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Abstract. Earth system models (ESMs) are intricate mod-
els employed for simulating the Earth’s climate, typically
constructed from distinct independent components dedicated
to simulate specific natural phenomena (such as atmosphere
and ocean dynamics, atmospheric chemistry, land and ocean
biosphere). In order to capture the interactions between these
processes, ESMs utilize coupling libraries, which oversee
the synchronization and field exchanges among independent
developed codes typically operating in parallel as a multi-
program, multiple data (MPMD) application.

The performance achieved depends on the coupling ap-
proach, as well as on the number of parallel resources and
scalability properties of each component. Determining the
appropriate number of resources to use for each component
in coupled ESMs is crucial for efficient utilization of the
high-performance computing (HPC) infrastructures used in
climate modeling. However, this task traditionally involves
manual testing of multiple process allocations by trial and
error, requiring significant time investment from researchers
and making the process more error-prone, often resulting in
a loss of application performance due to the complexity of
the task. This paper introduces the automatic load-balance
tool (auto-1b), a methodology and tool for determining the re-
source allocation to each component within coupled ESMs,
aimed at improving the application’s performance. Notably,
this methodology is automatic and does not require exper-
tise in HPC to improve the performance achieved by cou-
pled ESMs. This is accomplished by minimizing the load
imbalance: reducing each constituent’s execution cost (core
hours), as well as minimizing the core hours wasted resulting
from the synchronizations between them, without penalizing
the execution speed of the entire model. This optimization is
achieved regardless of the scalability properties of each con-

stituent and the complexity of their dependencies during the
coupling.

To achieve this, we designed a new performance metric
called “fittingness” to assess the performance of coupled ex-
ecution, evaluating the trade-off between parallel efficiency
and application throughput. This metric is intended for sce-
narios where optimality can depend on various criteria and
constraints. Aiming for maximum speed might not be desir-
able if it leads to a decrease in parallel efficiency and thus
increases the computational costs of simulation.

The methodology was tested across multiple experiments
using the widely recognized European ESM, EC-Earth3. The
results were compared with real operational configurations,
such as those used for the Coupled Model Intercomparison
Project Phase 6 (CMIP6) and European Climate Prediction
project (EUCP), and validated on different HPC platforms.
All of them suggest that the current approaches lead to per-
formance loss, and that auto-1b can achieve better results in
both execution speed and reduction of the core hours needed.
When comparing to the EC-Earth standard-resolution CP-
MIP6 runs, we achieved a configuration 4.7 % faster while
also reducing the core hours required by 1.3 %. Likewise,
when compared to the EC-Earth high-resolution EUCP runs,
the method presented showed an improvement of 34 % in the
speed, with a 6.7 % reduction in the core hours consumed.

1 Introduction

In the field of climate science, the adoption of advanced
modeling techniques has become imperative for understand-
ing and predicting the complex dynamics of our planet’s cli-
mate system. Recognition of the complex interconnectedness
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among various natural phenomena, crucial for describing the
climate, led to the development of coupled general circula-
tion models (CGCMs) more than 40 years ago, as illustrated
by Manabe et al. (1975). These models captured the phys-
ical processes occurring in both the atmosphere and ocean.
To further represent the natural feedback loops and avoid us-
ing predefined data on the given region by boundary con-
ditions led to the creation of Earth system models (ESMs),
which seek to simulate all relevant aspects of the Earth sys-
tem, expanding the limits of CGCMs by simulating carbon
cycle, aerosols, and other chemical and biological processes
(Valcke et al., 2012; Lieber and Wolke, 2008). Consequently,
coupling multiple codes that simulate different natural phe-
nomena has become a common practice to better represent
the climate.

Various strategies exist for designing the coupling ap-
proach in ESMs. Frequently, multiple independently devel-
oped codes run simultaneously and synchronize during the
runtime to exchange fields with one another. These applica-
tions are commonly referred to as multi-program, multiple
data (MPMD), and components running in parallel can em-
ploy different parallel paradigms such as Message Passing
Interface (MPI; Tint6 Prims et al., 2019) to take advantage of
the HPC machines.

Achieving “satisfactory” performance on coupled ESMs
is challenging, given the inherent complexities of such ap-
plications, but also of upmost importance to maximize the
number of simulations and the resolution available to the cli-
mate research community, while using HPC infrastructures
more efficiently. Balaji (2015) showed that current ESM per-
formance is deteriorated due to the need for coupling. Acosta
et al. (2023a) showed in a collection of performance met-
rics from multiple Coupled Model Intercomparison Project
Phase 6 (CMIP6) experiments that the coupling cost adds, on
average, a computational overhead (in core hours) of 13 %.
As illustrated in Fig. 1, coordination among components is
required to exchange the coupling fields, typically utilizing
MPI. This often results in faster components waiting for the
slower ones, a problem known as load imbalance. More-
over, extra computation is needed to transform the data be-
tween components using different grids, a process known as
interpolation. This process, along with the associated MPI
communications, has been studied extensively by Donners
et al. (2012) to evaluate both the efficiency of the interpo-
lation algorithm and the impact of these communications
on overall performance. Minimizing the cost associated with
the load imbalance by finding the appropriate resource con-
figuration is a non-trivial process, which includes analyzing
the speed-up of individual components at various processor
counts, study their interactions during the coupling, and mak-
ing trade-offs between the computing cost (core hours) and
execution time of the coupled ESM.

The strategies for load-balancing ESMs can be divided
into dynamic load balancing, where the load imbalance is
minimized during the runtime, and static load balancing,
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where the process involves stopping and rerunning model ex-
ecution to find resource configurations that minimize the cou-
pling cost. To deal with the load balance “dynamically” the
applications must allow reallocating the processes on which
it runs during runtime, a property known as malleability (Fei-
telson and Rudolph, 1995). Some examples of using check-
points during execution have been shown by Vadhiyar and
Dongarra (2003) and Maghraoui et al. (2005, 2007). Possibly
the most notable contributions to dynamic approaches have
been done by Kim et al. (2011) to extend the Model Cou-
pling Toolkit (MCT) to create the Malleable Model Coupling
Toolkit (MMCT), enabling malleability and incorporating a
load-balance manager module. This module decomposes the
time of each component during a coupled interval (CI) into
constituent computation and constituent coupling. The load-
balance manager reallocates processing elements (PEs) from
the fastest (donor) to the slowest (recipient) component un-
til solution improvement ceases. This work was further en-
hanced in Kim et al. (2012b), where MMCT was extended
with a prediction mechanism that maintains a database of PE
execution times at each iteration, and a manually generated
heuristic optimization to determine new resource configura-
tions that reduce the coupling step execution time. Kim et al.
(2012a) extended this approach to handle applications which
have varying workloads during the execution.

However, the manually generated heuristic used for the
prediction — based on static and manual inspection of cou-
pled model interaction patterns and constituents’ computa-
tions — becomes impractical for more complex, realistic cou-
pled models. To address this, Kim et al. (2013) proposed
an instrumentation-based approach that collects runtime data
from the constituents, demonstrating how this information
can be used to improve coupling performance and acceler-
ate the load-balancing decision-making process.

While these approaches have demonstrated significant im-
provements, they are designed for a highly flexible coupling
scheme applicable only to climate models that adopt the
MMCT extension of MCT. As a result, they are not suit-
able for most state-of-the-art ESMs. Moreover, the method
proposed has not been validated with production ESMs used
in climate research, but rather with a simplified “toy” model
that mimics a simulation of the Community Earth System
Model (CESM).

