
Geosci. Model Dev., 18, 3533–3557, 2025
https://doi.org/10.5194/gmd-18-3533-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.

M
odeldescription

paperFLAME 1.0: a novel approach for modelling burned area in the
Brazilian biomes using the maximum entropy concept
Maria Lucia Ferreira Barbosa1,2,3, Douglas I. Kelley2, Chantelle A. Burton4, Igor J. M. Ferreira1,5,
Renata Moura da Veiga1, Anna Bradley4, Paulo Guilherme Molin3, and Liana O. Anderson6

1National Institute for Space Research – INPE, Avenida dos Astronautas, 1758. Jd. Granja –
São José dos Campos – São Paulo, 12227-010, Brazil
2UK Centre for Ecology and Hydrology, Wallingford, OX10 8BB UK
3Federal University of São Carlos, Rodovia Lauri Simões de Barros, km 12 – SP-189 – Aracaçu,
Buri – São Paulo, 18290-000, Brazil
4Met Office Hadley Centre, Fitzroy Road, Exeter, EX1 3PB UK
5Faculty of Environment, Science and Economy, University of Exeter, Exeter, UK
6National Centre for Monitoring and Early Warning of Natural Disasters – Cemaden, Estrada Doutor Altino Bondensan,
500 – Distrito de Eugênio de Melo, São José dos Campos – São Paulo, Brazil

Correspondence: Maria Lucia Ferreira Barbosa (marbar@ceh.ac.uk)

Received: 11 June 2024 – Discussion started: 30 August 2024
Revised: 3 March 2025 – Accepted: 18 March 2025 – Published: 17 June 2025

Abstract. As fire seasons in Brazil lengthen and intensify,
the need to enhance fire simulations and to comprehend fire
drivers becomes crucial. Yet determining what drives burn-
ing in different Brazilian biomes is a major challenge, with a
highly uncertain relationship between drivers and fire. Find-
ing ways to acknowledge and quantify that uncertainty is
critical in ascertaining the causes of Brazil’s changing fire
regimes. We propose FLAME (Fire Landscape Analysis us-
ing Maximum Entropy), a new fire model that integrates
Bayesian inference with the maximum entropy concept, en-
abling probabilistic reasoning and uncertainty quantification.
FLAME utilises bioclimatic, land cover, and human driv-
ing variables to model fires. We apply FLAME to Brazilian
biomes, evaluating its performance against observed data for
three categories of fires: all fires (ALL), fires reaching natural
vegetation (NAT), and fires in non-natural vegetation (NON).
We assessed burned-area responses to different explanatory
variable groups. The model showed adequate performance
for all biomes and fire categories. Together, maximum tem-
perature and precipitation are important factors influencing
burned area in all biomes. The number of roads and forest
boundaries (edge densities), forests and pastures, and car-
bon in dead vegetation showed higher uncertainties among
the responses. Overall, the uncertainties were larger for the

NON category, particularly for the Pampas and Pantanal re-
gions. Customising explanatory variable selection and fire
categories based on biome characteristics could contribute
to a more biome-focused and contextually relevant analysis.
Moreover, prioritising regional-scale analysis is essential for
decision-makers and fire management strategies. FLAME is
easily adaptable and can be used in various locations and pe-
riods, serving as a valuable tool for more informed and effec-
tive fire prevention measures.

1 Introduction

The complexity of the interactions and feedbacks between
fire, climate, people, and other Earth system components
makes it challenging for us to be highly confident about what
drives fires in specific locations. Various methods assess the
drivers of historical fire events. Some studies correlate indi-
vidual drivers with burned area but overlook the interaction
of multiple factors (Andela et al., 2017; Barbosa et al., 2019).
Fire danger indices capture simultaneous drivers to gauge fire
risk. However, they overlook human-driven ignition causes
(Zacharakis and Tsihrintzis, 2023) and typically fail to cap-
ture the impact of fuel availability on burning (Kelley and
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Harrison, 2014). Fire-enabled terrestrial biosphere models
account for these drivers, simulating observable fire regime
measures. However, they often lack accuracy for year-to-year
fire patterns, as well as the required accuracy to determine
fire drivers (Forkel et al., 2019) and the causes of individ-
ual fire seasons (Hantson et al., 2020). Quantifying uncer-
tainty is critical for assigning fire drivers because it allows
for a more accurate assessment of the confidence in our pre-
dictions and helps identify the most influential factors under
varying conditions. In this sense, research applying the max-
imum entropy framework combined with Bayesian inference
can address these gaps.

The principle of maximum entropy states that, when try-
ing to estimate the probability of an event while the infor-
mation is limited, you should opt for the distribution that
preserves the greatest amount of uncertainty (i.e. maximises
entropy) while still adhering to your given constraints (Pen-
field, 2003). These constraints reflect prior knowledge about
the probability distribution of a phenomenon of interest (i.e.
burned area) based on its relationship with explanatory vari-
ables. This approach ensures that you do not introduce extra
assumptions or biases into your calculations. The maximum
entropy method has its roots in statistical mechanics (Jaynes,
1957). However, the use of this concept in a species distribu-
tion model, called MaxEnt (Phillips et al., 2006), popularised
the approach in several other study areas, including ecology,
geophysics, and fires (Wan et al., 2020; Li et al., 2019; Fon-
seca et al., 2017).

The MaxEnt species distribution model estimates the
probability of target presence for given local conditions
(Phillips et al., 2006). Unlike many traditional models, Max-
Ent makes minimal assumptions about the relationships be-
tween explanatory variables, making it more flexible and
adaptable to complex ecological interactions. Rather than es-
timating a single value, MaxEnt models a full probability dis-
tribution (Elith et al., 2011), providing a comprehensive view
of potential outcomes. This probabilistic nature enables the
incorporation of prior information into the modelling pro-
cess, enhancing its accuracy. Additionally, MaxEnt enables
the quantification of uncertainties (Chen et al., 2019), pro-
viding valuable insights into the reliability and confidence of
model predictions.

Recognising that fires can be treated as a species due to
their strong dependence on environmental factors, utilising
the MaxEnt species model has yielded valuable insights into
the field (Ferreira et al., 2023; Fonseca et al., 2019). How-
ever, the MaxEnt model relies on presence-only or presence–
absence data, which means it primarily considers locations
where the target (in this case, fires) has occurred. This lim-
its fire research using maximum entropy as it does not al-
low for continuous data, such as burned-area fraction over a
larger region. Moreover, the constraints and structure of the
underlying model are fundamentally related to species distri-
butions (Phillips et al., 2006) rather than to fires, which may
not capture the nuances of fire behaviour.

Incorporating Bayesian inference alongside the maximum
entropy framework provides a powerful approach. Bayesian
techniques integrate prior knowledge and observed data to
continuously refine the estimation of uncertainty with regard
to the influence of drivers on fire, thereby improving the con-
fidence in any relationship we find (Kelley et al., 2019). By
leveraging both maximum entropy and Bayesian inference,
we can develop more robust models that account for the com-
plex and dynamic nature of fire regimes.

The simulation of fires in heterogeneous territories such
as Brazil is incredibly challenging. Wildfires have become
a pressing concern in the country, causing significant socioe-
conomic and environmental losses (Campanharo et al., 2019;
Barbosa et al., 2022; Wu et al., 2023). Between 1985 and
2022, more than 1 857 025 km2 of Brazil’s terrain burned at
least once (MapBiomas Fogo, 2023). While some ecosys-
tems, such as grasslands and savannas, depend on periodic
fires to sustain their biodiversity and ecological processes,
the increasing fire frequency driven by agricultural and
ranching activities has impacted all Brazilian ecosystems,
making them significant terrestrial carbon sources (Cano-
Crespo et al., 2023). In fire-adapted ecosystems like savan-
nas, disruptions to fire regimes – whether through suppres-
sion or excessive frequency – can alter the ecological bal-
ance, severely damaging fauna, hindering seedling develop-
ment, and increasing tree mortality. High-intensity and long-
duration fires further exacerbate these effects, demonstrat-
ing the fine balance required to maintain ecosystem structure
and composition (Alvarado et al., 2020). Quantifying the in-
fluence of these drivers, however, remains difficult as many
interactions between fire and its drivers are non-linear and
heavily interdependent. This complexity makes confidently
identifying drivers of fire regimes in such diverse landscapes
from observations alone challenging (Krawchuk and Moritz,
2014). While traditional fire models provide useful broad-
scale information on fire, land, and climate interactions, they
often lack the ability to quantify the uncertainty in these re-
lationships and rely on other studies to infer relationships be-
tween drivers and burning (Hantson et al., 2016).

