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S1. Levenberg-Marquardt Algorithm 

The core of the LM method is an iterative process that refines the parameter estimates through several steps: 

1. Calculating Residuals: 

● Residuals represent the difference between the observed data and the values predicted by the model. 

By computing these residuals, we can assess how well the current parameters fit the data. 

2. Computing the Jacobian Matrix: 

● The Jacobian matrix is constructed by calculating the partial derivatives of the residuals with respect 

to each parameter. This matrix encapsulates how small changes in parameters affect the residuals, 

providing a linear approximation of the system's behavior around the current parameter estimates. 

3. Formulating the Hessian Approximation: 

● The Hessian matrix is a square matrix of second-order partial derivatives of a scalar-valued function. 

It describes the local curvature of a function of several variables, providing critical information 

about the function's convexity and concavity. It is approximated by multiplying the Jacobian matrix 

by its transpose. This approximation is key to simplifying the problem while retaining essential 

information about the curvature of the explored parameter space. 

4. Updating the Parameters: 

● To determine the next set of parameter estimates, a correction term is calculated. This term is derived 

by solving a linear system that incorporates both the Hessian approximation and the damping 

parameter. The resulting correction term is added to the current parameter estimates, nudging them 

towards a better fit. 

5.  Adjusting the Damping Parameter 

The damping parameter 𝜆 plays a pivotal role in balancing the optimization approach: 



● If the new parameter estimates lead to a better fit (i.e., the sum of the squared residuals decreases), 

the damping parameter is reduced, typically by a factor of 10. This reduction shifts the algorithm 

towards the Gauss-Newton method, which can converge more quickly when the solution is near. 

● Conversely, if the new estimates do not improve the fit, the damping parameter is increased, also 

typically by a factor of 10. This increase shifts the algorithm towards gradient descent, enhancing 

stability and ensuring progress even in challenging regions of the parameter space. 

6. Checking for Convergence 

● The iterative process continues until certain convergence criteria are met. These criteria include a 

sufficiently small change in the parameter values or the residual sum of squares. When the algorithm 

converges, it means that further iterations no longer result in significant improvements, indicating 

that an optimal or near-optimal solution has been found. 

 
To set up the parameter calibration using the MADS package for the DVM-DOS-TEM model, several components 

are required: the initial guess represents a set of parameter values to be passed to the DVM-DOS-TEM model; the 

target values; and a model function that updates the parameter file and executes the DVM-DOS-TEM model using the 

updated values. Parameter keys are used for parameter identification and tracking, and each parameter has a defined 

range, uniformly distributed within specified limits. Parameter range limits were determined based on prior 

knowledge. If certain observations are more critical than others, they can be weighted accordingly. For consistency of 

the calibration process for all parameters, we did not weight parameters in our setup (weight for all parameters were 

set to 1.0). The experiment name is used for bookkeeping purposes. 

 
Figure S1. The algorithm of DVMDOSTEM parameter 
calibration. 



 

In Figure S2, the calibraterandom function initiates the calibration process by randomly distributing parameter 

values within the specified ranges and then running the model calibration for the generated parameter sets. This 

function constructs an objective function to minimize the difference between observed and modeled values (detailed 

in Section 2.5). The calculated residuals are used to assess method convergence. The calibration process employs a 

tolerance value for the objective function, denoted as tolOF, as the convergence criterion. The tolOFcount 

represents the number of iterations after which calibration ceases if the change in the objective function is minimal 

between iterations. While increasing the number of iterations could enhance calibration accuracy, it would also raise 

computational time. More information on the MADS functions can be found at the MADS website 

(https://madsjulia.github.io/Mads.jl) 

 

S2. Maximum rate of C assimilation (𝒄𝒎𝒂𝒙) 

In the DVM-DOS-TEM model, 𝐺𝑃𝑃 is described by the following equation: 

𝐺𝑃𝑃$%& = 𝑐'() ⋅ 𝑓(𝐶𝑂*) ⋅ 𝑓(𝑃𝐴𝑅) ⋅ 𝑓(𝑇) ⋅ 𝑓(𝐿𝐸𝐴𝐹) ⋅ 𝑓(𝐹𝑂𝐿𝐼𝐴𝐺𝐸)  (S1) 

⋅ 𝑓(𝑇𝐻𝐴𝑊+,-) ⋅ 𝑓(𝐹𝑃𝐶) ⋅ 𝑓(𝑁𝐴𝑉)  

where 𝑓(𝐶𝑂*) is a function representing the effect of atmospheric CO2 and canopy conductance on GPP, 𝑓(𝑃𝐴𝑅) 
represents the effect of  photosynthetically active radiation, 𝑓(𝑇)	represents the  direct effect of air temperature on 
GPP, 𝑓(𝐿𝐸𝐴𝐹) represents the effect of leaf phenology on GPP, 𝑓(𝐹𝑂𝐿𝐼𝐴𝐺𝐸) represents the effect of canopy 
development on GPP, 𝑓(𝑇𝐻𝐴𝑊+,-) varies between 0 and 1 and defines the length of the growing season based on 
soil temperature at 10 cm,  𝑓(𝐹𝑃𝐶) represents the effect of competition among PFT for light, based on foliar 
projected cover, a function of Beer’s law (McGuire et al. 1992), 𝑓(𝑁𝐴𝑉) is dynamically calculated to model the 
control of plant 𝑁 status on 𝐺𝑃𝑃 for a given PFT (see section 5). 𝑓(𝑃𝐴𝑅), 𝑓(𝑇), f(NAV), 𝑓(𝑇𝐻𝐴𝑊+,-), 
𝑓(𝐹𝑂𝐿𝐼𝐴𝐺𝐸) and 𝑓(𝐿𝐸𝐴𝐹) are multipliers varying between 0 and 1. 

