent with the 95 min period found for
the cloud size distribution and the mass flux, suggesting that
the oscillation is primarily driven by the recharge–discharge
cycle in atmospheric instability (Dagan et al., 2018). The at-
mospheric instability is weakened (discharged) when clouds
grow large and begin to precipitate, as the upper boundary
layer warms due to latent heat release and the lower layer
cools due to evaporation. This stabilization of the boundary
layer continues until cloud growth slows down and precipita-
tion stops. After that, surface fluxes destabilize the boundary
layer from below, and the convective phase starts again due
to atmospheric instability. This cycle takes roughly 95 min in
the LES model run based on the CGILS S6 case. It should
also be emphasized that the same periodic behaviour can
be observed using the two-moment microphysics scheme,
whereas the bin microphysics scheme has been used by Da-
gan et al. (2018). The thermodynamic processes that govern
the recharge–discharge cycle seem to work consistently in
multiple simulations of the boundary-layer atmosphere.

The oscillatory behaviour of precipitating marine
boundary-layer clouds has been noted in the literature
(Dagan et al., 2018; Feingold et al., 2017; Seigel, 2014b;
Yamaguchi et al., 2019). Given that the LES model run
here represents a sub-tropical shallow cumulus regime, it
is not surprising that the 95 min oscillation found by our
GP model is consistent with previous modelling studies of
boundary-layer clouds. We initialized the model run with a
pristine atmosphere (where CDNC was set to 120 cm−3), but
studies have shown that changing the aerosol concentration
can influence the precipitation efficiency and therefore

the period of oscillation (Dagan et al., 2018; Yamaguchi
et al., 2019). As the atmosphere becomes more polluted,
we expect this periodicity to increase. We also observed
the spatial organization of shallow convective clouds that
disrupts the oscillatory evolution (Fig. 12), which can also
be seen in studies modelling the boundary-layer cloud
field over a smaller domain (Wang and Feingold, 2009).
Reducing the size of the model domain may reduce the
effect of spatial organization and make it easier to estimate
the periodic behaviour of the cloud field using traditional
methods. However, given that these factors can manifest
even in a smaller domain, a robust method for estimating
the periodicity of a noisy, non-stationary time series is still
useful, especially if no smallest, optimal domain size exists
in which the recharge–discharge cycle can be isolated.

Lastly, examining the changes in the vertical distribution
of mass fluxM can give more insight into how the cloud field
mixes with the environment over time, especially because we
have already examined the temporal changes in fc or ∂σ/∂t ,
where fc = σ (Sect. 2.6). Given the results from the high-
resolution, large-eddy simulation, the mass continuity of the
cloud field can be examined in terms of entrainment and de-
trainment rates, or

ρ
∂σ

∂t
+
∂M

∂z
= e− d (29)

for vertical mass flux M = ρwσ and rates of entrainment e
and detrainment d [kgm−2 s−1]. We observed that both cloud
fraction and vertical mass flux oscillate over time, but the
latter can also be seen to lag by half a period (Sect. 3.4).
Therefore, investigating how the vertical distribution of mass
flux changes over time can provide valuable insights into the
dynamics of shallow convection.
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available at http://rossby.msrc.sunysb.edu/SAM.html (last access:
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