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Abstract. We introduce a tsunami warning technology to-
wards a global real-time analysis. The technology is based
on the analysis of acoustic signals generated together with
the tsunami, due to the compression of the water layer. The
acoustic signals propagate much faster than the tsunami and
thus can be recorded at hydrophone stations, which in turn
enables the analysis in real time. The presented technology
comprises a collection of models that have been integrated
into a software with the goal to make it operational and to
complement efforts by warning centres and provide a more
reliable assessment, globally. The main models that were
integrated into the software are presented and briefly dis-
cussed. Test cases performed by the software are compared
with DART buoy observations, showing satisfactory agree-
ment, though discrepancies arise in particular at far distances
and locations separated by land. The calculation time of a
full global-scale analysis is in the order of tens of seconds
on a standard multi-core machine, without reliance on pre-
computations, making it an appropriate real-time forecast.

1 Introduction

Tsunamis pose a significant threat to coastal communities
around the world, necessitating the development of effec-
tive early warning systems. The inception of tsunami warn-
ing systems can be traced back to the 1940s when Japan
and the USA adopted earthquake-centric approaches, uti-
lizing seismic data and applying empirical formulae for
wave height, along with a shallow water assumption for
travel time. Challenges persisted, marked by numerous false

alarms, inadequate coastal risk assessment, and delayed
warnings. Consequently, a significant shift occurred post-
2004 towards global, tsunami-centric systems, incorporat-
ing advanced methodologies such as pre-computed scenar-
ios, empirical formulae, and tide gauge observations to en-
hance accuracy. The 2004 Indian Ocean tsunami served
as a catalyst for a global response, instigating a paradigm
shift in worldwide tsunami hazard reduction. This trans-
formation involved integrating real-time tsunami observa-
tions and sharing advancements on a global scale. The UN-
coordinated global system underwent expansion, introduc-
ing regional warning centres and standardized procedures.
Since the 1940s, tsunami warning technology has evolved
with the establishment of extensive seismic networks, de-
ployment of DART buoys, cabled observatories, and GPS
buoys, providing real-time data. Advances in numerical mod-
els, coupled with high-performance computing (HPC), con-
tributed to a more effective warning system with reduced
false alarms (Tsuchiya and Shuto, 1995; Igarashi et al., 2011;
Bernard and Titov, 2015; Kong et al., 2015). However, con-
ventional tsunami warning systems still struggle with signif-
icant challenges, resulting in a high incidence of false alarms
and unreliability. Igarashi et al. (2011) point out operational
weaknesses in providing timely warnings for local tsunamis,
especially in regions where the existing system relies on
tsunami measurements, leaving insufficient time for warn-
ings when the source and destinations are in proximity. The
dependence on earthquake information often leads to precau-
tionary alerts, later cancelled when sea level data indicate
non-destructive waves. While this cautious approach prior-
itizes safety, it unintentionally undermines the credibility of
tsunami warning centres (TWCs) and fosters public scepti-
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cism, with people viewing alerts as frequent false alarms.
Since the 1950s, a substantial 75 % of tsunami warnings that
prompted evacuations have turned out to be false, as illus-
trated by the economic losses exceeding USD 30 million dur-
ing the evacuation of Honolulu in 1986. Addressing these
issues necessitates enhancing detection capabilities and pub-
lic awareness to mitigate the credibility and economic chal-
lenges associated with false alarms.

This paper presents a methodology integrated into a piece
of software which is currently under development for oper-
ational purposes. In particular, the software is designed to
enhance real-time early tsunami warning technology, inte-
grating precursor signal detection, computational techniques,
and deep-water tsunami detection. By employing cutting-
edge mathematical and artificial intelligence (AI) models, the
software analyses sound signals to assess tsunamis as they
occur (currently virtually). The methodology integrates data
from various measurement sources and allows for the real-
time mapping of risk areas, including relevant travel paths,
once the epicentre location is identified. By utilizing a ma-
chine learning model, the earthquake magnitude is calcu-
lated, and the mode of strike is classified, in order to de-
termine whether the earthquake is tsunamigenic or not. The
earthquake fault angle, or dip, may be horizontal, vertical, or
at an arbitrary angle. Faults are categorized by their slip di-
rection: dip-slip faults move along the dip plane, strike-slip
faults move horizontally, and oblique-slip faults display both
motions. Tsunamigenic earthquakes usually involve motion
normal to the surface. The strike mode is defined as either
horizontal (less likely to cause tsunamis) or vertical (most
likely to cause tsunamis); see Gomez and Kadri (2021). Ad-
ditionally, in cases where the mode of strike exhibits a ver-
tical element, an inverse problem model is employed to cal-
culate the probability density function of the fault’s geom-
etry and dynamics. These properties are then used in a di-
rect model to determine the tsunami amplitude in each risk
area. Notably, the computational time required for analysing
a given acoustic segment is below 30 s on a standard multi-
core PC station.

Furthermore, the methodology has been successfully val-
idated through testing on previous earthquakes that resulted
in tsunamis (or in false alarms). Further enhancement to the
machine learning model and the incorporation of more mech-
anisms for tsunami generation, such as due to landslides or
volcanic eruptions, including meteotsunamis (Omira et al.,
2022), can be implemented as well. The future deployment
of this technology in leading warning centres is expected to
significantly reduce false alarms and the associated costs,
ultimately promoting the goals of inclusive, safe, resilient,
and sustainable cities, as outlined in SDG Goal 11 of the
UNESCO (see https://sdgs.un.org/goals/goal11, last access:
17 April 2024), and increasing the number of local Disaster
Risk Reduction strategies, which is Target 5 of the Sendai
Framework.

2 Scientific background

In this work, a methodology for a rapid tsunami warning sys-
tem is presented. The methodology allows input data from
various measurement sources and integrates existing analysis
techniques. In particular, the methodology allows real-time
mapping of risk areas of interest including relevant travel
paths once the epicentre location is identified. Then live
acoustic signals are analysed using machine learning to clas-
sify the earthquake magnitude and mode of strike (Gomez
and Kadri, 2021). If the mode of strike has a vertical ele-
ment, then an inverse problem model (Kadri et al., 2017; Mei
and Kadri, 2018; Gomez and Kadri, 2023) can be employed
to calculate the probability density function of the geometry
and dynamics of the fault. These properties are fed back into
a direct model (Mei and Kadri, 2018; Williams et al., 2021)
to obtain the tsunami amplitude at each risk area. The CPU
time required for analysing a given acoustic segment ranges
from seconds up to a few minutes on a standard multi-core
PC station. The methodology has been successfully tested on
previous earthquakes that resulted in tsunamis (Gomez and
Kadri, 2023). This section provides a brief scientific back-
ground on the key models employed in the proposed tech-
nology.

