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Abstract. As the performance of weather and climate fore-
casting systems and their benchmark systems are generally
not homogeneous in time and space and may vary in spe-
cific situations, improvements in certain situations or sub-
sets have different effects on overall skill. We present a de-
composition of skill scores for the conditional verification
of such systems. The aim is to evaluate the performance of
a system individually for predefined subsets with respect to
the overall performance. The overall skill score is decom-
posed into a weighted sum representing subset contributions,
where each individual contribution is the product of the fol-
lowing: (1) the subset skill score, assessing the performance
of a forecast system compared to a reference system for a
particular subset; (2) the frequency weighting, accounting for
varying subset size; and (3) the reference weighting, relat-
ing the performance of the reference system in the individ-
ual subsets to the performance of the full data set. The de-
composition and its interpretation are exemplified using syn-
thetic data. Subsequently, we use it for a practical example
from the field of decadal climate prediction: an evaluation
of the Atlantic European near-surface temperature forecast
from the German “Mittelfristige Klimaprognosen” (MiKlip)
initiative decadal prediction system that is conditional on dif-
ferent Atlantic Multidecadal Oscillation (AMO) phases dur-
ing initialization. With respect to the chosen western Euro-
pean North Atlantic sector, the decadal prediction system
“preop-dcpp-HR” performs better than the uninitialized sim-
ulations mostly due to contributions during the positive AMO
phase driven by the subset skill score. Compared to the low-
resolution system (preop-LR), no overall performance ben-
efits are made in this region, but positive contributions are
achieved for initialization in neutral AMO phases. Addition-

ally, the decomposition reveals a strong imbalance among
the subsets (defined by AMO phases) in terms of reference
weighting, allowing for insightful interpretation and conclu-
sions. This skill score decomposition framework for condi-
tional verification is a valuable tool to analyze the effect
of physical processes on forecast performance and, conse-
quently, supports model development and the improvement
of operational forecasts.

1 Introduction

The verification of forecast systems plays an important role
in the field of weather and climate prediction with respect
to assessing the quality of such systems and, moreover, of
the entire forecast process. Furthermore, a common practice
for evaluating forecast systems is comparison against another
competing prediction system or a standard reference fore-
cast, such as the persistence or climatological forecast. Ba-
sically, the relative performance, in terms of accuracy, of a
prediction system with respect to a reference is expressed as
forecast skill and is usually presented as a skill score (Wilks,
2011). Therefore, a variety of skill scores are widely used for
verification; for example, the mean-squared error skill score
(MSESS) is a common way to verify a deterministic fore-
cast, while the Brier skill score (BSS), the ranked probability
skill score (RPSS), or the continuous ranked probability skill
score (CRPSS), used in applications such as decadal forecast
verification (e.g., Kadow et al., 2016; Kruschke et al., 2016;
Pasternack et al., 2018, 2021), could be the choice for a prob-
abilistic forecast.
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As the forecast performance is typically not homogeneous
in time and space, it is of interest how variable the forecast
skill is for different states of the system. Therefore, condi-
tional verification is a common practice in weather and cli-
mate research, i.e., the evaluation of forecasts separately for
different regions (e.g., Northern Hemisphere and Southern
Hemisphere) or seasons (e.g., winter and summer). Addi-
tionally, the initial state and particular conditions that the
system goes through during the forecast might also affect
the prediction skill. In weather forecasting, the state of at-
mospheric flow regimes or circulation patterns can influence
the forecast quality (Grönås, 1982, 1985), where a more sta-
ble regime (such as blocking) can improve the forecast qual-
ity of a model (Tibaldi and Molteni, 1990). The presence of
different climate states during the initialization procedure of
medium-range forecasts, which can improve the predictive
ability in certain periods, is addressed in the subseasonal-to-
seasonal (S2S) prediction community (Mariotti et al., 2020).
Large-scale atmospheric circulation variability, such as the
North Atlantic Oscillation (NAO; Jones et al., 2004; Ferranti
et al., 2015; Jones et al., 2015), the Madden–Julian Oscil-
lation (MJO; Ferranti et al., 2018), or circulation patterns
(Frame et al., 2013; Richardson et al., 2021), and coupled
ocean–atmosphere phenomena, like the El Niño–Southern
Oscillation (ENSO; e.g., Qin and Robinson, 1995; Branković
and Palmer, 2000; Goddard and Dilley, 2005; Frías et al.,
2010; Kim et al., 2012; Manzanas et al., 2014; Miller and
Wang, 2019), can contribute to a forecast skill improvement.
In decadal climate prediction – the focus of this study – the
state of the ocean has the potential to affect long-term fore-
casts of the following years, i.e., an enhanced subpolar ocean
heat transport (OHT) linked to North Atlantic upper-ocean
heat content (UOHC) and, in some way, via the Atlantic
Meridional Overturning Circulation (AMOC) to the positive
Atlantic Multidecadal Oscillation/Variability (AMO/AMV)
phase, resulting in the potential to improve predictive abil-
ity during the initialization of a climate model (Müller et al.,
2014; Zhang and Zhang, 2015; Borchert et al., 2018, 2019).

In a typical verification study, the accuracy of a given fore-
cast is compared to a reference to evaluate the quality of
the forecast. To assess the forecast quality for specific sit-
uations (e.g., states, seasons, or regions), verification can be
carried out in a manner that is conditional on these situa-
tions by stratifying the full data set by situation type. Thus
the forecast data set is split up and (skill) scores are obtained
individually for the splits. The interpretation of these partial
skill scores is not necessarily straightforward. This is partic-
ularly the case when the reference strongly varies among in-
dividual subsets compared with the overall behavior; this is
commonly known as “Simpson’s paradox” (Pearson et al.,
1899; Yule, 1903; Simpson, 1951; Blyth, 1972). With re-
spect to weather and climate prediction, a potential misin-
terpretation of the forecast performance stratified using spe-
cific conditions or samples may arise if the underlying clima-
tology that is used as the reference forecast differs in some

way among these samples (e.g., Murphy, 1996; Goeber et al.,
2004; Hamill and Juras, 2006). In that case, a fair comparison
should consider the varying behavior of such a climatology
in the verification procedure.