In contrast, our proposed solution is not integrated into any
specific coupler, making it readily accessible to most ESMs
used by the climate research community that employ an ex-
ternal coupling library to link multiple binaries (MPMD) into
a single application.

It is essential to note that all these dynamic load-balancing
methods rely on the ability to adjust the number of processes
a constituent uses during the runtime, a feature that is rarely
seen in state-of-the-art ESMs. Additionally, the method test-
ing has been confined to toy models, lacking validation on
ESMs widely employed within the scientific community.
These limitations underscore the need for further research
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Figure 1. Overview of the typical timeline pattern observed between two coupled components during execution. Component 2 exhibits a
faster computational time (depicted in blue) than Component 1, leading to Component 2 waiting at the end of each coupling interval (CI,
depicted in red). The figure also illustrates the extension of the entire execution due to coupling time (depicted in orange). This typically
includes tasks such as regridding and additional calculations necessary before communicating fields across different components.

and adaptation to real-world, complex scientific applications.
Furthermore, one can argue that these solutions are not as
fully “dynamic” as suggested, given that the simulation has
to be continuously interrupted during the runtime to collect
the performance metrics, execute an algorithm to find a bet-
ter setup, and resume the simulation. A truly dynamic ap-
proach should instead have other means to balance the work-
load to minimize the idle time such as tasks, an option ex-
plored with the Dynamic Load Balance library developed at
the Barcelona Supercomputing Center (BSC). Garcia et al.
(2009) and Marta et al. (2012) have explored the possibil-
ity of using this tool to reassign computation resources of
blocked processes to more loaded ones to speed up hybrid
MPI+OpenMP and MPI+SMPS applications. Although this
is a promising option for the future, the current state of the
tool still has room for improvement and thread-level paral-
lelism is not common in the current generation of ESMs.
Static load-balancing solutions are well suited to the cli-
mate science community due to the difficulties found in ap-
plying dynamic approaches effectively. One of the most sig-
nificant contributions of static load-balancing is the work
by Ding et al. (2014, 2019) for CESM, which introduced
an auto-tuning component integrated into the CESM frame-
work to optimize process layout and reduce model runtime.
It achieves this by employing a depth-first search method
with a branch-and-bound algorithm to solve a mixed inte-
ger non-linear programming (MINLP) problem, combined
with a performance model of the model components to mini-
mize search overhead. This approach improves upon the ear-
lier method described by Alexeev et al. (2014), which relied
on a heuristic branch-and-bound algorithm and a less accu-
rate performance model. Later, Balaprakash et al. (2015) pro-
posed a static, machine-learning-based load-balancing ap-
proach to find high-quality parameter configurations for load
balancing the ice component (CICE) of CESM. The method
involves fitting a surrogate model to a limited set of load-
balancing configurations and their corresponding runtimes.
This model is then used to efficiently explore the parame-
ter space and identify high-quality configurations. Their ap-
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proach had to take into account the six key parameters that in-
fluence CICE component performance: the maximum num-
ber of CICE blocks and the block sizes in the first and second
horizontal dimensions (x, y); two categorical parameters that
define the decomposition strategy; and one binary parame-
ter that determines whether the code runs with or without
a halo. They demonstrated that their approach required six
times fewer evaluations to identify optimal load-balancing
configurations compared to traditional expert-driven meth-
ods for exploring feasible parameter configurations.

Importantly, coupling in CESM follows an integrated cou-
pling framework strategy (Mechoso et al., 2021), where the
climate system is divided into component models that func-
tion as subroutines within a single executable and are orches-
trated by a coupler main program (CPL7), which coordinates
the interaction and time evolution of the component mod-
els. The coupler also allows for flexible execution layouts,
enabling components to run sequentially, concurrently, or in
a hybrid sequential/concurrent mode. This coupling strategy
differs from approaches that use an external coupler (such
as OASIS, MCT, or YAC), where existing model codes are
minimally modified to interface with the coupling library
and executed as separate binaries on different physical cores,
either interleaved or concurrently. Furthermore, the perfor-
mance model used requires generating and analyzing execu-
tion traces to characterize the computation and communica-
tion patterns of key kernels for each coupled component sep-
arately. While this can provide more accurate performance
representations, it also introduces significant challenges in
adapting the approach to new components or other ESMs.

Other static solutions, such as those proposed by Will et al.
(2017) for the COSMO-CLM regional climate model and
Dennis et al. (2012) for CESM, demonstrate that load bal-
ancing in widely used ESMs can be approached in a rela-
tively simple manner. These methods aim to identify a re-
source configuration where all individual components run at
roughly the same speed, often constrained by a predefined
parallel efficiency threshold. However, as we will show, this
approach can easily lead to suboptimal solutions.
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In this work, we present a static load-balancing method,
automatic load balance (auto-lb), designed to improve re-
source allocation in coupled ESMs. Our approach is suited
to coupled models that do not support malleability, where
each component runs on a separate core as an MPMD ap-
plication. Unlike other methods, our approach completely
eliminates the need to modify any of the component’s source
codes; instead, it achieves load balance by adjusting the al-
location of PEs assigned to each component. To accomplish
this, we have introduced two new performance metrics: the
Partial Coupling Cost to quantify the cost of the coupling
per component, and the fittingness metric to better address
the energy-to-solution (ETS, i.e., minimize the energy con-
sumption) and time-to-solution (TTS, i.e., minimize the ex-
ecution time) trade-off prevalent in all imperfectly scalable
applications (Abdulsalam et al., 2015). These advancements
set our method apart from existing approaches that either fo-
cus exclusively on minimizing execution time (pure TTS) or
enforce parallel efficiency thresholds that limit speed in an
arbitrary manner.

Moreover, the method includes a prediction phase capable
of accurately estimating coupling performance based solely
on the scalability properties of the individual model compo-
nents. Unlike prior work, this eliminates the need for instru-
menting the code, using profiling software, or trace genera-
tion. The results of the prediction phase allow our approach
to significantly reduce the number of real simulations (and
thus computational resources) required to determine an im-
proved load-balancing configuration.

Finally, the method is fully integrated in a workflow man-
ager, ensuring that the process of identifying the best re-
source configuration requires minimal user intervention and
aligns with standard practices in climate modeling.

Our research primarily focuses on optimizing real ex-
periment configurations for one of the most prominent Eu-
ropean ESMs, EC-Earth3 (Doscher et al., 2022). Notably,
EC-Earth3 employs the OASIS-MCT coupler (Craig et al.,
2017), a widely used coupler also adopted by numerous
other ESMs, particularly in Europe. The new methodology
has been used to optimize configurations for different res-
olutions of EC-Earth3 experiment, including the same ex-
periment configuration used for the CMIP6 exercise (Eyring
et al., 2016), and the results of balancing a European Cli-
mate Prediction project (EUCP) high-resolution experiment
on the European Centre for Medium-Range Weather Fore-
casts (ECMWF) Common Component Architecture (CCA)
machine. This demonstrates that the method can be used
across different machines and for different model resolu-
tions, and of its potential applicability to a wide range of
ESMs. The method has proven effective, yielding resource
configurations that outperform the previous configurations
in both execution time and computing cost. As detailed in
Sect. 5, when compared to the setup used by the standard-
resolution EC-Earth3 CMIP6 runs, we identified a new re-
source allocation that runs 4.7 % faster while reducing the

Geosci. Model Dev., 18, 3661-3679, 2025

S. Palomas et al.: Reducing time and computing costs in EC-Earth

core hours consumed by 1.3 %. Moreover, compared to the
performance achieved by the EC-Earth3 high-resolution con-
figuration used in EUCP, we achieved a reduction of the ex-
ecution speed by up to 34 %, with a 6.7 % reduction in the
core hours needed.

