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Abstract. We present a physical description of the ice-sheet
model Nix v1.0, an open-source project intended for collabo-
rative development. Nix is a two-dimensional (flowline com-
bined with a vertical dimension) thermomechanical model
written in C and C++ that simultaneously solves for the mo-
mentum balance equations, mass conservation and temper-
ature evolution. Nix’s velocity solver includes a hierarchy
of Stokes approximations: Blatter–Pattyn, depth-integrated
higher order and shallow shelf. The grounding-line posi-
tion is explicitly solved by a moving coordinate system that
avoids further interpolations. The model can be easily forced
with any external boundary conditions. Nix has been ver-
ified for standard test problems, showing versatility from
regular machines (lightweight memory allocation) to high-
performance computing (multi-threading capabilities). Reso-
lutions below 0.1 km are attainable even with minimal com-
putational resources: Nix’s serial run finalizes within hours
on a single CPU. Here we show results for a number of
benchmark experiments from the Marine Ice Sheet Inter-
comparison Project (MISMIP) and assess grounding-line mi-
gration with an overdeepened bed geometry. Lastly, we fur-
ther exploit the thermomechanical coupling by designing a
suite of experiments where the forcing is a physical vari-
able, unlike previously idealized forcing scenarios where ice
temperatures are implicitly fixed via an ice rate factor. That
is, we use atmospheric temperature and oceanic tempera-
ture anomalies to assess model hysteresis behaviour with
active thermodynamics. Our results show that hysteresis in

an overdeepened bed geometry is similar for atmospheric
and oceanic forcings. Notably, the classical hysteresis loop
is widened for both forcing scenarios (i.e. atmospheric and
oceanic) if the ice sheet is thermomechanically active as a
result of the internal feedback among ice temperature, stress
balance and viscosity. These results show that a temperature-
dependent ice viscosity provides inertia and stability to the
ice sheet, regardless of the particular external forcing ap-
plied. In summary, Nix combines rapid computational capa-
bilities with a Blatter–Pattyn stress balance fully coupled to
a thermomechanical solver, not only validating against es-
tablished benchmarks but also offering a powerful tool for
advancing our insight into ice dynamics and grounding-line
stability.

1 Introduction

Marine ice sheets, such as the present-day West Antarctic Ice
Sheet (WAIS), are of particular interest for the glaciological
community and have been fundamental objects of study in
the last few decades (Payne et al., 2000; Pattyn et al., 2008;
Bamber et al., 2009; Feldmann and Levermann, 2015; Shep-
herd et al., 2018; Martin et al., 2019; Rignot et al., 2019; Ro-
bel et al., 2019; Pattyn and Morlighem, 2020; Garbe et al.,
2020; DeConto et al., 2021; Joughin et al., 2021; Hill et al.,
2023). Since their bedrock lies mostly below sea level, they
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are prone to rapid changes (Bentley, 1998), leading a number
of authors to question their stability (e.g. Bamber et al., 2009;
Mouginot et al., 2014; Paolo et al., 2015; Feldmann and Lev-
ermann, 2015; Shepherd et al., 2018; Rignot et al., 2019; Ro-
bel et al., 2019; Pattyn and Morlighem, 2020; Garbe et al.,
2020; Joughin et al., 2021; Hill et al., 2023). A complete
WAIS collapse would imply 3–5 m of sea-level rise (Bentley,
1998; Fretwell et al., 2013), leaving the future of the WAIS a
key uncertainty for sea-level projections.

An accurate numerical description of the grounding line
is thus fundamental for the reliability of such projections.
A number of attempts have been made in the past to simu-
late grounding-line migration within marine ice-sheet mod-
els. Weertman (1974) and Thomas and Bentley (1978) pro-
posed that no stable steady states of the grounding line could
be found on inland-sloping or retrograde beds. Hindmarsh
(1993) later introduced the possibility of “neutral equilib-
rium” under the premise that the equilibrium position is con-
tinuous, and hence there exists an infinite number of equilib-
rium configurations. More recently, Vieli and Payne (2005)
assessed the influence of numerical details and discretization
on the dynamics of the grounding line, concluding that a reli-
able method of treating grounding-line migration within nu-
merical ice-sheet models was unknown. Later studies con-
firmed the possibility of numerical artefacts (Pattyn et al.,
2006; Hindmarsh, 2006; Schoof, 2006a, b, 2011), in agree-
ment with the early works of Weertman (1974) and Thomas
and Bentley (1978). Even so, Vieli and Payne (2005) and Pat-
tyn et al. (2006) hypothesized the possibility of neutral equi-
librium, first introduced by Hindmarsh (1993). The analytical
approach of Schoof (2007a) based on asymptotic expansions
eventually concluded that these results were numerical arte-
facts appearing for certain parameter regimes. Only in the
absence of basal sliding has the possibility of non-unique
steady states been raised (Nowicki and Wingham, 2008).

Amidst the lack of a reliable model of grounding-line mi-
gration, the first Marine Ice Sheet Intercomparison Project
(MISMIP; Pattyn et al., 2012) shed light on the agreement
of modelling efforts to describe the grounding-line motion
and assessed the appropriateness of numerical schemes. The
authors proposed a set of benchmark experiments on an
idealized two-dimensional bed geometry, concluding that
moving-grid models are the most reliable choice from a nu-
merical perspective as the grounding line is part of the solu-
tion and no interpolations are required.

MacAyeal and Barcilon (1988) notably showed that a two-
dimensional free-floating shelf has no effect on the dynam-
ics of the grounded ice upstream of it (later underlined by
Schoof, 2007a). As a result, a boundary condition can be
directly imposed at the grounding line that is solely depen-
dent on the ice thickness therein, irrespective of the particular
shape or the dynamics of the shelf. A correct description of
a two-dimensional marine ice sheet thus relies on an appro-
priate formulation of the grounded ice dynamics, especially

near the terminus position where ice streaming is generally
found.

For a comparison with the semi-analytical solutions of
Schoof (2007a), ice streaming (i.e. fast-flowing ice due to
basal sliding) becomes a necessary condition given that the
boundary layer theory assumes rapid sliding near the ground-
ing line. Ice streams are in fact a distinct feature of ice sheets
with no counterpart in other geophysical thin-film flows.
These regions of rapidly flowing ice exhibit velocities up to
3 orders of magnitude faster than those of the usual glacial
ice, yet they only account for a small fraction of the total
ice-sheet area (e.g. less than 5 % of the Antarctic Ice Sheet;
Bamber et al., 2000). Even so, it is important to represent
them correctly to evaluate ice outflow discharge, ice-sheet
sensitivity and overall stability.

The rapid flow of ice streams fails to be explained by verti-
cal shearing of ice. In other words, friction at the bed is typi-
cally smaller than the driving stress predicted by a lubrication
approximation (Whillans and van der Veen, 1997; Joughin
et al., 2004). Rather, high ice-stream velocities are caused
by the deformation of meltwater-saturated, weak subglacial
till (Alley et al., 1986; Blankenship et al., 1986; Engelhardt
et al., 1990), thus consistent with geophysical studies show-
ing that basal sliding is fundamentally a sort of Coulomb slip
connected with the mechanical failure of plastic till (e.g. Tu-
laczyk, 1999).

Schoof (2006b) later extended the work to depth-
integrated viscous flows used in three-dimensional ice-
sheet models. That is, a variational formulation of the two-
dimensional shallow-shelf approximation (SSA) equations is
given without assumptions on the extension of the sliding
domain. In fact, as noted by the author, sliding regions must
be determined as part of the solution and are consequently
not known a priori. Notably, a solvability condition was also
derived (as in Schoof, 2006b) to guarantee the existence of
physical solutions. Strictly speaking, if the till is too weak
such that the total momentum of applied forces is greater than
the maximum momentum of frictional force about a given
point, then no solutions are expected to exist.

A variational formulation entails strong consequences
from both a physical and a mathematical point of view.
Particularly, it eludes explicit manipulation of the unknown
sliding domain extension, additionally provides a numerical
method for solving the ice flow problem, and ensures the well
posedness of the SSA non-linear elliptic equations since they
can be derived from a convex and functional bounded be-
low (Schoof, 2006b). However, the time-evolving system of
the SSA stress balance coupled to the advection equation is
not yet known to be mathematically well posed (Bueler and
Brown, 2009).

More recently, Goldberg (2011) derived a higher-order
stress approximation using variational methods with similar
accuracy to the Blatter–Pattyn momentum equations (Blat-
ter, 1995; Pattyn, 2003), though differences are particularly
notable for resolutions below 20 km. The velocity solver was
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first adapted for multimillennial three-dimensional ice-sheet
models such as CISM (Lipscomb et al., 2019), where this
depth-integrated velocity approximation was referred to as
DIVA. Nevertheless, the DIVA solver had previously been
used in continental-scale models by Arthern et al. (2015) and
Arthern and Williams (2017). The numerical stability of this
solver was systematically studied by Robinson et al. (2022),
who showed that the DIVA solver outperformed the remain-
ing solvers in terms of both model performance and the rep-
resentation of the ice-flow physics itself.

The appropriate stress balance treatment is merely one of
the challenges associated with ice streaming and grounding-
line stability. Understanding the mechanisms governing its
temporal variability also remains a major obstacle, partic-
ularly with the aim of developing models of ice-sheet dy-
namics (Robel et al., 2013). Given the broad range of ice-
flow speeds observed in real ice sheets (e.g. Shepherd and
Wingham, 2007; Truffer and Fahnestock, 2007; Vaughan and
Arthern, 2007), numerical simulations of these rapidly flow-
ing bands are a well-known difficulty, partially due to the
fact that fast grounded ice flow is a combination of slid-
ing over a hard and soft bed and shear deformation of the
basal. Moreover, high-quality spatially distributed ice obser-
vations of near-base conditions are rare, and constraining
models in fast-flowing regions becomes challenging (Bueler
and Brown, 2009). Various modelling approaches have been
considered to correctly describe the large complexity of ice-
stream dynamics. Tulaczyk et al. (2000) found that sub-
glacial hydrology yields multiple modes of ice-stream flow
in a highly reduced model. Parameterizations of observed
small-scale phenomena (e.g. drainage networks) were later
considered by coupling a flow-band model and a simple hy-
drological model (Bougamont et al., 2003; Bougamont and
Tulaczyk, 2003). Another flow-band model was employed by
van der Wel et al. (2013), additionally introducing a dynamic
drainage model.

