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Abstract. Winter precipitation types (WPTs) are controlled
by many factors, including thermodynamic and microphys-
ical processes. Therefore, realistically simulating interac-
tions between precipitation particles and the atmosphere is
important when diagnosing the WPT. In the present study,
we analyze the performance of a modified version of the
one-dimensional spectral bin model (SBM; version 1DSBM-
19M) of Carlin and Ryzhkov (2019), which simulates the
change in the physical characteristics of precipitation parti-
cles of various sizes as they fall from the cloud top to the
ground and diagnoses surface WPTs. We compare the perfor-
mance of the SBM and four other diagnostic methods that use
the following variables: (1) atmospheric thickness, (2) wet-
bulb temperature, (3) temperature and relative humidity, and
(4) wet-bulb temperature and low-level lapse rate. Three ref-
erence WPTs (snow (SN), rain (RA), and RASN) are ob-
tained from particle size velocity (PARSIVEL) disdrometer
data using a newly proposed decision tree algorithm. The re-
sults show that the SBM has the highest overall hit rate for
all cases among five diagnostic methods. In contrast, the hit
rate of the SBM for each WPT shows lower performance for
RA than for the other methods. These results indicate that the
SBM simulations tend to underestimate melting compared to
observations. We thus explore the effects of the SBM’s mi-
crophysics scheme on the extent of melting in cases of misdi-

agnosed RA. An optimized SBM that uses the climatological
snow density–diameter relationship for the Pyeongchang re-
gion produces an increased amount of melting and achieves
improved skill scores compared to the current SBM, which
uses a snow density–diameter relationship for the Colorado
region.

1 Introduction

There is a complex variety of winter precipitation types
(WPTs), such as rain (RA), snow (SN), rain and snow
(RASN), ice pellets (IPs), freezing rain (FZRA), and a mix-
ture of ice pellets and freezing rain (IPFZRA). Various ther-
modynamical and microphysical processes can determine
surface WPTs in nature. Some microphysical processes, such
as melting, freezing, evaporation, and sublimation, change
the phase and/or mass of precipitation particles and are di-
abatic thermodynamic processes. Other microphysical pro-
cesses, such as riming and aggregation, modify particle size
distributions (PSDs), habits, and the physical characteristics
of individual particles such as their fall velocity and density
(Heymsfield, 1972; Pruppacher and Klett, 1997; Libbrecht,
2001; Barthazy and Schefold, 2006; Lee et al., 2015; Gong et
al., 2020; Vázquez-Martín et al., 2021). Aggregation widens
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PSDs by increasing the size of particles, while riming in-
creases the terminal fall velocity and density of particles.
Thus, the complexity of these processes should be accounted
for when seeking to accurately diagnose WPTs.

Several simple empirical methods are commonly used to
predict WPTs based on empirical relationships between spe-
cific meteorological variables and WPTs. For example, atmo-
spheric thickness can be used to classify WPTs. Because at-
mospheric thickness is proportional to the mean virtual tem-
perature (Tv) between two layers, a larger thickness is asso-
ciated with a higher possibility of melting. Different thresh-
olds for atmospheric thickness are used depending on the re-
gion under investigation (Koolwine, 1975; Stewart and King,
1987; Bluestein, 1993; Lee et al., 2014). In addition, nomo-
grams of relative humidity (RH) and temperature (T ) on
the ground can be used to determine the WPT. Matsuo et
al. (1981) proposed RH–T relationships to distinguish three
WPTs (RA, RASN, and SN), and Lee et al. (2014) sub-
sequently modified this using observational data. Wet-bulb
temperature (Tw) can also be used as a predictor. Tw is de-
fined as the temperature of the air when brought to saturation
by the evaporation of water. Tw is a better-conserved quan-
tity than T , which makes it useful for short-range predictions.
Häggmark et al. (2000) developed a probability density func-
tion (PDF) for SN as a function of the surface Tw (Tw0). Re-
cently, joint probability distributions for SN using Tw and
0low (low-level lapse rate; the rate of change in tempera-
ture from the surface to 500 m above ground level (a.g.l.),
in °C km−1) have been proposed based on an analysis of
global statistical data (Sims and Liu, 2015). By including
0low, the scheme proposed by Sims and Liu (2015) takes into
account situations where the melting of ice particles begins
while they are falling, which is especially important for con-
ditions that include low-level temperature inversions. How-
ever, because this scheme was developed using global data
without regional and/or synoptic weather dependence, it is
only valid when used in a globally averaged manner. The
validity for the regions of this study has not been investi-
gated in Sims and Liu (2015). In addition to those described
here, many other WPT diagnostic methods based on the en-
vironment or numerical model data have been proposed (e.g.,
Ramer, 1993; Baldwin et al., 1994; Bourgouin, 2000; Schuur
et al., 2012; Benjamin et al., 2016). As an example, Benjamin
et al. (2016) suggested diagnostic logic for WPT using out-
put of the Rapid Refresh (RAP) and High-Resolution Rapid
Refresh (HRRR) models, such as 2 m T , total precipitation,
precipitation except graupel, snow-only precipitation, snow
fraction, and precipitation rate. The diagnostic logic classi-
fies four WPTs (RA, SN, FZRA, IP) based on a decision tree
method.

Other studies have attempted to predict WPTs using en-
vironmental data combined with an explicit microphysical
model (e.g., Reeves et al., 2016). This approach is motivated
by the fact that the rate of change between phases varies
with particle size; for example, small particles may melt en-

tirely, while larger particles remain predominantly ice. This
subsequently affects refreezing because the threshold for T
needed to initiate refreezing depends on whether an ice nu-
cleus remains in the particle or whether it is entirely liquid.
As such, the accurate diagnosis of WPTs at the surface re-
quires consideration of these processes as a function of parti-
cle size, particularly for a mixture of WPTs (e.g., RASN and
IPFZRA).

The one-dimensional spectral bin model (SBM) proposed
by Reeves et al. (2016) separates the precipitation PSD into
various bins and calculates the phase change for each of
these bins at sequential height intervals using heat balance
equations that depend on the environmental T and humidity
(Rogers and Yau, 1989; Pruppacher and Klett, 1997). The re-
sultant WPT (RA, SN, RASN, IP, FZRA, or IPFZRA) is pre-
dicted based on the relative fractions of ice and liquid at the
surface (see Sect. 3.2 for more details). The original formu-
lation (Reeves et al., 2016) used a fixed PSD of aggregated
SN particles with various degrees of riming and was mass
conserving by only considering melting and refreezing. Car-
lin and Ryzhkov (2019) expanded the microphysical compo-
nent of the SBM to include varying PSDs, multiple particle
habits, and sublimation and evaporation. The addition of sub-
limation and evaporation is motivated by the fact that these
processes can effectively eliminate hydrometeor mass at the
low end of the PSD, thus affecting the resulting classification.
Evaluation of the original SBM optimized for the United
States (Reeves et al., 2016) revealed that the model was
highly skilled in discriminating FZRA and IPs but achieved
slightly lower scores for SN and RA when compared to other
algorithms that rely only on environmental metrics (Ramer,
1993; Baldwin et al., 1994; Bourgouin, 2000; Schuur et al.,
2012). Owing to this continued development, there have been
different versions of the SBM documented in the literature:
the original version of Reeves et al. (2016), the so-called
1DSBM-19 described above (Carlin and Ryzhkov, 2019),
and the new 1DSBM-19M presented herein (i.e., a modified
version of 1DSBM-19). 1DSBM-19M is used in this study,
with the differences from 1DSBM-19 described at https:
//doi.org/10.5281/zenodo.14350651 (Carlin et al., 2024).