While the majority of mentioned studies focus more on de-
composing a skill score to measure basic aspects of forecast
quality with respect to a climatological reference forecast in a
fair way, we apply a decomposition framework in the context
of conditional verification in the field of decadal predictions
in this work. The aim is to evaluate the performance of in-
dividual subsets in relation to the performance of the entire
forecast set. The decomposition provides a simple diagnos-
tic tool to assess the contribution of certain subsets to the
overall skill as well as to identify potential causes of vari-
able skill between these subsets. The resulting information
can be further used to analyze physical processes related to
certain subsets and, consequently, to support model develop-
ment and optimize operational forecasts. In terms of decadal
forecasts, we exploit the potential source of long-term pre-
dictability forced by ocean states associated with the AMO
to improve the forecast assessment.

First, the general decomposition procedure of the skill
score is described in Sect. 2 and exemplified in Sect. 3 us-
ing synthetic data. In Sect. 4, the decomposition is applied to
decadal predictions to evaluate the Atlantic European near-
surface temperature forecast of a preoperational forecast sys-
tem depending on different North Atlantic ocean states. The
latter are determined by the Atlantic Meridional Oscillation
(AMO). The results are summarized and discussed in Sect. 5.
Section 6 concludes this study.

2 Decomposition of skill score

This section presents the decomposition of a skill score into
contributions from different subsets derived from the full set
of forecast–observation pairs and discusses the interpretation
of individual terms.

2.1 Subset contribution

To verify a forecast fn, we calculate a verification score Sn =
S(fn,on), an error metric between an individual forecast fn
and the corresponding observation on (Wilks, 2011). Consid-
ering all forecast–observation pairs (fn,on), n= {1, . . .,N},
the mean score S of the full set can be computed by

S =
1
N

N∑
n=1

Sn =

K∑
i=1

Ni

N

(
1
Ni

Ni∑
n=1

Sn

)
=

K∑
i=1

Ni

N
Si (1)

withN =N1+ . . .+NK , whereK is the number of nonover-
lapping subsets i of the data, Ni is the number of forecast–
observation pairs in subset i, and N is the total number of
forecast–observation pairs.

The mean-squared error (MSE) is an adequate score for
a deterministic forecast of a continuous variable, while the
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ranked probability score (RPS) is an appropriate choice for
a probabilistic forecast of a discrete forecast. To measure the
performance of a forecast system “fc” compared to a refer-
ence forecast “ref”, the associated skill score SS (e.g., MSE
skill score MSESS and ranked probability skill score RPSS,
respectively) is used.

The forecast performance may vary for individual sub-
sets of the data, and the resulting interpretation may depend
on the different behavior of the reference system. To assess
varying skill scores for specific situations (e.g., states, peri-
ods, seasons, or regions), the verification is carried out in a
manner that is conditional on these situations, i.e., the full
data set is stratified. Thus, we split the data into K subsets
and determine the individual subset contribution of each sub-
set i to the overall mean skill score SS.

SS=
S

fc
− S

ref

Sperf− S
ref

=

∑K
i=1

Ni
N
S

fc
i −

∑K
i=1

Ni
N
S

ref
i

Sperf− S
ref

=

K∑
i=1

Ni

N

(
S

fc
i − S

ref
i

Sperf− S
ref

)
︸ ︷︷ ︸

contribution subset i

, (2)

where S
fc

and S
ref

are the mean scores of the forecast sys-
tem fc and the reference system ref, respectively, over an en-
tire data set with N forecast–observation pairs, and Sperf is
the score of a perfect forecast, which is zero for the MSE
or RPS. S

fc
i and S

ref
i represent the mean score of the fore-

cast system and reference system, respectively, for individual
subsets.

2.2 Terms of decomposition

In order to evaluate how strongly and in which situations the
skill score of the subsets affects the total skill score, we in-
clude and separate any component that influences the con-
tribution of a subset to the overall skill score. We multiply

Eq. (2) by 1= Sperf
−S

ref
i

Sperf−S
ref
i

, yielding

SS=
K∑
i=1

Ni

N︸︷︷︸
frequency
weighting

·

(
S

fc
i − S

ref
i

Sperf− S
ref
i

)
︸ ︷︷ ︸

subset
skill score

·

(
Sperf
− S

ref
i

Sperf− S
ref

)
︸ ︷︷ ︸

reference
weighting

=

K∑
i=1

Wfreqi ·SSi ·Wrefi =

K∑
i=1

Wi ·SSi . (3)

The individual subset contribution WiSSi to the overall
skill score depends on (i) SSi , the performance of the fore-
casting system compared to the reference system in that
given subset, weighted by (ii) Wfreqi , the relative size of the

subset (frequency of the stratification event occurring), and
(iii) Wrefi , the performance of the reference system in the
subset compared to the full set of forecast–observation pairs.

In detail, SSi is the mean subset skill score of the fore-
cast system fc versus the reference system ref with respect
to forecast–observation pairs of the given subset i. This term
characterizes how well the forecast system performs in com-
parison to the reference system in that specific subset (e.g.,
during a positive AMO phase). It is commonly applied in
model evaluations to find enhanced predictability during cer-
tain climate or large-scale circulation states or specific sea-
sons.
Wfreqi is the frequency weighting and considers the number

of forecast–observation pairs (e.g., time steps) in subset i rel-
ative to the total number of forecast–observation pairs. For a
time series, one could imagine that this part reflects the rela-
tive frequency of occurrence of the situation stratified within
the total time period.
Wrefi is the reference weighting and defines the ratio of the

mean score of the reference system for the subset i (numer-
ator) and the full set of forecast–observation pairs (denomi-
nator). It adjusts the scale (or range) of the subset skill score,
which was set by Sperf

−S
ref
i , to the scale used for the overall

skill score. This component can be interpreted as a weight-
ing of the subset skill score by means of the performance
of the reference system in the subset compared to its per-
formance in the full set of forecast–observation pairs. If the
performance of the reference varies strongly among subsets,
the individual subset skill scores will contribute to the total
skill score according to the performance of the reference.