Two-dimensional models have helped tremendously to un-
derstand ice-sheet dynamics from both a theoretical (e.g.
Weertman, 1974; Hindmarsh, 1993, 1996; Chugunov and
Wilchinsky, 1996; Schoof, 2005, 2006b, 2007a, b, 2011) and
a modelling perspective. Numerous authors have contributed
to the latter, thus demonstrating the practical use of a two-
dimensional setup. Hindmarsh and le Meur (2001) assessed
the dynamical processes involved in the retreat of marine
ice sheets, with a particular interest in the WAIS during the
Last Glacial Maximum. Haseloff and Sergienko (2018) later
considered the effect of buttressing on grounding-line dy-
namics, thus corroborating the findings of existing numer-
ical studies that the stability of confined marine ice sheets
is influenced by ice-shelf properties. Other two-dimensional
ice-sheet models additionally employ real bedrock geometry
sections. This is the case of Pattyn et al. (2006), who stud-
ied the role of transition zones in marine ice-sheet dynamics,
and Jamieson et al. (2012), where ice-stream stability was
investigated on a reverse bed slope. The realism of the two-

dimensional setup can also account for glacial isostatic ad-
justment. To illustrate this, Payne (1995) studied limit cy-
cles in the basal thermal regime of ice sheets considering
a constant diffusivity of the asthenosphere. More recently,
Bassis et al. (2017) investigated how Heinrich events are trig-
gered by ocean forcing and modulated by isostatic adjust-
ment, though the viscosity dependency on temperature was
not considered. Other examples of simplified physics that
neglect thermochemical coupling and instead focus on attri-
bution exercises of anthropogenic-induced ice-sheet retreat
(e.g. Christian et al., 2022) are consequently biased by unre-
alistic constant temperatures in both space and time. Lastly,
even though ice shelves are not explicitly resolved in two-
dimensional models, the potential role of buttressing can also
be considered via a parameterization (e.g. Dupont and Al-
ley, 2005; Schoof, 2007a; Jamieson et al., 2012; Robel et al.,
2014, 2019).

Despite the extensive research on the topic, important
questions regarding the particular effect of thermodynamics
remain unanswered. Specifically, it is unclear whether ma-
rine ice sheets have discrete steady-surface profiles if ice
temperatures can freely evolve in time and what the poten-
tial implications would be for the hysteresis behaviour in
overdeepened bed geometries. In ice-streaming regions, ice
flow occurs mostly along one main direction, thus becoming
the preferred axis across which lateral variations are negligi-
ble. It is a common approach to reduce the number of hor-
izontal dimensions to the main flow direction so as to min-
imize computing time while allowing for realistic applica-
tions. Nonetheless, the thermal state of the ice and the poten-
tial oceanic forcing are still fundamental to understanding the
future evolution of ice sheets that have not been considered
in low-dimensional models.

In line with the above, we herein introduce the two-
dimensional ice-sheet model Nix. Unlike previous two-
dimensional models, the default setup consists of a Blatter–
Pattyn stress balance fully coupled to a thermodynamical
solver that accounts for both vertical and along-flow hori-
zontal heat advection, as well as vertical diffusion. Note that
other configurations are also possible given the independent
structure of Nix functionalities. In other words, the user can
select a particular stress balance description from a hierar-
chy of Stokes approximations (i.e. Blatter–Pattyn, depth inte-
grated viscosity approximation, SSA or SIA) and optionally
solve the associated heat problem. The paper is structured
as follows. We begin by describing the technical model de-
sign (Sect. 2). We then describe the physical approximations
(Sect. 3) and numerics (Sect. 4) of the model. Several bench-
marks and idealized experiments are presented in Sect. 5. A
thorough discussion is given in Sect. 6, and the work is sum-
marized in Sect. 7.
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2 Model design

Nix is open-source software, available under the Creative
Commons Attribution 4.0 International License. The model
has been derived from scratch with a clear application pro-
gramming interface (API). It is written in C and C++ for ef-
ficiency and extremely fast computing (see Sect. 7) and is
readily available to run in any high-performance computing
cluster. There are two key dependencies: NetCDF (Rew and
Davis, 1990; Brown et al., 1993) and Eigen (Jacob and Guen-
nebaud, 2010) libraries. The former handles tasks for conve-
nient community-standard input/output capability, whereas
the latter serves to define vectors, matrices and further nec-
essary computations (Fig. 1).

The current design offers a user-friendly Python wrapper
module that handles directory management and compilation,
though it can be compiled and run independently. The exact
version used to produce the results of this work is archived in
a persistent Zenodo repository (Moreno-Parada et al., 2023),
while the latest version can be accessed on GitHub at https:
//github.com/d-morenop/nix (last access: 27 March 2025).

Nix users can optionally select parallel computing (sup-
ported by the Eigen library) simply by enabling OpenMP
(Graham et al., 2006) on the employed compiler, potentially
convenient for high resolutions in the Blatter–Pattyn approx-
imation, where large sparse matrices must be inverted. Nix is
extremely well optimized, thus achieving peak performance
with only eight logical threads. Both efficient memory allo-
cation and optimized computation combined allow for high-
resolution simulations (1x < 0.1km) that can even be exe-
cuted on a regular PC. Section 7 thoroughly elaborates on the
parallelization details and optimal resource choices. More-
over, it is also possible to use Eigen’s matrices, vectors and
arrays for fixed size within CUDA kernels (Nickolls et al.,
2008).

As a result, Nix presents itself as a remarkably versa-
tile model combining usage simplicity, low computational
costs and high-order physics at extremely high resolution
(1x < 0.1km). Moreover, the practical value of the Nix ice-
sheet model lies not only in its high-resolution performance,
but also in the gap it fills within the model hierarchy spec-
trum: a thermodynamically coupled and computationally in-
expensive two-dimensional model solving for the higher-
order Blatter–Pattyn stress balance.

3 Model physics

In this section, the fundamental equations of the model are
described. Generally speaking, we consider an ice slab of two
spatial dimensions (i.e. horizontal and vertical) by coupling
a particular choice of stress balance, the advection equation
and the associated heat problem.

Our system evolves thermodynamically in time through
three main processes concerning heat propagation: vertical

diffusion, horizontal and vertical advection, and internal de-
formation of the ice. Viscosity is thus dependent on both the
strain rate and the temperature. With respect to dynamics,
basal friction can be parameterized by three distinct formu-
lations (linear, power law and regularized Coulomb). Ad-
ditionally, basal friction captures the thermal state of the
base through a two-valued friction coefficient encapsulating
frozen and thawed bedrock.

3.1 The Blatter–Pattyn approximation

Ice sheets and glaciers are generally described as an incom-
pressible fluid with a low-Reynolds-number flow. Conserva-
tion of momentum is ensured through the Stokes equations,
a quasi-static stress description where inertial and advective
terms are neglected due to the slow movement of the ice.

The typical ice-sheet geometry allows us to further sim-
plify the Stokes flow equations by defining an aspect ra-
tio ε. Given the characteristic length scales for the horizon-
tal and vertical dimensions, ε� 1 (e.g. Greve and Blatter,
2009). Simply by keeping terms of order O(ε) in the Stokes
equations, the Blatter–Pattyn model (Blatter, 1995; Pattyn,
2003) arises with a hydrostatic approximation error of O(ε2)

(Dukowicz et al., 2010; Schoof and Hindmarsh, 2010). This
first-order approximation forms an elliptic coercive problem,
which is significantly easier to solve than the intricate saddle-
point problem of the full-Stokes system.

For the purpose of this work, we consider two spatial di-
mensions: horizontal x and vertical z. This reduces the com-
putational time considerably and allows for extremely high
spatial resolutions (1x ≤ 0.1km) while explicitly account-
ing for the vertical gradients in ice viscosity and velocity. The
two-dimensional version of the Blatter–Pattyn model can be
written as

∂

∂x

(
4η
∂u

∂x

)
+
∂

∂z

(
η
∂u

∂z

)
= ρg

∂h

∂x
, (1)

where ρ is the ice density, g is the gravitational acceleration,
η(x,z) is the effective viscosity, h(x) is the surface elevation
and u(x,z) is the ice velocity.

The problem is subjected to a set of boundary conditions.
Nix considers potential friction at the base of the ice and
a free surface on the upper boundary (Veen and Whillans,
1989). In terms of velocity gradients, the free surface condi-
tion can be expressed as (Pattyn, 2003)

∂u

∂z
= 4

∂u

∂x

∂h

∂x
, (2)

and the basal drag is defined as the sum of all resistive forces:

∂u

∂z
= 4

∂u

∂x

∂b

∂x
+
τ(u)

2η
, (3)

for the base (z= b) in the presence of potential drag τ(u)
(see Sect. 3.4 for a thorough description on basal friction). A
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Figure 1. Overview of Nix’s modular structure. Each colour represents a C++ class: dynamics, material, topography, thermodynamics and
boundary conditions. The Python wrapper is a user-friendly option, and the code can be compiled without any additional dependencies in
any standard high-performance computing cluster.

stress-free base can be obtained simply by setting τ = 0 in
Eq. (3).

We further assume an ice divide at one end of the domain
(x = 0), where ∂u/∂x = 0, and hydrostatic equilibrium at the
shelf–ocean boundary (x = L), where the water pressure bal-
ances the longitudinal stress gradient. The full problem thus
takes the following succinct form (hereinafter, subscripts de-
note partial differentiation):

(4ηux)x + (ηuz)z = ρghx, x ∈ I,z ∈ L ,

uz = 4uxhx, x ∈ I,z ∈ ∂L+ ,
2ηuz = 8ηuxbx + τ, x ∈ I,z ∈ ∂L− ,
ux = 0, x = 0,z ∈ L ,

8ηux = ρgH 2
− ρwgz

2, x = L,z ∈ L ,

(4)

where ρw is the water density; H is the ice thickness evalu-
ated at the grounding line x = L; and the ∂L± symbols de-
note the upper and lower vertical boundaries, respectively.

3.2 The depth-integrated viscosity approximation

We now briefly describe the mathematical problem under-
lying the depth-integrated viscosity approximation (DIVA)
stress balance in Cartesian coordinates (Goldberg, 2011; Lip-
scomb et al., 2019).

As for the Blatter–Pattyn model, we consider only one
horizontal dimension, leaving the nature of DIVA/SSA equa-
tions unaltered. This allows us to regard our model as a lon-
gitudinal section of a three-dimensional ice stream:

∂

∂x

(
4ηH

∂u

∂x

)
+ τ(u)= ρgH

∂h

∂x
. (5)

Since the stress balance is also a second-order partial dif-
ferential equation on the velocity, we again need two bound-
ary conditions. Analogously to the Blatter–Pattyn approxi-
mation, we assume an ice divide at one end. At the other
end of the domain, the problem is subjected to a dynamic
boundary condition that accounts for the balance between
cryostatic and hydrostatic pressures. Thus, we can express
the DIVA/SSA boundary problem in the following compact
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form:
(4ηHux)x + τ(u)= ρgHhx, x ∈ I ,
u= 0, x = 0 ,
8ηux = ρgH 2

− ρwgD
2, x = L ,

(6)

whereD is the distance from the sea surface to the bottom of
the ice.