Intensive observation networks employing a variety of
instruments (e.g., disdrometers, weighing gauges, radar, li-
dar, and rawinsondes) were established at many sites along
the South Korean coastline and across the Taebaek Moun-
tains during the International Collaborative Experiments for
Pyeongchang 2018 Olympic and Paralympic winter games
(ICE-POP 2018) campaign (Lee and Kim, 2019; Gehring et
al., 2020). The Taebaek Mountain ranges are complex, ex-
periencing sudden changes in surface conditions due to the
effects of the relatively warm ocean and cold mountainous
terrain frequently occurring in this region. Thus, winter pre-
cipitation in this region is affected by different synoptic pat-
terns, orographic effects, and air–sea interactions (Nam et
al., 2014; Kim et al., 2019). There are also many local and
small-scale phenomena to consider, such as the occurrence
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of cold pools due to the development of coastal fronts, the
formation of inversion layers aloft as a result of these cool
pools, and greater low-level thermal instability due to warm
and moist advection from the ocean. Nevertheless, although
the accurate diagnosis of the WPT is challenging in this re-
gion, the intensive observation data density available due to
the ICE-POP network allows for an extensive evaluation and
optimization of previously proposed WPT diagnosis meth-
ods.

In this study, we aim to compare the performance of
the SBM (version 1DSBM-19M) with empirical methods
in terms of diagnosing the WPT using observations from
rawinsondes. The four empirical approaches tested are the
1000–850 hPa thickness (H850 method), RH0–T0 method
(Lee et al., 2014), Tw0 (Häggmark et al., 2000), and Tw0–
0low method (Sims and Liu, 2015). The diagnosed WPT is
verified using WPT data obtained from particle size veloc-
ity (PARSIVEL) disdrometers collected during the ICE-POP
2018 period (November 2017–April 2018).

2 Data

2.1 ICE-POP 2018 observation sites

The northeastern region of South Korea is characterized by
cold air and warm ocean temperatures in winter and complex,
steeply sloped terrain from mountain ranges to the ocean
(Fig. 1). An intensive observational survey was conducted
in this region during the ICE-POP 2018 campaign from
November 2017 to April 2018, with 20 PARSIVELs installed
at 18 sites (the cross symbols in Fig. 1a) along the coastline
and in the mountain ranges to record WPTs under various
atmospheric conditions. Rawinsonde observations were also
made every 3 h at five sites: two sites in the coastal region
(Sokcho (SCW) and the Gangwon Weather Administration
(GWW)), one site at the entrance of the mountain ranges
(Bokwang1-ri Community Center (BKC)), and two sites in
mountain valleys (Myeonon Observatory (MOO) and Daeg-
wallyeong Regional Weather Office (DGW)). In addition, 11
micro rain radars (MRRs) were installed at some of the sites
(square symbols in Fig. 1a). The MRRs are vertically point-
ing K-band radars, and their data are useful for understanding
the vertical characteristics of precipitation.

The eastern sites in the Taebaek Mountains are at a rel-
atively low altitude, with SCW, GWW, and BKC being 18,
79, and 175 m above mean sea level (a.m.s.l.), whereas the
western sites (DGW and MOO) are 773 and 532 m a.m.s.l.,
respectively. We analyze the PARSIVEL data to identify the
WPTs from the five sites (SCW, MOO, BKC, Gangneung-
Wonju National University (GWU), and DGW; Fig. 1b–f)
that are collocated with or closest to a rawinsonde observa-
tion. The PARSIVEL data at GWU are matched with sound-
ing data from GWW, which is about 3.88 km away with a
similar altitude (GWU: 36 m a.m.s.l.). This atmospheric en-

Figure 1. (a) Topography and observational supersites in the north-
eastern region of South Korea during the ICE-POP 2018 period.
Photographs of PARSIVELs at the five sites: (b) SCW, (c) MOO,
(d) BKC, (e) GWU, and (f) DGW. The cross symbols indicate PAR-
SIVELs, and squares (circles) indicate MRRs (rawinsondes) in (a).
The sites used in this study are labeled with text in (a).

vironment and these high-resolution soundings are optimal
for comprehensively testing the diagnosis of WPTs.

2.2 Observational data and quality control

A PARSIVEL is a disdrometer that uses a laser beam with a
wavelength of 780 nm to obtain a particle’s equivolume di-
ameter (D, mm) and terminal fall velocity (Vt, m s−1) based
on changes in the laser beam signals. The measurable range
of D (Vt) is from 0.3 mm (0.1 m s−1) to 30 mm (20 m s−1).
The overall error in D is within 5 %, and Vt has errors rang-
ing from 10 % to 25 % asD changes (Löffler-Mang and Joss,
2000). We suggest how to deal with these measurement er-
rors in Sect. 3.1. Version 2 PARSIVELs and level 1 data are
used in the present study. Level 1 data are format-converted
with no processing and provide particle counts for individ-
ual diameter and velocity channels (a 32 by 32 array) every
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minute. Because the observed PARSIVEL data contain out-
liers that may be the result of various forms of error, such
as calibration errors and “margin fallers” (Yuter et al., 2006),
we eliminate any of the level 1 data that meet at least one of
the following two criteria: (i) D < 1 mm and (ii) Vt > 1.4Va.
Va is the empirical relationship betweenD and Vt established
by Atlas et al. (1973).

A modem-type rawinsonde (M10) is used for the ICE-POP
2018 campaign (In et al., 2018). The observation variables
recorded by the M10 rawinsonde are pressure (P , hPa), T
(°C), RH (%), wind speed (WS, m s−1), and wind direction
(WD, °) at 1 s intervals. Additionally, Tw is calculated using
the two-parameter relationship for T and RH suggested by
Stull (2011). Although rawinsonde data are useful as a ref-
erence of atmospheric vertical structure, the absolute accura-
cies of T and RH of the M10 rawinsonde sensor are 0.3 °C
and 3 %, respectively (In et al., 2018). The impact of these
measurement errors can be significant near 0 °C, where phase
changes of precipitation particles occur.

The MRRs are modulated continuous-wave (FMCW)
radars using a solid-state transmitter with a frequency of
24 GHz (Maahn and Kollias, 2012). In this study, the range
resolution of the MRRs is set to 150 m. This resolution is
enough to identify the melting layer (ML) because the av-
erage ML depth based on dual-polarization radar measure-
ments from the Korean Peninsula during winter is about
670 m (Allabakash et al., 2019). MRR data include vertical
profiles of radar reflectivity (Z, dBZ) and Doppler velocity
(Vr, m s−1) in precipitation. Z and Vr can be contaminated
by noise, including non-meteorological echoes. Moreover, if
Vr exceeds the Nyquist velocity boundaries (−6 to 6 m s−1)
of the MRR, aliasing of Vr will occur (Maahn and Kollias,
2012). In general, large raindrops in heavy-rainfall events
cause the aliased data. Therefore, raw data from the MRRs
are quality controlled using de-aliasing and the noise removal
algorithm suggested by Maahn and Kollias (2012). The pro-
cessed MRR data are used to provide additional context for
important cases in the present study.

3 Methods

3.1 Determining the winter precipitation type

Three WPTs are considered in the present study: SN, RA,
and RASN. SN is defined as solid precipitation such as dry
snow, while RA is defined as liquid precipitation. FZRA is
included in RA because it is in a liquid phase when observed
by a PARSIVEL. RASN is mixed-phase precipitation that
includes wet snow. IPs are very difficult to identify using
only PARSIVEL data without photographic data because Vt
of IP can have two modes: a low-speed mode that is similar
to Vt of graupel or small hail and a high-speed mode sim-
ilar to raindrops (Nagumo and Fujiyoshi, 2015). Thus, the
lack of multi-angle snowflake cameras (MASCs) or similar

equipment at some sites (DGW, SCW, and MOO) is an issue
for this analysis. In addition, IPs in the Pyeongchang region
are only observed under very specific atmospheric conditions
(i.e., very strong inversion (> 5 K) with a freezing layer at
800–900 hPa and melting layer (ML) at 700–800 hPa; Chae
et al., 2024) and are thus rare.

The 5 min PARSIVEL data are projected onto a Yuter et
al. (2006) scheme that divides the data into three regions
(RA, SN, and an ambiguous region; Fig. 2a), after which
the number (N ) of particles for each type is counted. The
fractions of FRA and FSN are calculated using the following
equations:{
FRA = 100 (%)× NRA

NTotal

FSN = 100 (%)× NSN
NTotal

, (1)

where NRA and NSN are the number of particles identified as
raindrops and snow particles, respectively, and NTotal is the
number of particles across all three regions.