2.1 Hotspot model: Dijkstra’s algorithm

The travel time is calculated on a triangular unstructured
mesh with either global or regional coverage in the spherical
coordinate system. The mesh files include ocean depth and
Lame’s elasticity constants λ, µ, and the earth density ρs.
These data are used to calculate the phase speed of surface
gravity waves (tsunamis), acoustic modes in the water body,
and pressure-wave1 and shear-wave2 velocities (cp and cs) in
the solid earth. The mesh file includes the node ID, coordi-
nates (longitude and latitude), aforementioned variables, and
the triangulation connectivity tables. The mesh can have uni-
form or spatially variable resolutions depending on the wave
type. For P and S waves, a uniform mesh is adequate, while
depth variable resolution is needed for acoustic and gravity
waves. The hotspot model calculates the propagation speed
of P, S, acoustic waves, and surface gravity waves based on
the following procedure:

– P and S waves. The spatially variable speed of com-
pressional cp and shear cs waves at the earth surface
is related to Lame’s elasticity constants λ and µ, and
the earth density ρs. Lame’s constants are taken from
the PREM (Dziewonski and Anderson, 1981), and the
anisotropic variability in the spherical coordinate sys-
tem (latitude, longitude) is taken from Panning et al.
(2010):

1Also known as primary waves, or P waves.
2Also known as secondary waves, or S waves.
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Figure 1. Test case 2004 Mw 9.1 Sumatra earthquake and tsunami. Analysed pressure signal. The signal was recorded at CTBTO’s hydroa-
coustic station at Diego Garcia, H08S1. The analysis has been done automatically by the software for the region highlighted in red. The
green and red curves are the lower and higher envelopes. This plot was created by the developed software GREAT.

Figure 2. Test case 2004 Mw 9.1 Sumatra earthquake and tsunami. Enlarged view of the analysed pressure signal segment. The signal
was recorded at CTBTO’s hydroacoustic station at Diego Garcia, H08S1. The times are chosen at the peaks: t1 = 407.03 s, t2 = 394.83 s.
The frequencies are calculated about each peak: �1 = 2π/0.35, �2 = 2π/0.7; cl = 1500 m s−1. The depth at the hydrophone location
h= 1889 m. The green and red curves are the lower and higher envelopes. This plot was created by the developed software GREAT.

cp =

√
λ+ 2µ
ρs

, cs =

√
µ

ρs
. (1)

The anisotropic, depth-dependent cp and cs values
are subsequently interpolated onto a three-dimensional
mesh. This configuration permits P waves to propagate
through the mantle, outer, and inner core, whereas S
waves are unable to penetrate the outer core.

– Acoustic waves. The phase speed and group velocity are
calculated from the solution of the following dispersion
relation for acoustic waves, which accounts for water
compressibility and gravitational terms, neglecting the
role of earth elasticity,

ω2
[1− (γl/(2r)) tanhrh] = gr(1− (γl/(2r))2)

tanhrh, (2)

with

r2
= k2
−ω2/c2

l + γ
2/2, γl = g/c

2
l , (3)

where r is the eigenvalue, k is the wavenumber, cl is the
sound speed in water, and g is the gravitational acceler-
ation constant. The imaginary roots of Eq. (2) describe
both progressive and spatially decaying acoustic wave
modes, which are generated in a compressible fluid to-
gether with surface gravity waves (Abdolali and Kirby,
2017).

– Surface gravity waves. Considering the water compress-
ibility, overlying a half-space elastic bed with gravita-
tional terms, the dispersion relation is written as (Ab-
dolali et al., 2019)

tanh(rh)=
(C2+C3/g)ω

2/r

C1C2ω2/r +C3 (1+ γlC1/r)
, (4)
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where C1, C2, and C3 are coefficients defined in Ap-
pendix A, and q and s are the eigenvalues:

q2
= k2
−ω2/c2

p + γp
2/2, s2

= k2
−ω2/c2

s + γs
2/2, (5)

where γq = g/c2
p and γs = g/c

2
s . The real root of the

dispersion relation is used to calculate the phase speed
and group velocity of tsunami waves.

At the initiation step of the hotspot model and per wave
type, the nearest node in the mesh to the earthquake epicentre
is identified. The weight for the elements’ edges is calculated
based on the Haversine formula and the phase speed of a
given wave type between the nodes, as described earlier. In
the second step, Dijkstra’s algorithm (Dijkstra, 2022) is used
to calculate the shortest path between the epicentre and all
the nodes on the mesh (see Appendix B for more details).

The implemented model takes tens of seconds on a global
unstructured mesh with 5–50 km resolution on a standard
desktop machine and can do the simulations in parallel with
other components of the system. The outputs of the model
are the arrival time for the aforementioned waves and the
transects from the source to all the nodes.

2.2 Machine learning: earthquake source inversion
from acoustic signals

The machine learning model was originally developed by
Gomez and Kadri (2021). They applied a range of techniques
to analyse acoustic pressure signals generated by underwa-
ter earthquakes and calculate the effective fault size and dy-
namics in nearly real time. They used a dataset consisting
of 201 earthquake signals recorded by the IMS hydroacous-
tic network and used 10 % of the data for validation and
10 % for testing. In addition, they used artificial data for
further testing. The study compared four different method-
ologies for extracting relevant features from these acoustic
signals, including statistical moments, time series analysis,
power spectrum analysis, and wavelet transform coefficients
analysis. Additionally, they employed two classification ma-
chine learning algorithms, random forest classifier (RFC)
and support vector machine (SVM), to distinguish between
vertical motion events and achieved over 70 % classification
accuracy. Among these methodologies, the combination of
wavelet transform feature extraction and SVM yielded the
highest accuracy for both binary and multi-class scenarios.

Furthermore, the study applied regression machine learn-
ing algorithms to estimate the magnitudes of the tectonic
events from the vectorized signals dataset. The machine
learning algorithms provided more accurate predictions than
simply using the mean value of the dataset, as confirmed by
the sum of squared error (SSE) values. Notably, these al-
gorithms, when combined with the precomputed vectorized
dataset, took less than 1 s on a standard desktop machine to
estimate the source magnitude and slip type. These estimates

Figure 3. The design of the software GUI.

can be used as input for an inverse problem model to cal-
culate the fault’s effective size and dynamics in real time.
The study, however, only considered shallow earthquakes to
reduce uncertainties, and the depth dependence of classifica-
tion accuracy remains unanalysed, a potential area for future
research.

2.3 Direct model: pressure field and water amplitude
calculations

The main objective of the direct model is to provide analyt-
ical calculations of the tsunami amplitudes at all regions of
interest. Additionally, the model can calculate the pressure
field induced by the acoustic waves, at any point of interest,
but particularly at the hydrophone location, which allows a
direct comparison against observations.

The model is based on an approach that was proposed by
Mei and Kadri (2018), who considered the fault rupture to
be slender and invoked multiple-scale analysis to obtain a
closed-form analytical solution for the propagating acoustic
modes. The earthquake fault is assumed to have a rectangu-
lar slender shape, characterized by a length of 2L and a width
of 2b, where the slenderness parameter ε = b/L� 1. Due to
this slender body assumption, Mei and Kadri (2018) were
able to apply multiple-scale theory, introducing multiple-
scale coordinates, x,z,X = ε2x,Y = εy, to derive a three-
dimensional analytical solution of the pressure field (see
Eq. 6.13 in Mei and Kadri, 2018). The closed form of the
solution makes it ideal for real-time analysis. For example,
the pressure field induced by the leading acoustic mode in
the far field takes the form (see Eq. 8.5 in Mei and Kadri,
2018)

p = ρlW0|A|
27/2cl√
π3x0k

sin(kb)sin(�T ), (6)

where ρl is the water density, W0 is the average uplift veloc-
ity of the fault, A= A(k,X,Y ) is the two dimensional enve-
lope generated in the far field (defined in Appendix C), x0 is
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Table 1. Sumatra 2004 tsunami height comparison between obser-
vations reported by Lay et al. (2005) and current model.

Location Observations Current model
[m] [m]

Madras/Bandar 1.7 1.93
Batticaloa 3.9 4.14
S. Maldives 3.1 3.21
Phuket 3.4 3.67
Banda Aceh 4.3 6.5

the distance of the horizontal components at the observation
point (e.g. hydrophone), k is the wave number, � is the fre-
quency, and T is the duration of the effective uplift. Note that
only the pressure induced by the first acoustic mode is con-
sidered here, as it carries most of the energy and information
about the source (Mei and Kadri, 2018).