Equation (5) is an elliptic non-linear differential equation.
In the purely SSA form (neither velocity nor viscosity de-
pendency on z, i.e. u= u and η = η), it constitutes the sim-
plest form of longitudinal stress balance derivable from the
Stokes model (Bueler and Brown, 2009). We can then solve
for the velocity u(x) by integrating Eq. (6) if the functions
H(x), η(x), h(x) and τ(u) are known. We have implemented
an implicit algorithm so as to numerically integrate the one-
dimensional DIVA/SSA equation (see integrating scheme de-
scription in Appendix A2).

3.3 The advection coupling

Given that all models presented herein provide a quasi-static
description of the ice flow, the stress balance does not deter-
mine the temporal evolution of the system but rather repre-
sents an equilibrium state for a particular ice thickness H(x)
and viscosity η(x,z) configuration. The temporal evolution
is generally considered by coupling the stress balance to the
advection equation:

Ht + (uH)x = S(x) , (7)

where S(x) is the surface mass balance. Given that Eq. (7) is
a first-order equation, we only need one boundary condition
H(x = 0, t) and the consequent initial conditionH(x, t = 0).

We now couple Eqs. (6) and (7) to study the evolution of
the ice thicknessH(x, t) governed by the advection equation,
where the velocity field u(x,z) satisfies the stress balance
imposed by a particular choice of the Stokes approximation.
That is, our problem takes the following mathematical form:

Ht + (uH)x = S(x), x ∈ I, t > 0 ,

(4ηux)x + (ηuz)z = ρghx, x ∈ I,z ∈ L ,

H =H0, x ∈ I, t = 0 ,
hx = 0, x = 0, t > 0 ,
u= 0, x = 0, t > 0 ,
8ηux = ρgH 2

− ρwgz
2, x = L,z ∈ L, t > 0 .

(8)

From a purely physical perspective, Eq. (8) describes
a fluid membrane of variable thickness driven by its own
weight that evolves in time due to advection.

3.4 Basal friction

Basal shear stress can generally be expressed as a function
of the sliding velocity ub and the effective pressure N ; i.e.

τb = f (ub,N ). The physical properties of the material over
which the ice may potentially slide can correspond either to
a hard bedrock flow (e.g. Weertman, 1957) or to a Coulomb
plastic rheology (e.g. Tulaczyk et al., 1998). Moreover, the
influence of the sliding velocity on τb is often represented by
a power friction law, although a regularization term u0 – ac-
counting for local properties of the bed – has been shown to
outperform such a power law in both pressurized ice experi-
ments (Zoet and Iverson, 2020) and observations (Minchew
et al., 2018; Stearns and van der Veen, 2018; Joughin et al.,
2019)

As a result, Nix can calculate the basal shear stress (i.e.
basal drag) via two independent formulations: a pseudo-
plastic power law (Schoof, 2010; Aschwanden et al., 2013)
and the regularized-Coulomb law (Schoof, 2005; Gagliardini
et al., 2007; Joughin et al., 2019). The former reads

τ b =−cb

(
|ub|

u0

)q ub

|ub|
, (9)

where u0 = 100myr−1 and cb is a spatially variable friction
coefficient defined below. We focus on two particular cases
of the pseudo-plastic law based upon the choice of the ex-
ponent q, namely the linear law (q = 1; e.g. Quiquet et al.,
2018) and the purely plastic law (q = 0).

On the other hand, the regularized-Coulomb formula is
given by

τ b =−cb

(
|ub|

|ub| + u0

)q ub

|ub|
, (10)

behaving as a power law for small sliding velocities (i.e.
ub < u0) while always yielding a bounded friction value for
arbitrarily high velocities (i.e. ub� u0). Following Zoet and
Iverson (2020), we set q = 1/5 and u0 = 100myr−1 by de-
fault to ensure a reasonable transition to the steady-state
shear stress supported by the till bed. The same study em-
pirically established that q remains unaffected by variations
in the detailed bed surface geometry.

The basal drag coefficient β is usually defined as

β = cb(x)N , (11)

where N = ρgH is the overburden pressure exerted by the
ice column and cb(x) is a coefficient that reflects the bedrock
characteristics.

Nevertheless, for simplicity and consistency with prior
benchmark experiments such as MISMIP (Pattyn et al.,
2012), the model also allows us to represent basal friction
as

τb = Cu
q . (12)

With the chosen value of C = 7.624× 106 Pam−1/3 s1/3 and
q = 1/3, a sliding velocity of about 35 myr−1 yields a basal
shear stress of 80 kPa.
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3.5 Thermodynamics

The ice temperature in the flow line depends on the two spa-
tial dimensions x and z (horizontal and vertical, respectively)
along with time (i.e. θ = θ(x,z, t)). Heat transfer is further
considered to occur due to vertical diffusion, both horizontal
and vertical advection, and internal heat deformation. Energy
conservation is ensured in a classical approach by a balance
equation that neglects horizontal diffusion (Greve and Blat-
ter, 2009):

ρcθt = kθzz− ρc (uθx +wθz)+8,

x ∈ I,z ∈ L, t > 0 ,
θ = θ0, x ∈ I,z ∈ L, t = 0 ,
θz =−G/k, x ∈ I,z= ∂L−, t > 0 ,
θ = θL, x ∈ I,z= ∂L+, t > 0 ,

(13)

where k is the ice conductivity, c is the specific heat capac-
ity, 8= 4ηε̇2 denotes the internal strain heating, G is the
geothermal heat flow, θ0 is the initial temperature profile and
θL is the surface ice temperature. The ∂L± symbols denote
the upper and lower vertical boundaries, respectively.

The energy balance is discretized using an upwind scheme
with a forward Euler step and centred differences for the spa-
tial derivatives (see Appendix A4 for a detailed description).

3.6 Viscosity

We consider Glen’s flow law (Glen, 1995; Nye, 1957) to re-
late the shear stress, the ice temperature and the pressure of
isotropic polycrystalline ice. Formation of anisotropic fabric
is considered via a flow enhancement factor.

As shown in Sect. 3.1, the Blatter–Pattyn stress balance
equations define the effective viscosity as

η =
B

2

(
ε̇2
+ ε̇2

0

) 1−n
2n
, (14)

where B is the ice hardness, n= 3 is the exponent in Glen’s
flow law, ε̇2 is the effective strain rate and ε̇2

0 is a regular-
ization factor to elude potential singularities when velocity
gradients are zero. Notably, for a two-dimensional model
with explicit thermodynamics, the viscosity expression fur-
ther simplifies the expression of B and ε̇2:

B = A(θ)−1/n , (15)

ε̇2
=

(
∂u

∂x

)2

+
1
4

(
∂u

∂z

)2

, (16)

where n= 3 is the Glen flow exponent.A(θ) is the rate factor
and follows Arrhenius’ law:

A(θ)= A0Ee
−Q/Rθ , (17)

where A0 and Q are the temperature-dependent rate fac-
tor coefficient and activation energy, respectively (Greve and

Blatter, 2009). Ef is the so-called enhancement factor, com-
monly used to approximate the effect of anisotropic flow. It is
possible to specify different values of the enhancement fac-
tor for different flow regimes (shear or stream). Typical val-
ues of the enhancement factor for the shearing and stream-
ing regimes are Eshr = 3.0 and Estrm = 0.7, respectively (Ma
et al., 2010). Here we use a default value ofE = 1.0 for both.

For the vertically integrated stress balance models (i.e.
DIVA and SSA), Eqs. (14) and (15) are modified slightly by
computing the vertically averaged quantities η and B follow-
ing the generic formula f = 1

H

∫ h
b
f dz.

3.7 Grounding line

Nix aims to simulate the flow of a sliding ice sheet. Since
the longitudinal stress at the grounding line x = L is simply
a function of the ice thickness therein, i.e. H(x = L) for a
two-dimensional ice sheet (Schoof, 2007a), the behaviour of
grounded ice and the location of the grounding line itself are
completely independent of the floating part.

Neither the potential distinct shapes of the ice shelf (e.g.
due to sub-shelf melting) nor the calving affect the dynamics
of grounded ice. Thus, the flotation condition and the stress
condition (Eq. 8) can be considered boundary conditions at
the grounding line. These two conditions are in fact sufficient
to study the ice thickness evolution and the grounding-line
migration.

Following Hindmarsh (1996), an explicit expression for
the grounding-line migration rate L̇ can be readily obtained
from a total differentiation of the flotation condition:

L̇≡
dL
dt
=
%Dt + (uH)x − S

Hx − %Dx
, (18)

where D is the water depth at the grounding line and % =
ρw/ρ is the water-to-ice density ratio, respectively.

More recent studies suggest that the maximum terminus
thickness is bounded by the yield strength of ice τc (Bassis
and Walker, 2012; Bassis and Jacobs, 2013). Hence, a max-
imum ice thickness at the terminus occurs when the stress
exceeds the depth-integrated strength of ice:

Hmax
=
τc

ρg
+

√(
τc

ρg

)2

+ %D2 , (19)

thus constraining the terminus thickness such that H(x =
L,t)≤Hmax.

This approach eludes semi-empirical parameterizations of
the calving (as in Meier and Post, 1987; Van der Veen,
1996, 2002; Nick et al., 2009, 2010) and further provides
a lower bound on the rate of grounding-line advance (Bassis
et al., 2017). Combining the continuity equation and the ma-
terial derivative of Hmax (Eq. 19), an expression for the rate
of advance/retreat of the terminus can be readily obtained:

dL
dt
≥

Ht

Hmax
x −Hx

, (20)
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at x = L. The negative sign indicates retreat.
The inequality in Eq. (20) is analogous to the grounding-

line migration derived for a marine ice sheet by Schoof
(2007a, b). Particularly, ifHmax is given by the flotation con-
dition, Eq. (20) exactly reproduces the grounding-line posi-
tion derived by Schoof (2007a) (Bassis et al., 2017).

3.8 Sub-shelf melting parameterization

Oceanic melting beneath ice shelves is the main driver of the
current mass loss of the Antarctic Ice Sheet. For this rea-
son, Nix considers various melting parameterizations, such
as simple scaling with far-field thermal driving (e.g. Favier
et al., 2019).