We obtain a total of 131 matched precipitation cases to
validate the five diagnostic methods during the ICE-POP pe-
riod (1 November 2017–30 April 2018). If precipitation is
observed when a sounding launches at a specific time and
site, the event includes a matched precipitation case. Cases
are identified that feature measurable precipitation at any of
the five sounding sites that satisfy two conditions. We iden-
tify precipitation cases at each site that satisfies two con-
ditions: (i) NRA+NSN ≥ 15 within 5 min of the sounding
start time, and (ii) −4 °C<T0< 6 °C and RH0 > 40 % at the
sounding start time. Here, T0 and RH0 are the data recorded
1 s after the start of the sounding that represent the sur-
face T and RH measured by the rawinsonde. Based on this
hydrometeor-type classification scheme, the dominant WPT
of the matched precipitation cases is determined using the
newly developed algorithm with the quality-controlled 5 min
PARSIVEL data (Fig. 2b).

The newly developed algorithm consists of three steps:
(i) an FRA check, (ii) an FSN check, and (iii) redetermination
of the WPT. First, we classify RA from the matched precip-
itation cases while taking into account potential differences
in the hardware calibration of each PARSIVEL. If the hard-
ware is correctly calibrated, FRA should be 100 % for pure
rainfall cases. The normalized frequency (NF) distributions
of FRA during the ICE-POP period with a TAWS of > 7 °C
are shown in Fig. 3. NF can be calculated as the frequency of
each class divided by the total frequency. TAWS is the 5 min
mean temperature from the nearest automatic weather station
(AWS), and FRA is calculated using 5 min PARSIVEL data
from the same site. The only exception is BKC, which has no
corresponding AWS; in this case, FRA from the PARSIVEL
at BKC and TAWS at GWU are matched, with TAWS corrected
for the difference in altitude between the two sites assuming
a general temperature lapse rate (6.5 °C km−1). The FRA at
which the cumulative NF (solid black line) reaches a thresh-
old value of 0.05 is defined as Fsite (dotted black line). Fsite
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Table 1. The number of matched precipitation cases for each obser-
vation site and WPT.

Observation site Number SN RASN RA

SCW 20 11 4 5
GWU 10 4 2 4
BKC 29 19 2 8
DGW 37 33 2 2
MOO 35 23 5 7

Total 131 90 15 26

varies by site (GWU: 65.2 %, BKC: 81.1 %, SCW: 61.6 %,
MOO: 57.9 %, and DGW: 68.1 %). Based on the information
presented in Fig. 3, the matched precipitation cases at each
site with FRA > Fsite are classified as RA.

Second, we divide the remaining cases into high-SN-
fraction (FSN > 50 %) and low-SN-fraction (FSN ≤ 50 %)
groups. The high-SN-fraction group indicates a greater like-
lihood of dry snowfall and is classified as SN, while the low-
SN-fraction group indicates a greater likelihood of wet snow-
fall and is classified as RASN. After these first two steps,
the 131 matched precipitation cases are provisionally divided
into 24 RA, 20 RASN, and 87 SN cases.

In the third step, we manually examine the classification
results using Vt–D scatterplots and redetermine the WPT of
some cases that are clearly misclassified. Two RA cases and
an SN case that have multiple curves in the Vt–D scatter-
plots are reclassified as RASN. Four RASN cases with a
single curve similar to an empirical RA curve (Atlas et al.,
1973) are reclassified as RA. Another four RASN cases with
a single curve similar to an empirical graupel curve (Lee
et al., 2015) are reclassified as SN. Two SN cases with a
widely scattered distribution in their Vt–D scatterplot de-
spite weak wind conditions (< 3 m s−1) at the near surface
are reclassified as RASN. Two RASN cases with predomi-
nantly small snowflakes with various fall speeds are reclassi-
fied as SN because the cases are characterized by strong wind
(≥ 9 m s−1) near the surface and at low levels (< 1 km a.g.l.),
strong speed shear (≥ 5 m s−1 km−1), and very cold condi-
tions (maximum Tw in sounding profile ≤−3 °C). Strong
wind shear can lead to greater turbulence, thus generating
tiny snowflakes (Dedekind et al., 2023) with chaotic move-
ment that are more likely to be erroneously classified as
RASN.

Following this redetermination step, a total of 26 RA,
15 RASN, and 90 SN cases are identified. The numbers of
matched precipitation cases by observation site and WPT are
listed in Table 1. More than half of the SN cases (56 of 90)
occur at mountain sites (DGW and MOO), whereas many of
the RA cases (17 of 26) occur at coastal sites (SCW, GWU,
and BKC). A similar number of RASN cases occurs at both
site types.

3.2 Winter precipitation type diagnosis methods

The efficacy of the SBM and four empirical methods for
diagnosing WPT is evaluated using the observed sounding
data. Nomograms for the WPT for each of the four empiri-
cal methods are presented in Fig. 4.H850 diagnoses the WPT
based on a threshold 1000–850 hPa thickness that is empir-
ically determined (Fig. 4a; Lee et al., 2014). H850 is calcu-
lated as follows:

H850 =
Rd Tv

g
ln
P1

P2
, (2) RA: H850 ≥ HRA

SN: H850 < HSN
RASN: HSN ≤H850 <HRA,

(3)

where Rd is the dry-air constant (287 J K−1 kg−1), g is the
standard gravitational acceleration (m s−2), P1 is 1000 hPa,
P2 is 850 hPa, and Tv is the mean Tv between 850 and
1000 hPa. Tv is calculated as a function of T , P , and RH (Lin,
2016). When the 1000 hPa data are unavailable, such as at the
high-altitude sites (DGW and MOO), we use Tv at 925 hPa
as an alternative for Tv. The diagnosed WPT is SN if H850 is
lower than HSN, while it is RA if H850 is higher than HRA.
When H850 is between HSN and HRA, the diagnosed WPT is
RASN. Lee et al. (2014) determined that theHSN andHRA of
South Korea at low-altitude sites (< 100 m a.m.s.l.) are 1281
and 1297 gpm, respectively, whereas the HSN and HRA of
DGW are 1299 and 1313 gpm, respectively. The WPTs at
GWU, BKC, and SCW are diagnosed using the former crit-
ical values, while DGW and MOO are diagnosed using the
latter. The reason for using different critical values is that
GWU, BKC, and SCW are located near the East Sea at a low
altitude and east of the Taebaek Mountains, whereas DGW
and MOO are located within the Taebaek Mountains and are
situated at a relatively higher altitude (Fig. 1a).

The RH0–T0 method employs the shifted Matsuo scheme
suggested by Lee et al. (2014). Figure 4b presents the diag-
nosed WPTs based on the RH0–T0 plot, with the two dashed
lines derived from the following equations (Lee et al., 2014):

RH0 = −12T0+ 120, (4)

RH0 = −
100
13

T0+ 89.5, (5)

where T0 and RH0 are in degrees Celsius and percentage,
respectively. Equations (4) and (5) are used to separate RA
from RASN and RASN from SN, respectively.

Third, the Tw0 method uses the probability of SN as a
function of Tw0 to diagnose WPT (Fig. 4c, Häggmark et al.,
2000). We used threshold probability values of 10 % and
90 % for the classification of WPTs. Thus, the diagnosed
WPT is SN if the wet-bulb temperature at the surface (Tw0)
is lower than 0.5 °C, whereas it is classified as RA if Tw0
is larger than 1.8 °C. When 0.5 °C≤ Tw0< 1.8 °C, the diag-
nosed WPT is RASN. Other probability values (20 % and
80 %; 30 % and 70 %) are also explored.
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Figure 2. (a) Yuter et al. (2006) scheme. The color indicates the determined precipitation type, where blue (red) indicates RA (SN) and green
indicates an ambiguous precipitation type. (b) A new decision tree algorithm of WPT from PARSIVEL data. The number of each WPT is
shown in parentheses.

