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Abstract. Modelling and observational techniques are piv-
otal in aerosol research, yet each approach exhibits inherent
limitations. Aerosol observation is constrained by its limited
spatial and temporal coverage compared to that of models.
On the other hand, models tend to possess higher uncertain-
ties and biases compared to observations. Aerosol data as-
similation has gained popularity as it combines the advan-
tages of both methods. Despite numerous studies in this do-
main, few have addressed the challenges faced in assimilat-
ing aerosol data with significant differences in magnitude and
degree of freedom between the model state and observations,
especially in the vertical direction. These challenges can lead
to the preservation – or even the exacerbation – of struc-
tural inaccuracies within the assimilation process. This study
investigates the sensitivity of dust aerosol data assimilation
to the vertical structure of the aerosol profile. We assimi-
late a variety of dust observations, encompassing ground-
based particulate matter (PM10) measurements, and satellite-
derived dust optical depth (DOD) data, using the ensemble
Kalman filter (EnKF). The assimilation process is elucidated,
detailing the assimilation of raw ground-based and satellite-
based observations for an optimized three-dimensional (3D)

posterior state. To demonstrate the impact of accurate vs. er-
roneous prior aerosol vertical profiles on the assimilation re-
sult, we select three cases of super dust storms for analysis.
Our findings reveal that the assimilation of ground obser-
vations would optimize the dust field at the ground in gen-
eral. However, the vertical structure presents a more com-
plex challenge. When the prior profile accurately reflects the
true vertical structure, the assimilation process can success-
fully preserve this structure. Conversely, if the prior profile
introduces an incorrect structure, the assimilation can signif-
icantly deteriorate the integrity of the aerosol profile. This is
also found in the assimilation of DOD, which exhibits a com-
parable pattern in its sensitivity to the initial aerosol profile’s
accuracy.

1 Introduction

In recent decades, atmospheric aerosol has garnered exten-
sive attention due to its impact on the environment (Buseck
and Pósfai, 1999; Zhao et al., 2020) and human health (Zhu
et al., 2021). Numerous research studies have been conducted

Published by Copernicus Publications on behalf of the European Geosciences Union.



3782 M. Pang et al.: The sensitivity of aerosol data assimilation to vertical profiles

on the characterization (Mhawish et al., 2021), source ap-
portionment (Wu et al., 2018), and model simulation (Lee
et al., 2011) of aerosols. One crucial tool for understand-
ing aerosol processes and forecasting is the chemical trans-
port model (CTM), which can generate continuous three-
dimensional (3D) aerosol fields on a large scale. However,
despite significant efforts to develop and improve CTM pa-
rameter schemes, studies have pointed out that significant
uncertainties still exist in CTM simulations (Vignati et al.,
2010; Stier et al., 2013). These uncertainties primarily arise
from emission sources (e.g. intensity, location), meteorolog-
ical inputs (e.g. wind mixing, precipitation), and incomplete
parameter schemes (e.g. chemical reactions) (Benedetti et al.,
2018). At the same time, aerosol measurements have ad-
vanced, owing to the development of sensors and increased
investment. These include chemical kinetics studies in lab-
oratories (Kolb and Worsnop, 2012), a network of loosely
distributed ground monitoring stations (Gueymard and Yang,
2020), and regularly scanning satellites providing global cov-
erage (Sogacheva et al., 2020). Although these measure-
ments offer higher accuracy, challenges persist. So far, ob-
taining continuous 3D aerosol measurements on a large scale
remains impractical and costly. Measurements are limited to
surface-level concentrations of total particle matter, column-
integrated aerosol optical depths (AODs), and vertical pro-
files of total aerosol extinction. These measurements have
fewer degrees of freedom compared to the complexity of re-
ality (Pappalardo et al., 2014; Qin et al., 2021).

Data assimilation incorporates models and measurements
to generate a posterior that holds the strengths of both (Ban-
nister, 2017). Various data assimilation techniques have been
developed for different applications, including hydrology
(Reichle et al., 2002), geology (Peng and Liu, 2022), and at-
mospheric science (Hamill, 2006). These methods are typ-
ically based on either variational or ensemble approaches
(Whitaker et al., 2009; Law and Stuart, 2012). The varia-
tional method is particularly useful for emission inversion
(Bergamaschi et al., 2022; Jin et al., 2023a). Ensemble-based
filters have also demonstrated superior performance in se-
quential forecasting without the adjoint or tangent linear
model required by the variational method. By assimilating
real-time observations, these filters generate optimized ini-
tial fields that enhance forecast accuracy (Houtekamer et al.,
2005). Since the introduction of the classic ensemble Kalman
filter (EnKF) (Evensen, 1994), a considerable amount of re-
search has focused on its application and improvement. Sev-
eral variations of the EnKF, such as EnSRF (Whitaker and
Hamill, 2002) and LETKF (Hunt et al., 2007), have been
proposed to address computational complexity, accuracy, and
robustness issues. Although these advancements have been
validated, challenges related to the model’s background er-
ror covariance and observational data quality control can still
impact the assimilation results significantly.

In data assimilation methodology, an observation opera-
tor is required for deriving the innovation vector that quan-