Improving fire simulations and understanding the under-
lying drivers of fires in Brazil are essential to address the
challenges associated with preventing fires, firefighting, and
managing their aftermath. Here, we present and evaluate a
novel fire model, FLAME (Fire Landscape Analysis using
Maximum Entropy), based on a Bayesian inference imple-
mentation of the maximum entropy concept. This combi-
nation allows us to incorporate uncertainty and probabilis-
tic reasoning into fire modelling. In this sense, the model
aims to precisely measure the uncertainties of the simula-
tions. The model optimises key driving variables’ relation-
ships with fires. Here, we apply FLAME to the biomes in
Brazil and assess the performance against observations.
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2 Methods

2.1 Brazilian biomes

Our study focuses on Brazil, with the Brazilian biomes serv-
ing as the primary units of analysis. Brazil comprises six
official major biomes, whose boundaries are defined by the
National Institute of Geography and Statistics (IBGE; https:
//www.ibge.gov.br/apps/biomas/#/home, last access: 18 Oc-
tober 2024); these are Amazonia, the Atlantic Forest, Cer-
rado, Pampa, and Pantanal. This categorisation follows that
of Hardesty et al. (2005), which defines biomes based on
the predominant vegetation type. However, the six biomes
contain vegetation types with different sensitivities to fire. In
general, Amazonia and the Atlantic Forest are fire-sensitive
biomes (Fig. 1) that are highly susceptible to damage or de-
struction by fire. Conversely, Cerrado, Pampa, and Pantanal
have evolved to depend on fire as part of their life cycle and
are considered to be fire-dependent biomes. Finally, Caatinga
is a fire-independent biome that is generally not significantly
affected by fire or does not require fire as part of its vegeta-
tion dynamics.

2.2 Datasets and preprocessing

We used the MCD64A1 burned-area product from MODIS
collection 6 as our target variable (Giglio et al., 2018). These
data were regridded from 500 m to 0.5° spatial resolution
by dividing the total burned area within each coarse cell by
its total area. The burned-area data were used in their total-
ity (ALL) and divided into two other categories based on
the land use and land cover (LULC) data from the Map-
Biomas project (https://brasil.mapbiomas.org/en/, last ac-
cess: 10 May 2024), namely burned areas in natural veg-
etation (NAT) and burned areas in non-natural vegetation
(NON) (Fig. 1). We computed all burned areas within forests,
grasslands, and savannas for the NAT category and within
pasture, cropland, and forest plantations (aggregated with
croplands) for the NON category. We considered it to be
that forest plantations and mechanised agriculture share a
key similarity in that both typically avoid the use of fire in
their management practices. In this sense, they can be con-
sidered to be analogous, particularly as the cropland class
in our model does not distinguish between small-scale and
large-scale mechanised farming systems. The categorisation
of fires aims to assess whether there are distinct drivers for
NAT and NON and to exemplify the potentialities of the
model for assessing more than one fire category across dif-
ferent vegetation types. We adopt a broad approach to en-
compass the various biomes in Brazil; however, any type of
categorisation is permissible, and further studies could focus
on even finer stratification, e.g. fires affecting fire-sensitive
vegetation and fire-dependent vegetation within each biome.

The target and explanatory variables were extracted for
August, September, and October from 2002 to 2019, repre-

senting the general peak of the fire season in Brazil. This time
frame is the most extended overlapping period between the
datasets, which we further divided into a training phase from
2002 to 2009 and a validation phase from 2010 to 2019. The
explanatory variables were divided into five groups (climate,
anthropogenic and natural ignition, fuel, LULC, and forest
metrics) and are described in Table 1.

We acquired monthly climate explanatory variables from
the first component of the third simulation round of the Inter-
Sectoral Impact Model Intercomparison Project (ISIMIP3a,
https://www.isimip.org/, last access: 18 April 2024). ISIMIP
is a collaborative effort to compare and evaluate the outputs
of various climate and impact models (Frieler et al., 2024).
These data represent the historical simulations using climate
forcings from GSWP3-W5E5, available from 1901 to 2019
at a 0.5° spatial resolution. The explanatory variable of con-
secutive dry days tracks the continuous count of dry days
since the last recorded rainfall, beginning in the 1900s. The
monthly maximum of this ongoing value is then calculated.

We obtained carbon in dead vegetation, vegetation car-
bon, and soil moisture from the Joint UK Land Environment
Simulator Earth System impacts model, version 5.5 (JULES-
ES; Mathison et al., 2023), driven by ISIMIP3a GSWP3-
W5E5, as per Frieler et al. (2024), which is freely available at
https://www.isimip.org/impactmodels/details/292/ (last ac-
cess: 18 April 2024). JULES-ES has previously been used
as input for Bayesian-based fire models (e.g. UNEP, 2022).
JULES dynamically models vegetation, carbon fluxes, and
stores in response to meteorology, hydrology, nitrogen avail-
ability, and land use change. JULES-ES has been extensively
evaluated against snapshots and site-based measurements of
vegetation cover and carbon (Mathison et al., 2023; Wiltshire
et al., 2021; Burton et al., 2019, 2022). As per UNEP (2022),
vegetation responses to JULES-ES’s internal fire model were
turned off so as to not double-count the effects of burning.
The maps, therefore, represent environmental carbon poten-
tial and are applicable to FLAME as the model only assumes
that explanatory variable ranges are correctly ranked – i.e. ar-
eas of low or high carbon content correspond with real-world
areas of low or high carbon – and not that the absolute mag-
nitude is correct.

Regarding ignition explanatory variables, population den-
sity data were also obtained from the ISIMIP3a protocol
and were based on data from the History Database of the
Global Environment (HYDE) v3.3 (Volkholz et al., 2022).
Lightning was prescribed as a monthly climatology from
LIS–OTD (lightning imaging sensor–optical transient detec-
tor) data (Cecil, 2006). The LIS–OTD climatology datasets
comprise gridded climatologies that document the lightning
flash rates detected by the optical transient detector (OTD)
and the lightning imaging sensor (LIS) aboard the Tropical
Rainfall Measuring Mission (TRMM). Total road density (in
m km−2) data were calculated for each grid cell of 0.5° spa-
tial resolution using linear interpolation in the Iris Python
package (Met Office, 2023) based on road density data from
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Figure 1. (a) Brazilian biomes classified as fire-sensitive, fire-independent, and fire-dependent (Hardesty et al., 2005). (b) Natural vegetation
(forests, grasslands, and savannas) and non-natural vegetation (pasture, cropland, and forest plantations) in 2019 in Brazil. (c) NAT’s mean
burned-area percentage per pixel. (d) NON’s mean burned-area percentage per pixel. The maps in (c) and (d) show the mean for August,
September, and October from 2002 to 2019.

the Global Roads Inventory Project (GRIP) (Meijer et al.,
2018).

We used the collection-7 LULC data from the Map-
Biomas project, which produces annual LULC mapping for
the Brazilian territory. These were regridded from 30 m to
0.5° to match the coarser resolution and were linearly inter-
polated from an annual to a monthly time step.

We incorporated forest metrics to integrate fragmentation
explanatory variables. Studies suggest that these are linked to
fire occurrence in Amazonia and Cerrado (Silva Junior et al.,
2022; Rosan et al., 2022) but remain unexplored in the other
biomes. The forest metric variables were also calculated in
relation to the 0.5° grid based on the annual forest data from
the MapBiomas at 30 m resolution using the package land-

scapemetrics available in R (Hesselbarth et al., 2024). The
metrics were the number of forest patches (NP) and the for-
est edge density (ED), described below:

ED=
∑
e

A
, (1)

where e is the total forest edge length in metres, and A is the
total landscape area in square metres. This quantifies the edge
density per pixel by summing up all forest edges in relation
to the overall landscape area.

2.3 Explanatory variable selection

In constructing our predictive model, we considered the in-
terrelationships among different explanatory variables to en-
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Table 1. List of explanatory variables prior to the removal process as described in Sect. 2.2.

Group Explanatory variable Temporal Selected Abbreviation Source
availability (yes or no)

climate Maximum temperature (°C) Monthly Yes tmax ISIMIP3a

Precipitation (m s−1) Monthly Yes ppt Frieler et al. (2024)

Vapour pressure deficit (Pa) Monthly No vpd

Relative humidity (fraction) Monthly No rh

Consecutive number of dry Monthly No dry_days
days (d)

Soil moisture (fraction) Monthly No soilM JULES-ES

Population density Annual No pop ISIMIP3a
(people per 1000 km2) Frieler et al. (2024)

Road density (m m−2) Constant Yes road GRIP global
(Meijer et al., 2018)

Fuel Vegetation carbon (kg m−2) Monthly No cveg JULES-ES

Carbon in dead vegetation Monthly Yes csoil JULES-ES
(kg m−2)

LULC Forest (%) Annual Yes forest MapBiomas Project (2022)

Grassland (%) Annual No grass

Savanna (%) Annual No sav

Cropland (%) Annual No crop

Pasture (%) Annual Yes pas

Forest Number of patches Annual No np Calculated from

Metrics Edge density (m m−2) Annual Yes ed MapBiomas Project (2022)

sure a robust and coherent analysis. The selection of these
variables was guided by their correlation, aiming for a set
of features that provided information without redundancy.
For this, we calculated the Spearman correlation coefficient
(Spearman, 1961), as presented in Fig. 2. We chose the
Spearman rank over other correlation metrics as non-linear
relationships between the drivers are expected (Sect. 2.4),
making it a better assessment than parametric comparisons.
We identified explanatory variables with strong relationships
by using the Spearman’s correlation matrix and removed one
variable from each highly correlated pair (threshold higher
than 0.6). The choice of which variable to remove was in-
formed by previous knowledge of their relationship with
burned areas and their relevance to our study.