The solution by Mei and Kadri (2018) was modified later
by Williams et al. (2021), who included the effects of grav-
ity along with multi-faults. While to first order the acous-
tic modes are governed by compressibility of water, and sur-
face gravity waves are governed by gravity, considering both
gravity and compressibility (as well as elasticity effects) en-
hances the accuracy of the tsunami phase speed, as also
shown by Abdolali et al. (2019). Similarly, including grav-
ity modifies the dispersion relation of the acoustic modes,
though in addition, it provides a closed-form solution for the
generated tsunami. Thus, both the tsunami and the acous-
tic waves can be calculated simultaneously, which enhances
the real-time analysis. The envelope of the surface elevation
takes the form

η(x,y, t)=
W0

gπ
|A|

8r sin(kb)sin(�T )cosh(rh)
k2 [2rh+ sinh(2rh)]√

2π/t
0′′(�)

, (7)

where 0′′(�) is given in Appendix D. Thus, given the basic
properties of the fault, the tsunami can be calculated in the
far field at extremely low computational cost.

2.4 Inverse problem: calculating fault properties from
acoustic data

The inverse problem approach of Hendin and Stiassnie
(2013), originally devised for a circular fault, has been ex-
tended by Mei and Kadri (2018) to partially retrieve the main
properties of a slender fault. Following that, a semi-analytical
inverse problem approach has been developed by Gomez and
Kadri (2021) to estimate the geometry, dynamics, and orien-
tation of the fault by analysing real pressure signals recorded
on the Comprehensive Nuclear-Test-Ban Treaty Organiza-
tion (CTBTO) hydrophones. This approach allows for real-
time calculation of the effective fault properties required in

Figure 4. Screenshots of the software (GREAT) for test case 2004
Mw 9.1 Sumatra earthquake and tsunami. Yellow star: earthquake
epicentre. Green triangles: the location of current DART buoys.
Blue circles: hydrophone stations H08S and H08N. Hotspots: user-
defined points of interest (red for high risk, yellow for middle risk).
(a) A snapshot from the software for showing tsunami arrival times
(black contours) and size (coloured contours) at 50 m depth. (b) A
snapshot from the software for showing tsunami evaluation con-
tours at the coasts (red for high risk, yellow for middle risk/advi-
sory, and green for no risk) at 50 m depth. © OpenStreetMap con-
tributors 2023. Distributed under the Open Data Commons Open
Database License (ODbL) v1.0.

order to calculate the tsunami size. It is important to note
that the geometry and dynamics of the slender fault represent
an effective vertical motion, simplifying the more complex
earthquake rupture dynamics. The ocean floor is assumed to
move vertically at a constant speed.

The epicentre location and eruption time are usually
known from seismic measurements, well before the acous-
tic data are available, and thus used as input parameters in
the direct model. Nevertheless, an approximate calculation
of the effective fault distance (x0,y0) and orientation can be
made, for validation purposes, by the inverse problem model.
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Figure 5. Test case 2011 Mw 9.1 Tohoku earthquake. Analysed pressure signal. The signal was recorded at CTBTO’s hydroacoustic station
at Wake Island, H11N. The analysis has been done automatically by the software for the region highlighted in red. The green and red curves
are the lower and higher envelopes. The plot was created by the software GREAT.

However, the hydrophone station has to be sufficiently close,
say within O(1000) km, so that the assumption of a Cartesian
coordinate system is valid. Using triangulation, the bearing
of the signal can be obtained from windowed entropy calcu-
lations (e.g. log energy, Coifman and Wickerhauser (1992)).
Then, from the signal frequency evolution, the distance and
eruption time (relative to recorded time) can be calculated
using Eqs. (8)–(9). Knowing the bearing and horizontal (nor-
mal to fault) and vertical (parallel to fault) distances, the lo-
cation and orientation of the fault are then calculated. Only
frequency distributions within a predefined range, as identi-
fied by visual inspection of the spectrogram, are considered,
leading to sets of solutions provided by the model. It is worth
noting that a similar solution for multi-fault rupture can be
derived based on Williams et al. (2021).

The comprehensive description of the inverse problem
model can be found in Gomez and Kadri (2021). To briefly
illustrate the inverse problem model algorithm, we consider
the test case acoustic recordings (blue signal) in Fig. 1 and
perform the following steps:

1. Choose the region to be analysed (highlighted in red in
Fig. 1) – this can be done automatically or manually.

2. Calculate the frequency distribution �j at different
times tj , j = 1,2,3, . . ., e.g. at the blue dots in Fig. 1.

3. Substitute �j in the dispersion relation (4) to compute
the wavenumbers kj .

4. Calculate the location (i.e. distance relative to hy-
drophone location) and rupture time, x0, y0 and t0, using
the equation (Mei and Kadri, 2018)

x0 =
(tj − tj+1)cl{

1−
[

πcl

2h�j+1

]2}−1/2

−

{
1−

[
πcl

2h�j

]2}−1/2 (8)

y0 =
(
t20 c

2
l − x

2
0

)1/2
, t0 = tj −

x0

cl

{
1−

[
πcl

2h�j

]2}−1/2

, (9)

where tj is the measured time for the j th pressure point
in the signal. The results are then compared with seismic
data, which are normally known well before the acoustic
signal is recorded.

5. Calculate the fault width 2b. Choosing points j closest
to the envelope (red and green curves), one can approx-
imate sin(kb)= 1 to find periodic solutions of the fault
width following bm = π(m− 1/2)/kj , (m= 1,2,3. . .).
Finding a “reasonable” range for m is possible from
existing empirical relations by Wells and Coppersmith
(1994). The process results are repeated in a probability
density function of the possible solutions.

6. Calculate the duration 2T numerically by solving for
the pressure amplitude ratio of two different measure-
ment points. Thus, from Eq. (6) we write (Gomez and
Kadri, 2021)

pi

pj
=
|Ai |/
√
ki

|Aj |/
√
kj

sin(ki b̄)
sin(kj b̄)

sin(�iT )
sin(�jT )

, (10)

where i 6= j are two different measurement points.

7. Compute uplift speed W0 and length 2L from Eq. (6),
numerically. As before, solutions for L are constrained
following Wells and Coppersmith (1994), resulting in a
probability density function of results.

The detailed inverse problem model procedure can be
found in Gomez and Kadri (2021). A comparison between in-
put and calculated parameters by the inverse problem model
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Figure 6. (a) P and (b) S wave travel times are computed using spatially varying compressional wave speed, cp , and shear wave speed, cs,
derived from the PREM (Dziewonski and Anderson, 1981), with anisotropic variability in a spherical coordinate system (latitude, longitude),
as described by Panning et al. (2010). (c) The travel times of the first four dominant acoustic modes (governed by fault depth). Bathymetry
data from the General Bathymetric Chart of the Oceans (GEBCO) (Kapoor, 1981) are utilized to calculate arrival times for acoustic waves.
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Figure 7. Surface tsunami travel times for the Tohoku 2011 event.
Bathymetry data from the General Bathymetric Chart of the Oceans
(GEBCO) (Kapoor, 1981) are used for the dispersion relation.

can be found in Table II of Hendin and Stiassnie (2013) and
Tables 3–4 of Gomez and Kadri (2021). However, as an ex-
ample for calculating the distance from the effective fault, we
consider the signal in Fig. 1 of the Sumatra earthquake test
case. Note that the epicentre is located at a distance of about
2700 km from hydrophone H08S1. The specifics of the pa-
rameters employed in the inverse model are provided in the
enlarged view depicted in Fig. 2. From Eqs. (8)–(9) we ob-
tain x0 = 2481 km, y0 = 16232 km, and thus a distance of
2965 km. Given the bearing of 64.5°±0.5°, the approximate
location of the effective fault can then be found.