tifies the difference between the observation field and the
simulation field (Ma et al., 2020). These two usually have
different degrees of freedom. With that, the optimized state
could then be calculated considering the integration of back-
ground and observational penalties. From the perspective of
aerosol data assimilation, the main objective is to reproduce
optimal aerosol states (Liu et al., 2011), considering their
spatial, vertical, aerosol species, and size distribution char-
acteristics, while currently available observations commonly
measure their mixed state. For example, AOD is the column-
integrated optical extinction of all aerosols, and high uncer-
tainties exist in the optical properties of aerosol (Tsikerdekis
et al., 2021). Ground PM10 concentration measurement is the
additive sum of all particles with a diameter less than 10 µm.
The ground PM10 measurements are not directly comparable
to the aerosol state. For ground measurements, monitoring
stations are sparsely distributed, making high data vacancy in
AOD products inevitable as a result of retrieval failures. The
number of observations is therefore commonly much lower
than the model state, or the degree of freedom is limited com-
pared to that of the model state. Mathematically, the assim-
ilation result strongly depends on the background error co-
variance for transferring the increments from the low-degree
observational space to the full model space. Given a partially
erroneous prior, the assumptions about the prior states can
be reserved – or even exacerbated – with the lack of obser-
vations. Only a few studies have focused on some of these
aspects. We recently found that the incorrect assumption of
aerosol size distribution from prior models gives rise to a
worse posterior (Jin et al., 2023b). In addition, the position
error in the dust plume simulation can lead to the failure of
assimilating valid observations (Jin et al., 2021). With regard
to the vertical structure, most studies have focused on propos-
ing relevant assimilation methods to assimilate observations,
such as the Cloud-Aerosol Lidar with Orthogonal Polariza-
tion (CALIPSO) (Sekiyama et al., 2010; Cheng et al., 2019;
Ye et al., 2021) and light detection and ranging (lidar) (Wang
et al., 2022). The sensitivities of assumptions in the prior sim-
ulations need to be explored.

For example, in dust aerosol data assimilation, the most
representative observation sources are direct observations,
like PM10 and PM2.5 concentrations, and indirect observa-
tions, like dust optical depth (DOD) and extinction coeffi-
cient (Jin et al., 2022). Since they are all a combination of
different particles, it is necessary to perform bias correc-
tion before assimilation (Jin et al., 2019; Ma et al., 2020).
Afterwards, through assimilation analysis, few observations
can optimize the whole model state space, while in real-
ity, ground stations produce scattered concentrations on the
ground, and satellites and lidars receive column-integrated
information about the aerosol or a single profile once a day
(Sekiyama et al., 2010; Hofer et al., 2017; Cheng et al., 2019;
Escribano et al., 2022). None of them can provide continu-
ous vertical information about the aerosol with large spatial
coverage. When there is incorrect information about the dust
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aerosol structure in the model prior, due to the considerably
greater degree of freedom of the model state, data assimila-
tion algorithms may fail to correct it or, even worse, further
degrade the vertical dust aerosol loading.

There is limited research addressing the impact of flawed
aerosol prior assumptions on the degradation of the assim-
ilated posterior, particularly concerning vertical structures.
Gwyther et al. (2023) delved into the implications of 4DVar
data assimilation for mesoscale eddy representation in the
vertical dimension, highlighting that inadequate prior knowl-
edge of these structures significantly hinders improvement
in the assimilated simulations. This issue extends to aerosol
data assimilation, where erroneous assumptions regarding
aerosol vertical distribution cause assimilation methods to
maintain or exacerbate inaccuracies. This study focuses on
several major dust storm events that occurred in the spring
of 2021, utilizing them as case studies. We conduct sep-
arate data assimilation experiments involving ground-level
PM10 measurements and satellite-based AOD data to demon-
strate explicitly how misleading vertical prior information
can distort the posterior results. The LOTOS-EUROS model
facilitates the reproduction of dust dynamics and generates
the initial dust load priors. For assimilation, we employ
an EnKF algorithm, incorporating bias-corrected PM10 data
from ground stations and DOD retrievals from the Himawari-
8 satellite. For validation, we employ aerosol profile observa-
tions from CALIPSO and lidar systems. By presenting both
favourable and detrimental scenarios, this work underscores
the high sensitivity of data assimilation processes to the ac-
curacy of assumed vertical structures, thereby emphasizing
the criticality of precise vertical profiling in aerosol studies.

The remainder is organized as follows. Section 2 describes
the model used for the dust aerosol simulation and the dust
observations used in this study. Section 3 introduces the as-
similation algorithm applied to assimilate the observations
and the experiment settings. Section 4 discusses the assimi-
lation results and validates the results with the CALIPSO and
lidar observations. Finally, Sect. 5 summarizes the study.

2 Dust aerosol simulation and observations

This section introduces the model used for simulating dust
aerosol and describes the observation methods applied for
monitoring dust, including a ground monitoring station,
Himawari-8, CALIPSO, and lidar. Among these, ground
PM10 from ground monitoring stations and DOD from
Himawari-8 are used for assimilation. Extinction profiles
from CALIPSO and lidar are used to validate the posterior
profile.

2.1 Dust simulation

2.2 LOTOS-EUROS

LOTOS-EUROS v2.2 is used to simulate the dust aerosol.
The LOTOS-EUROS model is a 3D chemistry transport
model used for air quality forecasting (Manders et al., 2017).
It has also been applied in source apportionment and emis-
sion inversion worldwide. In this study, the modelling do-
main spans 15 to 50°N and 70 to 140°E with a spatial res-
olution of 0.25°× 0.25°. Vertically, it comprises 21 layers
with a top level at 10 km, which is adequate for recognizing
the vertical structure. An ECMWF operational forecast of 3 h
is used to drive the model. The boundary conditions are set to
zero assuming that all the dust aerosols are emitted during the
simulation window. Dust aerosol processes, including emis-
sion, advection, diffusion, deposition, and sedimentation, are
considered in the model.

All simulations commence 1 d prior to the initial assimila-
tion time point, during which no dust emission occurs. The
dust emission process is modelled using the Zender03 emis-
sion parameterization scheme (Zender et al., 2003). In gen-
eral, we assign the dust simulation uncertainty to the dust
emission. Ensemble emission fields [f 1, . . .,fN ] are gen-
erated randomly following the emission uncertainty choice
f priori and background error covariance matrices B in Jin
et al. (2022). They are used to forward the LOTOS-EUROS
model M for the ensemble dust simulations [x1, . . .,xN ] as

[x1, · · · ,xN ] = [M(f 1), · · ·,M(fN )]. (1)

Here, N refers to the total ensemble number.