 

S3. Maximum plant N uptake rate (𝒏𝒎𝒂𝒙) 

𝒏𝒎𝒂𝒙 is the rate limiting factor of vegetation nitrogen uptake in the absence of nitrogen limitation. Vegetation N 
uptake is also constrained by soil moisture 𝑓(𝐿𝑊𝐶), and temperature 𝑓(𝑇𝑠), fine root biomass 𝑓(𝐹𝑅), canopy 
development 𝑓(𝐹𝑂𝐿𝐼𝐴𝐺𝐸), available nitrogen 𝑓(𝑁𝐴𝑉), and plant nitrogen requirement 𝑓(𝑁./012./).  

 Md = Mads.create_problem( 
     initial_guess,       #the set of initial values 
     targets,             #the set of observations (targets) 
     DVMDOSTEM_run,       #function that runs the model 
     param_keys,          #list of parameter names  
     param_distributions, #the set of parameter ranges 
     observations_count,  #number of observations 
     observation_weights, #the set of observation weights 
     problem_name         #the name of the experiments 
) 
Mads.calibraterandom(md, 10; tolOF=0.01, tolOFcount=4) 

Figure S2. The example of the Julia code setup using Model Analysis and Decision 
Support (MADS) functions.  



𝑁1+-(3/ = 𝑛'() ⋅ 𝑓(𝑇𝑠) ⋅ 𝑓(𝐿𝑊𝐶) ⋅ 𝑓(𝐹𝑂𝐿𝐼𝐴𝐺𝐸) ⋅ 𝑓(𝑁𝐴𝑉) ⋅ 𝑓(𝑁./012./)   (S2) 

 

S4. The limiting rate of maintenance respiration (𝑲𝒓𝒃) 

𝐾𝑟 is the limiting rate of vegetation maintenance respiration (𝑅') at 0oC:  

𝑅' = 𝐾𝑟 ⋅ 𝐶      (S3) 

where 𝐶 is vegetation 𝐶 pool. 𝐾𝑟 is itself a function of vegetation C pool:  

 𝐾𝑟 = 𝑒𝑥𝑝[(𝐾𝑟( ⋅ 𝐶) + 𝐾𝑟5]     (S4) 

𝐾𝑟( is usually set to -8.06 10-5, and 𝐾𝑟5 is calibrated for every vegetation compartment: leaf, stem, and root. Since 
the relationship between biomass and maintenance respiration is not linear and the slope of the relationship 
decreases as biomass increases, 𝐾𝑟5 is a negative number.  

S5. Plant-soil nitrogen feedback 

Vegetation productivity is downregulated based on a comparison of the 𝑁	demand to accomplish growth and the 
𝑁supply resulting from plant 𝑁	uptake, mobilisation, and resorption. If 𝑁 demand is higher than 𝑁 supply, 
vegetation productivity is reduced proportionally. In a first step, 𝐺𝑃𝑃 is computed for every PFT, without 
considering 𝑁 limitation (𝐺𝑃𝑃∗). After computation of 𝑅', net primary productivity (𝑁𝑃𝑃∗) and growth respiration 
(𝑅𝑔) without nitrogen limitation are computed as follow: 

𝑁𝑃𝑃∗ = (𝐺𝑃𝑃∗ − 𝑅')/(1 + 𝑓𝑟𝑔)      (S5) 

𝑅𝑔∗ = 𝑁𝑃𝑃∗ ⋅ 𝑓𝑟𝑔      (S6) 

Where 𝑓𝑟𝑔 is a parameter setting the fraction of 𝑁𝑃𝑃 required to achieve new tissue production. This estimate of 
𝑁𝑃𝑃∗ is then used to estimate 𝑁 requirement by dividing it to the parameterized 𝐶:𝑁 ratio for new growth 
(𝐶:𝑁/7/8).  

𝑁./012./ = 𝑁𝑃𝑃∗/(𝐶:𝑁/7/8)	     (S7) 

Growth reduction associated with 𝑁 limitation is computed as the ratio between 𝑁 supply and 𝑁 requirement. This 
ratio is finally used to downregulate 𝑁𝑃𝑃∗, 𝑅𝑔∗ and 𝐺𝑃𝑃∗ in the case 𝑁 supply is lower than 𝑁 requirement to 
estimate actual 𝑁𝑃𝑃, actual 𝑅𝑔 and actual 𝐺𝑃𝑃. 