We adopted a more streamlined approach by opting for a
shorter list of explanatory variables and by grouping them in
the variable analysis to capture their compound effect. At this
stage, we selected 7 explanatory variables as input for the fi-
nal model (Fig. 3) from the 18 initial explanatory variables.
These variables were chosen based on their correlation, en-
suring that at least one explanatory variable from each group

was selected (climate, fuel, LULC, ignition, and forest met-
rics). The explanatory variables were then divided into three
groups: group 1 is composed of maximum temperature and
precipitation, which are related to fire weather; group 2 in-
cludes edge density and road density, which are related to
landscape fragmentation; and group 3 encompasses forest
cover, pasture cover, and carbon in dead vegetation, which
are associated with fuel availability.

2.4 Relationship curves

The constraints or priors of the model were added as param-
eters of different functions, which we refer to as relationship
curves. We included the linear and power functions (Fig. 4)
according to known relationships between fires and environ-
mental variables. This means that some environmental ex-
planatory variables, when presenting higher values, are likely
to increase fires. In comparison, others have an inverse rela-
tionship where lower values of the explanatory variable co-
incide with an increase in burned area. In addition, we added
the linear and power functions without imposing a priori con-
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Figure 2. Spearman correlation of the explanatory variables (also see Table 1). Crossed values indicate no correlation, values near 1 (magenta)
indicate a strong positive correlation, and values near −1 (cyan) indicate a strong negative correlation.

Figure 3. Mean of the selected explanatory variables for August, September, and October from 2002 to 2019.

Geosci. Model Dev., 18, 3533–3557, 2025 https://doi.org/10.5194/gmd-18-3533-2025
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straints on parameters to enforce positive or negative rela-
tionships. We expect our selected explanatory variables to
have the following relationship with fires:

1. Maximum temperature, carbon in dead vegetation, and
pastures are expected to increase fire activity as their
values increase (Cano-Crespo et al., 2015; Dos Santos
et al., 2021; Libonati et al., 2022a).

2. Precipitation and forests are expect to increase fire ac-
tivity as their values decrease (Aragão et al., 2008; Bar-
bosa et al., 2022).

3. Edge density and roads are expected to have more un-
certain responses across the biomes. A high density of
edges can lead to more fires in forest ecosystems (Ar-
menteras et al., 2013; Silva Junior et al., 2022), but frag-
mentation can also reduce fires by impeding fire spread
(Driscoll et al., 2021). Regarding road density, while
more fires are expected surrounding roads (Armenteras
et al., 2017), fewer fires are expected with increased
density due to urbanisation.

The model then estimates the contribution of each curve to
the final model. Even though it is possible to include more
relationship curves, we decided to keep this count at a min-
imum to avoid making too many assumptions and obtaining
unstable results due to computational efficiency.

2.5 Model optimisation

The model was optimised for each Brazilian biome sepa-
rately using the MCD64A1 product from 2002 to 2009. This
process used the PyMC5 Python package (Abril-Pla et al.,
2023), employing five chains each over 1000 iterations using
the No-U-Turns Hamiltonian Monte Carlo sampler (Hoffman
and Gelman, 2014) while utilising 20 % of the data or a mini-
mum of 6000 grid cells. While the runs were conducted indi-
vidually for each biome, the results were aggregated to facil-
itate visualisation. The full code used to develop this model
is available on Zenodo (Barbosa et al., 2024a).

In Bayesian inference, we update our beliefs or knowl-
edge about a system or event by incorporating new evidence
or data (Laplace, 1820; Gelman et al., 2013). This allows
us to quantify and update our uncertainty using probabil-
ity distributions. By maximising entropy, we aim to achieve
the most unbiased, information-rich distribution that satisfies
this prior knowledge. In this sense, the likelihood (or poste-
rior probability) of the values of the set of parameters β given
a series of observations Obsi and explanatory variables Xi v
(from Sect. 2.3) is proportional (∝) to the prior probability
distribution of P(β) multiplied by the probability of the ob-
servations given the parameters tested.

P(β|{Obsi}, {Xi v})∝ P(β)×5iP(Obsi |{Xi v},β) (2)

In the above, Obsi is a set of our target observations, i is
the individual data point, and {Xi v} is the set of explanatory

variables v for data point i. The pi notation (5) indicates re-
peated multiplication. Maximum entropy in species distribu-
tion modelling assumes that individual observations (Obsi)
show a value of 1 when there is a fire or a value of 0 when
there is not and that

P(1|{Xv},β)= f ({Xv},β),

and

P(0|{Xv},β)= 1− f ({Xv},β), (3)

where P(1|X,β) is the probability that a fire will occur, and
P(0|X,β) is the probability of no fire. The term f (X,β) is
defined below:

f ({Xv},β)= 1/(1+ e)−y({Xv},β), (4)

where y({Xv},β)= linear function + power function
(Sect. 2.4).

y({Xv},β)= β0+6v

(
b0,i ×Xv + b1,vc

Xv
)

(5)

This works for single land points, where a location burns or
does not burn. We extend this concept to derive the maxi-
mum entropy solution for fractional burned area by integrat-
ing over a larger grid cell area. Here, we consider it to be
that, when dividing a grid cell indefinitely, the subcell sizes
approach infinitesimally small values, and the data within
each subcell start to behave like continuous data. We adapted
Eqs. (2) and (3) to work with continuous data:

P(β|{Obsi}, {Xi v})∝ P(β)

×5ni5
s
jP(Obsij |{Xi v},β)1/s, (6)

where n is the observation sample size, j is the individual
subgrid, and s is the subgrid sample size. If, for a given Obsi ,
m of the s subgrid cells burn then we can adapt Eq. (3) to get

P(m/s|{Xi v},β)=5
s
jP(1|{Xi v},β)

m
×P(0|β)s−m

= f ({Xi v},β)
m
× (1− f ({Xi v},β))s−m, (7)

and, therefore,

P(β|{mi/si}, {Xi v})∝ P(β)×5
n
i f ({Xi v},β)

m/s

× (1− f ({Xi v},β))(s−m)/s (8)

when s→∞, m/s becomes burned-area fraction (BF).
Then,

P(β|{BFi}, {Xi v})∝ P(β)×5ni f ({Xi v},β)
BFi

× (1− f ({Xi v},β))1−BFi . (9)

This solution assumes that burning conditions at a specific
location solely explain the likelihood of burning. In reality,
fires spread, and, particularly at higher burned areas, they
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Figure 4. Graphical representation of the relationship functions implemented in the model. Panel (a) is a linear function, and panel (b) is a
power function.

may overlap. We, therefore, modify Obsi so that it represents
what the burned fraction of a grid cell would look like if it
was made up of one large fire with no overlapping burning:

Obsi = Obsi, 0× (1+Q)/(Obsi, 0×Q+ 1), (10)

where Obsi, 0 is the true observation, and Q is a modifier
parameter to remove the effects of fire overlap.

Lastly, to account for variations in land cover to assign to
either natural or non-natural vegetation, which can be very
small in some cells, we introduced a weighting factor w
when assessing fire categories. This weighting factor consid-
ers the individual area of each grid cell, ensuring that cells
with smaller vegetation cover contribute proportionally to the
analysis, as in Eq. (11) below:

P(β|{BF}, {Xi v})∝ P(β)×5ni f ({Xi v},β)
BFi×w

× (1− f ({Xi v},β))(1−BF)×w. (11)

We use weak, uninformed prior distributions for our Eq. (5)
parameters. β0, b0,i , and b1,i priors were set as a normal dis-
tribution, with a mean of 0 and a standard deviation of 100,
and c was set to be log-normal, with a µ of 0 and a σ of 1.
The parameter Q in Eq. (10) was set as a log-normal distri-
bution, with a µ of 2 and a σ of 1.