2.3 Dust observations for assimilation

2.3.1 Ground PM10

There are over 1600 ground air quality monitoring stations
located throughout China. Their spatial distribution can be
seen in Fig. 1 (blue scatters). They provide hourly air pollu-
tant concentrations, including PM2.5, PM10, O3, NO2, SO2,
and CO. PM10 can appropriately represent the dust load as it
falls under the size definition of fine and coarse dust (Ade-
biyi et al., 2023). Its uncertainty is also relatively lower than
that of some remote sensing instruments. However, PM10 is
a combination of various species. Assimilating such obser-
vations with inaccurate or incorrect representativeness can
diverge the model. It is then necessary to perform bias cor-
rection (BC) to remove the non-dust parts before they are
assimilated. Details concerning the method can be found in
Jin et al. (2022). The bias-corrected observations can be used
to correct the model simulation by data assimilation.

2.3.2 Himawari-8 AOD and calculation of DOD

The Himawari-8 geostationary satellite, operated by the
Japan Meteorological Agency (JMA), provides aerosol op-
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Figure 1. Spatial distribution of ground monitoring stations (blue scatters), location of the lidar (red star) with upward-scanning ray (orange
cylinder), and aerosol extinction profile sample scanned by the CALIPSO satellite (trajectory is plotted as the grey line on the ground).

tical information covering East Asia and the western Pacific
region at a time resolution of 10 min (Yumimoto et al., 2016).
This allows us to monitor the source and movement of dust at
high spatial–temporal resolution. Its products, the Ångström
exponent (Å) and aerosol optical thickness (AOT) at 550 nm,
are selected to measure the dust optical depth (DOD). These
data are merged to model grid (0.25°×0.25°) and hourly res-
olution.

To remove the fine-mode non-dust AOD in total AOD, an
empirical function concerning Å is used to calculate the sub-
micron fraction (SMF) (Anderson et al., 2005; Di Tomaso
et al., 2022). The dust optical depth (DOD) can then be ob-
tained by the SMF.

SMF=−0.0512× Å2
+ 0.5089× Å+ 0.02 (2)

DOD= AOD× (1−SMF) (3)

Furthermore, the threshold of Å≤ 1 is set to exclude the fine-
mode dominant observations.

2.4 Dust observations for validation

The aerosol extinction coefficient from CALIPSO and lidar
is used to validate the vertical structure of dust aerosol.

2.4.1 CALIPSO

The Cloud-Aerosol Lidar with Orthogonal Polarization
(CALIOP), on board the CALIPSO satellite, provides data
on the vertical structures and types of aerosols on a global
scale (Winker et al., 2010). It has a spatial resolution of 333 m
and a vertical resolution of 30 m. A normal extinction profile

sample can be seen above the dashed black line in Fig. 1a.
It has been widely used in investigating aerosol distribution
and evolution (Xu et al., 2020; Zhang et al., 2020; Han et al.,
2022; Chen et al., 2023) and data assimilation (Sekiyama
et al., 2010; Cheng et al., 2019; Escribano et al., 2022). Here,
its product, extinction coefficient at 532 nm, is taken as the
aerosol profile validation set to identify the vertical distribu-
tion of the dust load.

2.4.2 Polarization lidar

Polarization lidar deployed on the ground can provide contin-
uous measurements on the vertical details of the atmospheric
environment with high resolution (Hofer et al., 2017). Re-
cently, Wang et al. (2021) collected dust extinction coeffi-
cient data through a dual-wavelength aerosol lidar built in the
tower of the Institute of Atmospheric Physics (39°58′35′′ N,
116°22′41′′ E; red star in Fig. 1a). The device provided dust
information with a high vertical resolution of 30 m and tem-
poral resolution of 15 min. The vertical profile development
of the several super dust storms that occurred in the spring of
2021 was thoroughly captured by the instrument, thus mak-
ing it a crucial source of measurement for learning about the
vertical structure and its development during dust storms. In
this study, these data are employed to compare the vertical
structures from the model simulation and assimilation analy-
sis.
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3 Assimilation methodology and experiments

This section first illustrates the methodology of the classic
EnKF used in Sect. 3.1. The sensitivity of the aerosol poste-
rior to the vertical structure is then emphasized when assim-
ilating the ground PM10 concentrations in Sect. 3.2 and the
DOD in Sect. 3.3. Case experiments evaluating this sensitiv-
ity are described in Sect. 3.4.

3.1 EnKF

The data assimilation algorithm used in this study is the
stochastic EnKF formulated by Burgers et al. (1998). It is
implemented in our self-developed PyFilter toolbox (Pang,
2024). Its capability to improve dust forecasting has been
proven in our recent research (Pang et al., 2023). We did not
adopt any other variant of EnKF because the problem we ad-
dress is contingent but universal in aerosol data assimilation
applications.

EnKF is a Monte Carlo approach based on Kalman filter
theory. EnKF maintains a set of model states to approximate
the probability distribution of the model state or parameter.
It includes the forecast step and the analysis step. In the fore-
cast step, each posterior ensemble member xa,it−1 at the previ-
ous time t − 1 is integrated forward according to the model
dynamics M to generate a prior forecast xf,it at the next mo-
ment t . Here, i refers to the ensemble member.

x
f,i
t =M

(
x
a,i
t−1
)

(4)

In the analysis step, the states of each member are adjusted
based on observational data to approach the true state. This
adjustment process is implemented based on the error from
the model prior and observation. In EnKF, the model prior er-
ror covariance matrix Pf is calculated through the ensemble
approximation method following

Pf =
1

N − 1

(
x
f
i − x

f
)(
x
f
i − x

f
)T
, (5)

whereN is the number of ensembles, xfi is the ith individual
of the ensemble prior states, and xf is the average of the
ensemble members.

Then, a weight matrix K, also referred to as the Kalman
gain, can be obtained by

K= PfHT(HPfHT
+R

)−1
. (6)

The a posteriori ensemble individual xai is calculated by

xai = x
f
i +K

(
y+ εi −Hxfi

)
, (7)

where εi is the extra perturbation, and its variance is set ac-
cording to the diagonal of the observation error covariance
R. It serves to maintain the ensemble spread (van Leeuwen,
2020).