Figure 3. Normalized frequency distribution of FRA of pure rainfall cases with TAWS > 7 °C during the ICE-POP period at (a) GWU,
(b) BKC, (c) SCW, (d) MOO, and (e) DGW. The solid black line is cumulative NF, and the dotted black line is the 0.05 threshold.

Using global surface-based (land station and shipboard)
observations over multiple decades, Sims and Liu (2015)
studied the influence of various geophysical parameters
on precipitation phase, including near-surface air T , atmo-
spheric moisture, low-level vertical T lapse rate (0low), sur-
face skin temperature, surface pressure, and land cover type.
Because snow melting occurs close to Tw (∼ 0 °C) instead
of the actual air T , Sims and Liu (2015) evaluated the SN–
RA transition using Tw instead of air T . Their analysis indi-
cated that, in addition to Tw, the vertical T lapse rate between
the surface and 500 m significantly affects the precipitation
phase. For example, at a near-surface Tw of 0 °C, a lapse rate

of 4 °C km−1 results in a conditional probability of 0.814 for
solid precipitation, while a lapse rate of −3 °C km−1 (inver-
sion) results in a probability of 0.404 (Fig. 4d: conditional
probability of solid precipitation on land). Based on this find-
ing, they developed a WPT diagnostic scheme that employs
Tw and 0low as inputs and returns the conditional probabil-
ity of solid precipitation. The conditional probability was de-
rived by the ratio of the number of solid precipitation cases
divided by the number of any precipitation cases under the
prescribed Tw and 0low conditions. This algorithm has been
incorporated into the current Global Precipitation Measure-
ment (GPM) mission algorithm used to determine precipita-
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Figure 4. Nomograms for diagnosis of WPTs. The different colors indicate SN (red), RASN (green), and RA (blue). Classification of WPTs
using (a) H850 and (b) the RH0–T0 graph is shown with the dashed lines suggested in Lee et al. (2014). (c) Probability function (solid line)
of SN as a function of the wet-bulb temperature at the surface, Tw0 (Häggmark and Ivarsson, 1997). (d) Probability distribution (solid and
dashed lines) of SN on the Tw0–0low graph for land areas (Sims and Liu, 2015). Here, the subscript “0” indicate the near-surface value.

tion phases (Huffman et al., 2020). Because the probability is
computed using global data without accounting for regional
and/or synoptic weather dependencies, its performance over
the ICE-POP 2018 domain has not been examined. Similar
to the previous method, threshold probabilities of 0.1 and
0.9 are used to classify the WPT using the Tw0–0low method
(Fig. 4d), though other threshold values (0.2 and 0.8; 0.3 and
0.7) are also explored. 0low is defined as

0low =
(T0 m a.g.l.− T500 m a.g.l.)

0.5 km
. (6)

As described in Sect. 1, the SBM simulates the characteris-
tics of precipitation particles across the size spectrum as they
fall through the ambient environment. Figure 5a presents the
general process used by the SBM. When initialized from an
external sounding (as done in this study), the cloud top is
denoted as the highest height with an RH of at least 80 %
(Reeves et al., 2016). From the cloud top to the surface, en-
vironmental variables are then calculated and interpolated to
a 10 m vertical grid spacing. Because the particle bins are
independent (i.e., no aggregation/breakup is accounted for),
the SBM loops through each height level for a given particle

size bin before considering the next larger size. Sublimation
occurs in environments subsaturated with respect to ice if the
particles have no meltwater; if the particles do contain melt-
water, evaporation occurs if the environment is subsaturated
with respect to water. Similarly, melting occurs if there is
ice mass remaining and the surface T of the particle reaches
0 °C. Refreezing occurs under two conditions: if there is both
liquid and ice present in a particle and Tw is below 0 °C or
if Tw is at or below the nucleation T (Tc, °C) regardless of
the remaining ice mass because re-nucleation is assumed to
occur. Each microphysical process results in temporal trends
in the ice and/or water mass, which is used to calculate the
total change in ice or water mass within a given grid level
based on the particle residence time. After this, all of the par-
ticle properties (e.g., density and terminal fall velocity) are
updated to reflect the new mass and composition of each par-
ticle, and these serve as the initial particle properties for the
subsequent grid level. This process continues until the bin is
empty (i.e., the entire particle mass has sublimated or evap-
orated) or until the surface is reached. For more details, see
Reeves et al. (2016) and Carlin and Ryzhkov (2019).
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Figure 5. (a) Flowchart describing the SBM structure (adapted from Reeves et al., 2016; Carlin and Ryzhkov, 2019). (b) Contoured frequency
by altitude diagram (CFAD) of RH from rawinsonde data for the 131 matched precipitation cases.

Once all of the particle characteristics at the ground level
have been calculated, an overall WPT classification is de-
termined based on the rainfall rate (R; mm h−1) and snow-
fall rate (SR; mm h−1) calculated from the ground PSD. The
WPT logic of 1DSBM-19 considers the relative fractions of
R and SR, the cloud top T (to determine whether ice nu-
cleation occurs), the number of times the Tw profile crosses
0 °C, and the surface Tw (Reeves et al., 2016) to determine
which of the six WPTs is dominant. However, in the present
study, we are primarily interested in RA, SN, and RASN
only. Therefore, we simplify the classification scheme of
1DSBM-19 as follows:

RA: R > 0mm h−1 and SR= 0mmh−1

SN: R = 0mm h−1 and SR> 0mmh−1

RASN: R > 0mmh−1 and SR> 0mmh−1.

(7)

The SBM parameters used in this study are presented in Ta-
ble 2. The particles are separated into 20 size bins and ini-
tialized as “unrimed low-density snow aggregates” because
there are only 13 graupel-like events among the 91 SN events
following the hydrometeor classification method suggested
by Lee et al. (2015). The size bins are delineated such that
the equivolume diameters of fully melted particles of equal
mass in each bin are 0.1 mm apart. The largest size bin
used in this study, with a fully melted equivolume diame-
ter Dmw,max of 1.95 mm, is about 2 times the mean value of
the mass-weighted mean diameter (∼ 1 mm) obtained from
long-term rainfall observations in South Korea (Bang et al.,
2020; Kwon et al., 2020). Tc is set to−6 °C following Reeves
et al. (2016). The initial PSDs are assumed to be inverse ex-
ponential (µ= 0) and are obtained through a statistical anal-
ysis of PARSIVEL data in the Pyeongchang region (Bang
et al., 2019). The average values of N0 and λ (Table 2) are

taken from the averages of the leeward and windward sites
examined by Bang et al. (2019). Because the PSDs used to
initialize the model are measured at the surface, we assume
no mass growth/loss from the particles (e.g., evaporation/-
sublimation) for simplicity and instead only consider melt-
ing/refreezing. The assumption of mass conservation should
generally be valid for this study because almost all of the
precipitation cases are nearly saturated (RH> 80 %) below
5 km a.g.l. (Fig. 5b). The initial PSD is fixed for all events be-
cause of the lack of aircraft microphysical observation data
and the exclusion of explicit aggregation/riming processes in
the microphysics scheme in the current SBM.

3.3 Evaluation methods

We evaluate the performance of the five different methods
against the observed WPTs described in Sect. 3.1. We quan-
titatively evaluate the methods using the hit rate (h, %) and
modified hit rate (h′, %) as the skill scores:

h=
E

O
× 100%, (8)

h′ =
1
3
(hSN+hRASN+hRA)× 100%, (9)

where O is the number of observed cases, and E is the num-
ber of correctly diagnosed cases among the observed cases
for each method. We calculate h, hSN, hRASN, hRA, and h′

for each of the diagnosis methods. Here, h without a sub-
script is the overall hit rate, h with a subscript (SN, RASN,
RA) represents the accuracy for each WPT type, and h′ is the
average accuracy across all three WPTs. Additionally, skill
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Table 2. Parameters for the SBM simulation used in this study.