2.6 Model evaluation

The model’s main goal is to accurately quantify uncertain-
ties, which we tested by analysing where the observations
fell in the model’s posterior probability distribution (Eq. 9).
The uncertainties refer to the difference between the 10th and
90th percentiles of the simulated burned-area distribution and
provide an estimate of the variability within the model out-
puts (Fig. 5). If more than 20 % of the observations fall out-
side the 10th–90th percentile range, the uncertainty range is
too narrow because it fails to encompass the 10th–90th per-
centile range. Conversely, if observations cluster around the
middle of the distribution (50th percentile), the uncertainty

range is too wide as it overestimates the spread of the data.
We aim to minimise uncertainty constraints without compro-
mising accuracy. When evaluating the model against 2010–
2019 observations, we also investigated how likely the ob-
servations are given the optimised model (P (observed | sim-
ulated)), as per Kelley et al. (2021). Using a different time
period compared to the optimisation (from 2002 to 2009),
we ensure an independent model evaluation. If the out-of-
sample observations are more likely given the model then the
model performs well. We use a likelihood of 50 % to indicate
adequate performance.

We calculate the probability of an observation given our
model (Fig. 6) by integrating the observation’s likelihood
across the parameter space, weighted by the parameter like-
lihood given our training in Sect. 2.5:

P(Y |(X,β|{BF0}, {X0}))=∫
β

P(β|{BFi})×P(Y |β)dβ, (12)

which, combined with Eq. (9), gives us

P(Y |(X,β|{BF0}, {X0}))=∫
β

P(β|{BFi})× f (X,β)Y × (1− f (X,β))1−Y , (13)

where Y is an observation, and X corresponds to the model
inputs at the time and location of Y . We approximate this
by sampling 200 parameter ensemble members from each of
our five chains, providing us with 1000 ensemble members.
The frequency of these 1000 members in a parameter gives
us P(β|{BFi}) in Eq. (13). We then drive the model with
each parameter combination to obtain f (X,β). We used the
Iris package (Met Office, 2023) for Python version 3 (Python
Software Foundation, https://www.python.org/, last access:
12 July 2023) for sampling.

We also determined the percentile of our observations
within the model’s posterior probability distribution. In an
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Figure 5. Maps of modelled and observed percentage (%) of burned area. First row shows the observed burned area for the July–September
2002–2009 annual averages, categorised into total burned area (ALL – a, d, g), burned area in natural vegetation (NAT – b, e, h), and burned
area in non-vegetation (NON – c, f, i). Second and third rows show the modelled burned areas at the 10th and 90th percentiles, respectively.
Histograms of the modelled percentage (%) of burned area are shown in Figs. S1 and S2 in the Supplement.

unbiased model, we expect the observation position to be es-
sentially random, with the mean over many samples tend-
ing towards the middle of the distribution (i.e. a percentile of
50 %). We mapped out the mean bias position of the obser-
vations for the 30 time steps (3 months – August, September,
and October – for 10 years) tested (Fig. 7). The p value in
Fig. 8 uses Student’s t test to ascertain if the mean of the
posterior position of the monthly observations for a given
grid cell (mean bias) is significantly different from 50 %
(i.e, the model is biased). A mean bias near 0 indicates that
observations are consistently smaller than the simulations,
and a mean bias near 1 indicates that the observations are
greater than the simulations. Low p numbers indicate where
the model is biased towards a probability distribution, which
tends to suggest too-low or too-high burning.

2.7 Explanatory variable analysis

We assessed the behaviour of the explanatory variables
against the burned-area simulations by generating response
maps for our explanatory variable groups in a similar way
to Kelley et al. (2019). In the potential maps, we set each
explanatory variable in the group to their median and kept
the others at their original values. The median, represent-
ing the middle value in a dataset, was chosen because it is
less affected by extreme values compared to the mean. The
maps were subtracted from the original simulations (con-
trol− potential response to quantify the influence of the tar-
get group on the model’s response. This approach enables
the assessment of burned-area response when the explanatory
variable deviates from the median and assumes its original
value, which could be below or above the median. The likeli-
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Figure 6. Likelihood of the observations (%) per biome given the
model parameters over all cells and time steps. The lower decile
(worst performance) is represented in red, and the upper decile
(best performance) is represented in blue for ALL (a), NAT (b),
and NON (c). The dot represents the mean likelihood.

hood maps for the potential response then represent the per-
centage of the modelled distribution that shows an increase
in burning in each biome or, in other words, how likely it is
that the potential response is greater than zero. Values near
100 % indicate that the group of variables is confidently as-
sociated with an increase in burning at a specific location.
Conversely, values near 0 % suggest that the variables lead to
a decrease in burning. For values in the middle range (40 %
to 60 %), the response remains uncertain as it is not possible
to confidently determine whether the variables contribute to
an increase or decrease in burning.

We evaluate the sensitivity for each group by measur-
ing the gradient’s magnitude across its variables: U = {Xu},
where Xu represents the exploratory variables within group
U . The conventional approach to describe a gradient in mul-

tidimensional space involves computing the partial derivative
for every dimension. In this case, we perform this calculation
for each parameter sample β across all variables in the group:

∇Uf ({Xv},β)=

{
δf ({Xv},β)

δxi
: xi ∈ U

}
. (14)

The magnitude of this gradient is the root sum square of these
partial derivatives:

‖∇uf ({Xv},β)‖ =

√∑
xi∈U

(
δf ({Xv},β)

δxi

)2

. (15)

We approximate this by perturbing the exploratory variables
in the group by ±0.05:

‖∇uf ({Xv},β)‖

∼

√∑
j∈u

(f ({xi +1i})− f ({xi −1i}))
2

0.1
, (16)

where

1i =

{
0.05 i = j

0 otherwise

}
.

3 Results

We present the results in two sections. The first section fo-
cuses on the model’s performance in simulating the observa-
tions, while the second section delves into the simulation’s
response to the explanatory variables.

3.1 Model simulations and performance

We performed simulations of burned area across each Brazil-
ian biome and fire category, and the resulting maps are shown
in Fig. 5. The three simulation runs (ALL, NAT, and NON)
successfully captured uncertainties in all biomes, with most
observations falling within the 10th to 90th percentiles of the
model (see Figs. S1 and S2 in the Supplement). However, the
model exhibits variations in uncertainties based on the simu-
lation category. For instance, in Amazonia, a biome charac-
terised by a vast expanse of natural vegetation, uncertainties
were smaller in NAT simulations, contrasting with larger un-
certainties observed in NON simulations, especially in areas
where observed burned areas are small or zero (Fig. 5). Sim-
ilarly, Pantanal displayed lower uncertainties in NAT simula-
tions, with values reaching up to 10 %, while NON simula-
tions registered uncertainties of up to 20 % in terms of burned
area. The Atlantic Forest, a biome distinguished by non-
natural vegetation, exhibited smaller uncertainties in NON
simulations. These findings indicate that the segregation of
fire categories (ALL–NAT–NON) substantially impacts the
model’s response. Conversely, the model struggles to accu-
rately capture large burned areas (> 10 %) in central regions
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Figure 7. Mean bias and 10th and 90th percentiles of the modelled burned area to total area (ALL, a), natural-vegetation area (NAT, b), and
non-vegetation area (NON, c).

of Brazil across all three simulations, mostly where the Cer-
rado biome is located.

In Bayesian inference, the likelihood expresses the prob-
ability of observing a particular event given the model’s pa-
rameters. Our results imply a strong agreement between the
parameters of the model and the observations (Fig. 6), even
during the months when the observations were less likely.
The mean likelihood during these months was above 90 %
across all biomes in all simulations, except for Pantanal,
where the likelihood was lower (78 % for ALL and 87 % for
NON) but still satisfactory. The percentiles indicated that, in
Pantanal, the likelihood of the observations for ALL varied
between 59 % to 91 %. In contrast, other biomes presented
a minimum likelihood of 80 %. During the months demon-
strating the best performance, most biomes aligned with the
observations, achieving maximum likelihood (100 %) on av-
erage. Pantanal, however, presented the lowest values, with
97 % for both the ALL and NON simulations.

The spatial likelihood analysis (see Fig. S3) provides ad-
ditional insights into the model’s robustness across differ-
ent biomes and fire categories. The results underscore the
model’s effective performance across the biomes. Notably,
the likelihood remained very high for the Atlantic Forest,
Caatinga, and Pampa biomes even in the months and lo-
cations where observations were less likely. A high likeli-

hood is also observed for NAT in Amazonia, except in the
south and east, which contain most of the non-natural vege-
tation. Lower performance is evident in the simulations for
both ALL and NON in this biome, indicating that stratifying
fire categories by vegetation type is a good strategy to en-
hance model performance in Amazonia. Similarly, Pantanal
showed the best performance for NAT but lower performance
for ALL and NON across the majority of the biome. In con-
trast, Cerrado performed better than most biomes for NON
during the months of worst performance.