Meanwhile, the a posteriori xa can be updated via

xa = xf +K
(
y−Hxf

)
. (8)

From the equations above, we can tell that the a posteriori is
dependent on both the prior and the observations. Within dif-
ferent spaces, these are aligned by the observation operator
H.

Figure 2 concisely illustrates the process of EnKF applied
in this paper. In the upper row of panel (a.1), we have en-
semble AOD priors (hollow grey diamond) and AOD obser-
vations (solid blue diamond), and below there are idealized
aerosol vertical profiles, including a true profile (red line),
ensemble prior profiles (dashed grey line), and an observa-
tion at ground level (blue star). It is noticeable that there are
great differences between priors and observations both on
the ground and in AOD under two conditions. The figures in
panel (a) are in a positive condition. Both the AOD and the
3D mass priors underestimate the loading, while the struc-
ture is consistent with the true profile. Through assimilating
ground-based or AOD observations, both the ground and the
vertical dust loading are adjusted to be more consistent with
the observations.

3.2 Ground PM10 assimilation

In this section, the impact of ground measurement data as-
similation on the aerosol vertical structure is explained. In
practice, each of the PM10 observations could be assimilated
to optimize the 3D states that are correlated. The increments
are transferred from the observation space to the model space
via the Kalman gain K shown previously. To easily evalu-
ate the posterior, we solely perform the assimilation analysis
at the pixels where PM10 measurements are available. Thus,
here we confine the states only in the vertical direction in
one pixel to better identify the sensitivity, and we assume the
prior states xf with total k levels to be

xf =
[
x
f

1 , · · ·· · ·,x
f
k

]T
. (9)

In this case, the error covariance matrix Pf is constructed
by the variance of ensemble states and covariance in the ver-
tical direction, and the observation operator H only converts
the single observation on the ground level:
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Figure 2. Schematic diagram of the sensitivity of data assimilation to aerosol vertical structure. Assimilation of ground and AOD observations
under a positive condition, with AOD priors (hollow grey diamond) and AOD observations (solid blue diamond) in the upper box and true
profiles (red line), ensemble priors (dashed grey line), prior means (black line), and ground observations (blue star) in the lower box (a.1).
The figures on the right show the posteriors (a.2). The figures in the second row show the prior (b.1) and posterior (b.2) of the ground
assimilation under a negative condition. The figures in the third row show the prior (c.1) and posterior (c.2) of the AOD assimilation under a
negative condition.

Pf =


C11 C12 · · · C1k
C21 C22 · · · C2k
...

...
. . .

...

Ck1 Ck2 · · · Ckk

 , (10)

H= [1 0 · · · 0]. (11)

The calculation of K follows Eq. (6) and substitutes
Eq. (10) and Eq. (11) into it:

K= PfHT
(
HPfHT

+R
)−1

= [C11, · · ·· · ·, Ck1]
T(C11+ σ

2
y

)−1
, (12)

where σ 2
y is the error in the ground observation.

We substitute K into the following update function:

[xa1 , · · ·· · ·, x
a
k ]

T
=

[
x
f

1 , · · ·· · ·, x
f
k

]T

+ [C11, · · ·· · ·, Ck1]
T(C11+ σ

2
y

)−1(
y− x

f

1
)
. (13)

Here, we have the posterior state xai on each level.
On the ground level, the posterior state is obtained as
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xa1 =
σ 2
y

C11+ σ 2
y

x
f

1 +
C11

C11+ σ 2
y

y. (14)

If the observation error is much smaller than the prior error
(σ 2
y � C11), we can have

xa0 ≈ y, (15)

which means that the posterior on the ground level is close to
that of the ground observation. The ground data assimilation
has successfully tuned the ground prior state.

On the other hand, for the state on the ith level, the poste-
rior xai is calculated by

xai = x
f
i +

Ck1

C11+ σ 2
y

(
y− x

f

1
)
. (16)

To better identify the correctness of the vertical structure,
we define a vertical ratio vk here:

vk =
xi

x1
, (17)

which is the ratio of the state on the ith level to the ground
level.

We divide xfi on both sides of Eq. (16):

vai = v
f
i +

Ck1

C11+ σ 2
y

y− x
f

1

x
f

1

. (18)

When we have a strong vertical correlation and small
observation error, we have Ck1

C11+σ 2
y
≈ 1. If the prior verti-

cal structure is far from the true structure, vfi � vtrue
i or

v
f
i � vtrue

i . Then, the vertical structure of the posterior is

strongly dependent on y−x
f
1

x
f
1

. If xf1 and y deviate far from

each other, the increment can be large, thus further enhanc-
ing the incorrect prior structure vfi .

Figure 2b illustrates this kind of pattern. In panel (b.1),
the priors greatly underestimate the aerosol concentration on
the ground level. Meanwhile, over the upper space, the priors
overestimate the intensity and altitude of the dust loading to
some extent. After assimilating the ground observations, as
shown in panel (b.2), the posterior aerosol loading (dashed
grey line) is tuned to a large extent and is much closer to the
observation on the ground layer, while for the vertical distri-
bution, a greater overestimation than that of the prior can be
seen. The original incorrect profile is significantly amplified.

3.3 AOD assimilation

Assimilation of AOD-related observations is carried out by
connecting the 3D aerosol priors xf and AOD priors τf . It
is assumed that the vertical structure of the aerosol field re-
mains the same as the AOD lacks vertical information. Then,

a 3D mass concentration field can be calculated by finding
the optimal AOD field.

To begin with, the value of the AOD is related to the
aerosol mass concentration, aerosol type, and humidity.
Here, it is assumed to be linearly related to only the aerosol
mass concentration field xf . The column-integrated AOD is
calculated by summing the aerosol mass concentration xfi on
each level:

τf =

k∑
i=1

Mx
f
i , (19)

where M is the linear model operator that calculates the
AOD from the mass concentration.