Control variable Value

SN habit Aggregates
rd (riming degree) 1 (no riming)
Bin size and Dw,max(in terms of melted diameter Dw) 0.1 mm, 1.95 mm
Tc (nucleation temperature) −6 °C
N0 (intercept parameter) 5834 m−3 mm−1

λ (slope parameter) 1.22699 mm−1

µ (shape parameter) 0
Thermodynamic processes Melting, (re)freezing

scores that consider false alarms (F ) are also calculated:

CSI=
E

O +F
, (10)

FAR=
F

E+F
, (11)

where CSI is the critical success index, and FAR is the false
alarm rate (Shin et al., 2022). The skill scores are also com-
pared between the mountain sites (DGW and MOO) and
coastal sites (GWU, SCW, and BKC), and the effect of ver-
tical Tw profiles on the accuracy of each diagnosis method is
investigated to assess the strengths and weaknesses of each
diagnosis method.

We also evaluate the microphysics scheme in the SBM
by analyzing cases that are misdiagnosed by the SBM. Mis-
diagnosis of precipitation in the Pyeongchang region may
occur due to regional differences in microphysical precip-
itation characteristics. In particular, the current SBM uses
a snow density–diameter relationship obtained from two-
dimensional video disdrometer (2DVD) data in Colorado
(ρs = 0.178D−0.922; Brandes et al., 2007).

A region-specific density–diameter relationship is derived
from 2DVD measurements at DGW (collected by Lee et al.,
2015) to reflect the microphysical characteristics of snow
in this region. A power-law-based regression is performed
using the weighted total least squares (WTLS) method
(Amemiya, 1997) to minimize the deviation from both the x
and the y axes (Lee et al., 2015). The region-specific density–
diameter relationship for this dataset that includes dendrites,
plates, and needles is derived as follows:

ρs = 0.09D−1.01. (12)

In this relationship, the density of snow particles in this re-
gion is generally lower than that of Brandes et al. (2007),
though with a similar inverse relationship between the diam-
eter and density. Using this relationship to optimize the mi-
crophysical scheme of the SBM, we investigate the perfor-
mance of the optimized model for the misdiagnosed cases.

4 Results

4.1 Overall accuracy of the diagnosed precipitation
types

We evaluate the performance of the H850 method, the RH0–
T0 method, the Tw0 method with 10 % and 90 % probability
values, the Tw0–0low method with 0.1 and 0.9 threshold val-
ues, the current SBM, and the optimized SBM (Fig. 6a–f,
respectively) in terms of diagnosing the WPT of the matched
precipitation cases. Overall, the optimized SBM produces the
highest h (93.1 %) and h′ (87.5 %). The lowest h is from the
RH0–T0 method (71.8 %), while the lowest h′ is exhibited by
the Tw0 method (68.4 %). The H850 method (h: 72.5 %, h′:
77.5 %) and the RH0–T0 method (h: 71.8 %, h′: 78.0 %) have
similar skill scores. The skill score sensitivity of the Tw0 and
Tw0–0low methods is analyzed according to probability val-
ues (or threshold values). The skill scores of the Tw0 method
with 20 % and 80 % probability values are h= 86.3 % and
h′ = 66.6 % compared to h= 86.3 % and h′ = 63.7 % for
probability values of 30 % and 70 % (data not shown), which
are lower than those for the default 10 % and 90 % thresh-
olds (Fig. 6c). In addition, the skill scores of the Tw0–0low
method with 0.2 and 0.8 threshold values are h= 88.5 %
and h′ = 78.8 %, while those for 0.3 and 0.7 threshold values
are h= 90.8 % and h′ = 77.1 % (data not shown). The Tw0–
0low method with 0.1 and 0.9 threshold values has a lower h
(85.5 %) and a higher h′ (85.6 %) (Fig. 6d).

Although the H850 and RH0–T0 methods are optimized
for the Korea region, their h and h′ are lower than those
of the SBM and Tw0–0low method. The Tw0 method ex-
hibits a relatively large difference between h (86.3 %) and
h′ (68.4 %), with the inclusion of Tw0 improving the diag-
nosis of SN because the accuracy of SN for methods that
include Tw0 (Fig. 6c and d) is much higher than for those that
do not include Tw0 (Fig. 6a, b). Although the Tw0 method
has the highest hSN (98.9 %), a significant number of RASN
events are misdiagnosed as SN (hRASN: 33.3 %). Because the
90 % conditional probability of SN for land areas varies from
Tw0 =−0.1 °C at 0low = 11 °C km−1 to Tw0 =−4.1 °C at
0low =−5 °C km−1 (Sims and Liu, 2015, Fig. 4d), Tw0 =

0.5 °C is too warm for the threshold. The Tw0–0low method
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approach has a higher accuracy for the diagnosis of RASN
cases and lower accuracy for SN cases compared to the SBM.
However, hRA is relatively low for the SBM (h: 69.2 %), with
8 of the 26 RA cases diagnosed as RASN, suggesting that the
amount of melting differed between the simulations and the
actual event. The diagnosis accuracy for the RA cases im-
proves when using the optimized SBM by about 15 %, while
the accuracy for the other WPTs does not differ between the
current and optimized SBMs.

The matched precipitation cases are divided into moun-
tain sites (DGW and MOO) and coastal sites (GWU, BKC,
and SCW), with the skill scores presented in Figs. 7 and
8, respectively. For the mountain sites, h (94.4 %) and h′

(89.3 %) are the highest for the optimized SBM (94.4 % and
89.3 %, respectively), and the lowest values are observed
with the RH0–T0 method approach (h: 76.4 %) and the Tw0
method (h′: 47.6 %; hRASN: 0 %). For the coastal sites, the
Tw0 method and the optimized SBM (h: 91.5 %) and the
Tw0–0low method (h′: 88.2 %) exhibit the highest accuracy;
in contrast,H850 produces the lowest accuracy (h: 62.7 %, h′:
72.3 %, hSN: 47.1 %). The skill scores for the Tw0 method at
the mountain sites are lower than those at the coastal sites,
whereas the opposite is true for the H850 method and the
RH0–T0 method approach. The Tw0 method exhibits signif-
icant differences in both hRASN and hRA with terrain, with
coastal site scores exceeding those of mountain sites. The
H850 and RH0–T0 methods exhibit large differences in hSN
with changes in the terrain, with the mountain sites scoring
higher than the coastal sites. In contrast, the skill scores for
the SBM are higher at the mountain sites compared to at the
coastal sites, while the skill scores for the optimized SBM
with RA cases are higher than those for the current SBM at
both mountain sites and coastal sites. The h value of the Tw0–
0low method at the mountain sites is higher than the h value
at the coastal sites, while h′ is lower. The Tw0–0low method
and the SBM exhibit considerable differences in hRA, with
the Tw0–0low method producing a lower hRA at the mountain
sites than at the coastal sites and the SBM demonstrating the
opposite.

The CSI (Table 3) and FAR (Table 4) are calculated from
Figs. 6, 7, and 8. The five diagnosis methods generally have
lower CSI for RASN (0–0.583) and higher CSI for RA
(0.667–1) and SN (0.471–0.971). Similarly, the FAR of the
five diagnosis methods shows the highest false alarm rate for
RASN (0.286–1) and the lowest false alarm rate for RA (0–
0.067) and SN (0–0.127). The optimized SBM shows im-
proved CSI as compared to the current SBM and the best per-
formance for all WPT categories except RA at coastal sites.
The FAR of the optimized SBM is only improved for RASN.

4.2 Dependence of diagnosis accuracy on wet-bulb
temperature profiles

The environments of the coastal and mountain sites in the
Pyeongchang region differ in many respects. In the coastal

region, the low-level atmosphere is more humid and warmer
than the mountain region due to the East Sea. The mountain
region often has inversion layers near the surface due to ra-
diative cooling, regional subsidence inversions, and cold-air
damming. Near-surface inversion layers can strongly influ-
ence the accuracy of ground-based WPT diagnosis. The dif-
ference in the altitudes between the two regions also affects
Vt because of differences in air density. Wind shear effects
associated with specific synoptic wind patterns can enhance
riming processes in the mountains of the Pyeongchang region
(Kim et al., 2021). Therefore, we assess the impact of the at-
mospheric conditions on the performance of the five methods
based on the characteristics of Tw profiles.