2 ESM under study: EC-Earth3

EC-Earth3 is a global coupled climate model developed by a
consortium of European research institutions that integrates
multiple component models to simulate the Earth system.
Its goal is to build a fully coupled atmosphere—ocean—land—
biosphere model usable for problems encompassing from
seasonal-to-decadal climate prediction to climate change
projections and paleoclimate simulations. Figure 2 shows
an overview of the most commonly used EC-Earth3 config-
uration, EC-Earth3 at standard resolution (EC-Earth3 SR),
which couples the ocean (NEMO), the atmosphere (IFS), and
the runoff (RNF) components via the OASIS3-MCT coupler.
In addition, a parallel I/O server (XIOS) is used to better han-
dle the output of the oceanic component. The components are
the following.

— The OASIS3-MCT coupler: a coupling library to be
linked to the component models and whose main func-
tion is to interpolate and exchange the coupling fields
between them to form a coupled system.

— The Integrated Forecasting System (IFS) as atmosphere
model: an operational global meteorological forecast-
ing model developed and maintained by the ECMWF.
The dynamical core of IFS is hydrostatic, two-time-
level, semi-implicit, semi-Lagrangian, and applies spec-
tral transforms between grid-point space and spectral
space. In the vertical the model is discretized using a
finite-element scheme. A reduced Gaussian grid is used
in the horizontal.

— The Nucleus for European Modelling of the Ocean
(NEMO) as ocean model: a state-of-the-art model-
ing framework for oceanographic research, operational
oceanography seasonal forecast, and climate studies. It
discretizes the three-dimensional Navier—Stokes equa-
tions, being a finite difference, hydrostatic, primitive
equation model, with a free sea surface and a non-linear
equation of state in the Jackett. The ocean general cir-
culation model (OGCM) is OPA (Océan Parallélisé),
a primitive equation model that is numerically solved
in a global ocean curvilinear grid known as ORCA.
EC-Earth 3.3.2 uses NEMO version 3.6 with XML In-
put/Output Server (XIOS) version 2.0, an asynchronous
input/output server used to minimize previous I/O prob-
lems.
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— The Louvain-la-Neuve sea-Ice Model 3 (LIM3): a
thermodynamic-dynamic sea-ice model directly cou-
pled with OPA.

— The Runoff-mapper (RNF) component: used to dis-
tribute the runoff from land to the ocean through rivers.
It runs using its own binary, coupled through OASIS3-
MCT.

2.1 Experiment configurations

The configurations under study are the standard resolution
(SR) and high resolution (HR) simulations (D&scher et al.,
2022). They are the most used on EC-Earth3 and, therefore,
the ones that consume more computing resources and for
which any gain in performance has a greater impact. They
both include IFS coupled with NEMO as the main com-
ponents, parallelized using MPI, and which interchange 23
fields (6 from NEMO to IFS and 17 from IFS to NEMO)
through OASIS3-MCT at the beginning of their own time
step. As a consequence, the two components have to be syn-
chronized before starting their own computation.

In SR, IFS uses the T255L91 grid, which corresponds to
a resolution of 80 km for the atmosphere, coupled to NEMO
using an ORCA1L75 grid, which corresponds to a 1° resolu-
tion at the Equator, or ~ 25 km (Ddscher et al., 2022). In HR
configurations, the grids are T511L91 for the atmosphere and
ORCAQ25 for the ocean, which correspond to a resolution
of 40km and 1/4 of a degree for IFS and NEMO, respec-
tively (Haarsma et al., 2020). They both involve, in addition
to NEMO and IFS, the RNF and XIOS components. XIOS
and RNF are not taken into account for load balancing, as
XIOS does not communicate via OASIS but directly with
NEMO to handle its I/O operations in parallel, and RNF runs
in serial and is much faster than the other components.

3 Coupled ESM performance

ESMs are not an exception when it comes to their scaling
properties: parallel efficiency cannot be maintained as we in-
crease the number of PEs used. Thus, boldly selecting the
configuration that maximizes speed leads to a waste of com-
puting resources and is usually avoided. Consequently, effi-
ciency metrics are used to evaluate how the execution cost
(i.e., core hours) increases when adding more resources to
an imperfect scalable model. In other words, how the speed-
up of the application responds to the increase of parallel re-
sources for a fixed problem size. Therefore, selecting the ap-
propriate number of PEs to execute the program becomes a
trade-off between the speed (TTS) and the core hours (ETS)
required for execution, and the proper decision can vary de-
pending on the context: computing resources available, HPC
infrastructure policies, scheduling configurations and con-
straints, and urgency for getting the results.

https://doi.org/10.5194/gmd-18-3661-2025

As seen by Acosta et al. (2023a), another key factor that
further deteriorates computational performance in current
ESMs is the coupling between their components. This over-
head stems from faster components having to wait for slower
ones during synchronization, a phenomenon known as load
imbalance, as well as the additional computation required to
interpolate data between components operating on different
grids.

Previous work by Acosta et al. (2023b) has studied this in
the context of the EC-Earth3 model, showing that while the
interpolation process adds to the coupling cost, most of the
overhead comes from synchronization delays. Minimizing
these costs is crucial to improving the overall performance
of the coupled system. However, reducing load imbalance by
optimizing resource allocation across components is a com-
plex task. It requires compromising on the parallelization of
individual components to minimize the waiting time during
synchronizations. In doing so, we limit the ability to freely
choose the best resource configuration for each component,
which means some parallel efficiency is lost on the individ-
ual components due to not using their best scalability point,
but rather the one that bests suits the whole ESM.

This section introduces the performance metrics used dur-
ing our work to assess the performance of coupled ESMs, as
well as presenting both the problem and adopted solution for
the ETS/TTS trade-off.

3.1 Performance metrics

On the one hand, there are very well-known speed-up and
parallel efficiency metrics — widespread metrics used to as-
sess the performance achieved while dealing with the same
amount of work but with different processor counts (scala-
bility with fixed problem size). Given that some of the ESM
components cannot run in a single process (serial execution)
due to memory and/or computing requirements, execution in
a single node per component (p,) is taken as the baseline
instead. Therefore, the speed-up at p processors is defined as

Tp,
Speedup,, = T, (1)
where T, is the execution time using p processes.
Likewise, the parallel efficiency at p processes is defined
as

Speedup,,

2
P/ Po @

Efficiency , =

On the other hand, we use a subset of the performance met-
rics specially designed for the common structure of ESMs
and how they are executed in production: the Computational
Performance Model Intercomparison Project (CPMIP, Balaji
et al., 2017). Those of particular interest for our analysis are:

— Simulated years per day of execution (SYPD). The num-
ber of simulated years (SY) by the ESM within a single
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Figure 2. Overview of an EC-Earth3 experiment using the Nucleus for European Modelling of the Ocean (NEMO) as the ocean (with sea ice
and ocean biogeochemistry), the Integrated Forecasting System (IFS) as the atmosphere, and the Runoff-mapper (RNF) as the runoff from
land to the ocean. Furthermore, we include the XML I/O Server (XIOS) component, which is used by NEMO to provide asynchronous and
parallel input/output operations. The arrows show the dependencies between components and the frequency of these interactions in simulated
time. Note that XIOS does not communicate through OASIS-MCT. The coupling frequency depicted (45 min) corresponds to the standard
resolution configuration (T255-ORCA1). Higher resolutions use higher coupling frequencies (e.g., 15 min for T511-ORCAO025).

execution day, defined as 24 h of computation time on
the HPC platform.