The calculation of the posterior AOD, τ a , follows Eq. (8):

τ a = τf +K
(
y−Hτf

)
. (20)

Next, we substitute Eq. (19) into Eq. (20). We can then
bridge the mass concentration field and AOD field:

M
k∑
i=1

xai =M
k∑
i=1

x
f
i +K

(
y−Hτf

)
. (21)

Similarly for AOD, we confine the states in the vertical
direction within one pixel. We have one prior AOD, τf , and
aerosol mass prior, xfi , on a total of k levels. We first define
a vertical factor, ui , which is the ratio of the mass at the ith
level to the mass at all levels:

ui =
xi
k∑
i=1
xi

. (22)

Next, we substitute it into Eq. (21):

M
xai

ui
=M

x
f
i

ui
+K

(
y−Hτf

)
. (23)

Since we have only one observation and one AOD simu-
lation, the observation operator H, error variance matrix Pf ,
and Kalman gain K are

H= [1], Pf =
[
σ 2
τ

]
, K=

[
σ 2
τ

σ 2
τ + σ

2
y

]
. (24)

We substitute them into Eq. (23), which gives us the mass
posterior xai on each layer:

M
xai

u
f
i

=M
x
f
i

u
f
i

+
σ 2
τ

σ 2
τ + σ

2
y

(
y− τf

)
, (25)

xai = x
a
i + u

f
i

σ 2
τ

σ 2
τ + σ

2
y

y− τf

M
. (26)

This equation demonstrates that the analysis increment
σ 2
τ

σ 2
τ +σ

2
y

y−τf

M from AOD assimilation is allocated to each level
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of mass by the vertical factor ui . When we have an incorrect
structure, we note that ui � utrue

i or ui � utrue
i . The analysis

increment can be reallocated to the wrong level, thus ampli-
fying the incorrect structure.

Figure 2c demonstrates the negative pattern of assimilating
AOD. In the upper row of panel (c.1), we have the ensemble
AOD priors (hollow grey diamond) and the AOD observa-
tion (solid blue diamond) that are combined to optimize the
3D dust mass field (dashed grey line). Similar to panel (b),
assume we have an incorrect prior dust mass structure. By
assimilating AOD observations, the AOD posteriors can be
tuned to better fit the AOD observation, as shown in the up-
per row in panel (c.2), while for the structure of mass field,
this incorrect structure is generally amplified since the prior
DOD simulation implies that the model underestimates the
total dust column compared to the observation. Another pat-
tern, in which the prior mass is incorrectly situated at the
ground level, is also illustrated in Fig. S1 in the Supplement.
It is notable that the sensitivity of AOD assimilation to the
vertical structure is not as significant as that of the ground
assimilation since the AOD contains information on the total
columns.

3.4 Case settings

To demonstrate the sensitivity of aerosol data assimila-
tion to vertical structure, five assimilation analysis cases
were selected, namely P-Gd-CAL, N-Gd-CAL, N-Gd-Li, N-
DOD-CAL, and NP-DOD-CAL. These cases were selected
from the ensemble model run starting from 00:00 CST on
14 March to 00:00 CST on 17 March and 00:00 CST on
14 April to 00:00 CST on 17 April 2021. (Hereafter, all
times are in CST.) Dust classification is carried out using the
CALIPSO depolarization ratio data to ensure that dust is the
dominant particle during these time ranges. The procedures
and results can be found in the Supplement. The background
run consists of 32 ensembles, and each of them are driven by
perturbed emission inventories. Details concerning the gen-
eration of the ensembles can be found in Jin et al. (2022).

Figure 1 lists information about the experiment cases. P-
Gd-CAL is a positive case, which shows how the data as-
similation corrects the surface concentrations and maintains
the correct aerosol structure. N-Gd-CAL and N-Gd-Li are
negative cases, which show how the assimilation deteriorates
the profile when assimilating ground observations only. The
time of the former two cases is fixed, and their profiles fol-
low the trajectory of CALIPSO. Hence, by comparison, we
can observe the impact of assimilation on the vertical struc-
ture. The last case focuses on a fixed site. A continuous time-
line is used, and assimilation analysis is performed on each
time point. The profiles are compared with high-resolution li-
dar observations. N-DOD-CAL and NP-DOD-CAL are neg-
ative cases that focus on assimilating DOD observations.
Himawari-8 DOD observations are assimilated. Both of them
are validated by CALIPSO.

In addition, to test the impact of vertical localization on the
assimilation performance, experiments applying EnKF with
vertical localization are also carried out. They are performed
on the priors of cases P-Gd-CAL and P-Gd-CAL. These re-
sults can be found in the Supplement.

4 Results and discussions

This section delves into the sensitivities of data assimilation
from ground and DOD observations, with a particular em-
phasis on the impact of prior vertical profiles. Regarding the
ground observation assimilation, the discussion is enriched
by presenting a positive case, alongside two illustrative neg-
ative examples. The validity of these scenarios is further rein-
forced by CALIPSO satellite observations and lidar measure-
ments. This serves to underscore the substantial influence
that ground assimilation can exert on the posterior. Then,
the examination of DOD assimilation uncovers its intrica-
cies by showcasing two instances, highlighting favourable
and unfavourable outcomes. These illustrations collectively
emphasize the impact DOD assimilation has on the poste-
rior, thereby underscoring the importance of understanding
the vertical profile’s role in the assimilation process for both
ground and DOD observations.

4.1 Cases on ground assimilation

4.1.1 Positive case

P-Gd-CAL is intended to demonstrate how the assimilation
works properly. Figure 3a.1 shows the time series of ground
PM10 and BC PM10 from several ground stations that are
close to the CALIPSO trajectory (< 0.25°). The assimilation
time point, 03:00 on 16 April 2021, is selected in this case
(highlighted in green). Although it is during the later stage
of the dust storm, the concentrations were as high as ap-
proximately 400 µgm−3. Through comparison between raw
and bias-corrected PM10 (solid and dashed lines), it is clear
that the scanned region was still dominated by coarse-dust
aerosol. Figure 3c.1 and d.1 are snapshots of the average
of ensemble priors and posteriors. We can see that the pri-
ors underestimated the dust load to the south of the domain
and overestimated it to the east. After assimilation analy-
sis, the dust load was adjusted to better fit the observations.
The ground observations were consistent with the posterior.
RMSE was reduced from 254.83 to 118.03 µgm−3.