The total subset weight Wi (product of the frequency
weighting and the reference weighting) determines the in-
fluence of the subset skill score on the total skill score;
i.e., for an improvement/degradation 1SSi of the forecast in
the subset i, the total skill score for the full set of forecast–
observation pairs changes accordingly by

1SS(1SSi ) =Wi ·1SSi . (4)

3 Synthetic cases

In the following, we illustrate the effect of the different ref-
erence performance using synthetic data. In the context of
near-term climate prediction, one could imagine the annual
mean of 2 m temperature being verified in two different fore-
cast systems with respect to the same observation for a cer-
tain defined period.

3.1 Example cases with different skill score behavior

With respect to a time-based stratified verification, which is
addressed in this study, we assume that the performance of
both forecast systems varies systematically within the period
considered. For this purpose, we divide the entire period –
here a period of N = 60 time steps representing 60 years –
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Table 1. Cases of setup A (A0–A2) showing the mean scores (S) and skill scores (SS) of two subsets and of the total forecasts. The influence
of the skill score in subset 1 on the total skill score is weak compared with that of subset 2. The skill score changes as described in A1
and A2, with both being related to the first case A0.

Case Skill score behavior S
fc
1 S

ref
1 SS1 S

fc
2 S

ref
2 SS2 S

fc
S

ref SS

A0 SS1: better than SS2; SS: close to SS2 0.22 0.26 0.15 2.48 2.70 0.08 1.35 1.48 0.09
A1 SS1: increase; SS: nearly unchanged 0.11 0.26 0.58 2.48 2.70 0.08 1.29 1.48 0.13
A2 SS2: increase; SS: increase 0.22 0.26 0.15 1.24 2.70 0.54 0.73 1.48 0.51

Table 2. Cases of setup B (B0–B2); similar to Table 1, but the influences of the skill score of subset 1 and subset 2 on the total skill score
are similar.

Case Skill score behavior S
fc
1 S

ref
1 SS1 S

fc
2 S

ref
2 SS2 S

fc
S

ref SS

B0 SS1: better than SS2; SS: centered approx. between SS1 and SS2 0.22 0.26 0.15 0.22 0.24 0.08 0.22 0.25 0.12
B1 SS1: increase; SS centered approx. between SS1 and SS2 0.11 0.26 0.58 0.22 0.24 0.08 0.16 0.25 0.34
B2 SS2: increase; SS centered approx. between SS1 and SS2 0.22 0.26 0.15 0.11 0.24 0.54 0.16 0.25 0.34

into two subsets of equal size (K = 2, N1 =N2 = 30). The
performance of the two forecast systems shows a systemati-
cally different behavior for the two subsets. An example from
near-term climate prediction could be the state of the ocean
in terms of years dominated by a negative or positive AMO
phase during the initialization procedure, which might have
an influence on the forecast performance in some regions via
OHT (Borchert et al., 2018).

Applied to our fictive example, the mean scores of the ref-
erence systems differ between both subsets. In some situa-
tions, it is possible that the long-term performance, expressed
in terms of the total skill score SS of a forecast system com-
pared to another forecast system, is dominated by a specific
subset period. With the setting described above and the de-
composition approach from Sect. 2, we illustrate and dis-
cuss the individual contributions of subsets to the total skill
score. For this purpose, we generate six hypothetical cases
with different performance combinations of forecast fc and
reference ref during the two subsets i = 1 and i = 2. Three
cases in setup A assume very different performance of the
reference system in the two subsets, whereas three cases in
setup B assume almost equal performance of the reference.
For simplicity, we set Sperf

= 0.

3.1.1 Setup A: unequal performance of the reference

In the base case of setup A (A0; see Table 1), we assume that
the forecast system fc performs better than the reference in
subset i = 1 (subset skill score SS1 = 0.15). In subset i = 2,
the forecast system fc performs slightly more poorly than the
first subset (SS2 = 0.08). Following Simpson’s paradox and
based on the skill scores, one might be tempted to think that
the total skill score SS is an equal composition (e.g., arith-
metic mean) of both subset skill scores SS1/2. However, in
this specific configuration, the total skill score of the overall
data (SS= 0.09) is very close to that in subset 2. The total

skill of forecast system fc is mainly dominated by this sub-
set.

The next scenario will be covered in case A1 (Table 1),
where an improvement of the subset skill score is achieved
for the first subset by improving the error metric, i.e., reduc-
ing the mean score of the forecast system S

fc
1 by half, while

the mean score and skill score of the second subset remain
the same. Although the skill score of the forecast system fc in
subset i = 1 is improved (A1: SS1 = 0.58), the overall skill
score hardly changes (A1: SS= 0.13). In contrast, in the last
case (A2 in Table 1), we set a similar improvement of the
skill score in subset i = 2 (SS2 = 0.54). Here, the total skill
score (SS= 0.51) increased considerably compared withA1.

Taking all three cases into account, it can be summarized
that the total skill score of the forecast system fc with respect
to the reference ref is mainly dominated by the subset skill
score from subset i = 2; this can be seen in Fig. 1a, where
the overall skill score of the full set of forecast–observation
pairs (gray bars) behaves very sensitively towards changes
in the subset skill score from subset i = 2 (orange), whereas
changes in the skill score from subset i = 1 (green) yield al-
most no effect.