— Core hours per simulated year (CHSY). The core hours
per simulated year. Measured as the product of the
model runtime for 1 SY (in hours) and the number of
cores allocated (Py). Note that CHSY and SYPD are
related:

24 Py

CHSY = .
SYPD

3

— Coupling cost (Cpl_cost). Measures the overhead
caused by the coupling. This can be due to the wait-
ing time caused by the synchronization between mod-
els within the ESM (faster components have to wait for
slower ones), the added cost of interpolating the data
from the source grid to the target one, and the time
spent in communications when sending/receiving the
data (see Fig. 1).

_ TmPvu—)_  TcPc
B Tv Py

Cost

) “

where Ty and Py are the runtime and parallelization
for the whole model, and T¢ and Pc the same for each
component.

For this work, Eq. (4) has been reformulated to eval-
uate how much each component adds to the coupling
cost, which is essential to knowing which component
should lend PEs, and which one should receive them. It
has been called the partial coupling cost:

Teept Pe

) 5
Tu P )

Partial_cpl_cost =
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where Tccp is the total time spent by a component in
coupled events (waiting, interpolating, and sending).

All these metrics are collected after the simulation using
runtime timing information provided by the load balance tool
integrated in OASIS3-MCT (Maisonnave et al., 2020).

3.2 Time-to-solution vs energy-to-solution criteria

If we want an application to run faster, we will increase the
number of PEs. Assuming that the parallel efficiency de-
creases (due to imperfect scalability), the core hours con-
sumed by the application will rise. Given that the core hours
are directly proportional to the energy cost of execution, they
directly influence energy consumption (Balaji et al., 2017).
This is known in the literature as the TTS vs ETS trade-off
(Freeh et al., 2005).

One of the most commonly used metrics for assessing pro-
gram performance, which considers both execution time and
the parallel efficiency, is the energy-delay product (EDP). In
the context of MPI applications, the EDP can be computed as
follows (Yepes-Arbos et al., 2016; Abdulsalam et al., 2015):

EDP = Speedup - Efficiency. 6)

In this study, we introduce a novel metric termed “fitting-
ness” (FN) that enables the parameterization of the time—
energy trade-off at which a program is intended to operate.
This metric serves as a valuable tool for assessing and opti-
mizing program performance by considering the balance be-
tween execution time and energy consumption. To that end,
we initially define two parameters: time-to-solution weight
(TTSy ) and energy-to-solution weight (ETSy,). Both param-
eters are constrained to a range between O and 1, and their
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sum must equal unity:
TTSy +ETSy = 1. @)

Then, given the scalability curve of one component, with the
SYPD (metric of execution time) and CHSY (metric of exe-
cution cost) at different core counts, the FN is calculated as
follows:

FN = TTSy, - SYPD, + ETSy, - (1 — CHSY,), 8)

where SYPD,, (CHSY,,) is the value of the SYPD (CHSY) af-
ter a min—max normalization, which is performed across all
tested configurations. Note that we use 1 —CHSY, given that
the greater the cost, the less energy efficient the execution
will be. In other words, lower costs correspond to improved
energy efficiency during execution. Consequently, minimiz-
ing the cost not only enhances performance but also reduces
consumption of core hours.

Weighting the SYPD (CHSY) with TTSy, (ETS,,) en-
hances the flexibility in determining the resource configu-
ration that better suits the specific requirements of climate
scientists.

Table 1 and Fig. 3 show how the FN metric compares to the
EDP across different TTS,, for the atmospheric component
(IFS) in SR. The SYPD,, (CHSY},) column is the value of the
SYPD (CHSY) after a min—max normalization. For instance,
using 48 PEs for IFS is the slowest configuration (SYPD, =
0) but the one that consumes least energy (1 — CHSY, = 1).
On the other hand, using 1008 PEs is the fastest configuration
(SYPD,, = 1) but the worst in terms of energy (1 —CHSY, =
0).

3.3 Model performance stability and measurement
uncertainty

Evaluating the performance of ESMs inherently involves un-
certainty due to the variability of HPC environments. Un-
der an ideal scenario, repeated runs of the same model setup
should yield identical runtimes. However, in practice, HPC
systems experience fluctuations due to background system
load, hardware failures, and network congestion. The HPC
platform used, MareNostrum4, was continuously monitored,
and Operations receive alerts when performance falls below
expected levels. Any jobs executed during these periods can
be identified and discarded to prevent skewed results. Addi-
tionally, and to further minimize the impact of these factors
and ensure the reliability of our performance analysis, we
followed these practices:

— Exclusive resource allocation. All jobs were submitted
with the “-exclusive” clause, which ensures allocated
nodes were not shared with other running jobs. This
minimizes performance noise from co-scheduled work-
loads.

— Simulation length. We configured model runs to use
longer simulation chunks, which helps smooth out
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machine performance fluctuations. Depending on the
model speed, we chose different chunk sizes. For SR
runs, we used 1-year chunks, whereas for HR using 3-
month chunks was enough. In both cases each chunk
has a runtime of ~ 1 h.

— Multiple runs. Each resource configuration (chunk) was
executed at least twice, and the results were averaged to
mitigate fluctuations.

— Ignore the initialization and finalization phases. The
initialization and finalization phases of an ESM run in-
volve a higher proportion of I/O operations for read-
ing initial conditions and writing outputs, making them
less representative of sustained model performance. To
account for this, we analyzed the runtime deviation of
these phases compared to the regular time-stepping loop
and found that discarding the first and last simulated day
was sufficient to account only for the regular time steps.
This was easily achieved using a dedicated parameter in
the load balance analysis tool integrated in EC-Earth3
(Maisonnave et al., 2020).

— Run at different times during the day. To account for
diurnal fluctuations in HPC load, experiments were ex-
ecuted at different times. This was not strictly enforced
but naturally resulted from using a queue that allowed
only one job per user at a time. Combined with varying
queue wait times, this led to experiment jobs running at
different times throughout the day.

— Manual and post-mortem validation. All reported re-
sults underwent manual validation. Additionally, once
an optimized resource setup was identified, a duplicate
run was performed to confirm that the observed perfor-
mance improvement was consistent with the initial mea-
surement.

4 Automatic load-balance method

This section describes auto-1b, a methodology and tool aimed
at improving the performance of ESMs by determining the
proper distribution of the HPC resources (PEs) allocated to
each component in coupled executions. This is accomplished
by minimizing the core hours lost due to synchronizations
between interacting coupled components and by selecting a
well-balanced speed for the coupled execution, considering
the different scalability properties of the individual compo-
nents. Additionally, given that different platforms and users
may have varying constraints and criteria, the method can be
used to find a solution within a restricted maximum number
of PEs. It also allows users to define the priority between the
achieved speed (TTS) and the core hours consumed (ETS),
as described in Sect. 3.2. The methodology is described in
more detail in Algorithm 1 and Fig. 4. It and can be divided
into three main steps:
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Table 1. Comparison of fittingness (FN), parallel efficiency (Eff), and energy-delay product (EDP) metrics across different processor counts
for the Integrated Forecasting System (IFS) atmospheric component. The results illustrate how the recommended parallelization for this
component changes with the time-to-solution weight (TTSy), ranging from 0.3 to 0.9. Bold values indicate the best parallelization choice
for each TTSy,.