3 Software architecture and workflow

In order to facilitate the use of the technology in tsunami
warning centres, as well as among the scientific commu-
nity, we have been developing a user-friendly software, us-
ing the Python programming language. The software has
been named GREAT (Global Real-time Early Assessment of
Tsunami). It has the capability to automatically analyse in-
coming acoustic signals, keeping the option of manual use,
with the aim to be employed both for real-time signal analy-
sis and for educational purposes. A detailed description of
the package, including the key considerations and the de-
sign philosophy that enables users to perform the analysis,
the program structure, dependencies, and documentations, is
given in Appendix E.

As shown in Fig. 3, the analysis begins by receiving infor-
mation on the epicentre of the earthquake. Knowing its co-
ordinates and the triangular mesh details, Dijkstra’s shortest-
path module calculates shortest paths from the epicentre to
all nodes on the mesh and their corresponding transects.
Using coordinates of all hotspots, the hotspot model cal-

Figure 8. Tohoku 2011 study case, comparison of calculated ampli-
tudes ηcalc vs. observed amplitudes ηobs at various DART buoy lo-
cations. DART buoy location legend is given in Appendix F. Larger
circles indicate shorter tsunami travel times to DART buoy loca-
tions, with the smallest circles representing around 10 h. Notably,
most amplitude ratios fall within the range 0.5< ηcalc/ηobs < 2.
Blue circles mark DART buoy locations within this range, while
red circles indicate locations outside it (see corresponding map in
Fig. 9).

culates tsunami travel times, acoustic wave travel times, P
and S waves, and the shortest paths from the epicentre to all
hotspots and their corresponding transects. At this stage pre-
liminary results are ready to be analysed, and initial warnings
can, virtually, be issued.

The next required input is the signal (or multiple-signal)
data and various analysis parameters for inverse and direct
models. Operational software is designed to work with sev-
eral signal input types. All of them are similar in terms
of data structure as they contain arrays of pressure values,
but they vary based on the file types. Those include Python
NumPy array files (.npz), MATLAB data files (.mat), and text
files with pressure values (.txt). Additionally, the system can
take a json configuration file as an input, which will populate
necessary analysis parameters alongside the signal data.

The signal data are used in a machine learning model to
calculate additional earthquake parameters such as its mag-
nitude and mode of strike. Alternatively, earthquake magni-
tude can be provided directly as an input if known. Then all
the necessary parameters alongside the signal data are sup-
plied to the inverse problem model, which returns probability
density functions of the geometry and dynamics of the fault.
Lastly, the inverse problem model results are used as input
for the direct model that returns pressure and surface eleva-

Geosci. Model Dev., 18, 3487–3507, 2025 https://doi.org/10.5194/gmd-18-3487-2025



U. Kadri et al.: Global Real-time Early Assessment of Tsunamis 3495

Figure 9. Tohoku 2011 DART buoy map. Blue triangles: location of DART buoys at which satisfactory agreement, up to a factor of 2,
between calculations and observations (and vice versa), is noted. Red triangles: location of DART buoys at which larger deviations between
calculations and observations are noted. Grey triangles: no available data. © OpenStreetMap contributors 2023. Distributed under the Open
Data Commons Open Database License (ODbL) v1.0.

tion data at all hotspot locations. After analysis is complete,
the developed system generates an interactive map showing
all the results and provides an option to save those into a
file. There are two ways to export the results: one of them is
a NumPy array file (.npz), and the other is a NetCDF4 file
(Rew and Davis, 1990). Those can be used to load the results
directly by the operational software to see the interactive map
and full results at any convenient time or to analyse the re-
sults further using different software packages.

4 Results

We present four test cases to highlight different qualities of
the technology under development, with two cases resulting
in mega-tsunamis and one that caused a major false alarm.
The first test case is the 2004 Mw 9.1 Sumatra earthquake
and tsunami. This test case highlights the promptness of the
calculations and the timely assessment of the tsunami. It also
shows some of the software GUI and main plotting features,
but comparison with only five DART buoy data was made.
The second test case is the Tohoku-oki 2011 tsunami. This
test case emphasizes the results by the hotspot model. Quan-
titative analysis was done for all existing DART buoy data.
The third test case concerns the 2018 Mw 7.9 Gulf of Alaska
earthquake, which led to a false alarm. This test case empha-
sizes the capability of the presented technology to reducing
the impact of false alarms. Quantitative analysis was done for
existing DART buoy data. The last test case is the Tateyama
2009 event, which has a much smaller magnitude than the
other test cases. This case is included to shed light on the
effect of magnitude on the performance of the models. It is
worth noting that all plots, apart from Figs. 8, 13, and 16),
were made using the developed software (GREAT).

4.1 Sumatra 2004

The 2004 Indian Ocean earthquake, which occurred on
26 December 2004, is one of the most powerful seismic
events recorded in history. The undersea megathrust earth-
quake had a magnitude of 9.1–9.3 off the west coast of north-
ern Sumatra, Indonesia (Lay et al., 2005). Triggering a series
of devastating tsunamis, it affected more than a dozen coun-
tries, causing widespread destruction and killing 227 898
people in 14 countries (Goff and Dudley, 2021). The earth-
quake was caused by the subduction of the Indo-Australian
Plate beneath the Eurasian Plate. The resulting displacement
of the seafloor led to the release of a massive amount of en-
ergy, generating tsunamis that reached coastal areas across
the Indian Ocean. The catastrophe highlighted the need for
improved early warning systems and international collabora-
tion in disaster preparedness and response.

Acoustic data related to the event were recorded on
CTBTO hydroacoustic stations. The analysed pressure
acoustic data (recorded on H08S1) are presented in Fig. 1.
The analysis has been done automatically by the software
for the region highlighted in red. The epicentre location is
highlighted by a yellow star in Fig. 4. CTBTO hydroacous-
tic stations, H08S and H08N, are shown as blue circles, the
tsunami arrival times are shown in black contours, and the
location of DART buoys is presented by green triangles. The
coloured contours in Fig. 4a near the shorelines present the
relative tsunami amplitude (in metres), with red for tsunami
threat (η > 0.5), yellow for advisory (0.2< η < 0.5), and
green for no threat (η < 0.2). These values that define the
criteria for tsunami risk, referred to as the decision matrix in
Fig. 4a, are typical values used by TWCs. The actual wave
amplitudes are shown in Fig. 4b. Note that the hydroacous-
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Figure 10. Test case 2018Mw 7.9 Gulf of Alaska earthquake. Analysed pressure signal. The signal was recorded at CTBTO’s hydroacoustic
station at Wake Island, H11N. The analysis has been done automatically by the software for the region highlighted in red. The green and red
curves are the lower and higher envelopes. The plot was created by the software GREAT.