3.1.2 Setup B: equal performance of the reference

In contrast to setup A, we show three related examples in
setup B (B0–B2 in Table 2) in which the influence on the
total skill score is nearly equally balanced between both sub-
sets. To see the different behavior, the subset skill scores and
the relative sizes of the score improvements in the forecast
system fc of all cases will be the same as before. Conse-
quently, in the base case of setup B (B0 in Table 2), the
forecast system fc performs better in subset i = 1 compared
with the reference system ref (SS1 = 0.15), while it shows
a weaker performance in subset i = 2 (SS2 = 0.08). Unlike
case A0, the total skill score now depends almost equally
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Figure 1. (a, b) Subset skill scores (green and orange bars) and their
influence on the respective total skill score (gray bars and dashed
lines) from synthetic example cases of (a) setup A (brown back-
ground; shown in Table 1; strong reference weighting imbalance
among both subsets) and (b) setup B (gray background; shown in
Table 2; nearly balanced reference weighting among both subsets).
(c) Reference weighting of both subsets for setup A and B (green
and orange bars, respectively). The dashed line reflects balanced be-
havior among both subsets. (d) Subset contributions of both subsets
from cases of setup A and setup B (green and orange bars, respec-
tively). Gray horizontal lines indicate a balanced contribution SSbal
(see Sect. 3.3) with respect to the total skill score.

on both subsets (SS= 0.12). The changes made to the two
casesB1 andB2 follow a similar pattern to the changes inA1
andA2, as can be seen in Fig. 1b, whereas the total skill score
is almost given by the arithmetic mean of both periods. With
the skill score decomposition from Sect. 2, the reason for this
behavior can be investigated.

3.2 Decomposition of skill scores and impact of the
reference weighting

The different behaviors shown can be investigated using the
decomposition terms from Eq. (3) with Sperf

= 0. As demon-
strated there, the contribution of an individual subset to the
total skill score depends on three terms: frequency weighting,
reference weighting, and the subset skill score. As defined
above, we varied the subset skill scores in the same way and
used subsets of equal size, resulting in the same frequency
weighting of 1

2 for both subsets. Consequently, the reference
weighting for the individual subsets must play a crucial role.
For setupA, the mean scores (S1/2) between subsets differ by
more than one unit. In detail, the scores are generally much

Table 3. Individual effect of a 0.5 change in the subset skill
score SSi on the total skill score SS for setup A. The weighting
terms from the decomposition are also shown.

1SS1 1SS2 1SS Wref,1 Wref,2 Wfreq,1/2

0.5 0 0.045 0.18 1.82 0.5
0 0.5 0.455 0.18 1.82 0.5

higher in subset i = 2 than in subset i = 1. As a result, poten-
tial subset skill score changes for the forecast system fc that
are just achieved during the first subset will not affect the to-
tal skill score very much. The larger scores in subset i = 2
show a stronger relevance with respect to the total skill.

In contrast to setup A, setup B shows an almost balanced
behavior in this respect. These difference can also be seen
when we compare the reference weighting term from the skill
score decomposition described before. Figure 1c visualizes
this behavior, in which the cases from setup A show a differ-
ent value for the reference weighting in both subsets, while
the reference weighting is close to 1 in both cases in setup B.

Generally, the reference weighting lies between 0 and K
(number of subsets). Values below (above) 1 reflect a lower-
than-average (higher-than-average) contribution to the over-
all skill score. Figure 2 demonstrates the impact of individ-
ual subset skill scores on the resulting total skill score de-
pending on their reference weighting. We compute the total
skill score SS with respect to our cases (Fig. 2b) with a pre-
scribed subset skill score in subset i = 1 (SS1) and subset
i = 2 (SS2), respectively, and successively change the refer-
ence weighting term (Fig. 2a). On the left of Fig. 2, we start
with behavior similar to setup A, which is dominated by sub-
set i = 2, where the reference weighting term of subset i = 2
(orange bars) is larger than that of subset i = 1 (green); a
balanced ratio between both subsets (similar to setup B) is
shown in the middle; and the right part shows a total skill
score that is mainly controlled by subset i = 1. Thus, the
reference weighting controls the subset’s contribution to the
overall skill score.

According to Eq. (4), we can compute potential changes
in the total skill score1SS depending on changes in the sub-
set skill score 1SSi . For example, in setup A, a change in
the subset skill score in subset i = 1 of 1SS1 = 0.5 would
change the total skill score by only 1SS= 0.045. On the
other hand, a skill gain of 0.5 in subset i = 2 would in-
crease the total skill score by a value of 0.455. In detail, with
Sperf
= 0, the derived weighting terms from the decomposi-

tion are shown in Table 3. In this example, it is more effective
in terms of the gain in the total skill score to focus on the sub-
set i = 2 for improvement of the forecast system.

The synthetic example is focused on the reference weight-
ing; however, the decomposition is also useful for unequal
subset sizes. The contribution to the total skill score is then
additionally controlled by the frequency weighting. Depend-
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Figure 2. (a) Variations in the reference weighting term of both
subsets (green and orange bars) and (b) their potential influence
on the corresponding total skill score (gray bars) for given subset
skill scores SS1/2 (green and orange horizontal lines) from example
cases of setup A (A0–A2; Table 1) and setup B (B0–B2; Table 2).
Current values of the example cases are highlighted with a dot. A
balanced (enhanced unbalanced) behavior among both subsets re-
flects the center bar pair (bar pairs towards left/rights edges).

ing on the verification setup, both parts should be considered
in weather and climate forecasts. As a consequence, com-
plexity is reduced when each subset has the same size and
the reference weighting of all subsets is 1 due to a chosen

reference. This leads to equally weighted skill scores of the
subsets.

3.3 Subset contributions

In Fig. 1d, we assess the subset contributions compared to
a balanced contribution across the synthetic example cases.
The balanced contribution (gray horizontal lines) represents
a hypothetical value resulting from distributing the total skill
score into equal contributions from the K subsets: SSbal =
SS
K

. The sign of the subset contribution indicates a positive or
negative contribution to the total skill score, while its value
indicates the size of the contribution. In setup A, the val-
ues of the contribution from subset 2 (orange bars) are larger
than the contributions of subset 1 (green bars), even for cases
in which the subset skill score SS1 is higher (A0 and A1;
Fig. 1a). In setup B, the contributions behave in a similar
manner to the subset skill scores. Strongly differing devia-
tions from SSbal between the subsets show the strong imbal-
ance between the contributions of both subsets. As the fre-
quency weighting of both subsets is identical, the observed
characteristic is driven by the reference weightings.