We adhere to local yet physically based parameterizations
based on ocean circulation models (Grosfeld et al., 1997).
That is, the linear dependency can be expressed as

M = γT %
cpo

Li
(T − T0) , (21)

where γT is the heat exchange velocity, T0 is a reference tem-
perature, cpo is the specific heat capacity of the ocean mixed
layer and Li is the latent heat of fusion of ice.

This linear formulation, with a constant exchange velocity
γT , assumes a circulation in the ice-shelf cavity that is in-
dependent of the ocean temperature. This assumption is not
supported by modelling (Holland et al., 2008; Donat-Magnin
et al., 2017) or observational studies (Jenkins et al., 2018),
which suggest a larger circulation in response to a warmer
ocean, subsequently increasing melt rates. One manner to ac-
count for this positive feedback is by considering a quadratic
dependency (Holland et al., 2008):

M = γT

(
%
cpo

Li

)2

(T − T0)
2 . (22)

These two parameterizations have been employed in nu-
merous studies (e.g. review in Asay-Davis et al., 2017; Favier
et al., 2019). This melt rate is included as an additional
frontal ablation term in the ice flux computation (Eq. A16),
and it amounts to an additional outflow of ice beyond the
grounding-line velocity provided by the stress balance. By
default, Nix uses a quadratic parameterization.

4 Model numerics

4.1 Moving-grid transformation

Nix uses a nonuniform moving spatial grid that explic-
itly solves the grounding-line position (Fig. 2). By default,
the grid point distribution yields higher resolution near the
grounding line following a polynomial or an exponential law
(details in Appendix A). Evenly spaced grids are also possi-
ble by setting the polynomial order to 1.

As already noted by Pattyn et al. (2012), moving-grid
models are presumably the best choice in two-dimensional

Figure 2. Nix’s staggered grid definition follows an Arakawa C
scheme (Arakawa and Lamb, 1977). The number of grid points in
the horizontal r and vertical p dimensions are fixed in time (see
Appendix A). As we employ a moving grid, the position of the last
horizontal point (r− 1/2) explicitly tracks the grounding line L(t).
The grid spacing in the vertical 1ζj and horizontal 1σi axes can
be spatially dependent as Nix allows for nonuniform grids. Ghost
points required to satisfy the boundary condition at the ice divide
are noted in grey on the edge.

models from a numerical perspective, as the grounding-line
position L(t) is part of the solution and no interpolations are
required. Given that neither the terminus position L(t) (i.e.
the grounding line) nor the ice thickness H(x, t) is fixed in
time, we adopt a moving grid to trace their positions:

σ =
x

L(t)
, ζ =

z− b(x)

H(x, t)
, τ = t , (23)

thus mapping the time-dependent intervals 0≤ x ≤ L(t) and
0≤ z ≤H(x, t) into fixed ones 0≤ σ ≤ 1 and 0≤ ζ ≤ 1.
The variable τ is merely introduced to distinguish partial
derivatives defined by keeping both σ and ζ constant (as op-
posed to keeping x and z constant).

As a result, the corresponding derivatives contain addi-
tional terms (upon application of the Leibniz rule):

∂

∂z
=

1
H

∂

∂ζ
, (24)

∂

∂x
=

1
L

∂

∂σ
−

1
H

[
(1− ζ )

∂b

∂σ
+ ζ

∂H

∂σ

]
∂

∂ζ
, (25)

∂

∂t
=
∂

∂τ
−
σ

L

∂L

∂τ

∂

∂σ
−
ζ

H

∂H

∂τ

∂

∂ζ
. (26)

For simplicity and analogously for the Blatter–Pattyn ap-
proximation, the advection equation coupled with the SSA/-
DIVA stress balance can be written in terms of the new vari-
ables. Thus, Eq. (8) reads
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LHτ − σL̇Hσ + (uH)σ = LS(σ,τ), σ ∈ Ĩ,τ > 0 ,
(4ηHuσ )σ + τL2

= L2ρghσ σ ∈ Ĩ ,
H =H0, σ ∈ Ĩ,τ = 0 ,
Hσ = 0, σ = 0,τ > 0 ,
u= 0, σ = 0 ,
4ηuσ =

(
ρgH 2

− ρwgD
2)L/2, σ = 1 ,

(27)

where Ĩ ∈ [0,1] is the transformed interval and the subscripts
denote partial differentiation.

Likewise, the third evolution equation that determines the
behaviour of our system (i.e. the energy balance, Eq. 13) can
be readily obtained in terms of our new variables:

ρc
[
Lθτ − σL̇θσ − ζLHτ θζ /H

]
=

kLθζ ζ /H
2
− ρcu

[
θσ − (bσ + ζHσ )θζ /H

]
+L8,

σ ∈ Ĩ,ζ ∈ L̃,τ > 0 ,
θ = θ0, σ ∈ Ĩ,ζ ∈ L̃,τ = 0 ,
θz =−G/k, σ ∈ Ĩ,ζ = ∂L̃−,τ > 0 ,
θ = θL, σ ∈ Ĩ,ζ = ∂L̃+,τ > 0 ,

(28)

where the transformed intervals are again denoted by Ĩ and
L̃, respectively.

4.2 Spatial integration

4.2.1 Implicit scheme and Picard iteration

The lateral boundary condition is in fact non-trivial to imple-
ment using an explicit scheme (e.g. a shooting-like method)
since it depends on the first spatial derivative of the velocity
at the terminus position σ = 1, which might lead to conver-
gence issues. Nix thus includes an alternative velocity solver
based on an implicit discretization scheme of all stress bal-
ance models described in Sect. 3 (numerical details in Ap-
pendix A).

To account for the potential non-linearity in the velocity
as a consequence of the viscosity and basal friction τ(u), the
implicit solver uses a initial guess τ0 and η0 and then enters
a Picard iteration (see Theorem 2.2 in Teschl, 2012). A solu-
tion is hence obtained when the convergence criterion

||un− un−1
||

||un||
< φtol (29)

is satisfied. The tolerance φtol can be set by the user, but the
default value is 10−6.

For the Blatter–Pattyn approximation, a sparse matrix
must be solved in each Picard iteration. To do so, we apply a
biconjugate gradient stabilized method (commonly known as
BiCGSTAB, van der Vorst, 1992) with an incomplete precon-
ditioner (ILUT). In contrast, the DIVA/SSA approximation
solely requires solving a tridiagonal matrix at each Picard it-
eration step, where the ice viscosity is updated. A tridiagonal
solver algorithm is implemented as a subroutine within Nix
to avoid additional external dependencies (see Appendix A).

4.3 Time integration

Once the velocity field u(x,z) is obtained for a given set of
boundary conditions and a particular ice thickness initial dis-
tribution H(σ,τ0), we can compute the time evolution of the
latter as a consequence of the advection imposed by u(x) and
the surface mass balance S(x, t) (Eq. 7). Thus, this coupled
system, formed by the momentum conservation and the con-
tinuity equation (Eq. 27), is fully integrated in two steps: first,
a spatial integration to obtain the velocity (where the ice vis-
cosity is known) and, second, a forward time integration to
determine the new ice thickness. Lastly, the energy balance
equation is integrated to compute the new temperature field.

Specifically, for a given initial ice thickness distribution
H(x, t0), the stress balance equation is spatially integrated,
thus yielding the velocity u(x,z). Then, the solution u(x,z)
(at t0) and H(x, t0) allow us to integrate the continuity
equation forward in time, consequently obtaining H(x, t0+
1t). Additionally, this new ice thickness distribution yields
θ(x,z, t0+1t), thus constituting a self-consistent iterative
method.

5 Methods and experimental setup

Prior to any comprehensive description of the results, we
must test whether Nix is capable of reproducing the bench-
mark tests of the Marine Ice Sheet Model Intercomparison
Project (MISMIP; Pattyn et al., 2012). To this end, we per-
form all three MISMIP experiments: relaxation to steady
state on a downward-sloping bed (Exp. 1), reversal of pa-
rameters (Exp. 2) and hysteresis on an overdeepening bed
(Exp. 3). The aim of Exp. 1 was to show that there should be a
single stable equilibrium profile on a downward-sloping bed.
A backward parameter relaxation in Exp. 2 was intended to
demonstrate that grounding-line positions should be identical
during advance and retreat, as steady states are unique. Exp. 3
was designed to assess whether ice-sheet models exhibit hys-
teresis behaviour and has become a benchmark for testing
the capability of numerical models to simulate grounding-
line migration.

First, we adopt the exact same problem definition so as to
perform a one-to-one comparison. Next, we run an ensemble
of simulations to address the question of whether the hys-
teresis with respect to model parameter variations found in
MISMIP Exp. 3 is still present even if the thermal state of the
ice can evolve in time (as opposed to the idealized constant
ice factor A set in Pattyn et al., 2012). Fixing A uniquely
determines a constant ice temperature, since A(T ) is a bijec-
tive function of temperature. We therefore impose an atmo-
spheric forcing (i.e. the ice surface boundary condition) that
spans a wide range of realistic temperatures. As the geother-
mal heat flux provides a positive energy contribution, we ex-
pect a different thermal equilibrium profile for each imposed
surface temperature. This yields a different viscosity field for
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each scenario, consequently leading to a different equilib-
rium velocity. As noted by Sergienko et al. (2013), the tem-
perature profile is mostly determined by horizontal advection
in streaming regions, thus bringing forward a strongly non-
linear feedback worthy of attention.

Lastly, we force the system via ocean temperature anoma-
lies with respect to a reference value T0 so that 1Toce =

Toce−T0 while keeping the air temperature constant through-
out the simulation. We then convert these temperature
anomalies into sub-shelf melting at the grounding line (e.g.
Favier et al., 2019) by computing any of the parameteriza-
tions described in Sect. 3.8. Even though the air tempera-
ture is held constant (i.e. the boundary condition of our heat
problem), the thermal state of the ice may evolve as both
the thickness and the extent are perturbed by the changing
sub-shelf melting at the grounding line. Our particular ocean
forcing consists of steps of 0.5 °C evenly spaced in time by
30kyr to ensure equilibration, from1Toce = 0 to a maximum
applied anomaly of 7 °C. Then, we reverse the forcing to re-
cover the unperturbed state (i.e. zero anomaly).

It is worth noting that the basal friction remains identical
to that in the MISMIP experiments for both the atmospheric
and the oceanic forcings. This means that no additional de-
pendency of friction on temperature or hydrology is consid-
ered.

6 Results

All simulations shown herein ran at a horizontal resolution
of 1x = 2km and 35 vertical layers. The particular mesh
employed is unevenly spaced, with an increasing density of
points toward the base and near the grounding line, follow-
ing an exponential relation (see Appendix A). The different
experimental setups are summarized in Table 1.

