
Geosci. Model Dev., 18, 3473–3486, 2025
https://doi.org/10.5194/gmd-18-3473-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.

M
ethods

forassessm
entofm

odels

Using automatic calibration to improve the physics behind complex
numerical models: an example from a 3D lake model using Delft3D
(v6.02.10) and DYNO-PODS (v1.0)
Marina Amadori1,2, Abolfazl Irani Rahaghi3,4, Damien Bouffard3,5, and Marco Toffolon2

1Institute for Electromagnetic Sensing of the Environment, National Research Council, 20133 Milan, Italy
2Department of Civil, Environmental and Mechanical Engineering, University of Trento, 38122 Trento, Italy
3Eawag, Swiss Federal Institute of Aquatic Science and Technology,
Surface Waters – Research and Management, Kastanienbaum 6047, Switzerland
4Department of Geography, University of Zurich, 8057, Zurich, Switzerland
5Faculty of Geosciences and Environment, Institute of Earth Surface Dynamics,
University of Lausanne, Geopolis, Mouline, 1015, Lausanne, Switzerland

Correspondence: Marina Amadori (marina.amadori@unitn.it)

Received: 22 June 2024 – Discussion started: 9 October 2024
Revised: 31 December 2024 – Accepted: 28 February 2025 – Published: 13 June 2025

Abstract. Models are simplified descriptions of reality and
are intrinsically limited by the assumptions that have been in-
troduced in their formulation. With the development of auto-
matic calibration toolboxes, finding optimal parameters that
suit the environmental system has become more convenient.
Here, we explore how optimization toolboxes can be applied
innovatively to uncover flaws in the physical formulations of
models. We illustrate this approach by evaluating the effect
of simplifications embedded in the formulation of a widely
used hydro-thermodynamic model. We calibrate a Delft3D
model based on temperature profiles for a case study, Lake
Morat (Switzerland), through the DYNO-PODS optimiza-
tion tool. The results show that higher values of the light
extinction coefficient can compensate for neglecting the frac-
tion β of short-wave radiation absorbed at the surface of the
water. This leads to unrealistic values of the light extinction
coefficient, as the optimization pushes its value toward the
limit of no transparency, consistent with the need to repro-
duce a significant absorption at the surface. Although it is
well known that β is significantly larger than zero, its ab-
sence from the model was never noticed as critical. Auto-
matic calibration tools provide valuable diagnostic insights
into the physical robustness of models, enabling more pre-
cise evaluation of their structural integrity and performance.

1 Introduction

Numerical models serve as powerful tools capable of em-
bracing the complexity of intricate environmental dynamics.
In many branches of environmental science, such as me-
teorology, climatology, hydrology, oceanography, and lim-
nology, hydro-thermodynamic models have become standard
tools to simulate and understand specific physical processes.
These models are rooted on the numerical solution of physi-
cal first principles, e.g., the mass, momentum, and heat equa-
tions. Although first principles are well established, model-
ing the physics of fluid systems remains complicated for two
reasons. First, the grid size limits the range of applicabil-
ity of models based on first principles (e.g., direct numer-
ical simulation, DNS) and poses the challenge to properly
parameterize associated sub-grid-scale processes. This im-
plies that models that were developed for a specific environ-
ment, where the parametrization was adequate, may not be
optimized for other contexts characterized by different spa-
tial scales. Second, imposing the boundary conditions is a
complicated task as the forcing acting at the boundaries of
the computational domain is often only partially known. For
instance, the estimation of the surface heat fluxes is based
on parametrizations that have to cope with both the com-
plex physics and the uncertainties associated with the forc-
ing. Contrary to the first principles solved by the model, such
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boundary conditions often lack universality. In the specific
case of models widely adopted to simulate three-dimensional
lake dynamics, many were originally developed for marine,
riverine, or estuarine environments. This is the case, for ex-
ample, with Delft3D (Lesser et al., 2004), MITgcm (Marshall
et al., 1997), ROMS (Shchepetkin and McWilliams, 2005),
FVCOM (Chen et al., 2003), NEMO (Madec et al., 2023),
and POM (Blumberg and Mellor, 1987), among a few others.
Therefore, some processes that are crucial in lakes but not for
the original environment may be correctly reproduced. Sci-
entists thus must critically evaluate model performances, as
even some of the most used models may have unexpected
flaws.

The first step of any model setup and performance eval-
uation is calibration. Tools for the automatic calibration of
the model parameters have recently been introduced, en-
abling a broader and more efficient search for the optimal
parameters. Analyses of how these tools can provide sup-
port and foster a better understanding of the numerical re-
sults are becoming increasingly frequent. For instance, ex-
amples are numerous for the Delft3D model (in particular,
the FLOW module), one of the most popular models for sim-
ulating hydrodynamics of natural environments. Garcia et al.
(2015) and Baracchini et al. (2020b) adopted a derivative-
free algorithm for non-linear least squares (DUD from Ral-
ston and Jennrich, 1978) within OpenDA (El Serafy et al.,
2007) to optimize calibration and data assimilation in their
lake models, Schwindt et al. (2022) assessed the uncertainty
of mixing-related model parameters through a Bayesian cal-
ibrator combined with a Gaussian process emulator, and Xia
et al. (2021, 2022) developed the PODS tool (Parallel Opti-
mization with Dynamic coordinate search using Surrogates)
and showed the potential of using surrogate models to accel-
erate global optimization. A surrogate model, also known as
emulator, is a simplified and computationally efficient empir-
ical model (Castelletti et al., 2010) that mimics the behavior
of a computationally expensive model based on real model
training data. In the search for the optimal parameters, the
largest computation cost is indeed related to the real model
runs. Thus, fast surrogate model runs are alternated with real
model runs such that a lower number of real model evalua-
tions is needed. Surrogate models can be included in tradi-
tional optimization tools such as Bayesian calibration (Ma
et al., 2024) and are highly effective in speeding up the cali-
bration process.