In summary, the decomposition of the subset contribution
into its three components reveals the potential impact of a
subset on the overall skill score considering the combination
of all three terms of the subset (i.e., size and performance of
the reference), instead of only the skill score for a particular
subset.

4 Conditional verification in the MiKlip decadal
prediction system

4.1 Simulations from the MiKlip decadal prediction
system

We investigate the influence of ocean states – given in terms
of AMO phases – on the near-surface air temperature hind-
cast skill in the MiKlip decadal climate prediction system.
The MiKlip decadal climate prediction system (Marotzke
et al., 2016) generation preop-dcpp is based on the coupled
atmosphere–ocean Earth system model of the Max-Planck
Institute (version 1.2) simulated in the high-resolution (HR)
setting (Müller et al., 2018; Mauritsen et al., 2019). The
model for the atmospheric component – ECHAM6.3 – has
a T127 horizontal resolution (0.9375°) and 95 vertical lev-
els. The ocean part is simulated by the Max Planck Institute
ocean model (MPIOM) with a horizontal resolution of 0.4°
and 40 vertical levels.

The 10-member ensemble of the system is initialized on
an annual basis from 1960 to 2012, with a period of 10 years
being simulated for each run. The initialization procedure is
similar to that in Pohlmann et al. (2013), who nudged the
model toward atmospheric and oceanic fields obtained from
reanalysis data. With respect to the atmospheric model com-
ponent, a full-atmospheric-field initialization from ERA-40
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(Uppala et al., 2005) and ERA-Interim (Dee et al., 2011) re-
analyses is applied. For the ocean component, salinity and
ocean temperature anomalies derived from an assimilation
experiment forced by Ocean Reanalysis System 4 (ORAS4)
ocean reanalysis data (Balmaseda et al., 2013) as well as sea
ice concentrations from the National Snow and Ice Data Cen-
ter (Fetterer et al., 2018) described in Bunzel et al. (2016) are
taken as initial conditions. The external forcing is based on
the Coupled Model Intercomparison Project (CMIP) Phase 6
forcing (see Eyring et al., 2016, and Pohlmann et al., 2019,
for details). In addition to the initialized simulations, an en-
semble of 10 uninitialized runs (historical simulations) is
used as the competitive prediction for the skill assessment.
Further details about the simulations can be found in Müller
et al. (2018) and Pohlmann et al. (2019). To evaluate the
probabilistic hindcast skill, both sets of predictions are ver-
ified against observations from the Hadley Centre and Cli-
mate Research Unit (HadCRUT4; Morice et al., 2012). To be
on the same horizontal resolution as the observational data,
the model data of the prediction system are regridded to a
regular 5°× 5° grid.

4.2 Atlantic Multidecadal Oscillation time series

As the multidecadal variability in the ocean state in the North
Atlantic (e.g., AMV, AMOC, and OHT) is represented in
the decadal prediction system and shows predictive poten-
tial (Müller et al., 2014; Borchert et al., 2018, 2019; Höschel
et al., 2019), we will apply the conditional verification of
the temperature stratified along three different phases of the
Atlantic Multidecadal Oscillation (AMO). We calculate the
AMO index proposed by Enfield et al. (2001) in the ORAS4
ocean reanalysis data to match the current state of the At-
lantic Ocean during the initialization procedure. Specifically,
monthly anomalies (base period: 1960–2010) of the sea sur-
face temperature (SST) averaged over the North Atlantic re-
gion (0–60° N, 80–0° W) are exploited to compute the North
Atlantic temperature time series. Afterwards, the linear trend
(base period: 1960–2010) in this time series is removed to
obtain the AMO time series. With regard to the subsequent
conditional evaluation of the decadal prediction system, an-
nual averages of the AMO are used to split the entire period
into three different subsets (based on 0± 0.5σ thresholds us-
ing the base period from 1960 to 2010) representing years of
negative, neutral, and positive AMO phases.

4.3 Verification of probabilistic forecasts for three
categories

We verify the decadal ensemble predictions using the ranked
probability score (e.g., Wilks, 2011; Kruschke et al., 2016).
The score is computed for both sets of predictions against the
HadCRUT4 observation to assess the probabilistic skill of the
initialized versus uninitialized simulations. For near-surface
air temperature, we build time series of forecast–observation

pairs depending on the lead time for all initialized decadal
experiments from 1960 to 2012. Temperature data with lead
times of between 2 and 5 years are averaged to compute a
score for the lead-time period of 2–5 years.

In the next step, we divide the resulting data sets (sepa-
rately for initialized, uninitialized, and observational data)
into three equal parts along their terciles to obtain J = 3
different temperature categories j = 1, . . .,J (below normal,
normal, and above normal). For both simulation data sets, the
entire ensemble is used to determine the respective terciles.
With this approach, an implicit lead-time-dependent bias cor-
rection, which is commonly applied in decadal climate pre-
dictions projects, will be achieved.

The ranked probability score (RPS), defined as

RPSt =
J∑
j=1
(Yj,t −Oj,t )

2, (5)

is calculated between both sets of predictions and the obser-
vational data, where Yj,t is the cumulative forecast proba-
bility of class j (with J = 3) derived from the forecast en-
semble of initialization year t for the given forecast lead-
time mean of 2–5 years by counting the ensemble mem-
bers in each category and then dividing by the ensemble
size. Oj,t represents the corresponding observed cumulative
probability represented as the Heaviside step function, where
either Oj,t = 0 if a higher category than j is observed or
Oj,t = 1 otherwise. To assess the skill between the initialized
(fc) and uninitialized (ref) simulations, the ranked probabil-
ity skill score (RPSS) is computed:

RPSS= 1−
RPSfc

RPSref
. (6)

Here, with respect to the conditional verification using the
decomposition of the skill score, we want to evaluate the
probabilistic hindcast skill stratified along three phases (neg-
ative, neutral, and positive) of the AMO, instead of two (as
demonstrated in Sect. 2). That means, the RPS and RPSS of
the entire period contain every initialization year t from 1960
to 2012 as a time step, while the AMO-phase-specific terms
only consider initialization years that are related to the asso-
ciated AMO phase.