6.1 MISMIP benchmark experiments

As a performance test for the Nix ice-sheet model, simula-
tions (Fig. 3) fairly reproduce the results shown by models
that employ a stretched coordinate system like ours.

Figure 3b shows both the advancing and the retreating
phase in Pattyn et al. (2012) (Experiments 1 and 2, respec-
tively), with equilibrium grounding-line positions that coin-
cide and points that thus overlap. Additionally, we find no
stable equilibrium states for the inland-sloping bed of Exp. 3
(Fig. 3c), in agreement with the theoretical considerations by
Weertman (1974) and Schoof (2007a). That is, as we gradu-
ally decrease A (i.e. increasing ice viscosity), the grounding-
line position advances across the downward-sloping bed un-
til the upward-sloping region is reached (Fig. 3c). The ice
flux at the grounding line then continues to increase as A
decreases. As illustrated in Fig. 3d, when the ice flux is
large enough that a stable solution exists beyond the unsta-
ble region (on the right-hand side of the bedrock peak in

Fig. 3c), the grounding line traverses the upward-sloping sec-
tor, reaching a new stable solution.

Additionally, we repeat the three MISMIP experiments us-
ing the more sophisticated velocity solvers available in Nix:
DIVA and Blatter–Pattyn. A direct inspection of Fig. 3b and d
reveals that the solutions are nearly identical to those of the
simpler SSA version, for both the downward-sloping and the
overdeepening beds. The hysteresis is particularly well cap-
tured in all three Stokes approximations. Thus, we use the
SSA solver in the remainder of the current work to minimize
computational costs, unless otherwise stated.

6.2 MISMIP and thermodynamics

To exploit the fact that Nix is fully coupled with a ther-
modynamic solver, we further investigate the equilibrium
states (Schoof, 2007a) when the system is forced via two
different forcings: air temperatures Tair and ocean temper-
ature anomalies 1Toce. Both describe more realistic condi-
tions with slight variations. The former implies the same un-
derlying perturbation mechanism (as for the idealized rate
factor A forcing): temperature changes within the ice mod-
ify its viscosity so that the grounding line migrates to reach
a new equilibrium position. Nevertheless, when forcing the
system with ocean temperature anomalies1Toce while keep-
ing the air temperature constant, we perturb the system via
an additional outflow term at the grounding line. By sepa-
rately studying each mechanism, we can determine whether
a marine-terminating ice sheet might undergo hysteresis un-
der different forcings.

6.2.1 Air temperature Tair forcing

With the aim of building a thermomechanically active ver-
sion of the MISMIP experiments, the natural choice is to
convert the idealized ice rate factor forcing in MISMIP into
temperatures (via Arrhenius’ law, Eq. 17) and then use them
explicitly as a forcing of the new experimental setup. For
a more sophisticated forcing, a vertical dependency of the
temperature is further considered via a lapse rate. The de-
fault setup in Nix accounts for adiabatic conditions (0a =

−9.8°Ckm−1), though a moist lapse rate is also available
(0m =−5.0°Ckm−1) (e.g. Stone and Carlson, 1979).

The particular atmospheric forcing is imposed at the sea
level Tair(t), as shown in Fig. 4a. Starting from warm con-
ditions Tair = 0°C, it reaches a minimum value of −30°C in
gradual steps that last 40 kyr each to ensure thermal quasi-
equilibrium. Nonetheless, lower temperatures are present
near the ice divide as the surface extends far above the sea
level, wherein the lapse rate correction becomes relevant.
This experiment reflects the insulating effect of the ice sheet
as the forcing eventually reaches the initial atmospheric tem-
perature but the grounding line does not retreat (Fig. 4b
and f). It is not possible to make a one-to-one comparison
(Schoof, 2007a), given the different physical descriptions
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Table 1. Nix suite of experiments. The first row replicates the MISMIP benchmark tests, whereas MISMIP+therm explores the hysteresis
behaviour of a thermomechanically active ice sheet in two different forcing scenarios: atmospheric and oceanic.

Experiment name Forcing variable Thermodynamics Melting/calving at GL

MISMIP (Exps. 1, 2 and 3) Ice rate factor A No No

MISMIP+therm (Exp. 3) Air temperature Tair Yes No

Ocean temperature anom. 1Toce No (A= const.) Yes

Yes (A= f (T )) Yes

Figure 3. (a, c) Ice-sheet extent. (b, d) Grounding-line position as a function of the MISMIP forcing A for three independent Stokes
approximations: SSA, DIVA and Blatter–Pattyn. The grey line represents the analytical solution at equilibrium from Schoof (2007a), with
the solid line indicating a stable branch and the dashed line indicating an unstable branch. The markers represent Nix’s results after the
equilibration time given in Pattyn et al. (2012). Bed geometries correspond to Experiments 1 and 2 (both advance and retreat) in the first row
and Experiment 3 in the second row.

of the system. Nonetheless, it is illustrative to represent the
grounding-line position as a function of the ice temperature
therein, evaluated at two different depths, and the vertical
mean (Fig. 4b). The near-base temperature closely matches
that of the theoretical prediction by the boundary layer. The
lower layers appear to be shifted to the right, as the effect of
the warmer surface becomes relevant.

In terms of the hysteresis behaviour, the jump over the ret-
rograde region of the bed geometry occurs for a near-base
temperature of −30°C, as predicted by the semi-analytical
counterpart (see solid grey line, Fig. 4). Even so, when the
forcing returns to the initial value, the grounding line does
not retreat back to its original position and remains advanced
(black square in Fig. 4b). In contrast, for shallower ice layers,
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Figure 4. Overdeepened bed experiment forced with atmospheric
temperatures. (a) Forcing time series: atmospheric temperatures
Tair(t). Each black symbol represents three snapshots of particular
interest: the initial state (triangle, warmest conditions), coldest forc-
ing conditions (star) and final state (square, same exact atmospheric
conditions as the beginning). (b) Grounding-line position as a func-
tion of the ice temperature evaluated at two different depths (near
the base and surface) and vertical mean. Note that the initial and
end states differ strongly in ice extent even though the atmospheric
forcing is identical. The grey line represents analytical results in the
absence of thermodynamics (i.e. imposed rate factor A), following
Schoof (2007a).

the warming branch extends far from the analytical results,
thus showing larger bistability against atmospheric temper-
ature changes. As for the near-base layer, when the initial
forcing state is eventually retrieved, the ice sheet extends be-
yond the bedrock peak and does not retreat. This is also well
captured in Fig. 5 by comparing panels b and f, knowing that
both are equilibrium states with identical forcing. These re-
sults differ strongly when using a downward-sloping bed ge-
ometry, as shown in Fig. 5a, c and e, where thermodynamics
is also active but hysteresis is not present, as the bedrock does
not present retrograde regions.

Lastly, it is worth noting how close the temperature is
to the melting point, particularly on the right-hand side of
the base in all panels due to the combined contribution of
geothermal heat flux and frictional heat dissipation (Fig. 5a,
b, e and f), favoured by a warmer atmospheric temperature.
This is unlike Fig. 5c and d, where the lower surface temper-
ature perturbs the entire temperature profile, thus only par-

tially cooling the ice-sheet base. It must be stressed that near
the grounding line, there is a reduction in the basal temper-
ature as a result of considerably thinner ice, thus providing
less thermal insulation from the colder surface.

6.2.2 Ocean temperature anomalies 1Toce forcing

In this configuration, we apply ocean temperature anomalies
with respect to a reference value T0 so that 1Toce = T − T0.
We then convert these temperature anomalies into sub-shelf
melting at the grounding line (e.g. Favier et al., 2019) by
using any of the parameterizations shown in Sect. 3.8.

We first perform two identical hysteresis experiments
forced by 1Toce that solely differ on the thermodynamic
treatment of the ice: an idealized fixed ice rate factor A
(Fig. 6, blue curve) and a more realistic active thermo-
dynamic scenario with a constant boundary condition Tair
(Fig. 6, red curve). Results show that active thermodynamics
considerably widens the width of the hysteresis loop. This
behaviour resembles that obtained for the atmospherically
forced simulations (Fig. 4), where we find a larger extent of
the cooling branch compared to that of the semi-analytical
solutions (grey line, Fig. 4).

In addition to the experiments carried out to assess the im-
portance of thermodynamics for the hysteresis behaviour of
a marine-terminating ice sheet, we have performed a sensi-
tivity study to quantify the differences caused by parameter
uncertainty (e.g. Favier et al., 2019), particularly with respect
to the heat exchange velocity γ .

Figure 7 illustrates the high sensitivity that stems from the
heat exchange velocity parameter γ . It is worth noting that
the retreat is much more sensitive to the particular γ choice
than the later advance as the anomalies approach zero. That
is, all intermediate values advance at 1Toce =+1.5°C. In
contrast, the retreat occurs for a wider range of tempera-
ture anomalies from+4.5 to+6.5°C for γ = 2.1×10−5 and
1.3× 10−5 ms−1, respectively.

For a quadratic sub-shelf parameterization (Eq. 22), the
retreat takes place at 1Toce =+2.5°C for the highest heat
exchange velocity calibrated in Favier et al. (2019), i.e. γ =
100×10−5 ms−1. Even the lowest parameter value presented
in the same work also shows a retreat if the ocean temper-
ature anomalies reach 1Toce =+6.5°C. Multiple different
values of γ advance back at nearly the same particular forc-
ing value 1Toce 7, whereas the retreat happens at signif-
icantly different values. To illustrate this, we can take the
hysteresis loops corresponding to γ = 20× 10−5, 25× 10−5

and 35× 10−5 ms−1. They retreat at 1Toce =+5.5, +5.0
and +4.5°C, respectively, whereas the advance takes place
at precisely the same anomaly value 1Toce =+2.5°C.
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Figure 5. Ice-sheet extent and temperature distribution for the prograde (a, c, e) and the overdeepened (b, d, f) bed geometries. Each row
represents a snapshot given by each symbol in Fig. 4 (triangle, star and square, respectively): the initial warm state (a, b), coldest atmospheric
conditions (c, d) and final atmospheric configuration (e, f). Note that the overdeepening bed geometry yields a final ice-sheet profile extended
far beyond the initial state even though the boundary conditions are identical, thus exhibiting hysteresis. Colours indicate the ice temperature
at the given time.

7 Model scalability and performance

This section illustrates the overall performance achieved by
the Nix model in terms of computation speed for the MIS-
MIP benchmark experiments (Pattyn et al., 2012). Moreover,
both strong scalability and weak scalability are tested for the

same experimental setup under the most sophisticated solver
available in the model: the Blatter–Pattyn stress balance.