Despite the high likelihood associated with the observa-
tions, the model simulations exhibit a certain degree of bias
across the three categories (Fig. 7). A mean bias near 0.5 in-
dicates no bias as the observations fall in the middle of the
model’s distribution. Amazonia and Cerrado showed mean
biases of 0.28 and 0.29, respectively, for ALL, indicating
an overestimation by the simulations at lower burned areas.
The Atlantic Forest presented a mean bias of 0.51, suggest-
ing that, overall, the model is unbiased, although some pixels
may still be biased. Similarly, Pampa (0.42) and Caatinga
(0.61) showed values near 0.5, indicating a lower degree of
bias. In contrast, a mean bias of 0.17 in Pantanal suggests
an overestimation of burned area by the model, especially
at lower levels. However, the model can distinguish between
lower and high burned areas in Pantanal (Fig. 5), indicating
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Figure 8. (a–c) Spatial mean bias of the modelled burned area to total area (ALL, a), natural-vegetation area (NAT, b), and non-vegetation
area (NON, c). (d–f) Significance of the mean bias considering a 95 % confidence level (p value< 0.05). Pixels with p value> 0.05 (brown
colour) are not significantly different from the 0.5 mean bias, meaning that they are unbiased.

its ability to identify periods and locations of more extreme
burning, even if it does not exactly capture the correct mag-
nitude.

Generally, higher uncertainties are observed for NAT and
NON simulations, but a notable improvement in bias is ev-
ident when compared to the ALL simulations. In the NAT
simulations, the model achieved its most favourable out-
comes in Pampa (0.53) and Amazonia (0.40), with Pantanal
also showing a noticeable improvement (0.34). The biases of
0.74 in Caatinga and 0.72 in the Atlantic Forest indicate a
trend towards underestimation in this fire category. In Cer-
rado, a bias value of 0.33 was observed for NAT, aligning
with the pattern seen in the ALL simulations and suggesting
a consistent overestimation, particularly for lower burned ar-
eas.

In the NON simulations, Amazonia exhibited a bias of
0.38 but overestimated lower burned areas. Cerrado and Pan-
tanal showed similar patterns compared to those in the NAT
simulations, with respective mean biases of 0.36 and 0.31.
The model tended to underestimate burned areas in Caatinga
(0.81), particularly at higher burned areas. While the Atlantic
Forest (0.58) and Pampa (0.59) showcased the most unbiased
simulations for the NAT fire category, slight underestima-
tions of burned areas were noted in some instances (Fig. 8).

The spatial distribution of the mean bias, as depicted in
Fig. 8, exhibits considerable variation. Pixels without val-

ues indicate zero burned area in the observations, where,
by definition, the observation will always fall into the 0th
percentile of the model posterior distribution. Consequently,
the bias metric does not provide meaningful information for
these pixels. The p values reveal that, in numerous areas, the
bias is not statistically different from 0.5 (p value> 0.05, in-
dicated by brown colour), suggesting unbiased simulations
in these regions. For example, lower fires in Amazonia tend
to occur in areas of natural vegetation, where NAT simula-
tions exhibit a non-significant bias. In these regions, ALL
simulations tend to overestimate burned area. In southeast-
ern Amazonia, fires were underestimated across all three fire
categories, especially for NAT.

In Caatinga, all three simulations exhibited similar perfor-
mance, significantly underestimating fires, particularly in the
northern part of the biome. The Atlantic Forest displayed bet-
ter results for both ALL and NON, with a substantial area
exhibiting non-significant bias. The fragmented landscape
of this biome likely limits data availability for NAT, possi-
bly explaining the lower performance in this fire category.
In contrast, Cerrado demonstrated a consistent pattern across
all three fire categories, predominantly overestimating fires,
especially in the south and northeast. While some underes-
timation occurred in the central biome, it was mostly non-
significant. In Pantanal, the simulation consistently overes-
timated burned area across all three categories, with ALL
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simulations showing significant overestimation throughout
the biome. Finally, Pampa displayed a non-significant bias
across most of the region, except in the northwest, where the
model underestimated burning in all three simulations.

3.2 Response of the modelled burned area to the
explanatory variables

We assessed the potential and sensitivity responses of the ex-
planatory variables (Figs. 9–12). The potential response of-
fers insights into changes in burned area when the explana-
tory variables deviate from the median, identifying areas
where responses tend to drive or suppress burning. In con-
trast, the sensitivity response provides information on how
marginal changes in explanatory variables affect burned area
(Kelley et al., 2019). Together, these analyses highlight areas
susceptible to more extreme burning (i.e. where the burned
area is sensitive to explanatory variables that tend to cause
higher potential burning).

For ALL, group 1 (maximum temperature and precipi-
tation) is very likely to lead to an increase in the burned
area in 62.33 % (Fig. 9) of Amazonia (likelihood > 80 %).
This means that, when these explanatory variables assume
their actual values in this biome, the burned area tends to
be higher, especially in the northeastern and southern por-
tions (Fig. 10). Conversely, these variations contributed to
a reduced burned area in 33.57 % of Amazonia, predomi-
nantly observed in the western and central areas, suggesting
that maximum temperature and precipitation tend to suppress
burned area in these regions. In 4.08 % of the biome, the
influence of group-1 explanatory variables on burned areas
is not confidently predictable in terms of whether these will
lead to an increase or decrease (likelihood between 40 % and
60 %). Our results indicate that the entirety of Amazonia is
highly sensitive to minor variations in group-1 variables for
ALL (Fig. 10). Nonetheless, the middle and western regions
tended to be up to 3 times less sensitive than the rest of the
biome. In the Atlantic Forest, approximately 63.33 % of the
biome is likely to experience an increase in burned area due
to group 1, mostly limited to 1 % extra burning. This small
increase highlights that these drivers do not have a major in-
fluence with regard to driving high levels of total burned area.
A reduction in burned area is observed in the western portion,
encompassing 31.79 % of the biome. This biome showed an
overall lower sensitivity to climate.

In Cerrado, group 1 is likely to drive burned area in
58.30 % of the biome, primarily in the eastern part. Con-
versely, 37.16 % of Cerrado is expected to experience a re-
duced burned area.

For the remaining 4.53 % of the area, the influence of
group 1 is less clear as no consistent pattern in terms of in-
creases or decreases in burned area could be detected. Cer-
rado exhibited high sensitivity to changes in group 1, except
in the central region of the biome, which showed compara-
tively lower sensitivity. In Pantanal, the central and northern

areas, accounting for 51.92 % of the total area, are likely to
experience an increase in burned area due to variations in
group 1. Conversely, the borders of Pantanal, particularly in
the south, exhibited a reduction in burned area (42.30 % of
Pantanal). The entire biome presented considerable sensitiv-
ity to small variations in group 1. Pampa exhibited a high
likelihood of increased burned area in 70.14 % of the re-
gion, with the western and southeastern edges more sensitive
to group 1. The southern and eastern portions of Caatinga
are likely to face an increase in burned area in 51.23 % of
the biome and a reduction in 47.34 %. In general, the biome
showed less sensitivity to group 1, with slightly higher sen-
sitivities being observed in the central and northeastern parts
of the biome.

Group 2 (edge density and road density) is likely to drive
increased burned area in 47.37 % of Amazonia, mainly in the
western, central, and northeastern regions. Conversely, areas
with higher edge and road densities show a reduced burned
area, covering 51.82 % of Amazonia. Overall, the biome dis-
plays moderate sensitivity to minor variations in group 2,
with a higher sensitivity being observed along its borders.
The response in the Atlantic Forest exhibited more uncer-
tainty in the 10th and 90th percentiles. Still, the likelihood
indicates that 42.30 % of the biome is likely to experience
increased burned areas of up to 2 %, primarily located along
the northern and eastern edges. Regions where increases are
more likely also demonstrate greater sensitivity to group 2,
showing the potential for these drivers to have a dispropor-
tionate influence on extreme levels of burning.

Cerrado exhibited high spatial variability in response to
group 2, with a nearly equal mix of pixels where increases
(47.28 %) and decreases (44.56 %) in burned area are more
likely to occur. The northeast of the biome displayed higher
sensitivity to group 2. In Pantanal, the central and southern
regions are more likely to experience a decreased burned
area, encompassing 53.84 % of the biome. However, an in-
crease is found in 42.30 % of Pantanal. Pantanal demon-
strated sensitivity to group 2, especially in the north. In
Pampa, 47.76 % of the region exhibit increased burned ar-
eas, while reductions occur in 47 % of it. These regions
where an increase is likely also showed higher sensitivities.
In Caatinga, a reduction in burned area is likely to occur
in 50.17 % of the biome, while an increase is expected in
38.86 % of it.