The information about the significance of the RPSS is
based on a 5-year-block bootstrapping method by a 1000-
fold resampling of the forecast and reference observation
cases in the entire period. The RPSS value is considered sta-
tistically significant if 0 is outside of the 95 % of inner values
of the bootstrap distribution.

A large part of the routines used for verification pre-
sented here is implemented via the ProblEMS verification
plug-in (https://www.xces.dkrz.de/plugins/problems/detail/;
via guest login; last access: 29 July 2024) in the MiKlip mod-
ule and the ClimXtreme (https://www.xces.dkrz.de; last ac-
cess: 29 July 2024) and Coming Decade central evaluation
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system (https://codes.dkrz.de; last access: 29 July 2024) –
based on the Free Evaluation System Framework for Earth
system modeling (Freva; Kadow et al., 2021).

4.4 Subset contributions of RPSS

Figure 3a shows the RPSS over the European region for the
decadal hindcast with respect to the uninitialized simulations
averaged over the entire hindcast period for lead years 2–
5. Significant values (marked with a cross) are rare. Nega-
tive significant values can be found in the Barents Sea and
a larger patch of the southwestern North Atlantic. The latter
is presumably caused by a displacement of ocean currents in
that area, as the region is especially sensitive to initializations
(Kröger et al., 2018; Polkova et al., 2019). Positive signifi-
cant skill can be found in the Greenland Sea. Besides indi-
vidual grid points with significant values, patches with posi-
tive but nonsignificant skill are visible in the eastern Mediter-
ranean and in the northeastern part of the North Atlantic.

To exemplify the stratified verification, Fig. 3b, c, and d
show the subset contributionsWiSSi to the total RPSS during
the respective negative, neutral, and positive AMO phases at
the time of the initialization following Eq. (3). Significance is
computed as for the RPSS but with 1-year-block bootstrap-
ping in the related subset period. The AMO neutral phase
(Fig. 3c) contributes to a negative (positive) RPSS in the
southwestern North Atlantic and Barents Sea (western Euro-
pean North Atlantic), while positive significant contributions
are found in western Europe (W-EU) and central Europe (C-
EU) during the negative AMO phase (Fig. 3b) as well as in
the North Atlantic under positive AMO conditions during the
initialization procedure (Fig. 3d).

4.5 Decomposition of the RPSS over the western
European North Atlantic

Next, we focus on the western European North Atlantic (W-
EU NA) region. This is motivated by (1) the different pre-
dictability associated with certain states of the ocean identi-
fied in previous studies (Zhang and Zhang, 2015; Borchert
et al., 2018, 2019) and (2) the positive total skill found in
that region. We investigate the subset contributions WiSSi
and the three terms (subset skill score SSi , frequency weight-
ing Wfreqi , and reference weighting Wrefi ) of the decompo-
sition for the annual field-mean value of the W-EU NA re-
gion (35–60° N, 40–10° W; the box in Fig. 3), according to
Eqs. (2) and (3). The subset skill score (subset RPSS) in
Fig. 4b shows no or, at most, very weak improvement of the
initialized prediction system over the uninitialized simula-
tions under negative and neutral AMO conditions during the
initialization procedure. In contrast, the subset RPSS= 0.3
for initialization during positive AMO years. For compar-
ison, the total RPSS is around 0.1 (gray horizontal line).
The frequency weighting (Fig. 4c) indicates that initializa-
tion years with a neutral AMO phase are more frequent (0.4)

than years with the other two phases. This leads to a higher
frequency weighting factor associated with the AMO neutral
phase. Figure 4d shows that the reference weighting is close
to 1 for all phases. As this component represents a poten-
tially different score for the reference system along the three
subsets, we do not expect large variability, as the uninitial-
ized reference is not influenced by the AMO phases in the
observations.

Multiplying the three components for the individual sub-
sets, we arrive at the subset contributions WiSSi (Fig. 4a).
Although the contributions show large uncertainties and are
not statistically significant, tendencies can be derived. The
contribution is mainly determined by the subset skill score
(Fig. 4b) and, to a small extent, modified by the frequency
weighting (Fig. 4c). The resulting subset contributions re-
lated to the AMO phases show that the positive AMO phase
contributes the most (around 0.08) to the total RPSS, fol-
lowed by the neutral AMO phase with a much smaller con-
tribution of 0.02.

As the reference weighting was not relevant in the above
case, we now choose a reference system affected by the
AMO phase: a lower-resolution version of the decadal pre-
diction system. The preoperational (preop) version in a low-
resolution (LR) configuration has a T63 horizontal grid
(1.875°) and 47 vertical levels in the atmospheric component,
while the ocean part has a horizontal resolution of 1.5° and
40 vertical levels. Being an older version, the low-resolution
system is forced by CMIP5 external forcing (Giorgetta et al.,
2013). The other settings (e.g., initialization and assimilation
procedure) remain unchanged compared to the preop-dcpp-
HR version introduced in Sect. 4.1. Figure 5b again shows
the RPSS of the individual subsets (bars) and the total RPSS
as a horizontal gray line. As the latter coincides with the zero-
skill-score line, we see that the initialized prediction system
preop-dcpp-HR does not outperform the low-resolution ver-
sion preop-LR over the entire period. The subset RPSS un-
der positive AMO conditions during the initialization proce-
dure is strongly negative (−0.55); a similar tendency can be
seen during the negative phase (−0.2). Only during the neu-
tral AMO phase does preop-dcpp-HR show an improvement
over the low-resolution version.

As classification of AMO phases is again based on ORA-
S4, the frequency weighting terms are the same as in the
previous case. Again, the weighting factor of the neutral
AMO phase is slightly higher than that of the other two
phases (Fig. 5c). The reference weighting exhibits huge dif-
ferences among the individual phases (Fig. 5d). While the
subset of the neutral AMO phase shows a weighting factor
of 1.4, which is approximately 40 % higher than the balanced
value (1; gray horizontal line), the reference weighting term
of the subset of the positive phase is 0.5 and, thus, only half
of the balanced one. The reference weighting associated with
the negative AMO phase (0.9) lies in between.