Many opportunities are offered by automated calibrators,
saving time and finding global optimal solutions, and many
other optimization algorithms have been applied for the cal-
ibration of hydrodynamic models. We refer to Xia et al.
(2021) for a review of all these aspects. However, much care
must be taken when model parameters are calibrated, either
manually or automatically. The literature reports examples
where calibration has guided modelers in regions of the pa-
rameter space that hold no physical meaning (e.g., Baar et al.,
2019, well discussed by Tritthart et al., 2024). Such unreal-

istic parameters are often justified as those giving the best
model performance, but it is well known that (i) a differ-
ent combination of parameters might give the same result,
and (ii) the performance of the model heavily depends on
what metric is adopted. This is particularly true for hydro-
thermodynamic models calibrated on a single variable, e.g.,
temperature profiles only (Amadori et al., 2021; Xia et al.,
2022). The objective of this work is to show how the use
of automatic calibration can help identify flaws in the struc-
ture of even state-of-the-art models. Analyses of how these
tools can foster a better understanding of the numerical re-
sults have started to appear in the literature. In the work pre-
viously cited by Schwindt et al. (2022), the authors were
able to identify unrealistic model setups from the high un-
certainty of the a posteriori distribution of mixing-related
parameters. With a similar philosophy, here we evaluate the
parametrization of the heat distribution along the water col-
umn as coded in Delft3D. In particular, we focus on the depth
of the Secchi disk (Secchi, 1864, hereafter denoted as Ds
or simply “Secchi depth”), as a parameter representing the
transparency of the water. Considering water transparency
in hydro-thermodynamic models has long been recognized
as fundamental to enhance the prediction of water tempera-
ture (e.g., Henderson-Sellers, 1986; Zolfaghari et al., 2017;
Shatwell et al., 2019), as it allows for the inclusion of bi-
ologically driven mechanisms, even when they are not ex-
plicitly parameterized. Ds is used to model the distribution
of the incoming solar short-wave radiation from the surface
to deeper layers, depending on how deep radiation can pen-
etrate the water column. Although Ds is often considered
a calibration parameter in models (e.g., Wahl and Peeters,
2014; Soulignac et al., 2017; Piccioni et al., 2021; Xia et al.,
2021), it is actually a measurable quantity that can vary sig-
nificantly over time and, in some cases, space . In large lakes,
differences between onshore and offshore Ds measurements
can be of the same order of magnitude as seasonal variations
(e.g., Pothoven and Vanderploeg, 2020, found up to 4 times
lower transparency in coastal waters compared to pelagic ar-
eas of Lake Michigan). Massive algal blooms, combined with
basin-scale circulation, can also drive complex spatial pat-
terns of water transparency as those observed by Rahaghi
et al. (2024) in Lake Geneva, with Ds ranging between < 2
and > 6 m on the same day.

However, experience from previous Delft3D applications
in various lakes shows that the calibrated value of Ds gener-
ally resides in the lower range of measured values (Wahl and
Peeters, 2014; Soulignac et al., 2018), or it is even lower than
the observed values (for example, Amadori et al., 2020 and
Piccolroaz et al. (2019) rescaled the observed Secchi depth
by a factor of 0.5). Through the DYNO-PODS automatic cal-
ibrator (Xia et al., 2022), we extend the search for the optimal
Ds in a broader parameter space and explore uncharted re-
gions for manual calibration. We demonstrate how this sheds
light on a flaw in the heat flux parametrization of Delft3D and
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lets us improve the physics behind such a widely used model
with a small, yet significant, modification to its source code.

In the following sections, we first formulate the problem
(Sect. 2). There we summarize how Secchi depth is used in
Delft3D (Sect. 2.1), how surface warming is generally sim-
ulated in models (Sect. 2.2), and what the physical implica-
tions of the current Delft3D parametrization (Sect. 2.3) and
of the modified version we implemented are (Sect. 2.4). In
Sect. 3, we introduce the calibration strategy and numerical
experiments. In Sect. 4, we first show the results of the orig-
inal formulation of the Delft3D heat flux scheme (Sect. 4.1).
We then present the results of the calibration tests that point
out the model’s unexpected behavior (Sect. 4.2). Finally, we
show the gain in physical reliability achieved after our mod-
ification of the Delft3D source code (Sect. 4.3).

2 Formulation of the problem

2.1 Use of Secchi depth in models

The three-dimensional model Delft3D-FLOW (Lesser et al.,
2004) numerically solves the Reynolds-averaged Navier–
Stokes (RANS) equations under the Boussinesq and shallow-
water assumptions. The horizontal velocity components and
the water surface are solved by integrating the continuity and
horizontal momentum equations, while the vertical velocities
are computed from the continuity equation. The transport of
heat is modeled by an advection–diffusion equation, assum-
ing that there is no heat exchange at the lake bed.

In the heat equation module of the model, all the heat flux
terms are estimated with empirical formulas. Here, we fo-
cus on the penetration of solar short-wave radiation, which
is modeled with a reduction of the energy flux per unit area
(Wm−2) along the water column, as in the commonly used
Beer law:

Hsw(z)=Hsw0 exp(−γ z), (1)

where Hsw0 is the downward short-wave radiation at the wa-
ter surface (already considering the effect of albedo), Hsw(z)

is the energy flux that reaches the depth z, and γ is the ex-
tinction coefficient (m−1). This simplified model refers to the
light attenuation coefficient, which can be easily measured
in situ, and is appropriate for the region of the visible spec-
trum (380–750 nm). Accordingly, the extinction coefficient
γ is defined based on the depth Ds (m) at which the Secchi
disk remains visible, through the following simple relation:

γ =
cγ

Ds
, (2)

where the value cγ = 1.7 is used as standard in Delft3D
(Deltares, 2023) and was originally proposed by Poole and
Atkins (1929).

However, the actual penetration of the short-wave radia-
tion depends on the different wavelengths that make up its

Figure 1. (a) Heat transfer at water surface. Non-penetrative terms
Hnp are lost at the air–water interface (blue line, representative of
the skin layer), while a sub-layer at the surface retains a fraction β of
incoming solar radiation Hsw0, and only the fraction (1−β)Hsw0
of the solar short-wave radiation penetrates along the water column.
The two grey lines represent the exponential decay of incoming
heat flux in the surface sub-layer (above the horizontal dashed line)
and beneath it. (b) Conceptual illustration of how the process in (a)
evolves along the water column, with orange representing heat pen-
etrating from the surface to the deeper layers; (c) schematic of how
(a) is then parameterized in a vertically layered computational grid.

spectrum. In principle, each wavelength has a different ex-
tinction coefficient (Zaneveld and Spinrad, 1980). Much of
the short-wave radiation energy, in particular longer wave-
lengths in the near-infrared to the short-wave-infrared region
(750–2500 nm), is absorbed at the water surface regardless of
its optical properties. The water optical properties are indeed
related to the concentration of constituents and mainly affect
the extinction coefficient in the visible region (400–700 nm).