Nix’s computational speed is assessed for each of the three
velocity solvers available: SSA, DIVA and Blatter–Pattyn.
An additional convergence study is detailed in Appendix B.
Our domain is now restricted to a linear prograde slope for
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Figure 6. (a) External forcing time series: ocean temperature
anomalies 1Toce(t). The time duration of each step equals 30 kyr.
(b) Hysteresis experiments for the overdeepened bed geometry
forced via slowly varying ocean temperature anomalies 1Toce(t).
Blue: constant ice rate factor A= 10−26 Pa3 s. Red: active thermo-
dynamics A= f (T ) with fixed boundary condition Tair =−40°C.
Each forcing step is run for 30 kyr to ensure quasi-equilibrium (solid
dots). A quadratic sub-shelf parameterization is employed in both
scenarios. Heat exchange velocity parameter γ = 10−3 ms−1.

simplicity (i.e. Experiment 1 in Pattyn et al., 2012). Horizon-
tal resolution is gradually increased, reaching 0.05 km.

Figure 8 shows the dependency of computational speed
on the total number of horizontal grid points. The SSA
and DIVA solvers exhibit a similar performance for all res-
olutions, whereas the higher-order Blatter–Pattyn solver is
nearly 2 orders of magnitude slower. This is simply a result of
the corresponding sparse-matrix solution in the latter, which
is significantly slower than the tridiagonal solver applied for
both SSA and DIVA.

It is challenging to give a one-to-one comparison with
other existing models, given the differences in dimension-
ality. Generally, other ice-sheet models solving for higher-
order momentum balance coupled with active thermodynam-
ics are comprehensive three-dimensional models. To give an
estimation, the MALI ice-sheet model (Hoffman et al., 2018)
control simulations average 5.26 simulated years per wall-
clock hour. In contrast, MISMIP experiments run with Nix
reach ∼ 105 simulated years per wall-clock hour on average.

Thus, there is a 5 order of magnitude difference in terms of
computational time.

Nix’s parallel implementation is particularly of interest for
the Blatter–Pattyn stress balance. The velocity solution re-
lies on the biconjugate gradient stabilized (BiCGSTAB) al-
gorithm, where multi-threading can be exploited if the model
is compiled with OpenMP enabled. Nix employs a row-major
sparse-matrix format to achieve the best performance. By de-
fault, the tolerance and maximum number of iterations over
the sparse linear system are set to ε = 10−6 and N = 103,
respectively. Note that ε should not be mistaken for the non-
linear Picard convergence criterion φtol related to viscosity
convergence. Tolerance values above 10−4 give rise to nu-
merical instabilities, which hamper viscosity convergence.

As a synthetic test for scalability, we restrict to a linear
prograde slope (i.e. Experiment 1 in Pattyn et al., 2012)
and assess both the strong and the weak scalability of the
model. The former fixes the problem size (total number of
grid points) while increasing the number of threads (CPUs)
available to the sparse solver. For the latter, there is a constant
CPU load for different grid sizes. To illustrate the strong scal-
ability, an evenly spaced grid with 105 horizontal points and
103 vertical layers is considered. The necessary RAM to run
such a job is ∼ 54GB. The results of scalability are charac-
terized by the speed-up t1/tn, where tn represents the time
required to complete the job using n threads (e.g. Gagliar-
dini et al., 2013). Equivalently, the efficiency is defined as
t1/(ntn).

The results of the strong scalability are shown in Fig. 9.
Parallelization through Eigen library multi-threading allows
for an overall acceleration factor of ∼ 2. This result is fur-
ther tested under permutations of varying optimization lev-
els during compilation with the OpenMP flag (i.e. O1, O2
and O3) and the maximum number of iterations over the lin-
ear problem N = 101, 102 and 103. Minor differences are
found among experiments with different optimization lev-
els, in agreement with other more complex models such as
ISSM (Fischler et al., 2022). Irrespective of both the par-
ticular number of maximum iterations and the optimization
choice, the efficiency rapidly drops as the number of threads
increases.

Analogously, Nix’s efficiency under weak scalability is
depicted in Fig. 10. Beyond four threads, the perfor-
mance reaches values below 25%. There are slight differ-
ences among optimization levels during parallel compilation.
Higher levels, such as O2 and O3, appear to outperform O1
as the total number of linear iterations increases, simply as a
result of a larger total number of computations.

In view of the scaling results (Figs. 9 and 10), two con-
clusions can be drawn. First, the serial execution of Nix’s
problem is extremely well optimized for the problem size
of interest. This further supports the applicability of Nix as
a lightweight model that can run at extremely high resolu-
tion with minimum computational resources. Second, users
can reduce the simulation wall time by a factor of ∼ 2 by
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Figure 7. Sensitivity tests. As in Fig. 6a but for (a) the constant ice rate factor A= 10−26 Pa3 s. (b) Active thermodynamics with fixed Tair.
Values of the heat exchange velocity parameter γ are given in 10−5 ms−1 and fall within the spanned range in Favier et al. (2019).

Figure 8. Nix’s computational speed for the three solvers available.
The double x axis represents the number of horizontal grid points
n and the corresponding resolution at the grounding line 1x. Note
that Nix allows for an unevenly spaced stretched grid that explicitly
tracks the grounding-line position.

setting eight threads (CPU) and a conservative optimization
level provided by OpenMP (i.e. O1 flag).

8 Discussion

The results of the MISMIP benchmark experiments are suc-
cessful given the good agreement between our numerical
solution and the semi-analytical work of Schoof (2007a)
(Fig. 3). From a modelling perspective, our grounding-line
position is slightly shifted upstream, like in other moving-
grid models shown in Pattyn et al. (2012). Nevertheless, a test

Figure 9. Acceleration and efficiency for strong-scalability exper-
iments. The maximum number of iterations N in the sparse lin-
ear problem is given as a coloured legend. Line styles denote the
three levels of optimization provided by OpenMP during compila-
tion (O1, O2 and O3, in increasing order).

of sensitivity to spatial resolution shows an asymptotic con-
vergence toward the semi-analytical solution (Fig. B1, Ap-
pendix B), thus providing robustness to our results. A further
comparison among the Nix velocity solvers shows excellent
agreement on the equilibrium solutions for both bed geome-
tries studied herein: downward sloping and overdeepening.

For active thermodynamics and air temperature forcing,
the corresponding temperature range spanned by the MIS-
MIP ice rate factorA(T ) does not yield a full advance/retreat
of the ice sheet. This can be understood by the insulating
effect of the ice sheet. The MISMIP idealized forcing with
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Figure 10. Efficiency for weak-scalability experiments. The maxi-
mum number of iterations N in the sparse linear problem is given
as a coloured legend, ranging from 101 to 106. Line styles denote
the three levels of optimization provided by OpenMP during com-
pilation (O1, O2 and O3, in increasing order).

varying rate factors simultaneously modifies the ice viscosity
over the entire domain, whereas the real temperatures given
by an active thermomechanical solver will adjust to the new
surface temperature (Fig. 4). This further means that the im-
pact on the viscosity is weaker as there are other heat sources,
such as the basal friction dissipation and the geothermal heat
flow.

The stability of the system is accordingly perturbed, as
shown in Fig. 6. In particular, the bistability of the system
is increased, in the sense that a larger range of perturba-
tion values has two stable solutions. To illustrate this, for a
rate factor A= 10−26 Pa3 s, the oceanic anomaly perturba-
tion ranges from1Toce =+3 to+7°C, whereas for the ther-
momechanically active scenario (i.e. temperature-dependent
viscosity), the bistability solution is found for a wider range
from 1Toce =+1.0 to +8.0°C. This can be understood as
the result of a thermal adjustment that occurs when the tem-
perature of the ice can evolve in time. As the forcing changes
over time (i.e. the ocean temperature anomalies), the ice flux
at the grounding line is modified and the inland ice thickness
is perturbed accordingly. The new ice thickness distribution
implies a slightly different temperature solution, and the vis-
cosity is consequently modified. Knowing that the viscosity
field determines the velocity solution via the stress balance,
we therefore find a clear feedback that allows the ice sheet to
adjust if thermodynamics are active.

It must be noted that this stability study employs a time
duration in each forcing step of 30 kyr to elude transient re-
sponses (Fig. 6b). This allows the ice geometry to reach a
steady state as these experiments are intended to be quasi-
equilibrium simulations (similar to MISMIP). If the time be-

tween steps was reduced, the hysteresis loop would then be a
transitory response given that the ice temperature may not
adjust to the new geometry. The added value of the ther-
momechanical coupling relies not only on the transitory re-
sponse (i.e. thermal inertia), but also on the perturbed stabil-
ity of the quasi-equilibrium hysteresis loop. In other words,
the thermomechanical coupling already determines the stable
regions in a quasi-steady description and not only through
the effects of thermal inertia. Our goal here is to first show
this more fundamental behaviour. Further work is needed to
assess the relevance of potential transient responses.

It is worth noting the fundamental role of vertical ad-
vection if the system is to be forced with air temperatures.
The magnitude of vertical advection and its vertical depen-
dency determine the temperature distribution within the ice
(Moreno-Parada et al., 2024). This mechanism strongly de-
termines the equilibrium profiles as it modifies the overall
outflow of ice via the viscosity dependency on temperatures
(i.e. Arrhenius law in Eq. 17).

We must also discuss the calibrated values of γT (Favier
et al., 2019). The impact on the hysteresis behaviour is in-
teresting as it does not imply a symmetric effect on the re-
treat/advance of the ice sheet (Fig. 7). Strictly speaking, the
temperature anomaly necessary for the ice sheet to retreat is
far more sensitive to the particular γ value than the anomaly
necessary to advance. One potential explanation for this in-
teresting behaviour is the very nature of the melting/calving
parameterization at the grounding line. Since M grows with
1Toce (Eqs. 21 and 22), the difference among M values for
a fixed γ increases with the temperature anomaly. Hence,
knowing that the advance occurs when the ice flux value
reaches a certain value at the grounding line, the temperature
anomaly range covered by different γ that yields such melt-
ing/calving values is smaller (as 1Toce→ 0). Moreover, if
thermodynamics is considered (Fig. 7b), the required calving
at the grounding line to retreat is generally larger than that for
a fixed rate factor (Fig. 7b). In fact, for sufficiently low values
of γ , the thermomechanically active ice sheet never retreats.
The thermal behaviour of the ice thus provides additional in-
ertia in the sense that the ice sheet is less prone to changing
its current state, thus endowing the system with higher sta-
bility. These results are not exclusive of the oceanic forcing,
as also shown in Fig. 4, where the ice sheet does not collapse
to a retreated position when the perturbation vanishes.