FN results using different TTSy

nproc  SYPD, 1-CHSY, Eff EDP <03 0.4 0.5 0.6 0.7 08 =09

48 0.000 1.000 1.000 0.000 0.700 0.600 0.500 0.400 0.300 0.200 0.100
96 0.097 0941 0939 0.184 0.688 0.603 0.519 0435 0350 0.266 0.181
144 0.187 0.896 0.899 0341 0.684 0.613 0.542 0471 0400 0.329 0.258
192 0.271 0.855 0.864 0476 0.680 0.621 0.563 0.504 0.446 0.388 0.329
240 0.348 0.813 0.831 0.588 0.673 0.627 0.580 0.534 0487 0441 0.394
288 0.418 0.767 0.798 0.677 0.662 0.628 0.593 0.558 0.523 0.488 0.453
336 0.481 0.718 0.766 0.744 0.647 0.623 0.599 0576 0.552 0.528 0.504
384 0.540 0.672 0.737 0.803 0.632 0.619 0.606 0.593 0.580 0.566 0.553
432 0.601 0.636 0.717 0.868 0.625 0.622 0.618 0.615 0.611 0.608 0.604
480 0.660 0.603 0.699 0931 0.620 0.626 0.632 0.637 0.643 0.649 0.655
528 0.716 0.568 0.681 0983 0.612 0.627 0.642 0.657 0.671 0.686 0.701
576 0.758 0.517 0.656 0999 0.589 0.614 0.638 0.662 0.686 0.710 0.734
624 0.778 0.435 0.620 0958 0.538 0.573 0.607 0.641 0.675 0.710 0.744
672 0.792 0.346 0.585 0908 0480 0.524 0.569 0.614 0.658 0.703 0.748
720 0.815 0.274 0559 0.885 0436 0490 0.544 0.598 0.652 0.706 0.761
768 0.851 0.231 0545 0900 0417 0479 0541 0.603 0.665 0.727 0.789
816 0.909 0.227 0544 0965 0431 0.500 0.568 0.636 0.704 0.772 0.841
864 0.954 0.203 0.536  1.000 0428 0.503 0.578 0.653 0.728 0.803 0.878
912 0.957 0.113 0510 0943 0.367 0.451 0535 0.620 0.704 0.789 0.873
960 0.959 0.022 0485 0.888 0.303 0.397 0.491 0.584 0.678 0.772 0.866
1008 1.000 0.000 0479 0918 0.300 0.400 0.500 0.600 0.700 0.800 0.900
1.0 4 — Efficiency
= —— Energy-Delay Product
% —=- FN with TTS=0.3. Max at 48 PEs
& —~== FN with TTS=0.4. Max at 288 PEs
S ——- FN with TTS$=0.5. Max at 528 PEs
:é 0.8 1 -=- FN with TTS=0.6. Max at 576 PEs
; FN with TTS=0.7. Max at 864 PEs
S —==- FN with TTS=0.8. Max at 864 PEs
= —== FN with TTS=0.9. Max at 1008 PEs
:8: 0.6
>
3
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%
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(‘) 2(')0 4(‘)0 660 8(')0 10\00

Processing Elements (PEs)

Figure 3. Efficiency (Eff), energy-delay product (EDP), and fittingness (FN) values for different processor counts for the Integrated Fore-
casting System (IFS) atmospheric component. The figure shows how the parallelization choice — defined as the configuration that maximizes
FN - shifts from slower, more cost-effective options to faster but more expensive ones as the time-to-solution weight (TTSy ) increases from
0.3t0 0.9.

Geosci. Model Dev., 18, 3661-3679, 2025 https://doi.org/10.5194/gmd-18-3661-2025



S. Palomas et al.: Reducing time and computing costs in EC-Earth 3669

1. Get component’s scalability. Obtain the SYPD (i.e., ex-
ecution time) for each component involved in the cou-
pled configuration using various PE counts. The goal
is to have a real representation of the model’s perfor-
mance. Thus, it is recommended to take the metrics
from a configuration as similar as possible to the cou-
pled run (same resolution, modules, I/O, online diag-
nostics, compilation flags, etc.), and getting as close to
the actual model performance. To minimize measure-
ment uncertainties, we followed the best practices out-
lined in Sect. 3.3.

2. Prediction script. A Python script that, given the scal-
ability curves of the components involved in the cou-
pled configuration, returns the best resource allocation
(i.e., how many PEs have to be assigned to each cou-
pled component) depending on the user criteria (TTS or
ETS) using the FN metric.

3. Load-balance workflow. Workflow that will submit mul-
tiple instances of the ESM on the HPC machine using an
existing climate workflow manager called Autosubmit
(Manubens-Gil et al., 2016). The workflow involves an
iterative process, with each step involving the following:
submitting multiple instances of the ESM, each with
different resource configurations (initially, the resource
allocation used is the one estimated as “optimal” by the
Prediction script), collecting the performance metrics
from each run, and making fine-grained modifications
to the resource setup to reduce the coupling cost (i.e.,
including the waiting time due to synchronizations and
the time spent performing interpolations on the fields
being exchanged) of the ESM at the next iteration. The
performance achieved by each run is stored, and the out-
come of the workflow is the resource setup which out-
performed all the others. To mitigate performance un-
certainties that could affect the results, we applied the
practices described in Sect. 3.3.

4.1 Prediction script

The number of possible configurations that can be used in
coupled ESMs is too large to individually test each one. Take,
for instance, two-component systems like IFS-NEMO exper-
iments, where both can utilize from 1 to 21 nodes. Using
a granularity of one node, there are 20 x 20 =400 possible
solutions. However, most of these configurations are com-
pletely unbalanced. Testing all of them is unnecessary and
would result in a waste of resources with no added value.
The Prediction script can search this solution space in less
than one second, approximating the results from each com-
bination of PEs for IFS-NEMO based on the prior knowl-
edge of the parallel behavior that we have from the scalabil-
ity curves, thus finding the best setups for the TTS/ETS crite-
ria selected. This not only ensures well-balanced setups but
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also considers potential high-quality parallelization regions
for individual components.

Figure 5 illustrates the fittingness metric using a TTSy, of
0.5. The best solution found uses 528 PEs for IFS and 288
for NEMO. However, these results are derived from scalabil-
ity curves rather than actual simulations, which means they
might not account for all factors that influence HPC machine
performance. The Prediction script addresses this by provid-
ing not just the single best configuration, but the top N pos-
sible configurations (to be set by the user). This approach
balances the risk of limited search space if only one com-
bination is considered against the impracticality of explor-
ing every possible configuration. Analyzing the entire search
space would be excessively time-consuming and computa-
tionally costly, potentially outweighing the gains of any per-
formance analysis. For instance, and as detailed in Sect. 5, we
have found that selecting the top five configurations provides
a reasonable balance between total auto-Ib runtime (around
24h) and search space given the application studied (EC-
Earth). In the given example (Fig. 5), the top five combina-
tions are 528-288, 528-336, 480-240, 480-288, and 480-
336 (IFS-NEMO). Extreme combinations with no practical
benefit are grayed out, as their huge coupling cost (vast dif-
ference in execution time between the coupled components)
makes them less performant than the baseline case (one node
per component). These configurations are not worth further
investigation.