Among many formulations available to properly describe
the penetration of downward solar radiation in the water col-
umn (Morel and Antoine, 1994), the simplified version re-
ported in Henderson-Sellers (1986) is commonly applied in
many numerical models:

Hsw(z)= (1−β)Hsw0 exp(−γ z) . (3)

In such a formulation, β is the fraction of the short-wave ra-
diation absorbed in a region close to the surface.

As a consequence, the surface layer is warmed up by a
localized total heat flux,

Hsurf =Hnp+βHsw0, (4)

which is the sum of the absorbed short-wave radiation βHsw0
and of the other non-penetrative fluxes Hnp (see Fig. 1). The
non-penetrative heat flux,

Hnp =H
↓

lw−H
↑

lw±Hsens±Hlat, (5)

is the result of the net downward long-wave radiative flux
H
↓

lw (from the sky to the lake), the upward long-wave ra-
diation H↑lw (emitted by the lake surface), and the sensible
and latent heat fluxes (Hsens andHlat), respectively. All these
terms are associated with a generic surface heat flux Hsurf,
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but it is worth noting that non-penetrative terms act just at the
interface between water and air, while βHsw0 is absorbed in a
layer of the order of tens of centimeters (Henderson-Sellers,
1986) (Fig. 1b). From the viewpoint of numerical modeling
(Fig. 1c), the fraction β of the incoming solar radiation rep-
resents a source of heat in a shallow layer of water, while
non-penetrative terms (usually negative) represent a sink of
heat, as will be shown later. All these fluxes are normally pa-
rameterized in only one computational cell, i.e., the one im-
mediately below the water surface, where the contributions
of both Eqs. (3) and (4) should be accounted for.

Modified versions of the Beer law were introduced in some
lake-dedicated models to account for the different absorption
rates of heat depending on the spectral bands of solar radi-
ation. This is the case of the General Lake Model (Hipsey
et al., 2019), where the authors attribute 55 % of the incident
solar radiation to near-infrared (NIR) and ultraviolet (UVA,
UVB) radiation heating the surface directly. A default value
of 45 % for β is implemented in CE-QUAL-W2 (Cole and
Wells, 2015), but different values of 24 % to 69 % are recom-
mended depending on the type of environment, with higher
values attributed to pure waters (63 %) and coastal waters
(69 %) and lower values (24 % to 58 %) to lake waters. A
similar approach with different proportions (35 % for NIR,
65 % for PAR1 , UVA, UVB) was adopted by Thiery et al.
(2014) to simulate the thermal structure of Lake Kivu with
an ensemble of different lake models. Among these, models
explicitly including β are SimStrat (Goudsmit et al., 2002),
LAKEoneD (Joehnk and Umlauf, 2001), LAKE (Stepanenko
and Lykossov, 2005), and MINLAKE96 (Fang and Stefan,
1996).

Although accounting for this fraction of heat at the surface
is important in lakes, to the best of our knowledge the ab-
sence of this term in Delft3D never raised any concern in its
previous applications to lacustrine environments. The reason
is that the extinction coefficient γ estimated with Eq. (2) (or
equivalently the depth of the Secchi disk Ds) is considered a
calibration parameter, even if Ds is a measurable quantity.

2.2 General formulation of surface layer warming

Hydro-thermodynamic models such as Delft3D solve a ther-
mal energy balance, where the heat source is usually domi-
nated by the heat exchanged at the air–water interface. The
relevant terms in the equation for the transport of heat can be
represented as follows:

∂T

∂t
+ advection+ diffusion=−

∂φ

∂z
, (6)

where T is water temperature and φ is the vertical heat flux.
We assume that the vertical coordinate z is pointing down-
ward, such that the heat flux is positive downward (consistent
with the direction of solar radiation). The source term on the

1photosynthetically active radiation

right-hand side of the equation represents the local heating,
which depends on the absorption of the radiative heat flux.
Without this source term, the advection and diffusion terms
can only redistribute the heat in the domain, so the total heat
content of the lake is conserved if no flux is exchanged at the
boundaries.

In Eq. (6), we have simplified the notation by introducing
the flux (units Ks−1m)

φ =
H

ρcp
, (7)

which scales the total heat flux H with water density ρ

(units kgm−3) and specific heat capacity at constant pres-
sure cp (units Jkg−1 K−1), assuming them to be constant, as
a first approximation. Hereafter, the definition of φx based on
Eq. (7) is adopted for all heat fluxes Hx , where the subscript
x indicates the component.

The net heat flux at the air–water interface is

φnet =
Hnet

ρ cp
= φsw0+φnp = (1−β)φsw0+φsurf. (8)

In a depth-averaged model, the net heat flux is responsible
for the change of the whole-lake temperature. Neglecting the
sub-daily variability, the warming of the lake is related to the
total heat exchanged during a day:∫
diel

φnet dt =
∫
diel

φnp dt +
∫

sunlight

φsw0 dt, (9)

where the integrals are defined on a 24 h period (covering the
periods of sunlight, with φsw0 > 0, and night, with φsw0 =

0). The total exchanged heat,
∫

dielφnet dt , is typically much
smaller than the two individual components on the right-hand
side of Eq. (9), as can be seen in Fig. 2a. Under these condi-
tions (and to illustrate the behavior of the system), it can be
assumed that

∫
dielφnet dt ' 0. Therefore, the non-penetrative

heat lost through the surface must approximately balance the
solar heating (i.e.,

∫
dielφnp dt '−

∫
sunlightφsw0 dt) so that the

non-penetrative components of the heat flux have a cooling
effect in most cases. In terms of diel averaged values (indi-
cated using angle brackets), the condition can be written as

〈φnp〉 ' −
1
τday

∫
sunlight

φsw0 dt < 0, (10)

where τday is 24 h. Since the sub-daily variability of the non-
penetrative fluxes is small compared to the solar radiation
flux, it follows that φnp ' 〈φnp〉 (see, for example, the exam-
ple in Fig. 2), and Eq. (8) implies that lakes are typically sub-
ject to (relative) cooling during night and to (relative) warm-
ing during sunlight.