Take a closer look at the vertical structure. Figure 3b il-
lustrates the extinction coefficient profile from CALIPSO.
From the profile we can tell that the dust was concentrated
on the ground over a latitude of 34–38° (circled by the
dashed line). Vertically, it extended upwards, accompanied
with terrain from 1 km at 34.5° to 2.5 km at 37.5°. Figure 3c.1
shows the prior dust profile following the same trajectory of
CALIPSO. The colour bar here is rescaled to show more
detail. At around 41–42°, a heavy dust load was simulated
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Table 1. Experiment configurations.

Name Time (CST) Type Assimilated observations Validation data

P-Gd-CAL 03:00 on 16 April 2021 Positive BC PM10 CALIPSO
N-Gd-CAL 03:00 on 16 March 2021 Negative BC PM10 CALIPSO
N-Gd-Li 15 March 2021 Negative BC PM10 Lidar
N-DOD-CAL 14:00 on 16 March 2021 Negative Himawari-8 DOD CALIPSO
NP-DOD-CAL 14:00 on 29 March 2021 Negative and positive Himawari-8 DOD CALIPSO

Figure 3. Time series of PM10 and BC PM10 concentrations from several ground stations that are close to the CALIPSO trajectory (a).
Spatial distribution of ground dust concentrations from the average of the ensemble priors and the posteriors with scatters of ground BC
PM10 observations (c.1 and posterior d.1). The black line inside is where CALIPSO scanned through. The figures in the right column are
the extinction profile from CALIPSO (b) and the dust concentration profile following the CALIPSO scanning trajectory from the prior (c.2)
and the posterior (d.2). The colour bars in (c.2) and (d.3) are rescaled to show more detail. The black line at the bottom is the terrain altitude.
The case time is at 03:00 CST on 16 April 2021.

(600–800 µgm−3), while CALIPSO did not capture the data
there. Hence, it cannot be validated, and we focus on the dust
at 34–38°. At 34–38°, the prior model had successfully re-
produced the dust structure indicated by CALIPSO. The con-
centrations were about 100–300 µgm−3, which are underes-

timated, as shown in Fig. 3d.2. After assimilation, the ground
concentrations increased to 400–500 µgm−3, as shown in
(c.1) and (d.1). The vertical structure was also reserved,
which is identical to the structure shown by CALIPSO.
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Figure 4. Time series of PM10 and BC PM10 concentrations from several ground stations that are close to the CALIPSO trajectory (a).
Spatial distribution of ground dust concentrations from the average of the ensemble priors and the posteriors with scatters of ground BC
PM10 observations (c.1 and posterior d.1). The black line inside is where the CALIPSO scanned through. The figures in the right column are
the extinction profile from CALIPSO (b) and the dust concentration profile following the CALIPSO scanning trajectory from the prior (c.2)
and the posterior (d.2). The black line at the bottom is the terrain altitude. The case time is at 03:00 CST on 16 March 2021.

4.1.2 Negative case validated by CALIPSO

N-Gd-CAL is the negative case that illustrates how data as-
similation degrades the aerosol vertical structure. Figure 4a.1
shows the time series of ground PM10 and BC PM10 from
several ground stations that are close to the CALIPSO trajec-
tory. As shown in panel (a), the ground dust aerosol loading
from ground stations in N-Gd-CAL increased rapidly start-
ing 2 h before assimilation occurred. This means that the re-
gion in the lower rectangle in (c.1) was a dust-concentrated
region.

Evidence from CALIPSO also indicated that there was
heavy dust loading. As shown in Fig. 4b, the extinction
coefficient profile from 37 to 42° (circled by the dashed
black rectangle) exhibits extremely high values (maximum
exceeded 2 km−1). It spread upwards for 1 km at an alti-

tude of 1 km. This region is highlighted by the dashed light
blue rectangle in (c.1) and (d.1). As inferred from the farther
ground stations (concentrations over 1000 µgm−3), this re-
gion was dominated by dust aerosols and is situated at ground
level.

The dust profile in (c.2) indicates that the ensemble priors
agreed that the aerosols were mainly concentrated upwards.
The plume floated up to 4 km with latitude. Only a few dust
aerosols over 36–37° on the ground (300–600 µgm−3) show
consistency with the observations (shown in c.1 and c.2). A
great discrepancy exists between the prior and independent
observations at 37–42°. After assimilating BC PM10 con-
centrations, the overall loading is increased. The great un-
derestimation in the east is improved. However, the dust-
concentrated region circled in (d.1) is only improved to a
small extent. This is due to a lack of observations nearby and
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Figure 5. Time series of dust extinction coefficient profile obtained from lidar (a). The assimilation analysis is performed hourly from
08:00 to 16:00. The figure below shows the hourly dust profile line from priors (dashed line) and posteriors (solid line) (b). The extinction
coefficient is also plotted (dash-dotted blue line). The profile data are extracted from the closest grid point to the lidar location. The x axis is
logarithmically rescaled. Note that instead of using the posterior in the previous time step to propagate the model, analysis here is separately
conducted on the static background.

the much lower uncertainties exhibited by ensemble priors.
In terms of the vertical structure, a disturbing profile is ob-
tained. As shown in Fig. 4d.2, ground concentrations at 36–
37° are aligned to over 600 µgm−3. This is consistent with
surrounding stations. However, for the reason mentioned ear-
lier, dust loads over 37–42° are barely corrected. Yet, these
trivial increments significantly enhance the erroneous verti-
cal structure. At ground level, the dust concentrations rise
from less than 100 µgm−3 to nearly 300 µgm−3 at 37–39°.
The vertical loading is almost 3 times greater than the load-
ing from the prior profile. Moreover, the extremely low re-
gion at 39–42° represents a more intense amplification effect
than that. Since the low values are more sensitive to vari-
ations, increments on these values can easily give rise to an
increase in the vertical loading. In this case, this phenomenon
can be seen clearly through the comparison between priors,
posteriors, and measurements for validation.