𝑁𝑃𝑃 = 𝑁𝑃𝑃∗ ⋅ (𝑁91++:;/𝑁./012./)     (S8) 

𝐺𝑃𝑃 = 𝑁𝑃𝑃 + 𝑅' + 𝑅(      (S9) 

 

S6. Rate of C litterfall production (𝒄𝒇𝒂𝒍𝒍)   

𝑐>(:: is the limiting rate of vegetation C litterfall (transferring organic carbon from vegetation to soil) and has the 
following equation:  

𝑐:-.>(:: = 𝑐>(:: ⋅ 𝐶7/?     (S10) 

where 𝑐>(:: is a nondimensional term calibrated for every vegetation compartment: leaf, stem, and root. 

 

S7. Rate of N in litter production (𝒏𝒇𝒂𝒍𝒍) 

Similarly, 𝑛>(:: limiting rate parameter of vegetation N litterfall:  

𝑛:-.>(:: = 𝑛>(:: ⋅ 𝑁7/?,      (S11) 

where 𝑁7/? is the vegetation N pool, 𝑛>(:: and is calibrated for every PFT and PFT compartment: leaf, stem, and 
root.  

 



S8. Soil parameters 

𝑛'2,5
1+ 	is the limiting rate of microbial N uptake per unit of detrital C respired (g/g). 𝑛'2,5

1+   directly influences N 
immobilisation by decomposers, and net mineralization which controls the amount of inorganic N produced during 
decomposition of the soil organic matter minus N immobilised by decomposers.  

𝑘𝑑𝑐s are the rate-limiting parameters of soil carbon decomposition, calibrated for the four soil carbon pools: 
litter/raw pool, active pool, and physically and chemically resistant pools. The higher the value 𝑘𝑑𝑐 is, the faster the 
turnover is. Therefore,  

 𝑘𝑑𝑐.(@A > 𝑘𝑑𝑐9B'( > 𝑘𝑑𝑐9B'+. > 𝑘𝑑𝑐9B',.   (S12) 

relationship has to hold.  

𝑅ℎ:	 = 𝑘𝑑𝑐 ⋅ 𝐶: ⋅ 𝑓(𝜃) ⋅ 𝑓(𝑇9)    (S13) 
where 𝑅ℎ:	, 𝐶:, 𝑇9, 𝜃, are heterotrophic respiration, C stock, temperature, and moisture of soil layer l, respectively. 
  



 

 
Figure S3. Box plots illustrating the differences between the five best-calibrated parameters and 
synthetic parameters (A, C, E, G, I), and the differences between calibrated and synthetic targets 
(B, D, F, H, J) for the 10% parameter variance. The subscripts represent the following plant 
functional types: 0 - Evergreen Tree, 1 - Deciduous Shrubs, 2 - Deciduous Tree, and 3 - Moss. 



 

 

Figure S4. Box plots illustrating the differences between the five best-calibrated parameters and 
synthetic parameters (A, C, E, G, I), and the differences between calibrated and synthetic targets 
(B, D, F, H, J) for the 20% parameter variance. The subscripts represent the following plant 
functional types: 0 - Evergreen Tree, 1 - Deciduous Shrubs, 2 - Deciduous Tree, and 3 - Moss. 
 



 

Figure S5. Box plots illustrating the differences between the five best-calibrated parameters and 
synthetic parameters (A, C, E, G, I), and the differences between calibrated and synthetic targets 
(B, D, F, H, J) for the 50% parameter variance. The subscripts represent the following plant 
functional types: 0 - Evergreen Tree, 1 - Deciduous Shrubs, 2 - Deciduous Tree, and 3 - Moss. 
 



 
 

Figure S6. Box plots illustrating the differences between the five best-calibrated parameters and 
synthetic parameters (A, C, E, G, I), and the differences between calibrated and synthetic targets 
(B, D, F, H, J) for the 90% parameter variance. The subscripts represent the following plant 
functional types: 0 - Evergreen Tree, 1 - Deciduous Shrubs, 2 - Deciduous Tree, and 3 - Moss. 
 



 

 
Figure S7. Correlation matrix between	"!"# and	#$$ parameter values and modeled target values. The 
matrix includes the ten best-matched samples based on observed target values. The red box highlights 
correlations with %% and &%  for the evergreen plant functional type. The color bar indicates the strength 
and direction of the correlation. 



 

 
Figure S8. Correlation matrix between !!"##  parameter values and modeled target values. The matrix 
includes the ten best-matched samples based on observed target values. The red box highlights 
correlations with "$ and #$ for the evergreen plant functional type. The color bar indicates the strength 
and direction of the correlation. 



 

 
Figure S9. Correlation matrix between !!"## parameter values and modeled target values. The matrix 
includes the ten best-matched samples based on observed target values. The red box highlights 
correlations with "$ and #$ for the evergreen plant functional type. The color bar indicates the strength 
and direction of the correlation. 
 



 
 

 

 

 

 
Figure S10. Correlation matrix between soil parameter values and modeled target values. The matrix 
includes the ten best-matched samples based on observed target values. The red box highlights significant 
correlations with !!""#, ∑!$%&"'()	and ∑$(*(%) for the evergreen plant functional type. The color bar 
indicates the strength and direction of the correlation. 
 