Besides Nix’s extremely fast computations, marginal par-
allel speed-up is noticeable for the Blatter–Pattyn solver
(Figs. 9 and 10). Given the scalability analysis in Sect. 7, this
result is consistent for all permutations of the total maximum
number of linear iterations and the three different levels of
OpenMP optimization during compilation. There are a num-
ber of potential causes underlying this behaviour. First, Nix’s
most complicated calculations are carried out by the veloc-
ity solver, and it relies on the BiCGSTAB algorithm imple-
mented in the Eigen library. Such a method allows for multi-
threading if OpenMP is enabled during compilation, and it
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has certain limitations concerning sparse-matrix–vector mul-
tiplication. This operation is fundamental knowing that the
Eigen library performs a static partitioning of the sparse ma-
trix. That is, rows are divided among the available threads
leveraged by OpenMP, and each thread then processes a con-
tiguous block of rows to minimize the synchronization over-
head. Since the number of non-zero entries per row remains
constant, the partitioning approach seemed justified. Never-
theless, Eigen does not allow for more complex partition-
ing strategies, such as graph-based approaches (Catalyurek
and Aykanat, 1999), corner partitioning (Wolf et al., 2008)
or block-cyclic partitioning (e.g. Aboelaze et al., 1991; Pe-
titet and Dongarra, 1999), to minimize the total communica-
tion volume while keeping the computation balanced across
compute nodes.

A second potential cause of marginal parallel performance
concerns overhead. Since the BiCGSTAB method computes
two matrix–vector operations per iteration, there is an in-
creased communication overhead compared to that of sim-
pler solvers. For small- to medium-sized problems, the over-
head of creating/managing threads may negate some poten-
tial speed-up. This is of particular relevance for the problem
at hand: a two-dimensional ice-sheet model. The Blatter–
Pattyn stress balance yields a two-dimensional velocity field
that is considerably less computationally expensive than the
three-dimensional counterpart. To test the overhead hypoth-
esis, we repeated the scalability performance test (not shown
here) with an algorithm that only computes one matrix–
vector multiplication per iteration: the conjugate gradient
method (e.g. Shewchuk, 1994). Results show that both meth-
ods have similar efficiency when parallelization is enabled,
suggesting that overhead is not the main cause of marginal
speed-up. This further supports the hypothesis that sparse-
matrix–vector multiplication is the limiting component when
enabling parallelization. We propose that Eigen simplicity of
a row-wise partitioning of the sparse matrix is not enough
to yield optimal parallelization. Future work is needed to ex-
plore more advanced approaches of the partitioning strategy.

Lastly, the results presented herein show that active ther-
modynamics perturbs the hysteresis loop and the overall sta-
bility of an ice sheet. The particular grid over which the equa-
tions are discretized does not alter this behaviour. Conse-
quently, our results are not numerical artefacts of the selected
mesh. Therefore, we do not expect our results to change for
a different grid discretization. More precisely, we expect the
same physical behaviour as long as the ice viscosity varies
with temperature changes, irrespective of the chosen grid.
The exact grounding-line position may differ for a different
grid, yet the physical mechanism underlying this mechanism
remains unperturbed. It is thus expected that other models
with distinct meshes will exhibit a similar mechanism to that
observed in Nix simulations.

9 Conclusions

The thermomechanically coupled two-dimensional model
Nix has been presented and thoroughly described. There are
a number of novelties compared to other two-dimensional
models: a stress balance given by the Blatter–Pattyn approx-
imation, a fully coupled thermodynamics solver, explicit cal-
culation of the grounding line by a stretched coordinate sys-
tem, adaptive time stepping and potential melting/calving at
the grounding line. The Nix ice-sheet model is designed to
study a complex system with minimum resources: within
a few hours, a 100 m resolution higher-order stress balance
coupled with full thermodynamics is feasible even on a reg-
ular laptop.

First, Nix’s performance was tested by reproducing Exper-
iments 1, 2 and 3 from MISMIP benchmarks (Pattyn et al.,
2012). Results were further compared to semi-analytical so-
lutions (Schoof, 2007a), yielding excellent agreement for
all Stokes approximations available in Nix: SSA, DIVA
and Blatter–Pattyn. In general, our grounding-line position
slightly underestimates the boundary layer results in Schoof
(2007a) and all moving-grid models participating in MIS-
MIP. The well-known hysteresis behaviour in Experiment 3
is also captured.

The complexity of the system was further increased by
solving the associated heat problem. This allows us to in-
vestigate to which extent the hysteresis behaviour under pa-
rameter variations is perturbed as a result of a temperature-
dependent viscosity. In so doing, we designed two different
suites of experiments regarding the forcing variables of the
system: air temperatures Tair and ocean temperature anoma-
lies 1Toce.

When forcing with air temperatures, the hysteresis loop
width is widened and the system exhibits larger bistability as
the dynamics are perturbed via the ice viscosity dependency
on temperature. This is a direct result of the insulating effect
of the ice, thus preventing the colder atmospheric tempera-
tures from travelling downward from the uppermost layers.
In an idealized overdeepened bed geometry, it is necessary
to reach an air temperature of −40°C at sea level (provided
an adiabatic lapse rate dependency with height is present) for
the grounding line to advance beyond the bedrock local max-
imum.

If the system is instead forced by ocean temperature
anomalies (i.e. melting/calving at the grounding line), we
find that the hysteresis behaviour also persists. Notably, the
ocean temperature anomaly at which the ice sheet retreats
depends on the particular heat exchange parameter. Our re-
sults show that the quadratic parameterization retreats at
1Toce =+8.0°C of the temperature anomaly. The system
advances back to its unperturbed state at 1Toce =+1.0°C
for the quadratic parameterization.

These results show that a temperature-dependent ice vis-
cosity provides inertia and stability to the ice sheet, regard-
less of the particular external forcing applied (i.e. oceanic or
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atmospheric). Therefore, the thermal state of the ice must be
accounted for, even for low-dimensional or conceptual mod-
els, particularly if the potential sudden retreat of an ice sheet
is to be assessed.

Appendix A: Discretization schemes and nonuniform
grids

We herein elaborate on a thorough description of the dis-
cretization schemes of our flowline model where we follow
the ordinary notation q(σi,ζj ,τn)≡ qni,j .

The position in the spatio-temporal coordinates is then
given by σi =

∑i
k=01σk , ζi =

∑i
k=01ζk and τn = n1τ .

Note that Nix allows for a nonuniform spatial grid where
the spacing between two consecutive points follows a de-
sired distribution (polynomial or exponential). This yields
high resolutions near the grounding line while minimiz-
ing the total number of grid points. The horizontal index
i ∈Wr = {0,1,2, . . ., r}, where r is the number of points in
which the horizontal axis is divided. Likewise, the vertical
index follows j ∈Wp = {0,1,2, . . .,p}, where p is the num-
ber of vertical layers.

Nix’s finite-difference discretization considers unevenly
spaced grids, commonly used in the glaciological commu-
nity, where higher resolutions are desired near the base, while
minimizing the required number of points to reduce compu-
tational costs. A new coordinate system is thus built consid-
ering two types of nonuniform grid spacing: polynomial and
exponential. For any normalized variable ξ (such as σ and ζ ,
Eq. 23), a new nonuniform grid ξ̃ can be obtained by a power
law transformation:

ξ̃ = ξn, (A1)

where n is the spacing order, or an exponential map:

ξ̃ =
esξ − 1
es − 1

, (A2)

where s is the spacing factor for the exponential grid and ξ̃
is substituted by the variables σ and ζ . In this study, we have
employed n= 2 and s = 2.

A1 Blatter–Pattyn stress balance discretization

The discretization is straightforward for an Arakawa C grid.
The position of the grounding line L(t) is located on the ve-
locity grid (following Vieli and Payne, 2005). Thus, if the
horizontal axis is divided into r points, the ice thickness grid
ranges between i = 0,1, . . ., r − 1, whereas the velocity grid
(staggered) indexes read i = 1/2,3/2, . . ., r − 1/2. The frac-
tional index implies that the point (i+ 1/2,j) lies between
(i,j) and (i+ 1,j) and analogously for the vertical index j .

The Blatter–Pattyn stress balance can be written as

2
L21σi+1/2

 ηi+1,j
ui+3/2,j − ui+1/2,j

1σi+3/2+1σi+1/2

−ηi,j
ui+1/2,j − ui−1/2,j

1σi+1/2+1σi−1/2

+
1

2(Hi)21ζj+1/2

 ηi,j+1
ui,j+3/2− ui,j+1/2

1ζj+3/2+1ζj+1/2

−ηi,j
ui,j+1/2− ui,j−1/2

1ζj+1/2+1ζj−1/2

=
ρg
hi+1−hi

L1σi+1/2
. (A1)

We thus have a linear system of r ×p unknowns that can
be solved by applying standard linear algebraic solvers. For
each time step, we build a matrix of coefficients with dimen-
sion (rp)× (rp):

A
(rp)×(rp)

· u
(rp)×(1)

= F
(rp)×(1)

. (A2)

Since our discretization stencil includes six points, (i+
3/2,j), (i+1/2,j), (i−1/2,j+1), (i,j+3/2), (i,j+1/2)
and (i,j − 1/2), we obtain a sparse matrix that allows for
optimized inversion. For r = 500 and p = 25, only 0.048%
of the coefficient matrix is a nonzero entry:


αi−2M,j . . . αi−M,j . . . αi,j−1/2 αi,j+1/2 . . . αi+M,j . . . αi+2M,j



·



ui−3/2,j
.
.
.

ui−1/2,j
.
.
.

ui,j−1/2
ui,j+1/2

.

.

.
ui+1/2,j

.

.

.
ui+3/2,j



=



Fi−3/2,j
.
.
.

Fi−1/2,j
.
.
.

Fi,j−1/2
Fi,j+1/2

.

.

.
Fi+1/2,j

.

.

.
Fi+3/2,j



. (A3)

The boundary conditions are then needed to evaluate the
velocity at the edge of the domain. For the free surface we
apply the following three-point derivative scheme:

ui,r−1/2 =
4ui,r−3/2− ui,r−5/2+ 2χ1ζr−3/2

3
, (A4)

where ξ is evaluated right below the uppermost layer (i.e.
j = r − 3/2):

χ = 4
ui+1/2,r−3/2− ui−1/2,r−3/2

1σi+1/2+1σi−1/2

hi+1−hi

1σi+1/2
. (A5)
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The basal boundary condition is thus obtained analogously
with a non-zero drag. In this case, we discretize with the fol-
lowing simple two-point scheme:

ui,1/2 = ui,3/2−µ1ζi,1/2 , (A6)

where µ is computed right above the basal boundary (i.e.
j = 3/2):

µ= 4
ui+1/2,3/2− ui−1/2,3/2

1σi+1/2+1σi−1/2

bi+1− bi

1σi+1/2
. (A7)

With these expressions, the velocity field is then complete.
Lastly, at the ice divide and the grounding line, the veloc-
ity is obtained from symmetry and hydrostatic equilibrium
arguments, respectively (elaborated on in Appendix A2).