4.1.3 Negative case validated by lidar

N-Gd-Li is another negative case. In this case, we do not fo-
cus on a single time point. A series of assimilation analyses
is conducted to investigate the effect. As shown by Fig. 5a,
a high-resolution profile of a dust extinction coefficient from
lidar is given to demonstrate the changing structure of dust
loading on a fixed location. Entering at about 05:00 and then
landing at 07:00, this dust storm lasted for about 20 h in the
area where the lidar was located. A time range from 08:00 to
16:00 is selected as it comprises most of the dust period. Dur-
ing the whole period, the measured dust loading increased
from 0.4 to 1.4 km. Afterwards, the intensity decreased grad-
ually.

Figure 5b illustrates the hourly prior and posterior dust
profiles during the selected period. The profiles of the ex-
tinction coefficient are also plotted with the dash-dotted blue
line. The x axis, which represents concentrations, is logarith-
mically rescaled here. In terms of prior profiles, dust load-
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Figure 6. Time series of PM10 and BC PM10 concentrations from several ground stations that are close to the CALIPSO trajectory (a).
Spatial distribution of ground dust concentrations from the average of the ensemble priors and posteriors with scatters of ground BC PM10
observations (c.1 and posterior d.1). The black line inside is where CALIPSO scanned through. The figures in the right column are the
extinction profile from CALIPSO (b) and dust concentration profile following the CALIPSO scanning trajectory from the prior (c.2) and the
posterior (d.2). The black line at the bottom is the terrain altitude. The case time is at 14:00 CST on 29 March 2021.

ing extended up to 5 km at 08:00 and declined to 3 km at
16:00. This structure is inconsistent with the lidar profile, in
which only little dust was observed. The dust storm has been
overestimated to a large extent in height. The ground aerosol
concentrations are lower than 200 µgm−3 throughout eight
time points, which is much lower than those of the obser-
vations (over 1000 µgm−3). After assimilation, this under-
estimation is mitigated. The ground dust concentrations are
amplified several times to better fit the observations. Mean-
while, the erroneous vertical structure is also intensified in
the first six moments, as can clearly be seen in the compari-
son between the concentration and extinction coefficient. At
09:00 in particular, the dust loading above 2 km is amplified
to over 1000 µgm−3, which will provide completely incor-

rect information about the dust storm structure and impact
future forecasting.

4.2 Cases on DOD assimilation

In this section, the sensitivity of assimilating DOD to the
aerosol vertical profile is presented, starting with the NP-
DOD-CAL case. Figure 6a shows the spatial distribution of
DOD observed by Himawari-8 at 14:00 on 29 March 2021.
The dust plume approached the east of China and reached out
to the East China Sea. The prior model reproduces the dis-
tribution, while the overall concentration is underestimated
(less than 300 µgm−3), as shown in panel (c.1). By assimilat-
ing the Himawari-8 DOD, the overall dust concentration field
is increased to over 1000 µgm−3. The posterior dust plume
is consistent with the DOD observations.
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Figure 7. Snapshot of Himawari-8 DOD at the assimilation instance (a). Spatial distribution of ground dust concentrations from the average
of the ensemble priors (c.1 and posterior d.1). The black line inside is where CALIPSO scanned through. The figures in the right column are
the extinction profile from CALIPSO (b) and the dust concentration profile following the CALIPSO scanning trajectory from the prior (c.2)
and the posterior (d.2). The black line at the bottom is the terrain altitude. The case time is at 14:00 CST on 16 March 2021.

As shown by the extinction profile in panel (b), the dust
was concentrated around 32–38° and extended upwards to an
altitude of 3 km. In terms of the prior, this structure is partly
correct. The dust in the red box is located on the lower layer
and aligns with the extinction profile, while the dust in the
blue box has a higher position. By assimilating DOD, the to-
tal column dust field is optimized, and the vertical structure
is restored following the prior dust field. As a result, the un-
derestimation is alleviated, and the overall concentrations are
increased. The correct dust structure in the red box is main-
tained, and the intensity is enhanced. However, the incorrect
dust structure in the blue box is also amplified, causing an
obvious inaccurate dust loading, which should be located on
the lower level.

N-DOD-CAL is another case that illustrates the negative
aspects of assimilating DOD. Figure 7 comprises the same

assimilation experiment results as in NP-DOD-CAL, except
at 14:00 on 16 March 2021. The DOD observations report
high values densely distributed in the east and sparsely dis-
tributed in the north. The prior model simulates the dust
plume that is concentrated in the north-west. To the east, only
rare dust is observed. It is caused by the inability of the model
to reproduce the long-term transport of dust. If we focus on
where CALIPSO scanned through, an increase in dust can be
seen.

In terms of CALIPSO, it is certain that the dust is con-
centrated on the lower level at 43–45°. There is also a dust
plume at 39–42°, although it cannot be verified because of
the missing observation data. Similarly, the prior dust pro-
files show an incorrect dust structure, as circled by the black
box in panel (c.2). After assimilation, this error is amplified
from around 100 µgm−3 to over 600 µgm−3.
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5 Conclusions

Data assimilation has been widely used in constructing re-
analysis datasets and improving the predictability of atmo-
spheric models. The performance of assimilation algorithms
relies not only on the methodologies themselves but also on
the observations. Nowadays, the complexity and dimensions
of atmospheric models have been growing rapidly. For at-
mospheric aerosol models, high spatial and temporal resolu-
tions are becoming feasible. In terms of observations, they
are either outnumbered in space or discontinuous in time
compared to models. Particularly in the vertical direction,
the available aerosol measurements are still limited both in
space and in time. Through assimilating ground or satellite
measurements, the aerosol field can be improved, while in
3D space, it can also amplify the erroneous estimation of the
aerosol structure.