The numerical model solves the discretized form of the
heat equation (Eq. 6) in an ith layer of thickness 1zi . If the
advective and diffusive fluxes are neglected, the variation in
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Figure 2. (a) Heat fluxes computed using the meteorological forc-
ing and the simulated surface water temperature from the base setup
model (O in Table 1) for Lake Morat on a sample summer day, i.e.,
17 July 2019. (b) Warming rates simulated along the water column
were calculated according to Eqs. (14)–(15) using the flux calcu-
lated by model O. Profiles are displayed at 12:00 UTC. The black
line represents the measured Secchi depth (Ds) considered in the
simulation, with black dots indicating the exact measurement day.
Depths are limited to 10 m to improve visibility of the surface layer.

time of the temperature T ∗i (where ∗ denotes the idealized
case of no advection and diffusion) can be written as

1T ∗i

1t
=
φi−1/2−φi+1/2

1zi
= σi, (11)

whereby we define the warming rate σi (units Ks−1). In fact,
assuming that the horizontal dimensions of the grid remain
vertically constant and in the absence of advection and diffu-
sion, the temperature T ∗i of the computational cell i increases
only if the heat flux entering the cell exceeds the flux leaving
the cell. When the heat source comes from above, this means
that warming occurs if the heat flux entering from the upper
face (i− 1/2, for a staggered Arakawa C grid) is larger than
the flux leaving the cell from the lower face (i+ 1/2).

Indicating with i = 1 the computational cell at the top of
the water column (see also Fig. 1c), the flux at the upper
boundary condition of the model is φ1/2 = φnet, while the
flux at the bottom of the first computational cell is φ3/2 =

(1−β)φsw0 exp(−γ 1z1). Hence, the warming rate in the
uppermost computational layer can be obtained by combin-

ing Eqs. (3), (4), (7), (8) into Eq. (11):

σ11z1 =
(
φsw0+φnp

)
− (1−β)φsw0 exp(−γ 1z1)

= β φsw0+φnp+ (1−β)φsw0
[
1− exp(−γ 1z1)

]
. (12)

Extending the same approach to the layers below the one at
the surface, we can express the warming rate in layer i = 2
as

σ21z2 = (1−β)φsw0 exp(−γ 1z1)− (1−β)φsw0

exp
[
−γ (1z1+1z2)

]
= (1−β)φsw0 exp(−γ 1z1)[

1− exp(−γ 1z2)
]
. (13)

During sunlight (φsw0 > 0), the second term on the right-
hand side of Eq. (13) (first line) is smaller than the first
one (1z1+1z2 >1z1). Hence, the layer i = 2 is always
warmed. Similar considerations apply to all the other layers
with i > 1. In contrast, σ1 may be negative (producing local
cooling of the surface layer) even during warming periods,
depending on the values of β and φnp.

The difference in the warming rates of layers 1 and 2 as
predicted by Eqs. (12) and (13) may produce a vertical tem-
perature gradient, which tends to be balanced by the ver-
tical diffusive flux in Eq. (6). The effectiveness of such a
flux in balancing the differential warming highly depends on
the intensity of the turbulence. In particular, increasing the
eddy diffusivity could make the entire profile more homo-
geneous. As discussed in the following sections, turbulence
might compensate the effect of different schemes for the pen-
etration of solar radiation, for instance if β = 0, as in the orig-
inal version of the Delft3D heat equation module.

2.3 Case with β = 0

The original version of Delft3D, which adopts the Beer law
as in Eq. (1), can be described as a particular case of the
scheme described above in which β = 0. In this case the
warming rate of the top layer (i = 1) expressed by Eq. (12)
can be simplified as in Eq. (14):

σ11z1 = φnp+φsw0
[
1− exp(−γ1z1)

]
. (14)

When γ is small (very largeDs, i.e., very transparent water),
the last term within square brackets becomes less important,
and non-penetrative terms prevail. As discussed in Sect. 2.2,
φnp ' 〈φnp〉< 0 (see also Fig. 2a). Therefore, the layer i =
1 may also cool down when sunlight is present (φsw0 > 0).
The lower layers instead always receive heat, despite being
maybe small in very transparent conditions, as the warming
rate σ2 only depends on penetrative short-wave radiation as
implied by Eq. (15), which is obtained by setting β = 0 in
Eq. (13).

σ21z2 = φsw0 exp(−γ 1z1)
[
1− exp(−γ 1z2)

]
. (15)
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2.4 Case with β > 0

We modified the Delft3D source code by substituting the
Beer law in Eq. (1) with the complete version in Eq. (3),
as reported in Appendix A. Hence, the scheme reported in
Eqs. (12) and (13) with β > 0 applies. Focusing on the warm-
ing of the top layer and repeating the same argument as for
Eq. (14), in the case of small γ the last term of Eq. (12)
vanishes and σ1 ' (β φsw0+φnp)/1z1. Now, the sum of the
two terms is not necessarily negative, as β φsw0 can balance
the negative contribution of φnp, and the surface layer is not
forced to cool down (or not so much) during sunlight. A
proper choice of the coefficient β can improve the physical
consistency of the calibrated model.

3 Material and methods

Lake Morat, Switzerland, is the test site for our study. This
is one of the alpine lakes included in the Alplakes network
(https://www.alplakes.eawag.ch, last access: 29 May 2025)
for which a calibrated setup of the Delft3D model is avail-
able. The details of the case study and the base Delft3D setup
have been explained in Appendix B.

3.1 Calibration strategy

For the calibration of the Delft3D model, we adapted to our
needs the procedure DYNO-PODS based on a parallel sur-
rogate global optimization method (Xia et al., 2021, 2022),
which allows for calibrating multiple parameters simultane-
ously. DYNO-PODS runs parallel simulations and finds the
best result at each iteration based on a cost function εk to be
minimized. We refer to the DYNO-PODS documentation and
in particular to Xia et al. (2022) for an exhaustive description
of the surrogate model implemented in DYNO-PODS.