The Prediction script will, therefore, serve as a guide for
the load-balance workflow (Sect. 4.2) as now it won’t have
to search in the whole solution space but only in a relatively
confined space to find the best resource configuration. This
minimizes resource wastage by avoiding testing all possible
combinations of PEs for IFS and NEMO and starting the in-
depth analysis with some already potentially good setups.

4.2 Load-balance workflow

The load-balance workflow is an iterative process that con-
sists of a loop that submits multiple instances of the experi-
ment using different resource setups, from which it collects
the metrics defined in Sect. 3. These metrics guide the re-
distribution of the computational resources assigned to each
component in subsequent iterations to minimize the coupling
cost while improving the overall performance. This realloca-
tion policy relies on the partial_coupling_cost metric (Eq. 5),
which identifies the component contributing the most to the
coupling cost. The identified component, referred to as the
donor, is the one underutilizing its allocated resources while
waiting for coupling data from the other component, labeled
as recipient. The number of PEs transferred between the
donor and the recipient at the first (initial_step) and last (min-
imum_step) iterations is a user-defined parameter, and de-
pends on the application’s sensitivity to changes in the num-
ber of parallel resources. The outcome of the current iteration
is a new set of resource configurations that will be submitted
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Figure 4. An overview of the auto-1b workflow, illustrating the steps to enhance the performance of an Earth system model (ESM) from an
initially unbalanced configuration. The process begins with (1) obtaining the scalability properties of each component (scalability curve).
These results are then used by (2) the Prediction script to estimate potential well-balanced resource configurations. Finally, these configura-
tions are used in (3) to iteratively simulate multiple instances of the ESM to identify a solution that minimizes the coupling cost, potentially
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improving the SYPD (i.e., speed) and reducing the CHSY (i.e., computing cost) of the simulation.

Figure 5. Fittingness matrix for [FS-NEMO coupled execution using a TTSy, of 0.5. The matrix shows the fittingness metric for various
processes combinations, with IFS PEs in the vertical axis and NEMO PEs along the horizontal. Cells are color-coded from red (worst) to
green (best), with gray indicating configurations worse than the baseline setup of 48 processes (equivalent to one node) per component.
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in the following iteration. The workflow is designed to guar-
antee convergence. If, at a given iteration, the direction of
resource transfer changes (i.e., a previously identified recip-
ient now becomes a donor), the step size is reduced by half.
This iterative refinement continues until the step size falls
below a user-specified threshold (minimum_step), at which
point no further meaningful adjustments can be made. The
workflow concludes when no new viable configurations can
be explored or when further refinements produce negligible
differences in performance. At this stage, the FN metric is
evaluated across all tested configurations to determine the
best resource allocation found.

Figure 6 provides an overview of a single workflow itera-
tion that runs two instances per resource configuration.

Algorithm 1 Automatic load-balance method (auto-1b).

Given:
1: A set of T independent tests with different resource configura-
tions: tests_to_explore = {testy, test1, ..., testt}
2: An initial step size: initial_step
The minimum allowable step size: minmum_step
A step size for each test, initially set to initial_step:
{stepg, stepy, ..., stepy} = initial_step

W

5: while tests_to_explore # & do
6: > Start 1b_iter
7: for each fest in tests_to_explore do
8: Submit the test to the HPC platform > SIM job
9: Collect the performance metrics > POST job
10:  end for
11:  Identify the donor and recipient components > Start

LOAD_BALANCE job

12:  Define a new resource setup by reallocating S PEs from the
donor to the recipient

13:  Check that the new resource setup has not been tested before

14:  if the new setup was executed before on any of the previous

tests then
15: Halve the step size for this fest: step; = step; /2
16:  endif
17:  if step; > minimum_step then
18: Submit test with the new configuration (jump to 7.)
19:  else
20: Remove this test from tests_to_explore
21:  endif > End LOAD_BALANCE job

22: end while > End 1b_iter

5 Results and discussion

In this section, we present the results of using the auto-lb
tool for different configurations and experiments to demon-
strate its effectiveness at improving ESM performance and
its versatility across different resolutions and platforms. We
begin by evaluating the standard-resolution EC-Earth3 con-
figurations used in the CMIP6 exercise, highlighting how
our tool improves upon configurations previously considered
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to be near-optimal. Next, we analyze high-resolution EC-
Earth3 configurations used in the EUCP system, showcasing
the tool’s capability for handling scenarios that require sig-
nificantly larger computational resources. Additionally, we
explore how varying the trade-offs between TTS and ETS
can yield different well-balanced configurations, depending
on the specific needs of each experiment and the HPC plat-
form. We also illustrate the portability of auto-Ib by using
it on different HPC platforms, such as MareNostrum4 and
CCA, demonstrating its adaptability in improving ESM per-
formance across diverse computational environments.

5.1 EC-Earth3 at standard resolution for CMIP6

During the CMIP6 project, even when accounting only for
experiments used for production (not taking into account the
spin-up runs), more than 240000 years were simulated for
multiple ESMs across different HPC platforms. At the BSC,
an EC-Earth3 SR CMIP6 configuration was used to exe-
cute more than 14 000 years in MareNostrum4 (Acosta et al.,
2023a); achieving the best performance was crucial for such
a big project. An “optimal” resource configuration of 384
PEs for IFS and 240 for NEMO was agreed upon. This con-
figuration resulted in a total number of PEs lower than 768.
This value is significant because the scheduling policy per-
mits jobs utilizing up to 768 PEs to access a “debug” queue.
While this reduces queue time, it restricts the scheduler to
allow no more than one job to run simultaneously for each
HPC user. The average performance results for one chunk
with this configuration was 15.29 SYPD, 1113 CHSY, and
had a coupling cost of 14.81 %. Figure 7a shows the scal-
ability of IFS. The model scales well until 350 processes
and seems to saturate at 550. Figure 7b demonstrates that
NEMO scales exceptionally well. The cost of adding more
parallel resources remains negligible until 600 PEs. Beyond
this point, the speed-up gains become less pronounced com-
pared to earlier increments.

After setting up the experiment and obtaining the scala-
bility curves for IFS and NEMO, the Prediction script was
executed with the following parameters: max_nproc set to
672 (the maximum PEs for IFS and NEMO after subtracting
the 95 used by XIOS and 1 used by RNF, 67249541 =
768), and a TTS,, of 0.5. These parameters are explained in
Sect. 4.1.

The Prediction script found the “optimal” solution to be
384 PEs for IFS and 264 for NEMO. The top five configu-
rations are shown in Table 2. The result of the workflow is
illustrated in Fig. 8. Tests from 0 to 4 are resource configu-
rations given by the prediction script and test 5 is the orig-
inal one. The load-balance workflow finished after 4 itera-
tions and a total of 24 (6 x 4) resource configurations were
tested. Note, however, that as shown in Fig. 8, four of the
tests are repeated (Ib-iter 3, tests O, 3, 4, and 5). The to-
tal execution time of the workflow was 50h. The best re-
sult is 408 IFS, 240 NEMO, which compared to the origi-

Geosci. Model Dev., 18, 3661-3679, 2025



3672

S. Palomas et al.: Reducing time and computing costs in EC-Earth

| LOADB?LANCE ]
"""""" e T S
SI+M SI*M \ suM | [ siM ) SI+M )
r Y si:wnuaion
SIM (s™Mm | ['siMm | [ siMm | [ SIM | .
L = T T e 1 e 3
Y Y 3 ~ Y Y Get performance
(POST | [ POST ] [ POST | [ POST | [ POST | } metrics
”””””””” T“‘-’{:__;\;”#“ "';“““:'/'—'"“““"“ @ .
I o,
SIM | ' ) (

Figure 6. Overview of a single iteration of the load-balance workflow (Ib-iteration). Five different resource configurations (SIM) are submit-
ted, running two instances for each. The performance results are gathered in the POST_LUCIA job and the LOAD_BALANCE job will give
resources from one component to the other to achieve a better-balanced configuration.