Figure 11. Screenshots of the software (GREAT) for test case 2018 Mw 7.9 Gulf of Alaska earthquake. A snapshot from the software for
showing tsunami evaluation contours at the coasts (red for high risk, yellow for middle risk/advisory, and green for no risk) at 50 m depth.
Yellow star: earthquake epicentre. Green triangles: the location of current DART buoys. The hydrophone stations (H11S/H11N) are not
shown. Hotspots: user-defined points of interest (green for no tsunami). © OpenStreetMap contributors 2023. Distributed under the Open
Data Commons Open Database License (ODbL) v1.0.

tic station is at a distance of about 3000 km, which is in a
location that might be ideal for nuclear activity monitoring,
though not for tsunami warning. If the hydroacoustic station
were at a distance of 1000 km, that would have left enough
alarm time, even for the closest shorelines that had as little as
15 min from the rupture time until the tsunami impact. The
software successfully predicts most of the tsunami threat re-
gions (red), even at very large distances such as Sri Lanka
and Madagascar. The machine learning model predicted that
this earthquake should generate a tsunami. The total analysis
by all models took a few minutes on a standard multi-core
PC station. There were no DART buoy data at the time of

the event to allow a more quantitative analysis of the results.
However a qualitative comparison with results shown by Lay
et al. (2005) for five different locations is presented in Ta-
ble 1. The calculations by the current model overpredict the
observation by as little as 3%, in the case of S. Maldives, to
as high as 52 %, in the case of Banda Aceh.

4.2 Tohoku-oki 2011

The Tohoku-oki earthquake of 2011 was a momentous seis-
mic event that struck off the northeastern coast of Japan on
11 March 2011. This megathrust earthquake, with a mag-
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Figure 12. Test case 2018 Mw 7.9 Gulf of Alaska earthquake. The subplots in (a) were calculated by the software for the observation point
at the location of DART 46403: (a1) pressure signal, (a2) water elevation, and (a3) sea bathymetry between the epicentre (star) and the
observation point (triangle), with the average depth presented by a dashed line. Panel (b) is the observed water level at by DART 46403.
These plots were created by the software GREAT.

nitude of 9.0–9.1, was caused by the Pacific Plate subduct-
ing beneath the North American Plate. The ensuing undersea
earthquake triggered a massive tsunami that inundated the
Japanese coastline and caused widespread devastation. The
disaster resulted in the Fukushima Daiichi nuclear disaster,
further intensifying the crisis.

The analysed acoustic data (recorded on H11N1) are pre-
sented in Fig. 5. As before, the analysis has been done auto-
matically by the software for the region highlighted in red.
The epicentre location is highlighted in Fig. 6 by a yellow
star. The hydroacoustic stations H11S and H11N are shown
as green circles. Note that the hydrophones are located at the
SOFAR channel depth, about 700 m deep. The location of
DART buoys is presented by green triangles.

Figures 6 and 7 show the arrival time of three precursors
and the surface gravity waves (tsunami) for Tohoku Oki 2011
event, calculated by the hotspot model. The arrival times of

the P and S waves are presented in panels a and b, respec-
tively, where spatially variable compressional cp and shear
wave cs speeds are calculated from Lame’s constants λ and
µ of earth taken from the PREM (Dziewonski and Anderson,
1981), as shown in Eq. (1). Panel b shows the arrival time of
the four first acoustic modes. In order to calculate the phase
speed, the dispersion relation for compressible ocean is used
(Abdolali and Kirby, 2017), as shown in Eq. (2). Figure 7
shows the arrival of tsunami waves where the dispersion re-
lation for elastic half-space is used (Abdolali et al., 2019), as
shown in Eq. (4).

To gain a more quantitative understanding of the perfor-
mance of the models, we compare DART buoy observations,
ηobs, with calculations, ηcalc. Satisfactory agreement is in
general observed at DART buoy stations closer to the epi-
centre and at stations with less land separating them from the
epicentre – see Fig. 8 and the corresponding map in Fig. 9.
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The larger the circles, the lower the tsunami travel times
to the DART buoy locations are, with the smallest circles
representing approximately 10 h. For consistency, the DART
buoys are numbered, and the real DART station names are
provided in Appendix F. It is remarkable that the majority of
the amplitude ratio falls within the region 0.5< ηcalc/ηobs <

2. The blue circles represent DART buoy locations where the
amplitude ratio falls within the specified range, while the red
circles represent locations where the amplitude ratio is out-
side of this range.

4.3 Alaska 2018

The Alaska earthquake of 2018, which occurred on 23 Jan-
uary, was a significant seismic event with a magnitude of 7.9.
Striking in the Gulf of Alaska, it raised concerns about poten-
tial tsunamis along the coast. The quake was attributed to the
subduction of the Pacific Plate beneath the North American
Plate. While the earthquake itself did not cause major dam-
age or casualties, an error in the initial assessments led to a
false alarm regarding a potential tsunami threat. The incident
exposed flaws in the emergency alert system, demonstrating
the importance of accurate and timely information dissemi-
nation during such events.

The analysed acoustic data (recorded on H11N1) are pre-
sented in Fig. 10. As before, the analysis has been done au-
tomatically by the software for the region highlighted in red.
The epicentre location is highlighted in Fig. 11 by a yellow
star. The tsunami assessment clearly shows that there is no
tsunami threat in this case – green contours indicate no threat.
The performance of the software can be assessed by compar-
ing the calculated water elevation (tsunami amplitude) with
DART buoys. For example, the peak amplitude recorded at
DART 46403 is of the same order of the calculated ampli-
tude (Fig. 12). It is also worth noting that the machine learn-
ing model predicted that this earthquake will not generate a
tsunami. The prediction time took a fraction of a second, and
the total analysis time by the inverse and direct models was
less than 30 s on a standard multi-core PC station.

A quantitative analysis of the water elevation is shown in
Fig. 13 corresponding to the map in Fig. 14. Again, consis-
tent agreement is observed at DART buoy stations located
closer to the epicentre, as well as at stations with less land
separating them from the epicentre.

4.4 Tateyama 2009

The Tateyama earthquake of 2009, with a magnitude of 6.6,
struck approximately 244 km southeast of Tateyama, Japan.
This seismic event occurred on 12 August 2009 and was as-
sociated with the subduction zone boundary between the Pa-
cific Plate and the Philippine Sea Plate. The earthquake re-
sulted in moderate shaking in the region and raised concerns
about potential tsunami risks due to its offshore location.
Again, the analysed acoustic data were recorded on H11N1,

Figure 13. Alaska 2018 study case, comparison of calculated am-
plitudes ηcalc vs. observed amplitudes ηobs at various DART buoy
locations. DART buoy location legend is given in Appendix F. Con-
sistent agreement is observed at DART buoy stations located closer
to the epicentre, as well as at stations with less land separating them
from the epicentre (see corresponding map in Fig. 14).

which is presented in Fig. 15. However, for this test case, we
focus attention on the analysis of the water elevation, which
is shown in Fig. 16, corresponding to the locations in the map
in Fig. 17. Once again, consistent agreement is in general ob-
served at DART buoy stations located closer to the epicentre,
as well as at stations with less land separating them from the
epicentre. It is also notable that in this relatively small earth-
quake, more deviation is noticed. This might be because the
amplitudes are smaller and thus more sensitive to deviations.

Among the four case studies discussed in the paper, Suma-
tra was triggered by a large oblique-slip earthquake with
a significant vertical component and prolonged duration,
whereas Tohoku and Tateyama involved thrust fault move-
ments. Tohoku was a high-magnitude, long-duration bottom-
shaking event, while Tateyama was weaker and shorter in
duration. In contrast, the Alaska case was characterized by
a strike-slip fault, dominated by horizontal motion and mod-
erately shorter duration compared to Sumatra and Tohoku.
Despite its large magnitude, the horizontal motion in Alaska
resulted in only a minor tsunami. The vertical ground mo-
tion played a critical role in tsunami generation for Suma-
tra, Tohoku, and Tateyama, whereas the horizontal motion in
Alaska limited tsunami generation. Consequently, model per-
formance depends heavily on earthquake magnitude and ver-
tical motion, as defined by the dip angle, with better results
observed for large, vertically dominant ground motions. Fur-
thermore, the accuracy of model predictions improves when
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Figure 14. Alaska 2018 DART buoy map. Blue triangles: location of DART buoys at which satisfactory agreement, up to a factor of 2,
between calculations and observations (and vice versa), is noted. Red triangles: location of DART buoys at which larger deviations between
calculations and observations are noted. Grey triangles: no available data. © OpenStreetMap contributors 2023. Distributed under the Open
Data Commons Open Database License (ODbL) v1.0.