Figure 9 presents the observed WPTs based on the nomo-
grams used for the four empirical methods. Figure 9a shows
the distribution of observed WPTs using the H850 method.
The H850 values for SN cases range from 1273 to 1305 gpm
at the mountain sites and from 1269 to 1297 gpm at the
coastal sites. The H850 values for RA cases range from
1297 to 1329 gpm at the mountain sites and from 1289 to
1321 gpm at the coastal sites. The H850 values for RASN
cases range from 1294 to 1308 gpm at the mountain sites and
from 1282 to 1302 gpm at the coastal sites. A large propor-
tion of theH850 values for RASN is distributed betweenHSN
andHRA at both the mountain and the coastal sites. However,
H850 of many SN cases overlaps with that of RASN cases,
with the overlap especially noticeable at the coastal sites.

Figure 9b presents RH0–T0 scatterplots with the shifted
Matsuo scheme (Lee et al., 2014). Many SN cases are mis-
diagnosed as RASN due to the low T0 threshold value when
RH0 > 85 %. Thus, we can speculate that the advection of
low-level warm and humid air (T0 =∼ 0 °C; RH0 > 85 %)
during snow is likely to increase its misdiagnosis as RASN.

Figure 9c displays the distribution of observed WPTs
using Tw0. The dashed lines at Tw0 = 0.5 °C and Tw0 =

1.8 °C represent the thresholds suggested by Häggmark et
al. (2000). Tw0 of SN cases ranges from −6 to 1 °C and
that of RA cases ranges from −1 to 3.5 °C for the mountain
sites compared to −6 to 0 °C and 1 to 5.5 °C for the coastal
sites, respectively. Tw0 for RASN cases at the mountain sites
ranges from −2 to 0.5 °C. A broad overlap of RASN and
other WPTs highlights the difficulty in diagnosing WPTs in
mountain regions with a single Tw0 threshold. In contrast, the
distributions of WPTs as a function of Tw0 are much more
clearly separated at the coastal sites.

Figure 9d presents the two-dimensional distribution of ob-
served WPTs based on the Tw0–0low method with a thresh-
old snow probability of 0.1 and 0.9 (Sims and Liu, 2015).
0low of RA varies widely, though it tends toward positive val-
ues. However, three RA cases with Tw0 > 0 °C and 0low <

−2 °C km−1 have a ground inversion layer at the mountain
sites and two of them are misdiagnosed as RASN. In addi-
tion, two mountain cases are misdiagnosed as RA with high
0low (> 8 °C km−1). One is possibly FZRA (Tw0 ∼−1 °C),
and the other (Tw0: ∼ 1 °C) indicates the presence of a com-
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Figure 6. Evaluation summary of the five diagnosis methods for 131 matched precipitation cases (all cases). The methods are (a) the thickness
method H850, (b) shifted Matsuo scheme using an RH0–T0 method, (c) the wet-bulb temperature method Tw0, (d) the Sims and Liu scheme
using the Tw0–0low method, (e) the current SBM, and (f) the optimized SBM. The x axis is the observed precipitation type, and the colors
indicate the fraction of the diagnosed precipitation types: red, SN; green, RASN; and blue, RA. The diagnosed fraction of precipitation types
is shown on the y axis, with the number of cases labeled in each bar. The hit rate (h) and modified hit rate (h′) are shown as the numbers on
the top of each image.

plex atmospheric vertical structure (i.e., a melting layer aloft
and near-surface refreezing layer). An RASN case with a Tw0
of around −2 °C and a 0low of ∼ 8.5 °C km−1 also requires
investigation into the atmospheric vertical structure.

The performance of each diagnosis method is also investi-
gated as a function of the atmospheric vertical structure (i.e.,
the Tw profile) (Figs. 10–12). Figure 10a and b display the Tw
profiles for observed SN cases at the mountain and coastal
sites, respectively, with bold lines indicating misdiagnosed
cases. Figure 10 shows that characteristics of the Tw profile
below 1 km a.g.l. strongly influence the performance of all
five diagnosis methods for SN cases. The H850 and RH0–T0

methods tend to misdiagnose SN as RASN when relatively
warm conditions are present below 1 km a.g.l. This tendency
is especially noticeable at coastal sites, suggesting that SN
cases with relatively warm and moist environments are fre-
quently observed at coastal sites in the Pyeongchang region.
These cases can be accurately diagnosed as SN by using Tw0
as the threshold instead of T0. The Tw0–0low method tends
to misdiagnose the WPT in some warm environments with
low vertical lapse rates that occur at coastal sites, indicat-
ing that a slight adjustment of the Tw0 threshold is required.
The two SN cases misdiagnosed by the SBM at the mountain
sites have a very thin (< 50 m depth) near-surface warm layer
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Figure 7. Same as in Fig. 6 but for the 72 mountain cases.

Table 3. CSI of the five diagnosis methods, indicated as event category. The bolded (italic) values denote the best (worst) performance among
the five diagnosis methods within each event category.

Diagnosis method Event category

All cases Mountain cases Coastal cases

SN RASN RA SN RASN RA SN RASN RA

H850 method 0.681 0.265 0.741 0.807 0.300 0.667 0.471 0.241 0.778
RH0–T0 method 0.652 0.265 0.778 0.741 0.273 0.667 0.500 0.259 0.833
Tw0 method 0.890 0.227 0.704 0.859 0 0.444 0.944 0.500 0.833
Tw0–0low method 0.848 0.438 0.769 0.897 0.429 0.556 0.765 0.444 0.882
Current SBM 0.946 0.480 0.692 0.931 0.500 0.889 0.971 0.467 0.588
Optimized SBM 0.946 0.571 0.846 0.931 0.556 1 0.971 0.583 0.765
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Figure 8. Same as in Fig. 6 but for the 59 coastal cases.

Table 4. As in Table 3 but for FAR.

Diagnosis method Event category

All cases Mountain cases Costal cases

SN RASN RA SN RASN RA SN RASN RA

H850 method 0.016 0.723 0.048 0.021 0.684 0 0 0.750 0.067
RH0–T0 method 0.032 0.723 0.045 0.044 0.714 0 0 0.731 0.062
Tw0 method 0.101 0.583 0.050 0.127 1 0 0.056 0.286 0.062
Tw0–0low method 0.025 0.548 0 0.037 0.538 0 0 0.556 0
Current SBM 0.033 0.455 0 0.036 0.375 0 0.029 0.500 0
Optimized SBM 0.033 0.333 0 0.036 0.286 0 0.029 0.364 0
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Figure 9. Representation of observed WPTs (colors) on (a) H850 histogram, (b) RH0–T0 scatterplots, (c) Tw0 histogram, and (d) Tw0–0low
scatterplots. The colors indicate observed WPTs: SN (red), RASN (green), and RA (blue). The circles (crosses) indicate mountain (coastal)
sites. The dashed lines indicate the threshold values for diagnosing WPTs.

(WL; a layer with Tw > 0 °C in this study), highlighting a po-
tential need for slightly increasing the wet-bulb temperature
threshold used to partition SN from RASN for very shallow
near-surface warm layers.

Figure 11a and b present the Tw profiles of the mountain
and coastal sites, respectively, for RASN cases. The ground
temperature for mountain RASN cases tends to be colder
than that for coastal RASN cases, which strongly influ-
ences the performance of the wet-bulb temperature method.
An RASN case at the mountain site MOO (21:00 UTC on
4 March 2018; the same as the cold-RASN case with a Tw0 of
approximately −2 °C and a 0low of ∼ 8.5 °C km−1) is misdi-
agnosed by all five methods. The Tw profile of this case has
an isothermal layer at 1.7–2.2 km a.g.l. with a Tw of about
−0.5 °C. However, the PARSIVEL data clearly reveal the
presence of liquid-phase particles (FRA = 42.55 %). We as-
sume that melting occurs in the isothermal layer, although
there are no data revealing the presence of a warm layer, such

as vertically pointing radar data, at MOO. The SBM misdi-
agnoses two mountain RASN cases and a coastal RASN case
as SN. These cases have a near-surface Tw very close to 0 °C
but slightly less than 0 °C.