The individual subset contributions (Fig. 5a) are now af-
fected by all three terms of the skill score decomposition. In
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Figure 3. (a) Total ranked probability skill score (RPSS) of near-surface temperature of the initialized decadal simulations (preop-dcpp-HR)
with respect to uninitialized historical simulations and HadCRUT4 observations for lead year 2–5 from 1962 to 2017. Additionally, individual
subset contributions WiSSi are shown for the (b) negative, (c) neutral, and (d) positive AMO phase at the time of the initialization. Missing
values are depicted in gray. Crosses indicate areas with significant (95 % level) values. The box highlights the W-EU NA region analyzed in
Sect. 4.5.
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Figure 4. (a) Subset contributions (95 % confidence intervals as ver-
tical segments) related to Eq. (2) as well as the (b) subset RPSS,
(c) frequency weighting, and (d) reference weighting of subsets
(defined by the AMO phase during the initialization) according to
Eq. (3) for the conditional verification of near-surface temperature
in the W-EU NA region between initialized decadal simulations
(preop-dcpp-HR) and uninitialized historical simulations with re-
spect to HadCRUT4 observations for lead year 2–5 from 1962 to
2017. Gray horizontal lines represent (b) total skill score, (c, d) bal-
anced weightings, and (a) balanced contributions with respect to the
total skill score.

particular, the reference weighting now influences the con-
tribution to a large extent. While the subset RPSS (Fig. 5b)
suggests a strong negative contribution to the overall skill
driven by a positive AMO phase alone, the subset contribu-
tion (Fig. 5a) allows a slightly different interpretation: posi-
tive (statistically significant) as well as negative AMO phases
contribute negatively to the overall skill score by similar
amounts, counteracting the benefits from the neutral AMO
phase.

5 Summary and discussion

We present a decomposition of skill scores into contributions
from subsets of the forecasts that are selected according to
characteristics of processes or large-scale circulation, climate
states during initialization of the forecast system, seasons, or
regions. We give examples of this decomposition in the con-
text of synthetic data designed to reveal situations in which

Figure 5. Same as Fig. 4 but with the preop-LR-initialized predic-
tion system as a reference.

this decomposition shows its usefulness. To achieve this, the
synthetic cases show different performance characteristics of
forecast and reference systems in two subsets. These subsets
contribute differently to the overall skill score in an additive
way according to their size, the performance of the forecast
system on the subset, and the performance of the reference
system on the subset compared to the full data set. Hence,
the subset contribution of a specific subset to the overall skill
can be decomposed into the following:

subset skill score SSi =
S

fc
i − S

ref
i

Sperf− S
ref
i

,

frequency weighting Wfreqi =
Ni

N
,

reference weighting Wrefi =
Sperf
− S

ref
i

Sperf− S
ref .

The subset skill score measures the performance of a fore-
cast system compared to a reference system for a particular
subset, a useful and popular quantity to assess the varying
performance of a forecast system over different subsets; this
is frequently used to detect enhanced/reduced predictability
for certain climate and large-scale circulation states or spe-
cific seasons and regions (see the references mentioned in
Sect. 1). The frequency weighting reflects the size of the sub-
set with respect to the full data set. For small subsets, it re-
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duces the subset’s contribution to the overall skill and vice
versa for large subsets. The reference weighting adjusts the
scale (or range) of the skill score, which is set by the dif-
ference between the reference performance of the subset and
the perfect forecast, to the scale relevant for the overall data
set. For negatively oriented scores with Sperf

= 0, this is ex-
pressed by the ratio of the two differences (see Eq. 3). Ref-
erence weighting and frequency weighting are both indepen-
dent of the forecast system. The product of all three terms
yields the subset’s contributions to the overall skill score.

We expect that this decomposition helps to avoid misinter-
preting a potential performance increase in a subset result-
ing, for example, from a significant performance decrease in
the reference system. In this context, climatological forecasts
used as a reference system could also impact the interpreta-
tion of the skill, as discussed in publications such as Hamill
and Juras (2006).

Subsequently, we exemplify the RPSS decomposition in
the context of the MiKlip decadal prediction system stratified
along characteristics of the AMO during forecast system ini-
tialization. The goal is the quantification of hindcast skill for
the near-surface air temperature for lead year 2–5 over the
North Atlantic and European region. The hindcasts (preop-
dcpp-HR) show a weakly positive overall skill (locally sig-
nificant) in the northeastern part of the North Atlantic and in
the eastern Mediterranean compared with uninitialized his-
torical simulations. Stratified verification along positive, neg-
ative, and neutral AMO phases for initialization reveals the
following:

– a negative subset contribution to the total RPSS in the
southwestern North Atlantic and Scandinavia for a sub-
set associated with neutral AMO;

– a positive subset contribution for W-EU and C-EU
(AMO negative) and in the North Atlantic (AMO pos-
itive) for subsets associated with negative and positive
AMO.

Although not statistically significant, the decomposition
for the western European North Atlantic box shows that the
subset associated with a positive AMO phase at the time of
the initialization contributes to the positive total RPSS, with
a positive subset skill score only slightly modified by the fre-
quency weighting. The latter findings are similar to those of
Borchert et al. (2018), as the AMO/AMV phases are linked to
OHT with a lag of 5–10 years. Nevertheless, a stratification
along different OHT states may strengthen the distinction be-
tween each subset.

Additionally, evaluation of the decadal hindcast system
versus a low-resolution (preop-LR) version shows that in-
dividual subset contributions are affected by all three terms
of the decomposition, with the reference weighting playing
a particular role. This leads to a slightly different conclu-
sion: while the subset RPSS suggests that the strong negative
contribution to the overall skill is mainly driven by positive

AMO initialization, the decomposition reveals that both the
negative and the positive AMO phases contribute negatively
by the same amount, counteracting the benefits of the neutral
AMO phase.