A2 DIVA/SSA stress balance discretization

The discretization is straightforward for a staggered grid. The
position of the grounding line L(t) is located on the stag-
gered grid (following Vieli and Payne, 2005). Thus, if the
domain is divided into n points, the ice thickness grid ranges
between i = 0,1, . . ., r − 1, whereas the velocity grid (stag-
gered) indexes read i = 1/2,3/2, . . ., r − 1/2.

The SSA stress balance can then be written as1

2
L21σi+1/2

×

[
ηi+1Hi+1

ui+3/2,j − ui+1/2,j

1σi+3/2+1σi+1/2
− ηiHi

ui+1/2,j − ui−1/2,j

1σi+1/2+1σi−1/2

]
−β2

i+1/2ui+1/2

= ρg
Hi+1+Hi

2
hi+1−hi
L1σi+1/2

, (A8)

where the friction coefficient β2 reads

βi+1/2 = Cu
m−1
i+1/2 (A9)

so that τb = β
2u.

Assuming our domain is divided into n points, the cor-
responding tridiagonal matrix is built at every time step as
(where we have dropped the super-index to lighten the nota-
tion)


B0 C0
A1 B1 C1

A2 B2
. . .

. . .
. . . Cr−2
Ar−1 Br−1



u1/2
u3/2
.
.
.

ur−3/2
ur−1/2

=

F0
F1
.
.
.

Fr−2
Fr−1

,
(A10)

1Note that, since the viscosity definition of Vieli and Payne,
2005, in Eq. B.15 is not preceded by 1/2, the factor of 2 difference
is cancelled by the average between two consecutive grid lengths
1σ necessary to compute the velocity gradients.

where A0 = Cn−1 = 0 by definition.
The non-zero entries of the matrix and the inhomogeneous

term read

Ai = γiηiHi,

Bi =−γi (ηi+1Hi+1+ ηiHi)−β
2
i ,

Ci = γiηi+1Hi+1,

Fi = ρg
Hi+1+Hi

2
hi+1−hi

L1σi+1/2
,

(A11)

where γi = 2/(L1σi+1/2)
2.

For the edge of the matrix (i.e. i = n− 1), we use the fol-
lowing values:

Ar−1 = ηr−1Hr−1,

Br−1 =−γr−1 (ηr−1Hr−1)−β
2
n−1,

Cr−1 = 0,

Fr−1 = ρgHr−1
hr−1−hr−2

L1σr−3/2
.

(A12)

For the boundary values, we set2

u1/2 =−u3/2 ,

ur−1/2 = ur−3/2+
L1σr−3/2

8ηr−1

(
ρgH 2

r−1− ρwgD
2
)
,

(A13)

whereD is the bedrock depth below sea level, the first equal-
ity follows from symmetry arguments at the ice divide (i = 1)
and the second equality implies that the ice momentum is
equated by the hydrostatic pressure of the water.

A3 Advection discretization

For the advection equation we also chose an implicit scheme
for numerical stability:

H n+1
i −H n

i

1τn
= σi

L̇n

Ln

H n+1
i+1 −H

n+1
i−1(

1σi+1/2+1σi−1/2
)

−

2
(
qn+1
i+1/2− q

n+1
i−1/2

)
Ln
(
1σi+1/2+1σi−1/2

) + Sni , (A14)

where the ice flux is defined as

qi+1/2 = ui+1/2
Hi+1+Hi

2
. (A15)

However, at the grounding line we use

qr−1/2 = ur−1/2Hr−1+M , (A16)

where M represents a flux anomaly at the terminus driven
by variable ocean conditions. In real glaciers, these anoma-
lies could be driven by variable calving, submarine melt, or
a combination of these factors.

2Note that in the staggered grid, u1/2 is the very first velocity
value of the domain.
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The advection equation can be rewritten as

AiH
n+1
i−1 +BiH

n+1
i +CiH

n+1
i+1 = Fi (A17)

so that the corresponding matrix is also tridiagonal:

Ai = γ
n
i

(
σiL̇− ui−1

)
,

Bi = 1+ γ ni (ui − ui−1) ,

Ci = γ
n
i

(
−σiL̇+ ui

)
,

Fi =H
n
i +1τ

nSni ,

(A18)

where γ ni =1τ
n/2(1σi+1/2+1σi−1/2)L

n.
As the ice divide is located at i = 1 (note that we start

counting at i = 0), the boundary condition then reads

H n
0 =H

n
2 , (A19)

since σ = 1 is a symmetry axis.

A4 Grounding-line scheme

The terminus position L (i.e. the grounding line) is not fixed
in time. Direct discretization of Eq. (18) in terms of σ coor-
dinates leads to

L̇n ≡
dL
dτ

=

{
−Ln1σr−1/2S

n
r−1

+2
(
qnr−1/2− q

n
r−3/2

)
/
(
1σr−1/2+1σr−3/2

) }
H n
r−1−H

n
r−2+ %

(
bnr−1− b

n
r−2

) . (A20)

A5 Thermodynamics discretization scheme

Unlike previous discretizations, the temperature field
θ(σ,ζ,τ ) has an additional dependency on the vertical coor-
dinate ζ that brings a higher degree of complexity (Eq. 24).

The energy balance (Eq. 28) is discretized using an upwind
scheme with a forward Euler step and a centred difference for
the spatial derivatives. The lengthy expression reads

ρc

[
θn+1
i,j − θ

n
i,j

1τn
− σi

L̇n

Ln

θni+1,j − θ
n
i−1,j

1σi+1/2+1σi−1/2
+

−
ζi,j

H n
i

H n+1
i −H n−1

i

21τn
θni,j+1− θ

n
i,j−1

1ζi,j+1/2+1ζi,j−1/2

]

=
k(
H n
i

)2 θni,j+1− 2θni,j + θ
n
i,j−1(

1ζi,j+1/2+1ζi,j−1/2
)2+

− ρc
uni

Ln

[
θni+1,j − θ

n
i−1,j

1σi+1/2+1σi−1/2

−

(
bi+1− bi−1

1σi+1/2+1σi−1/2

+ζi,j
H n
i+1−H

n
i−1

1σi+1/2+1σi−1/2

)
×

θni,j+1− θ
n
i,j−1

H n
i

(
1ζi,j+1/2+1ζi,j−1/2

)]+8ni . (A21)

A6 Adaptive time stepping

We take an adaptive time-stepping approach to enhance the
computational performance of the flowline model. Unlike
the proportional–integral (PI) methods, we exploit the fact
that Picard’s iteration already computes a metric to deter-
mine convergence. Thus, without additional calculations, we
let the new time step evolve within a range set by the user
[1tmin,1tmax] with a quadratic dependency on the error:

1t̃ =

1−

(
min

[
ε(t),φpic

]
φpic

)2
(1tmax−1tmin)

+1tmin , (A22)

where φpic is the tolerance in Picard’s iteration and ε(t) is
the error in the current iteration defined as εi = ||ui − ui−1

||

(Smedt et al., 2010). If the solution has not converged in the
given time step (i.e. ε > φpic), Eq. (A22) ensures that the time
step is set to the minimum value.

Then, we apply some relaxation to provide stability and
avoid spurious oscillations:

1t = α1t + (1−α)1t̃ , (A23)

where α = 0.7. Finally, we ensure that the time step is no
greater than the Courant–Friedrichs–Lewy (CFL) condition:

1t =min[1t,1tCFL] . (A24)

Appendix B: Convergence

Nix’s fast computation capabilities allow us to reach ex-
tremely high resolutions of1x ≤ 0.1km. We describe herein
the behaviour of the main variables of glaciological interest
upon reducing the grid size. Given that Nix tries to simu-
late marine-terminating ice sheets, all variables are evalu-
ated at the grounding line. For simplicity, the convergence
experiments are performed over a linear prograde slope as
described in Experiment 1 of MISMIP (Pattyn et al., 2012).

Figure B1 shows that ice velocities and thickness largely
change as the resolution is increased. The former gradu-
ally decreases its value, converging to the analytical result
of ∼ 700 myr−1 for 1x ≤ 0.5km. The ice thickness at the
grounding line exhibits an opposite dependency with res-
olution, also converging to the analytical counterpart for
1x ≤ 0.5km. The total outflow of ice at the grounding line
q(L) is not a monotonic function of the grid size. Since the
grounding-line position is dictated by the ice flux value, the
Nix model first advances with increasing resolution and ul-
timately retreats. It is worth noting that, despite the fact that
ice velocity, thickness and fluxes are significantly close to the
analytical solution, Nix overestimates the grounding-line po-
sition by roughly 6 % for the highest-resolution experiment
1x = 0.06km.
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Figure B1. Convergence study with the Nix model. From top to
bottom: (a) ice velocity, (b) terminus position, (c) ice thickness and
(d) ice flux. All variables are evaluated at the grounding line. The
dashed grey lines illustrate the values corresponding to the analyti-
cal counterpart (Schoof, 2007a). The double x axis denotes the total
number of horizontal grid points n and the corresponding spatial
resolution 1x given the stretched coordinate transformation.

In summary, Nix’s velocity and ice thickness solutions
converge to the analytical results elaborated on by Schoof
(2007a). As is expected for any numerical model, a certain
bias is found for high resolutions (≤ 0.13km). Nonetheless,
such a description would require solving a higher-order stress
balance instead, for which the absence of an analytical solu-
tion complicates the comparison. This exercise shows that
the grounding-line position for coarser grids might be close
to that of the highest resolution for the wrong reason: an over-
estimation of the ice velocities combined with an underesti-
mation of the ice thickness.

Code availability. The Nix ice-sheet model v1.0 is archived
in a persistent Zenodo repository (Moreno-Parada, 2025a):
https://doi.org/10.5281/zenodo.14943834. Additionally, current
and future versions of the software can be accessed on a GitHub
repository at https://github.com/d-morenop/nix (last access:
27 March 2025).

Data availability. The data used in the present work can be found at
https://doi.org/10.5281/zenodo.15721846 (Moreno-Parada, 2025c).

Video supplement. Animations of the results obtained with the
oceanic forcing (Sect. 6.2.2) can be found in the permanent Zen-
odo repository: https://doi.org/10.5281/zenodo.15082468 (Moreno-
Parada, 2025b).
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