Figure 12a and b present the Tw profiles for the moun-
tain and coastal sites, respectively, for RA cases. Many RA
cases at the mountain sites have a deep warm layer and an
inversion layer below 1.5 km a.g.l. (the dotted black oval in
Fig. 12a), whereas RA cases with a shallow warm layer and
no inversion layer frequently occur at the coastal sites (the
dotted black oval in Fig. 12b). The SBM performs well in
the former scenario but poorly in the latter. Other methods
produce the opposite results, with superior performance at
the coastal sites. The presence of inversion layers makes
diagnosis based solely on ground conditions difficult. The
SBM simulations sufficiently melt all particles within deep
warm layers (i.e., 500–1500 m) in the former scenario. How-
ever, some cases of misdiagnosed RA have relatively shal-
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Figure 10. Tw profiles for observed SN cases occurring at (a) mountain sites and (b) coastal sites. The blue, red, and green lines indicate
diagnosed RA, SN, and RASN cases, respectively, for the H850 thickness, shifted Matsuo scheme using the RH0–T0 method, wet-bulb
temperature Tw0, the Tw0–0low method, and the current SBM methods. Bold lines indicate misdiagnosed cases.

low warm-layer depths (< 500 m). The SBM simulations
diagnose RASN for these cases because of the incomplete
melting of large particles. For some cases with complex at-
mospheric profiles, the SBM diagnoses RASN for FZRA-
like cases (the red arrow in Fig. 12a) with a single warm
layer and single cold layer (a layer with Tw < 0 °C below
the warm layer in the present study) and for two cases with
double warm layers and a single cold layer (the red arrow in
Fig. 12b).

4.3 Analysis of the misdiagnosed cases and
optimization of the spectral bin model

Overall, the SBM misdiagnoses two observed SN cases,
three observed RASN cases, and eight observed RA cases.
The misdiagnosed SN cases have a very shallow warm layer
near the ground. The misdiagnosed RASN cases have no
warm layer in the Tw profile, but the maximum Tw in the
sounding profile is very close to 0 °C. We hypothesize that
observation or representativeness errors in the sounding may

play an important role in the misdiagnosis of these SN and
RASN cases. For example, there are hardware errors in the
rawinsonde sensor. Changes in the rawinsonde path due to
variation in wind speed and/or direction can also influence
the diagnosis of the WPT because the atmosphere is not ho-
mogeneous.

The eight misdiagnosed RA cases are listed in Table 5.
Warm-layer depth is defined as the depth of the layer with
Tw > 0 °C in the Tw profile. We divide the cases into three
groups according to the warm-layer depth and the number of
warm layers: (1) a single warm layer with a depth of more
than 400 m, (2) a single warm layer with a depth of less than
400 m and low-level warm advection, and (3) double warm
layers. Group 1 has a warm layer with a depth of 400–600 m,
Group 2 has a warm layer with a depth of 200–400 m and
southerly flow at low levels, and Group 3 has a cold layer
between a surface warm layer and a higher warm layer.

Only a representative example from each group is shown
because each group has similar atmospheric environmental
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Figure 11. As in Fig. 10 but for observed RASN cases.

Table 5. The description of RA cases misdiagnosed by the SBM. Here, warm-layer depth is defined as the depth of the Tw > 0 °C layer in
the profile. “Aloft” indicates that the layer is not adjoined to the surface.

Group name Date/time Site Warm-layer depth Meters a.g.l. with Tw = 0 °C

(1) Single warm layer 28 Feb 2018/09:00 UTC BKC 480 m 480 m
with depth > 400 m 28 Feb 2018/12:00 UTC BKC 440 m 440 m

28 Feb 2018/12:00 UTC GWU 410 m 410 m
15 Mar 2018/15:00 UTC MOO 660 m (aloft) 1810, 1150 m

(2) Single warm layer 7 Mar 2018/12:00 UTC GWU 200 m 200 m
with depth < 400 m
and low-level
warm advection

7 Mar 2018/15:00 UTC SCW 170 m 170 m

(3) Double warm layer 15 Mar 2018/12:00 UTC GWU 660 m (aloft), 470 m 2400, 1740, 470 m
15 Mar 2018/12:00 UTC BKC 730 m (aloft), 280 m 2330, 1600, 280 m
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Figure 12. As in Fig. 10 but for observed RA cases. The arrows denote misclassified profiles that are discussed further in Sect. 4.2. The bold
red line represents a case misdiagnosed as SN, while the thicker green line represents cases misdiagnosed as RASN.

characteristics. We also compare the simulation results be-
tween the current and optimized SBMs. Figure 13 presents
the environmental profiles from the rawinsondes and Vt–
D scatterplots from the corresponding PARSIVEL taken
at around 12:00 UTC on 28 February 2018 from GWU
in Group 1 (Fig. 13a, d), 12:00 UTC on 7 March 2018
from GWU in Group 2 (Fig. 13b, e), and 12:00 UTC on
15 March 2018 from GWU in Group 3 (Fig. 13c, f). A wide
distribution of raindrop sizes (Dmax: ∼ 4.25 mm) following
the RA curve is presented in Fig. 13d for a 400 m warm
layer with strong easterly winds (Fig. 13a). In contrast, a
narrow raindrop size distribution (Dmax:∼ 1.62 mm) follow-
ing the RA curve is displayed in Fig. 13e for a 200 m warm
layer with strong low-level southerly winds (Fig. 13b). Fig-
ure 13f also shows a relatively narrow raindrop size distri-
bution (Dmax: ∼ 2.5 mm) with the matched profile character-
ized by an elevated warm layer and another warm layer near
the ground (Fig. 13c).

Figure 14 presents the relationship between the height
and liquid water fraction (fw) for the current and optimized

SBMs as a function of the particle size for the cases shown
in Fig. 13. The simulation results from the current SBM
for Event 1 show the incomplete melting of large particles
(> 1.75 mm) (Fig. 14a), whereas the fw distribution from
the optimized SBM shows complete melting of all parti-
cles at 200 m a.g.l. (Fig. 14e). The simulation results for
Event 2 show that particles with a Dw of ≤ 1.05 mm com-
pletely melt in the current SBM compared with 1.35 mm
for the optimized version (Fig. 14b and f); the optimized
SBM simulation significantly increases the amount of melt-
ing. However, the maximum diameter with complete melting
(∼ 1.35 mm) in the simulation is still slightly smaller than the
observed Dmax (∼ 1.62 mm). This difference could be the
result of three sources of error: northward advection of the
rawinsonde due to low-level southerly winds, hardware cal-
ibration issues for the GWU PARSIVEL, and/or the growth
of raindrops via a collision–coalescence process. Collision–
coalescence is also an important factor for the classification
of WPT because the process increases the average raindrop
size and decreases the number concentration of small drops.
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Figure 13. Environmental profiles (a–c) from rawinsondes and (d–f) Vt–D scatterplots from PARSIVELs for Event 1, Event 2, and Event 3,
respectively. The solid (dotted) blue line in the environmental profile indicates T (Tw), and the solid gray line is RH. “P” (plate), “D”
(dendrite), “G” (graupel), and “N” (needle) in the scatterplots depict empirical size–fall speed relationships suggested by Lee et al. (2015).
“R” (raindrop) is the empirical relationship suggested by Atlas et al. (1973). The Yuter et al. (2006) scheme is marked with a solid blue line
in the scatterplots.

However, this process is not currently included in the SBM
owing to algorithm efficiency demands, but it is a major area
for future improvement.