As our study does not fully account for uncertainties and
the results are partly sensitive to the defined W-EU NA region
and the chosen AMO index representing the ocean state (see
the Supplement), further indices and sensitivity studies in-
cluding the consideration of uncertainties can be applied for
a more robust analysis. As this paper focuses on suggesting
the framework of skill score decomposition for stratified ver-
ification, demonstrated as a potential application in decadal
predictions, detailed and robust analysis of the physical pro-
cesses responsible for varying skill is beyond the scope of
this study.

6 Conclusions

The verification of forecast systems stratified by the char-
acteristics of physical processes, large-scale circulation, cli-
mate states at initialization, seasons, or regions can be a help-
ful tool for model development, the detailed assessment of
forecasts quality, and the communication of forecasts. How-
ever, interpretation and comparison of skill scores across dif-
ferent strata can be challenging. This is not only the case for
different subset sizes (frequency weighting) but also if the
performance of the reference system varies strongly across
subsets (reference weighting).

Both examples, the synthetic data and the decadal fore-
casting case, exemplify the potential of skill score decom-
position for stratified verification. For the decadal predic-
tion system, we see the strongest degradation of performance
compared with its low-resolution system if it is initialized
during positive AMO phases. However, the error in the ref-
erence system compared to the observation in that subset is
smaller than that of the entire time series (as can be seen by
the lower reference weighting). As a consequence, the pos-
itive AMO phase negatively contributes to the overall per-
formance by nearly the same amount as the negative AMO
phase, although the subset skill score is much worse. In prac-
tice, potential model diagnostics and improvements should
focus on both phases, rather than examining only the posi-
tive AMO phase suggested by the subset skill score assess-
ment alone.

As the predictability is linked to the state of the ocean
(Zhang and Zhang, 2015; Borchert et al., 2018, 2019), we
can apply the interpretation to the perspective of predictabil-
ity. Assuming that a reasonably skillful reference can indi-
cate inherent predictability, we would benefit more from im-
provements to subsets/situations with limited predictability
in terms of the overall skill, as there is more room for im-
provement if the reference system performs poorly. However,
it can be more challenging to improve the skill in these low-
predictability situations, as the factors that contribute to pre-
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dictability may be less influential or absent. Accordingly, the
decomposition can help to prioritize the aspects in order to
support decision-making assessments. Beyond decadal pre-
dictions, the simultaneous investigation of the terms could
be useful to evaluate and interpret regionally (e.g., between
mountains and lowlands) or seasonally varying error behav-
iors with respect to the total model performance. A possible
application is shown in Peter et al. (2024) using the example
of the evaluation of statistical models for extreme precipita-
tion.

The skill score decomposition into contributions from suit-
able chosen subsets helps to understand possible model mis-
behavior in a detailed and robust way, as subsets can be cho-
sen based on the characteristics of physical processes. This
yields valuable information for the refinement of the forecast
system or model development. Besides the state of the ocean
or other large-scale conditions, seasonal and regional aspects
or other aspects can be addressed. Conditional or stratified
verification can be used to investigate known or hypothet-
ical linkages in the area of climate and weather forecasts,
including the ability to simulate and represent specific feed-
back mechanisms. The example above examines the poten-
tial source of long-term predictability forced by certain ocean
states associated with the AMO.

Finally, to support decision-making related to weather and
climate, operational forecasts can be optimized by assessing
and communicating their credibility in a more specific and
situation-based way using stratified evaluation based on the
initialization conditions and the related skill score decom-
position. Depending on the initialization conditions, forecast
skill can be quantified and the forecast can eventually be
rated as more precise, as addressed in Borchert et al. (2019).
The identification of windows of opportunity for enhanced
skill on subseasonal to decadal timescales is similar (Mariotti
et al., 2020). A potential application outside of the domain of
decadal prediction could be the identification and analysis of
such a window. In weather forecasting, the conditional verifi-
cation stratified along particular flow regime conditions (e.g.,
blocking) or along different states of the MJO and ENSO in
subseasonal to seasonal predictions could be reasonable. In
the example using decadal forecasting, a better temperature
forecast ability of the prediction system compared with the
uninitialized one is achieved over parts of the North Atlantic
for initialization during positive AMO phases.

The skill score decomposition framework suggested and
exemplified in the context of conditional or stratified veri-
fication is a relatively simple tool to analyze physical pro-
cesses related to certain subsets and, consequently, supports
model development and the optimization of operational fore-
casts and their communication.

Code and data availability. The code used for the verifica-
tion of decadal predictions was written in Shell and R and
used Climate Data Operators (CDO). R is a GNU-licensed

free software from the R Project for Statistical Computing
(http://www.r-project.org, R Core Team, 2021; last access: 11
January 2024). CDO (https://doi.org/10.5281/zenodo.10020800,
Schulzweida, 2023) is open source and released under the
3-clause BSD License. It is implemented as a software rou-
tine (ProblEMS plug-in) in the Freva system (Kadow et al.,
2021) at the Deutsches Klimarechenzentrum (DKRZ) and is
versioned in GitLab. The version (1.6.3) used in this study is
publicly available at https://doi.org/10.5281/zenodo.10469658
(Richling et al., 2024a). Synthetic examples, simulation data
used in the conditional verification, and computed AMO
time series (including computational routines) are publicly
available at https://doi.org/10.5281/zenodo.10471223 (Rich-
ling et al., 2024b). HadCRUT4 data are freely available at
https://www.metoffice.gov.uk/hadobs/hadcrut4/data/current/
gridded_fields/HadCRUT.4.6.0.0.median_netcdf.zip (last access:
11 January 2024, Morice et al., 2012), and ORAS4 ocean reanal-
ysis data can be obtained from https://icdc.cen.uni-hamburg.de/
thredds/aggregationOras4Catalog.html?dataset=oras4_temp_all
(last access: 11 January 2024, Balmaseda et al., 2013).
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