The purpose of optimization is to correctly reproduce mea-
sured water temperature at one single station. We therefore
tested two objective functions: (i) an error function εT based
on the temperatures measured throughout the profile, as in
Eq. (16), and (ii) an error function εT 0 based on the temper-
atures measured only at the lake surface, as in Eq. (17).

The distributed error εT is estimated by the average root-
mean-square deviation:

εT =

√√√√ 1
Nt

Nt∑
j=1

1
Nz

Nz∑
i=1

(
Ti,j − T̂i,j

)2
, (16)

where Nt is the number of temporal profiles, Nz is the num-
ber of measuring points along the vertical, Ti,j is the ob-
served temperature at the depth zi and time tj , and T̂i,j is the
corresponding value simulated by the model. If εT is chosen
as the objective function, the model is optimized toward the
best representation of both surface and deep water tempera-
tures.

The error at the surface εT 0 is estimated via the root-mean-
square deviation of the surface temperature T0:

εT 0 =

√√√√ 1
Nt

Nt∑
j=1

(
T0,j − T̂0,j

)2
. (17)

If εT 0 is chosen instead as the objective function, the cali-
brated model provides the best representation of surface tem-
perature, regardless of the performance for water temperature
below.

3.2 Calibration tests

Starting from a base setup (O in Table 1; for more details,
see Appendix B), we tested how the performance of the
model could be improved by calibrating the Secchi depth. To
preserve the time dependence of measured values of Secchi
depth, we introduced a parameter δ defined as follows:

D̂s = δDs, (18)

where D̂s is the Secchi depth value used in the model, and
Ds refers to the original value measured on site.

We first calibrated δ with the original model (Ocal in Ta-
ble 1). Two separate calibration tests were performed consid-
ering the two objective functions defined in Eqs. (16)–(17).
Since the error along the entire water column (εT ) is a stan-
dard objective function, only the details of these results are
reported in Table 1. However, we also show and discuss the
relevant results of tests with εT 0 below in Table 2 in Sect. 4.2.

As a second step, we tested the effect of introducing the
coefficient β in a modified version of the model, Mcal, where
all other parameters were maintained as in O, and δ and β
were calibrated.

Finally, we run a new base calibration for the modified
model M, where the full set of parameters was optimized,
including β.

All calibration tests were performed in those months when
water transparency prominently influences the formation of
a stratified thermal structure in dimictic lakes, i.e., the spring
and summer months after winter mixing. The simulated pe-
riod was 20 March to 14 August 2019. Sensitivity tests on the
model response to variations in Secchi depth during the cool-
ing season (from August onward) confirmed the assumption
that it is possible to effectively determine the optimal value
of δ, limiting the calibration to the period when stratification
occurs (not shown).

In order to gather a satisfactory convergence of the au-
tomated calibration tests, we run 10 iterations of 12 paral-
lel simulations, for a maximum value of 120 evaluations for
each calibration test. This aligns with Xia et al. (2021), who
found that 120 model evaluations were necessary to achieve
a solution similar (in performance) to manual calibration in
their case study. The simulation time for 5 months was about
11 h on a high-performance computing cluster. Each simula-
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tion utilized 6 cores on a single node, resulting in 72 CPU
cores being used per iteration.

4 Results

4.1 Base setup model

In this section, we present the results of the calibration of
the original model O (without β; see Table 1) and with-
out any modification of the Secchi depth. This setup implic-
itly corresponds to β = 0 and δ = 1. Figure 2a shows the
heat balance terms computed on an hourly timescale at the
lake–atmosphere interface on a summer day (17 July 2019),
for which in situ measurements of water temperature are
available. As expected from the theoretical considerations in
Sect. 2.2, the net heat flux is heavily affected by the short-
wave solar radiation Hsw0, which however vanishes at night,
producing a strong sub-daily variability that is extremely
large compared to the other terms. Moreover, if short-wave
radiation is excluded from the overall balance Hnet, the re-
sulting net heat flux accounting only for the non-penetrative
terms (Hnp, dashed line) is also negative during daylight
hours.

By using the heat fluxes internally computed in the cali-
brated Delft3D model, we estimated the local warming rate
of the surface layer according to Eq. (14), i.e., neglecting ad-
vection and diffusion. In this simplified scheme, the heat flux
at the surface resulted in an almost always negative value,
indicating a predominant heat loss term in the heat equa-
tion of the surface layer. As shown in Fig. 2b, where the
warming rate σ is plotted everyday at noon, this happens
even in the warming periods (spring–summer), with a few
exceptions during extremely calm (i.e., low wind) and sunny
days. In layers beneath the surface, σ (estimated locally with
Eq. 15) instead has a positive sign. In fact, short-wave radia-
tion penetrates the water column with a decreasing warming
rate as depth approaches the Secchi depthDs. Hence, exclud-
ing advective and diffusive terms from the simulation, as in
Eq. (11), would result in continuous cooling of the surface
layer and slight warming of deeper layers. Although this is
not the case in the Delft3D model, which accounts for ad-
vective and diffusive fluxes, the tendency can also be noted
in the numerical results, as will be shown below (Fig. 4).

4.2 Optimal scaling of Secchi depth

The results of the calibration tests Ocal and Mcal to assess
the optimal scaling of the Secchi depth are reported in Ta-
ble 2. The search for the optimal value of δ depends on the
objective function used in the calibration tests.

If the calibration target is the surface water temperature
(εT0 in Eq. 17) in the original model Ocal (Fig. 3a–b), the op-
timal scaling for the Secchi depth unrealistically converges to
δ = 0.12. Smaller values of δ lead to warmer surface temper-
ature because γ becomes very large (low transparency; see

Figure 3. Convergence of different calibration tests and objective
functions (a, c, e: εT0 , error in surface temperature; b, d, f: εT ,
error in temperature along the water column). (a)–(b) Calibration
test Ocal for optimal δ in the original model O (β implicitly equals
0); (c)–(f) calibration of both δ (c, d) and β (e, f) in Mcal tests
with the modified model. The blue and orange arrows in panel (a)
show the main expected directions of the optimization problem in
the calibration of δ (a–d). The orange shaded rectangle in panels
(a)–(d) highlights the range of realistic values of δ, i.e., around 1.
The pink shaded rectangle in panels (e)–(f) highlights the range of
values reported for β in the literature, i.e., 0.2–0.6.