In the context of group-3 explanatory variables (forest,
pasture, and carbon in dead vegetation), approximately 53 %
of Amazonia is likely to experience larger burned areas, pri-
marily concentrated in the arc of deforestation (along the
southern and eastern edges of Amazonia). While displaying
less sensitivity to minor changes compared to other groups,
certain areas such as the cross-borders with Cerrado and the
north exhibit higher sensitivity within the biome. In the At-
lantic Forest, increased burned areas are observed in 41.53 %
of the region. Decreases are primarily observed in the cen-
tral southern and eastern areas. Overall, the sensitivity in this
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Figure 9. Percentage of burned-area increase, decrease, and uncertainty driven by climate (group 1: maximum temperature and precipitation),
fragmentation (group 2: road and edge densities), and land or fuel (group 3: forest, pasture, and carbon in dead vegetation) for each biome
(Amazonia, Atlantic Forest, Cerrado, Pantanal, Pampa, and Caatinga) and fire category (ALL, NAT, and NON).

biome is lower, although the spatial variation shows height-
ened sensitivity in the 90th percentile for some pixels across
the biome.

In Cerrado, the north and northeast and parts of the south
(39.72 % of Cerrado) may experience increased burned ar-
eas. Regions with a higher likelihood of increase also demon-
strate greater sensitivity to group 3. Pantanal shows an area
of approximately 30.77 % that is likely to experience an in-
crease in burned area, mainly in the northern and southeast-
ern regions. The biome demonstrates high sensitivity over-
all to group 3. In Pampas, 52.23 % of the region is likely to
see increased burned areas, with the western part and eastern
edges showing greater sensitivity to group 3. In Caatinga, ap-
proximately 38.16 % of the biome is likely to see increased
burned area. The central and northeastern regions, where in-
creases are expected, also exhibit higher sensitivity to minor
shifts in group 3.

Similar spatial patterns compared to ALL were observed
for NAT when considering group 1 across all biomes
(Fig. 11). In Amazonia, group 1 is likely to result in increased

burned area in 63.79 % of the biome. Areas with uncertain
responses increased by 2 %, particularly in the southeastern
region of Amazonia. Sensitivity analysis reveals that the bor-
ders of Amazonia are more sensitive to group 1, whereas ar-
eas with forest cover < 83 % (Fig. 3) exhibit lower sensitiv-
ity. In the Atlantic Forest, group 1 is likely to drive burned-
area increases in 67.95 % of the biome. Conversely, 12.82 %
remained unclear, representing an 8 % increase compared to
ALL. The sensitivity to group 1 was similar to that in ALL,
generally being lower for this biome.

In Cerrado, group 1 increase burned area in 61.78 % of the
biome. The biome also exhibits sensitivity to minor varia-
tions in group 1 for NAT, albeit being slightly lower in some
areas than in ALL. In Pantanal, 80.76 % of the area is likely
to have group-1 variables as drivers of burned area in NAT,
representing an increase of almost 30 % compared to ALL.
The sensitivity analysis closely resembled ALL, with the en-
tire biome responding significantly to variations in group 1.
In Pampas, it is likely that variations from the median lead
to increased burning in 70.14 % of the biome. Sensitivity is
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Figure 10. Response maps to ALL, displaying the potential’s 10th percentile (a–c) and 90th percentile (d–f), the likelihood (g–i), and
the sensitivity’s 10th percentile (j–l) and 90th percentile (m–o). Each column presents the results for group 1 (maximum temperature and
precipitation), group 2 (edge density and road density), and group 3 (forest, pasture, and carbon in dead vegetation) of explanatory variables.

similar to that in ALL, primarily in the west, but is gener-
ally lower. Caatinga follows a similar pattern to ALL, with
group 1 influencing burning in 48.76 % of the biome. Uncer-
tainty increased in 4.94 % of the biome, and the sensitivity
remained similar, affecting mainly the middle and northeast-
ern regions.

For group 2, Amazonia presented a more uncertain re-
sponse between the 10th and 90th percentiles. However, the
likelihood showed a marked pattern very similar to ALL,

where 47.37 % of the biome has group-2 variables as a driver
of burning. Similarly to group 1, the sensitivity was lower in
highly forested areas. For NAT, the Atlantic Forest showed
large areas with an unclear response, covering 41.79 % of
the biome. The areas where burning is likely to be driven by
group 2 encompasses 26.41 % of the total area, a reduction
of 15 % when compared to ALL. The sensitivity was simi-
lar to ALL, with slightly higher values in some pixels. Cer-
rado showed variation within the biome, with 45.61 % of its

https://doi.org/10.5194/gmd-18-3533-2025 Geosci. Model Dev., 18, 3533–3557, 2025



3548 M. L. F. Barbosa et al.: FLAME 1.0

Figure 11. Same as Fig. 10 but for NAT.

area identified as potentially being driven by group 2 in NAT.
While the sensitivity was lower than in ALL, it remained sig-
nificant within Cerrado. Pantanal exhibited group-2 variables
as a driver of burning in 46.15 % of the biome, displaying a
spatial pattern in terms of the likelihood that was very simi-
lar to ALL. However, sensitivity was lower in the middle of
Pantanal compared to in the north and at the edges. Similarly,
Pampa presented a response for potential and sensitivity that
was similar to that in ALL, with 47.76 % of the area being
likely to experience increased burning driven by group 2.
In Caatinga, areas likely to experience increased burning ac-

counted for 37.45 % of the biome, and the regions with un-
clear responses were 6.72 % higher than in ALL (17.67 %).
Sensitivity showed the same pattern as in ALL.

In Amazonia, the areas with unclear responses to group 3
increased from 4 % to 8.10 % in the ALL category. Mean-
while, regions where group 3 is likely to drive an increase
in burned area accounted for 54.74 % of the biome. Densely
forested areas also exhibited lower sensitivity to minor shifts
in group 3. In the Atlantic Forest, group-3 variables are likely
to be a driver of burned area in 41.02 % of the biome, very
similarly to ALL (41.53 %). The sensitivity followed the spa-
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tial pattern as ALL, with an overall lower sensitivity. Areas
prone to burning in Cerrado due to group 3 were reduced by
10.84 % compared to in ALL, totalling 43.95 %. The reduc-
tion was concentrated in the northeast, while, in the south-
west, there was an increase in the likelihood of burning due
to group 3. The sensitivity reduced in the northeast, vary-
ing across the biome. Within Pantanal, regions susceptible
to burning due to group 3 comprised 32.69 % of the area.
Regions with an unclear response increased by 4.30 %, en-
compassing 17.30 % of the region and being concentrated at
the eastern edges. In Pampas, 44.77 % of the biome is likely
to burn due to group 3. The sensitivity pattern for NAT fol-
lowed ALL, concentrated at the western and eastern edges.
Caatinga accounted for 35.68 % of areas prone to burning,
with higher being sensitivities observed in the middle and
eastern regions of the biome.

Higher uncertainties were found in the potential response
for NON, meaning that the range of possible outcomes was
generally larger for this category (Fig. 12). However, the like-
lihood showed similar spatial variation, although unclear re-
sponses increased. Group 1 acts as a driver of burning in
62.99 % of Amazonia, a similar number when compared to
NAT and ALL. The main difference for this category is the
magnitude of increase, which is higher at the edges and in
the middle of the biome. Likewise, the sensitivity was higher,
especially in the 90th percentile. The potential and sensitiv-
ity response of the Atlantic Forest was quite similar for the
three categories, with 64.61 % being likely to have group 1
increasing burning in the biome. Within Cerrado, a 13.15 %
and 9.67 % increase in areas susceptible to burning is ob-
served compared to ALL and NAT, respectively (totalling
71.45 %). Unclear responses were higher and reached 9.21 %
of the biome. Sensitivity was higher in the northeast of the
biome. For Pantanal, NON comprised 69.23 % of areas likely
to burn due to group 1. An increase in unclear responses of
7.7 % and 9.62 % compared to ALL and NAT, respectively,
was found (totalling 13.45 % of the biome). Sensitivity levels
were mostly high across the biome. Within Pampas, 79.10 %
of the biome was considered to be likely to burn due to
group 1. The sensitivity was larger at the edges of the biome.
The potential and sensitivity responses of Caatinga follow a
similar pattern between the categories, where 47.70 % of the
biome is likely to be susceptible to burning due to group 1.