Table 2. Top five initial resource configurations from the Prediction
script to be used by the load-balance workflow for the SR CMIP6
experiment.

1 2 3 4 5 orig
IFS 384 360 408 408 408 384
NEMO 264 240 264 240 216 240

nal configuration is 4.7 % faster (16.01/15.29) and 1.3 % less
costly (1099/1113). The coupling cost grows from 14.81 %
to 17.4 % but it is compensated by using a better number
of PEs given NEMO and IFS scalability properties. If the
resource configuration found by auto-1b had been used dur-
ing the CMIP6 exercise, achieving a performance increase of
4.7 % in execution time is equivalent to reducing the simu-
lated time by 14020/15.29 — 14020/16.01 =~ 41d (if the
experiments were run by only one user). Similarly, a reduc-
tion of the cost by 1.3 % is equivalent to the cost of simulat-
ing 182 years.

The results also demonstrate the high accuracy of the Pre-
diction script. As illustrated in the first row of Fig. 8, which
shows the resource configurations provided by the Predic-
tion script (Ib-iter 0), tests 0, 1, 2, and 3 consistently outper-
form the original setup (Ib-iter 0, test 5). Therefore, the only
predicted configuration performing worse than the original
is observed in test 4. It is noteworthy that Fig. 8 provides
evidence that the iterative auto-lb phase leads to better re-
source setups. Following the evolution of test 4, after two
Ib-iterations (Ib-iter 2, test 4) the auto-lb workflow achieved
a new configuration that also outperforms the original one.
Similarly, just one iteration after the original resource setup
(Ib-iter 1, test 5) shows that reallocating 48 processes from
IFS to NEMO also provides a superior configuration com-
pared to what was used in production during CMIP6.
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5.2 EC-Earth3 at high resolution for the EUCP system

During the EUCP system project, a high-resolution experi-
ment involving IFS and NEMO was used to simulate a to-
tal of 400 years. The configuration used for those experi-
ments was 912 PEs for IFS and 1392 PEs for NEMO. Fig-
ure 9a shows the scalability of IFS. The CHSY does not
increase much up to ~ 500 processes, almost achieving an
ideal speed-up. After 500 processes, some numbers of PEs
seem to be better than others as the model SYPD curve is flat
around 800, 900, and over 1000 PEs. Figure 9b shows the
scalability of NEMO. We observe a superlinear speed-up as
the CHSY is reduced as the number of PEs increases. The
component, however, underperforms near 1000 PEs, and the
execution cost starts increasing for configurations with the
highest numbers of PEs.

Table 3 shows the default and the top five resource con-
figurations found by the Prediction script plus the test with
the original resource setup used before the analysis (orig).
The max_nproc allowed was 2400, the TTS,, was set to 0.5.
The load-balance workflow finishes after five iterations. The
total execution time of the workflow is 50h (1 HourPerTest
x 2 TestsPerConfiguration x 5 InitialConfigurations x 5 1b-
iterations = 50 h).

Figure 10 shows the results of the auto-Ib workflow. The
performance of the original resource configuration, shown in
Ib-iter O, test 5, was 3.54 SYPD, 16277 CHSY, and a cou-
pling cost of 7.25 %. The best solution is found in Ib-iter 4,
test 4, and achieves a performance of 3.48 SYPD and 15494
CHSY. This configuration is 1.7 % slower than the original
but reduces the execution cost by 4.9 %. Moreover, note that
also a new and better resource configuration was found while
trying to reduce the coupling cost for the original one, 1b-
iter 3 test 5. This configuration uses 876 processes for IFS
and 1428 for NEMO. The parallelization and the SYPD are
the same as the original one but the CHSY is reduced by 363
(2.2 %).
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Figure 7. Scalability and predicted best resource allocation for IFS and NEMO at standard resolution for CMIP6 experiments.
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Figure 8. Performance results of each of the resource configurations tested to optimize an SR CMIP6 experiment. The metrics are the average
of three runs of 6 months each.

Having used this experiment to simulate the 400 years, re-
ducing the CHSY by 4.9 % is equivalent to saving the execut-

5.3 Time-to-solution vs energy-to-solution

ing cost of running 400 x 4.9 % =~ 20 years (and more than
300000 core hours) with the same configuration.
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One of the novel features of auto-Ib is the possibility of ap-
plying different performance/efficiency criteria depending on
the context. This section demonstrates how using the TTS,,
parameter can affect the outcome of the same experiment
configuration.
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Figure 9. Scalability and predicted best PE allocation for IFS and NEMO at high resolution for an EUCP experiment using a TTSy of 0.5.
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Figure 10. Performance results of each of the resource configurations tested to optimize a high-resolution European Climate Prediction
Project (EUCP) experiment using a TTSy of 0.5. The metrics represent the average of two runs of 2 months each.
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Table 3. Top five initial configurations from the Prediction script
to be used by the load-balance workflow to find a better resource
configuration for the EUPC HR experiment using a TTSy of 0.5.

1 2 3 4 5 orig
IFS 864 912 864 768 768 912

NEMO 1389 1389 1437 1341 1389 1392

Using the auto-1b workflow with a default TTSy, = 0.5, we
determined that the recommended setup for an EC-Earth3
experiment at standard resolution in the ECMWF machine
(CCA HPC) is to use 684 PEs for IFS and 216 for NEMO.
This configuration achieves 17.55 SYPD and consumes 1230
CHSY, with a coupling cost of 11.21 %.

Howeyver, due to constraints on the number of core hours
allocated to the project on that machine, users require a more
conservative setup that consumes fewer core hours. This can
be easily achieved by rerunning the auto-lIb workflow using a
smaller TTSy,. For example, setting TTSy, = 0.25 (ETSy, =
0.75) provides a less costly configuration. Figure 11 presents
the results of the workflow with TTS,, = 0.25, starting from
the following resource setups given by the Prediction script
(IFS-NEMO): 576144, 468-108, 432-108, 468-144, 540—
144 (see 1b-iter 0).

The best configuration is found in Ib-iter 3 test 2, utiliz-
ing 423 PEs for IFS and 117 for NEMO. This configuration
achieves 13.94 SYPD and 939 CHSY, with a coupling cost of
8.29 and using a total of 540 PEs. Compared to the solution
found using TTSy, = 0.5, this setup reduces the speed of the
ESM by 25.9% (17.55 vs 13.94), but improves the CHSY
by 31 % (1230 vs 939). Furthermore, the coupling cost is re-
duced by 11.21 — 8.29 =2.92 % and fewer PEs are required
to run. This can be visualized in Fig. 12, which shows the
recommended parallelization for IFS (12a) and NEMO (12b)
when changing TTS,, from 0.5 to 0.25.

6 Conclusions

Coupled earth system model (ESM) performance is limited
by the load-balance between the constituents. While some
works propose to deal with the problem by adapting the
applications to support malleability, operational ESMs de-
veloped and maintained by different institutions in Europe
mainly try to find the best resource configurations manu-
ally. Without an adequate methodology and an improved set
of metrics for evaluating and addressing load imbalance, it
has been demonstrated that coupled ESMs run with subopti-
mal resource configurations, leading to a diminishing of their
speed and parallel efficiency.