Eq. 2) and because a large portion of the short-wave solar ra-
diation is absorbed in the top surface layer. If the target is the
temperature of the water throughout the water column (εT in
Eq. 16), the optimal value is δ = 0.84.

The same plots from the tests Mcal (Fig. 3d–f) suggest that
the water temperature can be simulated without the need to
drastically minimize δ. The optimal δ converges to 0.57 and
1 for the two objective functions εT0 and εT , respectively.
The first value (0.57) will be commented on in the Discus-
sion section. Interestingly, Fig. 3e–f show that the value of β
converges in a physically meaningful range, and the optimal
value is 0.32 for both objective functions (Table 2), fully con-
sistent with the range of literature values (20 %–60 %) pre-
sented in Sect. 2.1.
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Table 1. Calibration test setups with values of the main parameters (wind drag corrective coefficient (α), free convection coefficient (Cfrcon),
horizontal eddy diffusivity and viscosity coefficients (Dicouv, Vicouv), Ozmidov length scale (Xlo), scaling of Secchi depth (δ), and fraction
of short-wave solar radiation absorbed in the first layer (β)). O identifies the original Delft3D model, while M identifies the modified version
including β. Numbers are reported only when calibrated in the test, and “n.c.” stands for “not calibrated”. For the Mcal test, not calibrated
parameters are the same as in O. “n.a.” stands for “not applicable” and only refers to the β parameter which does not exist in the O model
version.

Model Test α Cfrcon Dicouv Vicouv Xlo δ β εT
– – m2 s−1 m2 s−1 mm – – °C

Original O 0.94 0.019 2.36 1.65 0.338 n.c. n.a. 0.57
Original Ocal n.c. n.c. n.c. n.c n.c. 0.84 n.a. 0.49
Modified Mcal n.c n.c n.c n.c n.c. 1.00 0.32 0.47
Modified M 0.98 0.004 1.84 1.28 0.118 n.c. 0.33 0.45

Table 2. Calibrated parameters δ and β and corresponding objective
functions. “n.a.” stands for “not applicable”.

Test
Parameter Objective function

Name Value Name Value

Ocal

δ 0.12
εT 0 0.83 °C

β n.a.
δ 0.84

εT 0.49 °C
β n.a.

Mcal

δ 0.57
εT 0 0.8 °C

β 0.32
δ 1.00

εT 0.47 °C
β 0.32

4.3 Effect of β

To understand what actually changes when the parameter β
is introduced in the parametrization of the heat flux, Fig. 4
shows the comparison between the fully calibrated models O
and M (Table 1). Panels (a) and (b) show the simulated tem-
perature profiles on a sample summer day in the two optimal
simulations that minimize εT , with and without β. The two
thermal profiles appear to be very similar to each other and
are both consistent with the measurements. Both simulations
correctly capture the thermocline depth and the temperature
of the surface well-mixed layer (about 7 m thick). However,
in the model O (panel a) the temperature of the surface layer
(23.27 °C) is slightly colder than that of the layers below
(23.35 °C), while the surface in situ temperature (24.15 °C)
is the warmest. In contrast, the model with calibrated β, i.e.,
M (panel b), returns 24.50 °C on the surface.

Although the difference in temperature is relatively small
between the two versions of the models, the physics behind
such thermal profiles is actually different. In Fig. 4c–e, we
compare the eddy diffusivity Dz as simulated by the k–ε
model in O and M on three selected days. In the original
model version, stronger turbulent vertical diffusion is sim-
ulated in the epilimnion. The largest difference is visible

during daylight hours, when the model O (panel c) simu-
lates homogeneous diffusivity of the order of 10−4 m2 s−1

in the upper 2 m, while surface mixing is strongly inhibited
in the model M (panel d), with Dz generally lower than
10−6 m2 s−1. Thus, the enhanced mixing in the epilimnion
simulated by the model O compensates for the unrealistic
distribution of the warming rate caused by the absence of β,
which would produce cooling of the surface layer (as Fig. 2a
shows). This effect is visible throughout the simulated pe-
riod (panel e), with an overestimation of Dz of the order
of 10−4 m2 s−1 during daylight hours and higher differences
during the stratified period.

5 Discussion

The comparison between the model outputs obtained with the
original (O) and modified (M) versions of Delft3D clearly
highlights that accounting for short-wave absorption in a
shallow layer close to the water surface improves the perfor-
mance of the model and, more importantly, provides a more
realistic description of the physical processes driving surface
warming in lakes. The best value of the scaling parameter δ
obtained with the modified model is 1 (see Table 1), which
implies that the measured value of the Secchi depth in Lake
Morat is a reliable input parameter for the model and does not
necessarily require calibration. The fact that the measured
Secchi depth can be assumed as a physically measurable
quantity is a significant advantage in the model setup com-
pared to the common expectation of several Delft3D users
that the Secchi depth must be calibrated (Wahl and Peeters,
2014; Soulignac et al., 2017; Piccioni et al., 2021; Xia et al.,
2021).

Systematic calibration of model parameters, including
Secchi depth, is essential not only for more accurately rep-
resenting the physics of the system, but also for address-
ing the imperfections inherent in the model (e.g., neglected
baroclinic mixing, imperfect turbulent schemes, unaccounted
effects of tributary intrusions, inaccurate atmospheric forc-
ing). Among all the calibration parameters, the Secchi depth
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Figure 4. (a)–(b) Temperature profiles simulated (lines) and mea-
sured (black dots) on a summer day (17 July 2019) in Lake Morat,
implementing the O and M model configurations with target εT .
Model results are displayed at the measurement time (10:00 UTC,
black dashed line) and in a time range of ± 2 h around 10:00 UTC.
(c)–(d) Vertical eddy diffusivity simulated in the two model setups
as in (a)–(b)± 2 d around 17 July 2019 (black straight line in panel
e). (e) Difference in simulated eddy diffusivity between the two
models shown on an hourly basis.

is perhaps the most frequently monitored and is one of the
easiest to measure, both in situ and through remote sensing.
However, several previous modeling studies have highlighted
significant deviations of this parameter in Delft3D from the
measured values. Here, we demonstrate that this discrepancy
is due to a mis-implementation of certain physical phenom-
ena in the Delft3D model, which is supported by the devia-
tion of calibrated Secchi depths after correcting for it. How-
ever, there may still be a need to calibrate Secchi depth to
account for potential errors in measurements or the sparse
resolution of Secchi depth data in both time and space. Mean-
while, calibration of other parameters (e.g., wind drag, back-
ground eddy coefficients) will remain necessary to compen-

sate for unresolved processes in the model. We believe that it
is good modeling practice to avoid compensating for inaccu-
racies in one process by adjusting the parameters of others.
We therefore suggest focusing on improving model deficien-
cies and promoting the correct use of parameters to ensure
more reliable and physically sound results.