Similarly, the main difference for group 2 in Amazonia
was the increase, which reached up to 10 % in the north and
middle of the biome. Most of the biome shows high sen-
sitivity. Within the Atlantic Forest, there was a notable re-
duction of 30.51 % in regions with unclear responses com-
pared to NAT, where the proportion was 11.28 %. Regions
likely to see increased burned area due to fragmentation com-
prise 41.28 % of the biome, an increase of 14.87 % com-
pared to NAT. Sensitivity showed a similar pattern for the
three categories, where regions likely to see increased burn-
ing presented higher sensitivities. In Cerrado, approximately
41.54 % of the area is likely to be susceptible to increased

burning due to group 2. Higher sensitivity was observed in
the northeastern region of the biome. Pantanal showed a
40.38 % likely increase and a significant sensitivity across
the biome. Pampas patterns for potential and sensitivity re-
sponses were similar to ALL and NAT, with 49.25 % of
the biome being likely to see increased burning. However,
the likelihood was comparatively lower (between 60 % and
80 %). In the case of Caatinga, it is likely to see increased
burning in 36.39 % of the biome. Sensitivity displayed a sim-
ilar pattern to ALL and NAT, with higher sensitivities in the
middle and northeast.

Group 3 exhibited higher uncertainties in Amazonia. The
likelihood of increase encompasses 44.59 % of the biome,
while areas with unclear responses surpass ALL and NAT,
comprising 10.21 %. Sensitivity was also higher, especially
in the north of Amazonia. The Atlantic Forest showed a
similar pattern compared to ALL and NAT, with 38.71 %
of its area being likely to see increased burning and with
a generally lower sensitivity to this group. Cerrado exhib-
ited a marked pattern, where burning in the north is likely to
be driven by group 3, encompassing 40.78 % of the biome.
These regions also exhibited higher sensitivity to group-
3 variables. This group exhibited the highest level of un-
clear responses in Pantanal, totalling 30.77 %. Meanwhile,
regions with a likelihood of increased burning decreased to
25 %. The sensitivity was generally high across the biome.
This group was also shown to be highly uncertain in Pam-
pas (55.22 %). The areas likely to see increased burning
comprised 23.88 % of Pampa, a reduction of 28.35 % and
20.89 % compared to ALL and NAT, respectively. The sensi-
tivity was similar in the three categories, with slightly higher
sensitivity in the middle for NON. The Caatinga region ex-
hibited a 35.33 % portion of its area with a heightened likeli-
hood of increased burning attributed to group 3, displaying a
similar pattern across all three categories concerning poten-
tial and sensitivity response.

4 Discussion

4.1 FLAME’s performance in context

Our proposed model uniquely combines two previously dis-
tinct approaches employed in fire modelling: Bayesian infer-
ence and maximum entropy (Kelley et al., 2021; Ferreira et
al., 2023). This combination allows for a more comprehen-
sive understanding of fire dynamics as it models a probabil-
ity distribution rather than singular values, a departure from
conventional models (e.g. Bistinas et al., 2014; Haas et al.,
2022). Notably, our approach employs maximum entropy to
capture the most uncertain outcomes that align with our pri-
ors, reflecting the stochastic nature of real-world fires. This
concept contributes to a more nuanced and realistic represen-
tation of fire behaviour. We conducted our analysis by cate-
gorising the burned area into three categories: burned areas in
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Figure 12. Same as Fig. 10 but for NON.

both natural and non-natural vegetation (ALL), burned areas
in natural vegetation (NAT), and burned areas in non-natural
vegetation (NON). This classification yielded distinct results
for each category, with an overall improvement across the
biomes for NAT and NON. Moreover, this approach allows
us to make more targeted conclusions.

The results demonstrate the robust performance of our
model in capturing observations while providing a range of
possible outcomes represented by the 10th and 90th per-
centiles. It is noteworthy that the model was capable of re-
producing the observations in Pampa, the Atlantic Forest,

and Caatinga as these are areas where other methods used
in previous studies have not performed well (Nogueira et al.,
2017; Oliveira et al., 2022). Despite some level of bias in the
results, even during periods of suboptimal performance, the
likelihood of the observations remained consistently high,
with the majority exceeding 80 %. The Pantanal biome pre-
sented an exception, displaying a likelihood of 59 % for the
combined category (ALL), with improvements for specific
categories, reaching 86 % for NAT and 78 % for NON. This
biome encompasses a mosaic of vegetation types charac-
terised by seasonally flooded areas, which play an important
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role in the fire dynamics of the region (Damasceno-Junior et
al., 2022). Fire in these areas was not included in this study
due to our general approach, posing a limitation for simula-
tion within this biome. However, our framework’s adaptabil-
ity means that future work could look at different explanatory
variables, relationships, and fire categorisations that could
target performance in places like Pantanal.

The MaxEnt species distribution model, widely used in
fire modelling (e.g. Fonseca et al., 2017; Banerjee, 2021; Fer-
reira et al., 2023), applies the same maximum entropy con-
cept as in this study. However, MaxEnt’s default settings,
based on average values, may not suit specific species, re-
gions, or datasets (Phillips and Dudik, 2008) and can result
in overly complex models prone to overfitting (Radosavlje-
vic and Anderson, 2013). While independent evaluation data
are essential (Peterson et al., 2011), many studies rely on
random partitions of occurrence data for calibration and val-
idation (Chen et al., 2015; Göltas et al., 2024), which can
compromise model reliability and generality. In contrast, our
approach incorporates an independent evaluation framework
designed to assess the model’s capacity to capture unseen
dynamics and to simulate scenarios beyond the observed
data. Furthermore, the commonly used the area-under-the-
curve (AUC) metric, while widely adopted, fails to provide
insights into the spatial distribution of model performance
(Lobo et al., 2008; Jiménez-Valverde, 2011). Here, we de-
veloped a targeted evaluation analysis to assess model per-
formance spatially.

Currently, global fire models incompletely reproduce the
observed spatial patterns of burned area. We found that
FLAME captures high burned area, albeit not with the ex-
act magnitude observed. This ability presents an advantage
compared to many process-based fire models. While global
fire modelling provides useful information on broad-scale
patterns and trends, it is mostly designed to estimate global
mean burned area (Hantson et al., 2016; Burton and Lampe
et al., 2024). As a result, its applicability to regional scales,
such as the Brazilian biomes, is inherently limited. These
models often rely on assumptions about the relationships
between explanatory variables, which may not hold true
in all locations due to variations in environmental condi-
tions, ecosystem dynamics, and human activities. Addition-
ally, while fire-enabled Earth system models can integrate
feedback mechanisms between land and atmosphere, there-
fore enabling the evaluation of inter-variable effects, offline
global fire models do not do this. Similarly, FLAME is not
designed to capture these feedbacks, underscoring the need
for tailored methodologies to address specific research ques-
tions.

4.2 Burning controls across the biomes

We combined our explanatory variables into three groups to
assess their compound effect on the burned area. This is a
similar approach to that of Kelley et al. (2019), who also

used a Bayesian framework to assess drivers of global fire
regimes. Nonetheless, Kelley et al. (2019) considered only
linear responses, which is especially challenging when con-
sidering the varying responses across the globe. Our results
highlighted the spatial variability of each explanatory vari-
able group’s influence on burning within and between each
biome. The potential response displayed similar spatial like-
lihood variations between the ALL, NAT, and NON cate-
gories. However, differences were still observed, especially
for the fire-dependent biomes (Cerrado and Pantanal). Over-
all, the uncertainties were larger for the NON category, par-
ticularly for Pampas and Pantanal.

For example, group-1 variables (maximum temperature
and precipitation) are likely to be drivers of burning in large
portions of each biome during the fire peak, as demonstrated
by the potential and sensitivity results. Our results indicate
that, in highly forested areas in Amazonia, climate alone does
not control burning, suggesting that forests can potentially
mitigate the effects of climate in burned areas. These regions
showed up to 3 times less sensitivity to minor variations in
climate for NAT, while ALL and NON displayed high sensi-
tivity in the whole biome. However, natural landscapes, espe-
cially forests, are highly susceptible during extreme weather
conditions (Dos Reis et al., 2021; Barbosa et al., 2022). This
suggests that, while natural vegetation may mitigate sensi-
tivity to minor climate variations, projected climate change
could greatly increase the risk of Amazonia forest fires (Flo-
res et al., 2024). Moreover, non-natural vegetation in Ama-
zonia is mainly concentrated in the arc of deforestation, re-
ducing the samples for this category in other parts of Ama-
zonia and potentially influencing the model’s response. In
this sense, dividing Amazonia into subregions, specifically
separating the region where the most deforestation occurs,
could improve the model’s regional estimates and is a rec-
ommended approach for future Amazonia-focused research.