In this paper, we explore the sensitivity of aerosol data
assimilation to the vertical profile by carrying out five as-
similation experiments. Dust aerosol, which is simulated
by LOTOS-EUROS, is selected as the optimization target.
The EnKF data assimilation methodology is adopted. Bias-
corrected ground PM10 concentrations obtained from ground
monitoring stations and DOD from Himawari-8 are assimi-
lated. An extinction coefficient profile from CALIPSO and
polarization lidar are used to validate the aerosol vertical
structure. P-Gd-CAL intends to show how ground data as-
similation tunes the vertical structure positively. After assim-
ilation, the ground dust field is optimized to better fit the ob-
servations, and the vertical structure is enhanced, which is
also consistent with the CALIPSO measurements. In con-
trast, N-Gd-CAL exhibits a drastic negative effect. In this
case, even small increments on the ground can greatly en-
hance the incorrect aerosol structure. N-Gd-Li is another
negative case that displays hourly prior and posterior pro-
files. The continuous dust extinction profile from lidar is uti-
lized to validate the structure. In most of the moments, the
assimilation improves the ground aerosol field while signifi-
cantly degrading the vertical dust loading. N-DOD-CAL and
NP-DOD-CAL intend to show how DOD assimilation dete-
riorates the vertical structure. Different from the ground as-
similation, the posterior vertical structure is here reallocated
by the vertical ratio. When the vertical ratio is incorrect, as-
similating DOD can also pass down this error.

In conclusion, integrating ground- and satellite-derived
aerosol observations into models enhances both the analysis
and the forecasting accuracy of the model’s state. However,
challenges persist in reconciling these observations with the
model’s high-dimensional state. Specifically, the model’s ini-
tial, potentially flawed vertical aerosol structure could im-
pair assimilation efforts. The underlying reason is that data
assimilation relies on the background error covariance to
propagate the innovations between states and observations
across the entire domain. If the vertical structure is inaccu-
rate, this error may not only persist but could also be am-

plified during the assimilation process. Analytical examples
from both ground-based and satellite-based assimilation con-
firm this effect. This paper has only scratched the surface by
presenting a handful of negative instances, yet it is evident
that this issue is pervasive in aerosol data assimilation. The
path forward entails establishing a complementary network
of vertical observations and implementing advanced assimi-
lation methodologies that are sensitive to vertical structures,
thereby offering a promising avenue to surmount these chal-
lenges.

Appendix A: Conversion of AOD between different
wavelengths

One common method for converting AOD between differ-
ent wavelengths involves the Ångström exponent (Å) (Jin
et al., 2023b). This exponent describes the relationship be-
tween AOD and wavelength, defined as the ratio of the log-
arithm of the AOD ratio at two different wavelengths to the
logarithm of the ratio of those wavelengths:

Å=−
log(τλ1/τλ2)

log(λ1/λ2)
, (A1)

where Å is the Ångström exponent. τλ1 and τλ2 are the AOD
values at wavelengths λ1 and λ2, respectively.

Given the AOD at a specific wavelength and the Ångström
exponent, the AOD at another wavelength can be estimated
using the following formula:

τλ = τλ0

(
λ

λ0

)−Å
. (A2)

Here, λ0 represents the reference wavelength where the AOD
is known, and λ is the target wavelength. The wavelengths
550 and 532 nm are very close in the visible spectrum, with
a difference of only 18 nm. Dust optical properties, such as
extinction coefficient, do not vary significantly over such a
small wavelength range. This allows for a reasonable approx-
imation when comparing data at these two wavelengths.

Appendix B: DOD operator

Mie theory is applied to convert the aerosol mass concentra-
tion into AOD. It is calculated through the scatter and absorp-
tion coefficients of spherical particles with a given radius and
refractive index (Gupta et al., 2018) and is defined as
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τ =

n∑
k=1

εkdz
k, (B1)

where τ is the simulated AOD. εkd and zk are the dust ex-
tinction coefficient and layer thickness at the kth layer. εkd is
calculated by the product of extinction efficiency Qext, the
total cross section per unit mass S (m2 g−1), and the aerosol
mass concentration C (gm−3):

εkd =QextSC, (B2)

where Qext is the sum of the scattering and absorption ef-
ficiency. It is decided by the ratio of the aerosol radius, the
incident wavelength, and the chemical composition (van de
Hulst, 1958). S depends on the particle size and aerosol mass
density. The dust bins and diameter ranges are shown in Ta-
ble B1. Detailed descriptions concerning the calculation of
Qext and S can be found in Sect. 2 in Jin et al. (2023b).

Table B1. Dust size bins and diameter ranges.

Bins dust_ff dust_f dust_ccc dust_cc dust_c

Diameter range (µm) 0.01–1 1–2.5 2.5–4 4–7 7–10

Code and data availability. PyFilter is archived on Zenodo
(https://doi.org/10.5281/zenodo.14036308) (Pang, 2024) and also
available on GitHub (https://github.com/xxcvvv/open-PyFilter,
last access: 23 June 2025). The ensemble initial fields
and prior and posterior fields used in this paper are
archived in https://doi.org/10.5281/zenodo.14846965 (Pang,
2025). The source code of the LOTOS-EUROS model
is available at https://doi.org/10.5281/zenodo.14039267
(Segers, 2024). The CALIPSO data can be downloaded at
https://doi.org/10.5067/CALIOP/CALIPSO/CAL_LID_L2_05km
APro-Standard-V4-21 (NASA/LARC/SD/ASDC, 2025).
The ground PM10 observations can be obtained at
https://quotsoft.net/air/ (last access: 23 June 2025, Wang,
2024). The Himawari-8 aerosol product is available at
https://www.eorc.jaxa.jp/ptree (JAXA, 2025).

Supplement. The supplement related to this article is available on-
line at https://doi.org/10.5194/gmd-18-3781-2025-supplement.
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