To what extent the modification of the heat fluxes scheme
was necessary to improve the performance of the model can
be discussed based on the objective functions reported in
Tables 1 and 2. Our results indicate that the base calibra-
tion of the original model O (Table 1) already gives satis-
factory results, with an error εT = 0.57 °C along the water
column. This result is possible due to the automated calibra-
tion, which allows us to explore a wider range of parameter
combinations compared to the manual procedure. The rela-
tively low error also confirms the general reliability of the
model with its original formulation, as demonstrated by the
numerous successful lake applications in different lakes (e.g.,
Amadori et al., 2021; Baracchini et al., 2020a; Soulignac
et al., 2017, 2018; Wahl and Peeters, 2014; Chanudet et al.,
2012; Dissanayake et al., 2019, among many others). By
rescaling Ds (i.e., by calibrating δ in the Ocal test), the error
reduced to 0.49 °C. This result is in line with the observations
of Amadori et al. (2020) and Piccolroaz et al. (2019), who
reduced the measured Secchi depth to improve the perfor-
mance of the original Delft3D model in Lake Garda. An im-
provement of 0.08 °C in the model error along the water col-
umn is considerable (14 %), but it is achieved at the expense
of the physical meaning of the Secchi depth information. If β
is introduced and calibrated (Mcal test), we see that the final
error εT = 0.47 °C is only slightly smaller than in the pre-
vious case, but a significant gain is obtained in the physical
consistency of all inputs (δ = 1.0, β = 0.32). The value of β
estimated by automatic calibration falls conveniently within
the range β ∈ (0.2,0.6) observed in different lake environ-
ments (e.g., 0.4 in Dake and Harleman, 1969) and suggested
in previous modeling applications (Thiery et al., 2014; Cole
and Wells, 2015; Schmid and Köster, 2016).

The interesting element of our analysis is that the parame-
ter calibration allows the original model to get close to real-
ity despite the faulty parametrization of the heat absorption
at the surface. However, the price of such an optimization
is the alteration of other physical processes that compensate
for the flaw in the model formulation. This is evident from
the enhanced diffusivity at the surface in the original model
formulation (Fig. 4), which derived from an unrealistic insta-
bility between the upper layer and those below due to surface
cooling. This overestimation of surface mixing was also ob-
served by Biemond et al. (2021), who compared the results
of the Delft3D model in Lake Garda with in situ turbulent
kinetic energy dissipation profiles. In particular, such over-
estimation was stronger in stratified conditions and was also
present when temperature profiles were appropriately simu-
lated.
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We have shown in Fig. 4 that the largest difference be-
tween the two model configurations is at the surface, partic-
ularly during daylight hours in the stratified period. In the
temperature profiles shown, a strong gradient is present be-
tween the near-surface temperature (i.e., 0 m) and the layer
immediately below (2 m). On other days, when the measured
surface temperature is relatively well mixed with the layers
below, the difference between the two model versions is not
that relevant. In fact, if enough mixing is physically provided
by, for example, strong wind-induced turbulence, the model
does not need to generate artificial convection to compensate
for the negative buoyancy at the surface caused by the incor-
rect parametrization.

The thickness of the model layers also plays a role in the
optimal scaling of δ. When the surface water temperature is
the calibration target (εT0 as an objective function), the opti-
mal value of δ is 0.57 (Fig. 3c), even if β is included in the
parametrization and is calibrated. Although 0.57 is definitely
more acceptable than 0.12, which was obtained in the case
without β (Fig. 3a), it is still significantly smaller than the
desirable value, i.e., δ = 1. We speculate that this behavior
can be interpreted by recalling that the layer in which the β
fraction is absorbed is generally considered to be ∼ 60 cm
thick (Henderson-Sellers, 1986). This thickness is used by
several models as the reference depth where the exponential
decay starts (Zaneveld and Spinrad, 1980; Piccolroaz et al.,
2024). Since the thickness of the surface layer in our model is
0.26 m (Table B1), it is possible that the value of δ lower than
1 again compensates for trapping the fraction β in a layer
that is too thin. It is therefore likely that if we used a thicker
surface layer (e.g., 60 cm thick), the value of the parameter
would be closer to 1.

Using automated tools to identify existing flaws could also
help improve the representation of other simulated processes.
For instance, the impact of density stratification on vertical
turbulent fluxes is poorly represented in turbulent schemes,
and internal wave breaking is accounted for in only a few lake
models, e.g., SimStrat by Goudsmit et al. (2002). Models like
k–ε could benefit from supervised automated calibration of
parameters that are traditionally fixed based on standard ex-
periments and generally poorly understood. Similarly, refin-
ing horizontal turbulent models through tuning could provide
insights into whether the adopted scheme (e.g., constant co-
efficients or sub-grid scaling following Smagorinsky, 1963)
and grid resolution are sufficient to capture the timing and
location of horizontal and vertical transport processes, such
as upwellings/downwellings and gyres.