An opposite dynamic was found in Cerrado and Pantanal.
Regions with large areas of natural vegetation were more
likely to be influenced by climate. These regions were more
sensitive to minor variations in climate for NON in Cerrado,
while the entirety of Pantanal displayed similar sensitivity in
the three categories. This aligns with prior research showing
that fires in Cerrado are linked with meteorological condi-
tions, particularly rainfall and temperature (Nogueira et al.,
2017; Libonati et al., 2022a; Li et al., 2022). Similarly, in
Pantanal, the 2020 fire season revealed the connections be-
tween meteorological conditions and increased burning in
the biome (Barbosa et al., 2022; Libonati et al., 2022b), and
this was seen once again during the 2023 El Niño. Barbosa
et al. (2022) reported that 84 % of the 2020 record of fires
in Pantanal occurred in natural vegetation, with a 514 % in-
crease from the average within forests. Although land use
changes played a role, the precipitation and maximum tem-
perature anomalies were particularly high in 2020, contribut-
ing to the spread of fires into fire-sensitive vegetation.
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Group 2 (edge density and road density) encompasses
explanatory variables expected to have uncertain responses
across the biomes. Within Cerrado, 40.63 % of the area will
likely see decreased burned area for NAT due to group-2
variables. A high density of forest edges has been associ-
ated with a higher incidence of fires in forest ecosystems
(Armenteras et al., 2013; Silva Junior et al., 2022). How-
ever, fragmentation can also act as a barrier to fire spread,
potentially reducing fire occurrences (Driscoll et al., 2021).
Rosan et al. (2022) revealed that, in Cerrado, fragmentation
is correlated with a decrease in burned-area fraction, while,
in Amazonia, it is linked to an increase in burning. Never-
theless, we found a decrease in burning where edge densities
are concentrated in Amazonia. This could indicate that the
edges of Amazonia reach levels of fragmentation that may
act as firebreaks, thereby impeding fires from spreading, par-
ticularly due to the reduction in aboveground biomass near
forest edges (Numata et al., 2017). However, further research
is needed to test this hypothesis.

Depending on the landscape, road densities can also ex-
hibit contrasting relationships with fires. While more fires
are expected surrounding roads (Armenteras et al., 2017),
fewer fires are expected with increased density due to ur-
banisation. The Atlantic Forest is a very fragmented biome
with very high densities of natural edges and roads (Fig. 3).
We found an uncertain response for NAT in 41.79 % of the
Atlantic Forest, and only 26.41 % of the area showed likely
increases. Singh and Huang (2022) suggest that the fragmen-
tation partly explains burned-area variation in the Atlantic
Forest, where small patches are more vulnerable to fires.
The majority of Caatinga is likely to see decreased burning
due to group 2. However, the sensitivity was up to 3 times
higher in the middle and northeast, which is more likely to
increase. Antongiovanni et al. (2020) discussed the fact that
fires in Caatinga occur at all edge distances, although they
are slightly more frequent at fragment edges. Nonetheless,
the limited number of studies across the different biomes ad-
dressing these relationships makes it harder to understand the
related uncertainties.

Group 3 (forest, pasture, and carbon in dead vegetation) is
likely to influence burning in 54.74 % of Amazonia for NAT,
particularly in the arc of deforestation. This suggests that the
combination of less forest, increased pasture, and more fuel
(Fig. 3) increases burning in natural lands in Amazonia, cor-
roborating previous findings (Silveira et al., 2020; Silveira et
al., 2022). The relationship in Pantanal and Pampa showed
that these variables increase burning in 32.69 % (NAT) and
25 % (NON) of the area in Pantanal and in 44.78 % (NAT)
and 23.88 % (NON) of the area in Pampas. The regions with
unclear responses were the highest for NON at 30.77 % of
Pantanal and 55.22 % of Pampa. These biomes are charac-
terised by lower forest and pasture cover (Fig. 3), with fires
and cattle ranching mainly being linked to grasslands (Bar-
bosa et al., 2022; Fidelis et al., 2022; Chiaravalloti et al.,
2023). Thus, incorporating grassland cover in the model will

likely reveal further relationships between burned area and
LULC in these biomes. Caatinga showed increased sensi-
tivity, where group 3 is likely to increase burning, matching
the area of influence of group 2. This area is associated with
low forest cover and carbon in dead vegetation and moderate
pasture cover. De Araújo et al. (2012) observed that, due to
the intermittent and scattered characteristics of cattle ranch-
ing in Caatinga, fires tend to occur mainly in natural vege-
tation, characterised by a large cover of savanna vegetation.
Although our study provides a general overview of burning
dynamics in the biomes, targeting variables is highly recom-
mended for future studies, especially where fires are poorly
understood, such as in Caatinga.

4.3 FLAME potentialities

Further developments are recommended to improve
FLAME’s capabilities. We tested the model with different
numbers of predictors and observed that, although adding
more variables reduced uncertainties in burned-area simula-
tions, it increased uncertainties in the variables’ responses.
Future work could explore and incorporate better-informed
and additional priors when introducing additional predictors,
which we did not address in this study. Utilising alternative
metrics to assess drivers, particularly those tailored to
specific biomes, could offer a more nuanced understanding
of the influencing factors. For example, future work could
explore the potential response to estimate thresholds that
trigger increased burning or to develop metrics specifically
aimed at extreme fire events. Customising explanatory
variable selection based on biome characteristics would
contribute to a more contextually relevant analysis and
could help reduce biases in biomes with unique ecological
characteristics, such as Pantanal. In addition, including
lagged climate variables is important to account for fuel
moisture memory effects, and future research can explore
their integration to improve the model’s accuracy.

Consideration of different fire categories shows how the
model could be used in further research. For instance, a more
detailed stratification could involve categorising fires into
distinct groups such as forest, agricultural, and deforestation
fires. Although deforestation is a significant driver of fires in
many regions in Brazil, we chose to exclude this from our
analysis because it is not the only human-caused fire issue
in Brazil, and it is not the primary driver in all biomes. For
instance, fires in Pantanal are more strongly associated with
the flood pulse levels (Damasceno-Junior et al., 2022) com-
bined with human activities but not necessarily deforesta-
tion. In addition, in the Atlantic Forest, deforestation is not
strongly linked to present-day fire activity (De Praga Baião
et al., 2023). Even in the Amazon, fires are not always di-
rectly associated with increased deforestation (De Oliveira et
al., 2023). One potential application of our model is to ex-
plore the relationship between deforestation and fires in fu-
ture work. The primary aim of this study, however, was to
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document the model rather than to analyse all drivers of fires
across the country.

Furthermore, accounting for the varying proportions of
natural and non-natural lands within each pixel, as demon-
strated in this study, provides a more accurate landscape rep-
resentation. This contributes to improved simulations where
these areas are very small. Finer grids and the subdivision
of the biomes may uncover local processes, though eventu-
ally fire spread at finer scales would need to be considered.
Understanding the factors that drive fires could be crucial
for improving the model’s predictive capabilities. Previous
modelling attempts often parameterise on a large regional ba-
sis. However, our approach allows for optimisation based on
much smaller areas while still quantifying the confidence in
the analysis. FLAME is flexible enough to be used in vari-
ous locations and, through targeted benchmarking, holds the
potential to evaluate extreme fires and the inter-annual and
seasonal variability of fires, to project future fires, and to
simulate other hazards. With appropriate adaptations and en-
hancements, FLAME has the potential to evolve into a robust
model capable of simulating terrestrial impacts effectively.

5 Final considerations

The self-reinforcing cycle between fires and climate change
is fundamental in improving fire simulations. An understand-
ing of what drives fires is essential for devising mitigation
and adaptation strategies. However, this can be particularly
challenging due to the intricate interplay of various factors,
especially in a diverse country like Brazil. We propose a
novel approach for simulating burned area in the Brazilian
biomes that keeps assumptions at a minimum whilst quan-
tifying uncertainties. The model performs well in all biomes
and enables the assessment of fire categories and the grouped
effect of explanatory variables. Furthermore, conventional
modelling efforts often parameterise at a large scale. FLAME
enables optimisation in smaller areas while still providing a
means to quantify confidence in the analysis.

Climate is an important factor in burned area in all biomes.
Despite several studies showing this relationship, climate-
related uncertainties have not been extensively quantified,
a gap the current research fills. Groups 2 (road and edge
densities) and 3 (forest, pasture, and carbon in dead vegeta-
tion) and the NON category showed the highest uncertainties
among the responses. This highlights the challenge in mod-
elling human-related factors. Pantanal, Cerrado, and Ama-
zonia showed a higher sensitivity to minor variations in the
explanatory variables. It is important to note that sensitiv-
ity is more important where burning is already high, which
is the case in these biomes (Alencar et al., 2022). None of
the groups drive huge changes in burned area in the Atlantic
Forest. However, since this biome is fire-sensitive, even small
changes in burned area can have a substantial impact on its
ecosystems. Uncertain responses compound the complexity

of burned-area drivers as different explanatory variables in-
teract uniquely within each biome. The same vegetation type
may show contrasting responses to the same drivers in dif-
ferent locations. Therefore, no universal fire management
policies will fit the whole country. In particular, Caatinga,
the Atlantic Forest, and Pampa require further investigation.
Emphasising regional-scale analysis is crucial for decision-
makers and fire management strategies, enabling more in-
formed and effective prevention of fires.
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