Figure 15. Test case 2009 Mw 6.6 Tateyama earthquake. Analysed pressure signal. The signal was recorded at CTBTO’s hydroacoustic
station at Wake Island, H11N. The analysis has been done automatically by the software for the region highlighted in red. The green and red
curves are the lower and higher envelopes. The plot was created by the software GREAT.

the gauges are closer to the hydrophones. The reason is that
acoustic–gravity waves (AGWs) are less dissipated due to
interactions with the seafloor geometry, allowing the inverse
model to better capture and estimate the fault geometry. (see
Table 2).

From an observational perspective, ground-truth data for
the Sumatra case are limited to a few selected locations,
as summarized in Table F1, while DART buoy observations
were available for the Tateyama, Tohoku, and Alaska cases,
as outlined in Table F2. The accuracy of the model at obser-
vation locations is further influenced by two key factors. The
first is the ratio of the shortest distance to the direct distance
(SD / DD) between the epicentre and the observation points;
a ratio closer to 1 indicates wave propagation over relatively
consistent depths, aligning well with the assumptions of the

direct model. The second is the proximity of the observations
to the source, as observations closer to the epicentre, reflected
in shorter travel times, tend to show higher model accuracy.

5 Discussion

The methodology and software presented in this paper are
aimed at providing a complementary tool in the domain of
real-time early tsunami warning technology. By integrating
state-of-the-art mathematical models and a machine learning
model, our software has demonstrated, virtually, the capabil-
ity of analysing sound signals to assess tsunamis globally,
potentially in real time. The integration of data from diverse
measurement sources has allowed for the dynamic mapping
of high-risk areas, streamlining the identification of the short-
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Table 2. Summary table for four case studies (Ekström et al., 2012).

Case Sumatra Tateyama Tohoku Alaska

Date 26 Dec 2004 12 Aug 2009 11 Mar 2011 23 Jan 2018
Time (GMT) 01:01:09 22:48:55 05:47:32 09:32:04
Long 94.26 140.68 143.05 −149.12
Lat 3.09 32.74 37.52 56.22
Moment magnitude (Mw) 9 6.6 9.1 7.9
Depth [km] 28.6 55.2 20 33.6
Half duration [s] 95 4.8 70 22.3
Strike [°] 329 55 203 257
Dip [°] 8 18 10 80
Slip [°] 110 130 88 4
Type Oblique-slip Thrust Thrust Strike-slip

Hydrophone H08S1 H11N1 H11N1 H11N1
Long 71.01 166.89 166.89 166.89
Lat −6.34 19.71 19.71 19.71
Distance [km] 2786 3005 3039 5427
Acoustic travel time [s] 1856 2003 2026 3485

Figure 16. Tateyama 2009 study case, comparison of calculated
amplitudes ηcalc vs. observed amplitudes ηobs at various DART
buoy locations. DART buoy location legend is given in Appendix F.
Consistent agreement is generally observed at DART buoy stations
nearer to the epicentre and those with minimal land separation from
it (see corresponding map in Fig. 17). However, greater deviation
is noted in this relatively small earthquake, likely due to smaller
amplitudes being more sensitive to variations.

est travel paths once the epicentre location is established. The
machine learning model classifies earthquake magnitude and
strike mode, while the incorporation of an inverse problem
model has contributed to the calculation of probability den-

sity functions for fault geometry and dynamics. The calcu-
lated parameters are then employed by the direct model to
provide tsunami amplitude assessment at high-risk locations,
all accomplished within a computational time frame of sec-
onds to a few minutes on standard multi-core PC stations.

However, it is important to acknowledge certain limita-
tions in the presented technology. Notably, the dataset size
of the machine learning model is relatively modest, encom-
passing only earthquakes that meet specific conditions. This
limited dataset, while valuable for a proof of concept, does
narrow the model’s applicability to a specific subset of seis-
mic events. Consequently, we view our research as a cru-
cial initial step in demonstrating the potential of combining
machine learning algorithms and semi-analytical solutions
to infer properties of submarine tectonic events from acous-
tic radiation. The machine learning model can be improved
in two ways. Firstly, employing a much larger database, the
model can be trained to provide an angle of strike, instead
of a binary result, i.e. vertical or horizontal. Secondly, the
training can involve corresponding DART buoys as well as
other sources, such as other tsunami measurements, includ-
ing GPS buoys, tide gauges, or satellite altimeters. Incorpo-
rating these sources into the current version of the software,
where they are primarily used for validation, can enhance
confidence in model reliability across various geographical
locations (offshore, nearshore, and at varying distances from
the tsunami source). Such incorporation would exploit the
database (since each event is associated with tens of DART
buoys and other sources). Consequently, the model will be
trained to assess the tsunami height at the different locations
by analysing the acoustic signals directly, which is part of on-
going research. Once validated, the machine learning (ML)
component in the next version of the model will be expanded
to utilize these data as training datasets. This shift would alter
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Figure 17. Tateyama 2009 DART buoy map. Blue triangles: location of DART buoys at which satisfactory agreement, up to a factor of 2,
between calculations and observations (and vice versa), is noted. Red triangles: location of DART buoys at which larger deviations between
calculations and observations are noted. Grey triangles: no available data. © OpenStreetMap contributors 2023. Distributed under the Open
Data Commons Open Database License (ODbL) v1.0.

their role from validation datasets to critical inputs, improv-
ing the model’s predictive capabilities.

Integrating more datasets, including surface elevation
from DART and GPS buoys, pressure from SMART cable
and fibre optic cables, remote sensing (i.e. satellite altime-
try), and acoustic waves, from sources other than CTBTO,
can enhance the model and reduce uncertainty due to the
sparseness of data. Increasing the number of datasets would
enhance response time for faster warnings and provide mul-
tiple datasets per event, improving confidence in detection
and analysis. It is important to note that certain components
of the software, such as the inverse problem model, require
adjustments based on the sampling rate. Therefore integrat-
ing publicly available data from sources like IRIS and Ocean
Network Canada (ONC) requires system fine-tuning. During
the expansion of the software to incorporate diverse and non-
unified data types, a key challenge is ensuring that the soft-
ware can distinguish data sources and account for differences
in sampling rate, observational error, confidence level, and
data format. Addressing these variations is crucial for accu-
rate analysis and effective data integration.

Moreover, the presented quantitative analysis of the sur-
face elevation (Figs. 8–9, 13–14, 16–17) indicates that the
models perform relatively well, even at large distances. This
is further supported by Fig. 18, which shows good agreement
between amplitude ratios and tsunami travel times for the
Tateyama 2009, Tohoku 2011, and Alaska 2018 events across
various DART buoy locations, with a travel time limit of 24 h.
To mitigate minor arbitrary fluctuations in wave amplitude
measurements, a constant offset of 0.05 m is added to all val-
ues. A challenge with DART buoys is their hybrid sampling
rate, which is too low [1t = 15 min] under normal condi-
tions and only increases [1t = 1 min, 15 s] if triggered above

a certain threshold. Typically, at these locations, the DART
buoys are not triggered, resulting in a low sampling rate and
data dominated by irrelevant noise. However, there is a need
to analyse many more events, as well as studying results at
each DART buoy location individually, before a solid con-
clusion is established, and the software becomes fully opera-
tional. It must be noted that the inverse problem model anal-
ysis conducted here was done automatically, whereas a more
careful selection of the analysed envelopes could largely im-
prove the results.