6 Conclusions

Automatic calibration tools are powerful for optimizing
parameter selection in complex models, helping modelers
achieve realistic simulations of the environment studied.
Here, we demonstrated that such tools can also be utilized by

developers to assess whether their implementations of mod-
els align with the physics and by users to identify potential
improvements needed in the modeling framework. Unlike
manual calibration, which is often user-sensitive and prone
to bias, automatic calibration is objective and allows one to
more effectively highlight inherent flaws in model formula-
tions. Although lake modeling issues often arise from inad-
equate meteorological input, automatic calibration can help
users and developers detect code-related issues, offering a
more unbiased and systematic approach. We tested the re-
sponse of a hydrodynamic model, Delft3D, which is widely
used by the limnological community, to the task of simu-
lating the vertical distribution of heat in lakes. The process
is regulated by the well-known Beer law describing the ab-
sorption rate of short-wave radiation along the water column,
but its incomplete implementation in the numerical model re-
quires a compensation mechanism to optimally simulate sur-
face water temperature. Such a mechanism is the nonphys-
ical adjustment of the Secchi depth to compensate for the
exclusion of the absorption of a fraction of solar short-wave
radiation at the surface. By exploiting a recently developed
calibration tool (DYNO-PODS), based on surrogate mod-
els, we were able to unveil such a limitation of the Delft3D
parametrization that was never explicitly discussed and to fix
it with a small modification of the source code.

In conclusion, we recommend caution when blindly ap-
plying automatic tools, emphasizing the importance of eval-
uating the physical significance of the calibration parameters
obtained. This calibration approach combined with detailed
analysis of optimization results should yield comparable ben-
efits in various applications, including computationally in-
tensive simulations.

Appendix A: Source code

We report here the parts of the Delft3D code which were
modified to include the effect of β according to Eq. (3). Such
modification is made in the subroutine heatu.f90.

At the surface layer, the original source code lists the fol-
lowing:

qink = corr * qsn * (1.0_fp
- exp(extinc*zdown)) / extinc

We modified it as the following:

qink = corr * (1.0_fp-beta_sw)

*qsn * (1.0_fp - exp(extinc*zdown))
/ extinc
+ qsn * beta_sw

At deeper layers, the original source code lists the follow-
ing:

qink = corr * qsn * (exp(extinc*ztop)
- exp(extinc*zdown))
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We modified it as the following:

qink = corr * (1.0_fp-beta_sw)

* qsn * (exp(extinc*ztop)
- exp(extinc*zdown))

Appendix B: Test site and base model calibration

Lake Morat (Lake Murten in German) (Fig. B1a, b) is a Swiss
lake situated at 429 m above sea level with a surface area of
22.8 km2, an average depth of 24 m, and a maximum depth of
45 m. In situ water temperature profiles are sampled monthly
in the middle of the lake (Fig. B1b, c) over irregular depth
intervals: 0 (just below the surface), 2, 5, 7, 10, 12, 15, 17,
20, 25, 30, 35, 40, and 43 m. Monthly measurements of water
transparency (expressed as Secchi depth, Fig. B1d) are also
recorded at the same observation point.

Table B1. Base setup for the Delft3D model of Lake Morat.

Nmax Mmax Kmax 1x,y 1z 1t

– – – m m s

41 88 77 73–110 0.26–1 60

The details on the size of the model grid and the time
spacing of the Delft3D model for this lake are reported in
Table B1. As atmospheric forcing at the surface boundary
of the lake, we used COSMO-1 space- and time-varying
meteorological variables (air temperature, relative humid-
ity, wind speed, cloud cover, short-wave radiation, and air
pressure), provided by MeteoSwiss at hourly time resolu-
tion and 1.1 km spatial resolution. The assimilated outputs,
i.e., reanalysis data, based on observational measurements
(Voudouri et al., 2017) were used for this purpose.

The base setup for this lake model was obtained from
a year-long automated calibration implementing DYNO-
PODS (Xia et al., 2022). The full set of parameters are re-
ported in Table 1 in the main text and include the back-
ground horizontal viscosity and diffusivity coefficients (in-
dicated as Vicouv and Dicouv in Delft3D; see Deltares,
2023), the Ozmidov length scale (Xlo), the free convec-
tion coefficient (Cfrcon), and a corrective coefficient on
wind drag coefficient (α). For the wind drag coefficient,
as in recent applications of the Delft3D model to peri-
alpine lakes (e.g., Amadori et al., 2021), we took as a ref-
erence the parametrization proposed by Wüest and Lorke
(2003) to set the coefficients of the piecewise function imple-
mented in Delft3D: C0

dA = 0.0044 for wind speed lower than
UA = 0.5 m s−1, C0

dC = 0.002 for values higher than UC =
10 m s−1, and linear interpolations betweenC0

dB = 0.001 and
C0
dA and C0

dC , respectively, for wind speed between UB =
4.5 m s−1 and UA and UC . The wind effect is also taken into
account in the parametrization of forced latent and sensitive
heat fluxes. Instead of calibrating parameters like the “Stan-

Figure B1. (a) Location of Lake Morat in the alpine area; (b) com-
putational grid, bathymetry, and location of in situ monitoring sta-
tion (red dot); (c) heatmap of the monthly in situ water temperature
profiles for the year 2019 measured in the monitoring point; (d) time
series of in situ water transparency for 2019 (black dots) and mean
year computed from the 2016–2021 time series (mean: orange thick
line; standard deviation: orange shaded area).

ton” and “Dalton” numbers, respectively, for the sensible and
latent heat fluxes (Deltares, 2023), we set the model to also
use Cd in calculating these heat fluxes.

To account for the uncertainties related to the input wind
speed and to calibrate the wind function for the forced heat
fluxes, the drag coefficient was adjusted by introducing the
corrective parameter α as follows:

Cdi = αC
0
di . (B1)

Background values of the vertical eddy viscosity and dif-
fusivity (Vicoww, Dicoww ) were set as equal to molecu-
lar values (i.e., 10−6 and 10−9 m2 s−1, respectively), while
all the other calibration parameters (e.g., bottom roughness)
were set as default values.

The Secchi depth Ds was provided as time series with
approximately monthly frequency, as obtained from in situ
measurements. These values were not modified. As the ob-
jective function for this base calibration, we used the error
along the entire water column εT .

Code availability. The source code of the modified
Delft3D with inclusion of the β parameter is available at
https://doi.org/10.5281/zenodo.14989442 (Bouffard et al.,
2025). The input data and scripts to run the model and post-
process the results as presented in this paper are archived at
https://doi.org/10.5281/zenodo.13712738 (Amadori et al., 2024).
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