Simulation results for Event 3 (Fig. 14c and g) show
melting, refreezing, and additional melting during the de-
scent of the particles from the cloud top to the ground. At
the surface, the melting of large particles is incomplete in
both the current SBM and the optimized SBM, although a
deep warm layer (depth: ∼ 500 m) below the cold layer is
present. The SBM assumes that the fall speed of the parti-
cles undergoing refreezing follows the relationship for IPs
suggested by Kumjian et al. (2012). Because IPs generally
have a larger density and fall velocity than snowflakes, the
melting speed for IPs is relatively slow. To better under-
stand Event 3, we analyzed MRR data. Figure 15 presents
the time–height series for Z and −Vr observed by the MRR
at GWW on 15 March 2018. Near the sounding time, the
precipitation system drastically changes from a shallow sys-
tem (cloud top of ∼ 1.5 km a.g.l.) to a seeder–feeder system

(cloud top of ∼ 3.5 km a.g.l.) (Fig. 15a and b). It is possible
that the rawinsonde sensor passed the feeder–seeder system,
but the ground precipitation observed by the PARSIVEL ap-
pears to originate from the shallow system observed earlier
in the time series. Indeed, the Doppler fall velocities mea-
sured by the MRR from the sounding time onward between
1.0 and 1.5 km a.g.l. are relatively slow and are unlikely to
correspond to IPs as suggested by the SBM when initialized
with a higher cloud top (Fig. 14c, g). Therefore, we re-run the
SBM simulation with the cloud top set to 1.5 km. The simu-
lation results from this new run are shown in Fig. 14d and h.
Both the SBM and the optimized SBM show an increase in
melting amount in the warm layer near the ground compared
to those in Fig. 14c and g, with the optimized SBM simulat-
ing the complete melting of all particles by 200 m a.g.l.

In summary, the potential main causes of the misdiagno-
sis of RA cases when using the SBM are suboptimal micro-
physical assumptions and sources of error in the input data.
Optimization of the microphysics scheme using data from
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Figure 14. Liquid water fraction distribution as a function of height and Dw for Event 1, Event 2, and Event 3. (a–d) Simulation results of
the SBM. (e–g) Simulation results of the optimized SBM.

the Pyeongchang region significantly increases the amount
of melting compared to simulations using the current micro-
physics scheme in the SBM. Among the eight misdiagnosed
cases in the SBM, four are correctly diagnosed by the op-
timized SBM. If a more accurate cloud top is also consid-
ered, two more cases are correctly diagnosed by the opti-
mized SBM. These results indicate that using accurate cloud
top information can produce more reasonable SBM simula-
tions. Although Group 2 cases are still misdiagnosed by the
optimized SBM, the simulation accuracy could be further im-
proved if information on horizontal advection and the maxi-
mum particle size is considered.

5 Summary and future work

The performance of the SBM in diagnosing WPTs was eval-
uated through a comparison with other empirical/statistical
methods (H850 method, RH0–T0 method, Tw0 method, and

Tw0–0low method) for 131 matched precipitation cases dur-
ing the ICE-POP 2018 period. The observed WPTs were de-
termined from 5 min PARSIVEL data using a newly designed
decision tree algorithm. This algorithm classified the three
WPTs – SN, RASN, and RA – using FRA and FSN based
on the Yuter et al. (2006) scheme and manual analysis of
Vt–D scatterplots. The WPTs diagnosed by the five meth-
ods were obtained using matched sounding data. A simplified
WPT classification scheme for the SBM using R and SR was
used, even though the SBM can classify additional WPTs.
Various skill scores (h, h′, hSN, hRASN, hRA, CSI, and FAR)
were calculated to evaluate the performance of the diagno-
sis methods. In addition to the overall skill scores, the effect
of the WPTs (SN, RASN, and RA), terrain (i.e., mountain vs.
coastal sites), and atmospheric vertical structure (Tw profiles)
on the performance of the compared methods was examined.

The current SBM (which ranked first for h) and the Tw0–
0low method approach (which ranked first for h′) achieved
higher scores than the other methods for all matched precip-
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Figure 15. (a) Z and (b) −Vr time series observed from the MRR in GWW on 15 March 2018. The dotted line indicates the sounding start
time of Event 3.

itation cases. The accuracy of the SBM was the highest for
the mountain sites, whereas the accuracy of the Tw0 and Tw0–
0low methods was the highest for the coastal sites. Coastal
SN cases featuring relatively warm and moist environments
can lead to misdiagnosis when using the H850 and RH0–
T0 methods. Most of the RASN cases that occurred at the
mountain sites were characterized by a very shallow warm
layer near the surface. These cases led to poor diagnosis us-
ing the wet-bulb temperature method. Ground-based or low-
level-based methods showed low accuracy for mountain RA
cases with a near-ground inversion layer, whereas the SBM
performed well for these cases. Conversely, the SBM exhib-
ited relatively poor accuracy for some coastal RA cases with
a warm-layer depth of less than 500 m. These results suggest
that SBM simulations tend to produce less melting compared
to the observed precipitation.

The microphysics scheme used in the SBM was evaluated
by analyzing three groups of misdiagnosed RA cases: those
with a single warm layer with a depth more than 400 m, those
with a single warm layer with a depth less than 400 m and
low-level warm advection, and those with double warm lay-
ers. We also attempted to optimize the microphysics scheme
of the SBM using a region-specific density–diameter rela-
tionship and compare the simulations between the current
and optimized SBMs for the three groups. Overall, the op-
timized SBM demonstrated an increased amount of melting

and improved skill scores (h, h′, CSI for RASN and RA,
FAR for RASN) compared to the current SBM. The opti-
mized SBM also correctly diagnosed the WPT of the double
warm-layer group when more representative cloud top height
data were used.

The potential of the SBM for diagnosing the WPT was
thus confirmed in the present study. The performance of
the current SBM was superior to some existing optimized
methods (the H850 and RH0–T0 methods), and the skill
scores were improved further via regional optimization of the
SBM’s microphysics scheme. Furthermore, there is a need to
verify the microphysics scheme in the SBM in more detail,
such as for IP events. We will focus on the development of a
combined SBM with three-dimensional reanalysis field data
(e.g., Local Data Assimilation and Prediction System) for the
acquisition of three-dimensional WPT information. Accurate
three-dimensional WPT information will be helpful for var-
ious fields, such as aviation warning and understanding the
detailed structure of the cloud/precipitation system.
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Appendix A: List of abbreviations

1DSBM One-dimensional spectral bin model
a.g.l. Above ground level
a.m.s.l. Above mean sea level
AWS Automatic weather station
BKC Bokwang1-ri Community Center
CFAD Contoured frequency by altitude diagram
CSI Critical success index
DGW Daegwallyeong Regional Weather Office
FAR False alarm rate
FMCW Frequency modulated continuous wave
FZRA Freezing rain
GPM Global precipitation measurement
GWU Gangneung-Wonju National University
GWW Gangwon Weather Administration
HRRR High-Resolution Rapid Refresh
ICE-POP International Collaborative Experiments

for Pyeongchang 2018 Olympic and
Paralympic winter games

IP Ice pellet
IPFZRA Mixture of ice pellets and freezing rain
MOO Myeonon Observatory
MRR Micro rain radar
NF Normalized frequency
PARSIVEL Particle size velocity
PDF Probability density function
PSD Particle size distribution
RA Rain
RASN Mixture of rain and snow
RH Relative humidity
SBM Spectral bin model
SCW Sokcho Weather Administration
SN Snow
T Temperature
WPT Winter precipitation type
WTLS Weighted total least square

Code and data availability. The source code of SBM (version
1DSBM-19M) is available at https://doi.org/10.5281/zenodo.
14350651 (Carlin et al., 2024). The model output of SBM (ver-
sion 1DSBM-19M) used in this study is available at https://doi.org/
10.5281/zenodo.14353025 (Bang and Lee, 2024). The processed
PARSIVEL, sounding, and AWS datasets used in this study are
available at https://doi.org/10.5281/zenodo.14351937 (Bang et al.,
2024a). The new decision tree algorithm of the surface precipita-
tion type for PARSIVEL data and final decision results are available
at https://doi.org/10.5281/zenodo.14353519 (Bang et al., 2024b).
The plotting program for MRR data is available at https://doi.org/
10.5281/zenodo.14352684 (Bang and Kim, 2024). Finally, the cal-
culation and plotting program for the five diagnosis methods are
available at https://doi.org/10.5281/zenodo.14354011 (Bang et al.,
2024c).
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