To enhance the operational capabilities of the software and
its real-time analysis, it has been deployed since June 2024
at the Tsunami Warning Centre of the Instituto Português do
Mar e da Atmosfera (IPMA), where it has access to real-
time hydrophone data provided by CTBTO. This deployment
aims to assess the system’s performance under operational
conditions, addressing key challenges such as hardware lim-
itations, data transmission delays, and potential sensor fail-
ures. A detailed evaluation of these factors is ongoing, with
results to be published upon the study’s completion.

Note that a major limitation of the current real-time as-
sessment is the sparse distribution of hydrophone stations.
CTBTO operates six hydrophone stations globally, of which
access is currently available for only four. The geographic
distribution of these hydrophones restricts the technology’s
applicability to specific regions. The system is most effective
within a 1000 km radius of each station, enabling an end-to-
end assessment within an average of less than 6 min. Using
these figures as an indicator for optimized global hydrophone
station density, approximately 30 hydrophone stations would
be required.

In conclusion, our work represents a complementary
approach towards more effective early tsunami warning
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Figure 18. Amplitude ratio against tsunami travel time for Tateyama 2009, Tohoku 2011, and Alaska 2018 study cases at various DART
buoy locations with tsunami travel time up to 24 h.

systems. While we acknowledge certain limitations, our
methodology and software provide a robust foundation upon
which future research and enhancements can be built. We
hope this work encourages further research and develop-
ment and provides a platform for integrating other efforts,
both conservative and innovative, that would contribute to
the overarching goal of ensuring the safety and resilience of
coastal communities worldwide.

Appendix A: Coefficients C1, C2, and C3
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where ρl is the water density.

Appendix B: Dijkstra’s algorithm

The Dijkstra algorithm works on graphs that have non-
negative weights on their edges. It uses a greedy approach
to iteratively explore nodes and update the shortest-path dis-
tances from the starting node to all other nodes. The algo-
rithm maintains a set of “visited” nodes and a priority queue,
initially containing only the starting node with a distance of
zero.

Here are the main steps of Dijkstra’s algorithm, adapted
for P, S, acoustics, and tsunami waves:

1. Initialize the distance from the starting node to all other
nodes as infinity (or a very large value) except the start-
ing node itself, which is set to 0. Also, set the starting
node as the current node.

2. While there are unvisited nodes, mark the current node
as visited.

3. Update the distance of all neighbouring nodes that are
not yet visited. The new distance is calculated as the
minimum of the current distance to the neighbour and
the sum of the distance from the current node to the
neighbour (edge weight).

4. Choose the unvisited node with the smallest distance as
the next current node, and repeat step 3.

Once all nodes have been visited or there are no more reach-
able nodes, the algorithm terminates, and the distances calcu-
lated are the shortest-path distances from the starting node to
all other nodes in the graph. Upon completion, the algorithm
produces a set of distances that represent the shortest path
from the starting node to all other nodes in the graph. By fol-
lowing the sequence of nodes that produce these distances,
the actual shortest paths are reconstructed. A schematic view
of a triangular mesh, connectivity between nodes, and edge
weight is shown in Fig. B1, and the Dijkstra algorithm, ap-
plied to find the shortest path between the source node (A)
and the rest of nodes, is given in Table B1. Note that the cal-
culation of tsunami and acoustic wave travel times occurs on
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Table B1. Dijkstra’s algorithm for the source at point A and shortest-path (blue) calculation to the destination points on the graph, shown in
Fig. B1. The bold text is the shortest travel time from the source point (A).

No. Unvisited Visited Route A B C D E F G H I

0 {A, B, C, D, E, F, G, H, I} {} 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

1 {B, C, D, E, F, G, H, I} {A} A 0 8 7 ∞ ∞ ∞ ∞ ∞ ∞

2 {B, D, E, F, G, H, I} {A, C} AC – 29 7 ∞ 34 24 ∞ ∞ ∞

3 {D, E, F, G, H, I} {A, C, B} AB – 8 – 36 ∞ 11 ∞ ∞ ∞

4 {D, E, G, H, I} {A, C, B, F} ABF – – – 29 17 11 21 33 ∞

5 {D, G, H, I} {A, C, B, F, E} ABFE – – – ∞ 17 – ∞ 24 ∞

6 {D, H, I} {A, C, B, F, E, G} ABFG – – – 51 – – 21 26 27
7 {D, I} {A, C, B, F, E, G, H} ABFEH – – – ∞ – – – 24 43
8 {D} {A, C, B, F, E, G, H} ABFGI – – – ∞ – – – – 27
9 {} {A, C, B, F, E, G, H, I, D} ABFD – – – 29 – – – – –

Figure B1. Schematic view of nodes’ connectivity (grey lines) and
weight (travel time).

an unstructured mesh spanning the Earth’s surface, facilitat-
ing the propagation of these waves across the planet’s exte-
rior. Meanwhile, a three-dimensional mesh is employed for
the modelling of P and S waves, enabling the propagation of
P waves through the Earth’s mantle, outer, and inner core and
S waves through the mantle.

Appendix C: Envelope equation

The envelope in Eq. (6) is given by Mei and Kadri (2018)
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where C(z) and S(z) are Fresnel integrals (Lozier, 2003),

X =
X

2kn
, 2Y+ = l+Y, 2Y− = l−Y. (C2)

Appendix D: Stationary phase approximation

To obtain the stationary phase approximation we consider the
phase term 00(ω) for the general case (following Williams
et al., 2021):
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where single and doubles primes denote first and second
derivatives with respect to ω:

k′0 =
1
k0

( ω
c2 + r0r

′

0

)
. (D2)

The stationary phase approximation requires a second deriva-
tive of k0,
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Appendix E: Software development

E1 Program structure

The operational software was written using the Python pro-
gramming language, which was chosen as it has numerous
libraries and frameworks that can handle complex mathe-
matical operations quickly and efficiently. That makes it a
top choice programming language for the development of
any kind of scientific application (Raschka et al., 2020). It
is highly memory-efficient and easy to write and debug. Ad-
ditionally, it is fully cross-platform, which is one of the key
requirements of the operational software. The software can
be compiled on Unix, Mac, and Windows operational sys-
tems and is scalable on high-performance computing (HPC)
platforms that are conventionally used in forecast centres.

The developed system has a modular structure, with each
model written as an independent component. These mod-
ules include the machine learning model, inverse problem
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Figure E1. An excerpt from the documentation of the Global Real-time Early Assessment of Tsunami software.

model, direct model, and hotspot model (Dijkstra’s shortest-
path algorithm). Many other functions that the main mod-
ules are dependent on are also implemented as modules in
order to simplify the code and reuse as much existing knowl-
edge as possible. These functions include basic functionality
to read data, calculate distances between points on the map,
extract contours from meshes, etc. The modular structure al-
lows convenient and efficient adjustment to various parts of
the system without breaking core software functionality.