This study introduces a novel methodology to improve re-
source allocation for each component in widely used EC-
Earth3 experiments. The methodology includes a Prediction
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script to estimate the best possible solutions and an iterative
process for running the simulations on a high-performance
computer, collecting the performance metrics and making
fine-grained optimizations to mitigate the coupling cost. The
methodology has been integrated into the Barcelona Super-
computing Center (BSC) official workflow manager for EC-
Earth3, Autosubmit, minimizing user intervention as much
as possible. This integration allows any EC-Earth3 user
using Autosubmit to easily take advantage of the auto-lb
methodology on any of the other machines where the work-
flow manager is deployed (e.g., LUMI, MN5, MELUXINA,
HPC2020). Additionally, auto-lb consists entirely of bash
and Python scripts, making its core functionalities easily
portable to other workflow managers or even runnable man-
ually if required.

A new metric, fittingness, has been introduced to assess
coupled ESM performance. It allows us to parameterize the
energy/time trade-off. This flexibility enables the identifi-
cation of multiple well-balanced solutions based on user-
specific need, such as budget limitations for core hours and
urgency in obtaining the output.

The results demonstrate the portability of the auto-lb
method across various high-performance computing plat-
forms, achieving improved resource configurations for dif-
ferent experiment configurations and resolutions. The au-
thors believe that the best way to illustrate the usefulness
of the proposed methodology is by showing its benefits
for real and significant climate experiments that were care-
fully (manually) configured to maximize the performance.
Therefore, Sect. 5.1 presents the computational improve-
ments for a Coupled Model Intercomparison Project Phase 6
(CMIP6) experiment, which took months to simulate, cover-
ing over 14 000 years and consuming 15 million core hours
on MareNostrum4 (Acosta et al., 2023a). The results sug-
gest savings of 4.7 % of the execution time and a 1.3 % re-
duction in core hours needed. Similarly, Sect. 5.2 reports the
results for a high-resolution EC-Earth3 experiment used in
the European Climate Prediction (EUCP) project, simulat-
ing 400 years and consumed over 6.5 million core hours on
MareNostrum4. With the new resource setup achieved us-
ing the auto-lb methodology, the core hours consumed could
have been reduced by 4.9 % at the expense of increasing
the execution time by 1.7 %. Alternatively, the method also
provides another resource setup that maintains constant ex-
ecution time but reduces the core hours required by 2.2 %.
Finally, Sect. 5.3 presents two possible resource setups for
EC-Earth3 on another HPC machine, European Centre for
Medium-Range Weather Forecasts (ECMWF) CCA HPC.
The two setups differ in the criteria used. For a more energy-
efficient solution, the auto-1b methodology was used with a
TTSy = 0.25 (ETSy = 0.75). This solution is 25.9 % slower
than using the default value of TTSy, = 0.50, but it reduces
core hours by 31 % and uses fewer PEs, demonstrating that
both solutions are viable and allowing the user to choose the
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Figure 11. Performance results of each of the resource configurations tested to optimize a standard-resolution experiment of EC-Earth3 using
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most appropriate one depending on the specific context in
which it will run.

Looking ahead, it is expected that ESMs will continue to
grow in complexity, incorporating more components to sim-
ulate more features of the Earth system. For instance, some
EC-Earth3 configurations already couple up to five differ-
ent components simultaneously, resulting in a better repre-
sentation of some Earth phenomena but increasing the load-
imbalance significantly. Big upcoming international projects
like the Coupled Model Intercomparison Project Phase 7
(CMIP7) are crucial for the advance of climate science, but
they come at the expense of significant power consumption
for computing. As shown, even with two-component sys-
tems, the solution space can easily grow into multiple hun-
dreds of different resource setups. Adding more components
exponentially increases this solution space, making the usage
of manual tuning and traditional methods even more limited
with future complex simulations. This underscores the neces-
sity for developing more sophisticated tools like auto-1b.

At the same time, the increasing adoption of GPU accel-
eration in Earth system modeling software reflects a broader
shift towards hybrid computing infrastructures. A good ex-
ample of this trend can be found in the new EuroHPC sys-
tems, where seven out of eight integrate both CPU and GPU
resources. Consequently, methodologies for load-balancing
must evolve to account for these new hybrid architectures.
While the principles described for the auto-1b approach re-
main relevant, heterogeneous CPU/GPU codes introduce ad-
ditional complexities. The primary challenge lies in control-
ling the speed at which each component must run to main-
tain load balance. In a pure MPI setup, resource redistribu-
tion is straightforward as coupled components share a com-
mon pool of processing elements (PEs, physical cores) and
can reallocate them while keeping the total amount of paral-
lel resources used constant. In contrast, for components run-
ning on different hardware (e.g., CPUs and GPUs), the term
“processing element” has different meanings, and resources
are not directly interchangeable — a CPU core and a GPU
core do not have a one-to-one equivalence. Extending the
auto-1b methodology to hybrid CPU/GPU ESMs would re-
quire a standardized definition of computational resources.
Such a definition could enable the optimization process to
account for the equivalences and differences between CPUs
and GPUs, potentially through an application-specific equiv-
alent compute unit metric. This metric would involve pro-
filing the performance characteristics of each component on
both types of hardware to guide resource allocation deci-
sions.

Moreover, it is important to highlight that some climate
models include additional parallelization parameters that in-
fluence performance but have not been explicitly addressed
in this manuscript. These include the ability to define differ-
ent processor layouts (e.g., for 32 PEs, possible configura-
tions could be 1 x 32, 2 x 16, 4 x 8) and the use of hybrid
MPI/OpenMP parallelism. At present, these aspects are not
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managed within the auto-1b tool as we expect that this is al-
ready known before the balancing. It is important to empha-
size that our methodology specifically addresses the load-
balancing issues rather than optimizing the standalone per-
formance of individual components. In cases where proces-
sor layouts or hybrid configurations must be considered, we
first conduct an exploratory standalone performance analysis
of each component to determine the most efficient processor
layout and the optimal number of OpenMP threads per MPI
rank. These parameters are then treated as fixed throughout
the load-balancing process. If these cases become more read-
ily available, it is possible to update the workflow for better
handling.

To ensure efficient use of HPC resources, auto-Ib function-
ality must be extended to support increasingly complex cou-
pled configurations and models running on hybrid computing
infrastructures. The combination of heuristics through a pre-
diction script with the automatic iterative process (running
the ESMs and collecting novel performance metrics) offers
an efficient approach to finding better resource setups for
coupled ESMs, while minimizing the time and core hours
needed to find them.

Code availability. The source code for the prediction script is pub-
licly available at https://doi.org/10.5281/zenodo.14163512 (Palo-
mas, 2024).

The EC-Earth3 source code is accessible to members of the
consortium through the EC-Earth development portal (2024): http:
/Iwww.ec-earth.org (last access: 18 November 2024). Model codes
developed at ECMWEF, such as the IFS atmospheric model, are the
intellectual property of ECMWF and its member states. Therefore,
access to the EC-Earth3 source code requires signing a software li-
cense agreement with the ECMWF. The version of EC-Earth used
in this study is tagged as 3.3.3.1 in the repository.

The Autosubmit workflow manager (2024) is available as a
Python package index (PyPI) at https://pypi.org/project/autosubmit/
(last access: 18 November 2024), Autosubmit documentation and
user guide (2024) is hosted at https://autosubmit.readthedocs.io/en/
master/, last access: 18 November 2024.
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