To further increase the efficiency of the developed sys-
tem and produce high-quality results in less time, calcula-
tions are done in parallel. Parallelization is applied to both in-
verse and direct models. Inverse problem model calculations
are concurrently performed for all signals with the probabil-
ity density functions of the geometry and dynamics of the
fault combined after all the signals are fully analysed. The
direct model is concurrently applied to all the hotspots in
batches depending on the total number of hotspots supplied
into the system. To achieve the required high efficiency, the
concurrent.futures Python module is used for parallelization.
On top of being effective, it provides a convenient way of
asynchronous execution of tasks with both threads and pro-

cesses (Sodian et al., 2022). Additionally, it allows Python to
automatically scale calculations depending on the available
computational power, number of CPUs, etc. That makes op-
erational software highly efficient on all kinds of systems and
helps it utilize its full potential.

E2 Dependencies

As Python offers an extensive collection of libraries that sim-
plify complex computations and data analysis, the developed
system depends on some of the external packages. All the
packages are open-source, free, and maintained by their re-
spective developers and the community. These include popu-
lar and highly efficient packages such as NumPy and SciPy.
NumPy is a numerical mathematics extension of Python,
which adds support for multi-dimensional arrays, along with
a number of high-level mathematical operations on these ar-
rays. SciPy is an extension of NumPy and provides more
specific mathematical algorithms and convenience functions
that are used in the main modules of the developed software.
Machine learning is performed using the scikit-learn Python
library, which is designed on top of NumPy and SciPy pack-
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ages and features various classification, regression, and clus-
tering algorithms.

A Matplotlib package is used for visualization purposes.
This is a general and comprehensive plotting library for
Python and NumPy, which can be used for creating both
static and interactive figures. Python supports a number
of graphical user interface (GUI) development frameworks.
Among these, Tkinter was chosen as it is a free GUI frame-
work best suited for developing desktop stand-alone appli-
cations. It is minimalistic and easy to use, and it is built
on top of a Python standard GUI framework with a vast
collection of widgets covering all the needs of the opera-
tional software development. To keep the GUI as consis-
tent as possible while keeping the modern look, the devel-
oped system depends on the CustomTkinter library (https:
//customtkinter.tomschimansky.com/documentation/, last ac-
cess: 17 April 2024).

E3 Documentation

Writing adequate documentation is an important aspect of
continuous software development that helps future users and
developers of the software. A comprehensive documentation
using the Python Sphinx documentation generator was de-
veloped alongside the operational software. It automatically
transforms descriptions of each function functionality and in-
puts and outputs into an interactive documentation HTML
website with many convenient additions, i.e. contents index
and search. This website can be easily rebuilt when any ad-
justments are made to the code. An excerpt from the doc-
umentation is shown in Fig. E1. It provides the opportunity
to transition into an open-community paradigm, where paral-
lel development is under consideration, following best prac-
tice coding standards. The main advantages of using an auto-
mated documentation generator are that the documentation is
non-intrusive and is never out of sync. This way, coding and
documenting are a part of the same task and are performed
simultaneously (Theunissen et al., 2022).

Appendix F: DART buoy station legend

DART buoy station locations are coded according to Ta-
ble F2.

Table F1. Direct distance (DD), ratio of shortest distance to direct
distance (SD / DD), and travel time (TT) for Sumatra 2004.

Location Lat Long DD [km] SD / DD TT [h]

Madras Bandar 13.14 80.45 1885 1.08 3.0
Batticaloa 7.71 81.69 1483 1.03 2.2
S Maldives −0.74 73.20 2379 1.06 3.5
Phuket 7.88 98.40 702 1.24 2.1
Banda Aceh 5.55 95.32 298 1.85 1.1
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Table F2. DART buoy stations legend: direct distance (DD), ratio of shortest distance to direct distance (SD / DD), and travel time (TT) for
Tateyama 2009, Tohoku 2011, and Alaska 2018 events.

Tateyama Tohoku Alaska

Index DART Lat Long DD [km] SD / DD TT [h] DD [km] SD / DD TT [h] DD [km] SD / DD TT [h]

1 21418 38.71 148.67 992 1.11 1.5 509 1.08 0.7 4867 1.07 6.2
2 21413 30.55 152.12 1137 1.09 1.7 1139 1.07 1.4 5317 1.07 6.7
3 52404 20.94 132.31 1544 1.01 2.4 2115 1.10 2.9 7385 1.06 9.4
4 21419 44.46 155.74 1851 1.08 2.6 1312 1.05 1.7 4003 1.09 5.2
5 52401 19.29 155.77 2145 1.10 3.0 2373 1.06 3.0 6097 1.05 7.7
6 21416 48.04 163.49 2567 1.04 3.4 2027 1.05 2.5 3287 1.13 4.4
7 52405 12.88 132.33 2364 1.06 3.4 2939 1.07 3.9 8110 1.06 10.3
8 52402 11.58 154.59 2771 1.04 3.7 3106 1.02 3.8 6885 1.06 8.7
9 21415 50.17 171.84 3214 1.05 4.3 2678 1.07 3.4 2645 1.13 3.6
10 21414 48.94 178.27 3602 1.05 4.7 3088 1.04 3.8 2315 1.11 3.1
11 52403 4.03 145.60 3247 1.13 4.8 3733 1.09 5.0 8120 1.06 10.5
12 46413 48.67 −174.59 4107 1.04 5.3 3602 1.04 4.5 1896 1.10 2.5
13 46408 49.63 −169.87 4460 1.05 5.8 3950 1.05 4.9 1554 1.06 2.1
14 46402 50.44 −165.02 4812 1.05 6.2 4297 1.04 5.3 1219 1.07 1.7
15 46403 52.65 −156.93 5374 1.06 6.9 4844 1.05 6.1 626 1.04 0.9
16 52406 −5.33 165.08 4979 1.07 7.0 5283 1.05 7.0 7990 1.04 10.5
17 46409 55.30 −148.50 5904 1.07 7.7 5359 1.07 6.8 89 1.05 0.1
18 46410 57.50 −144.00 6148 1.09 8.2 5594 1.09 7.4 356 1.20 0.6
19 51407 19.63 −156.51 6371 1.05 8.3 6119 1.06 7.9 4091 1.09 5.6
20 55012 −15.80 158.50 5739 1.07 8.4 6145 1.07 8.6 9350 1.08 12.7
21 51425 −9.50 −176.25 6574 1.08 8.7 6726 1.05 8.4 7701 1.04 9.9
22 46419 48.76 −129.62 7332 1.04 9.8 6801 1.03 8.9 1544 1.02 2.4
23 46404 45.86 −128.78 7521 1.04 10.0 7000 1.04 9.1 1809 1.02 2.7
24 46407 42.60 −128.90 7666 1.05 10.1 7161 1.04 9.3 2078 1.06 3.1
25 46411 39.35 −127.01 7971 1.06 10.5 7477 1.04 9.7 2464 1.04 3.6
26 46412 32.25 −120.70 8860 1.05 11.5 8385 1.05 10.7 3435 1.05 5.0
27 55023 −14.80 153.59 5478 1.08 8.0 5921 1.07 8.2 9493 1.10 13.3
28 56003 −15.02 117.99 5829 1.06 8.9 6403 1.07 9.4 11 563 1.06 15.9

Code and data availability. The current version of GREAT, in-
cluding the software and input files to produce the results
shown in this paper, can be accessed from the Zenodo archive
(https://doi.org/10.5281/zenodo.12785421) under Custom Apache
License, Version 2.0 (Kadri et al., 2024). Data availability access
to the IMS network’s data of the hydroacoustic stations is available
to National Data Centres of the CTBTO (2025) and can be made
available to others on request through the virtual Data Exploitation
Center (vDEC) at https://www.ctbto.org/specials/vdec.
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