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Abstract. A new computational fluid dynamics code for
large eddy simulation (LES) of the atmospheric boundary
layer and convection is presented and made available. A key
novelty is that moist thermodynamics is formulated in terms
of thermodynamic potentials, ensuring thermodynamic con-
sistency. Despite the apparent complexity of the thermody-
namic potential approach, the model’s performance demon-
strates that it is feasible and effective at reasonable computa-
tional cost for three-dimensional simulations. Semi-implicit
semi-Lagrangian numerical methods are used; such methods
are unusual for simulating boundary layer and convective
flows and are more typical of global atmospheric models.
Moreover, the model includes no explicit scheme to repre-
sent subgrid-scale fluxes of scalars and momentum but relies
instead on the mixing and dissipation resulting from the nu-
merical methods used; in other words, it employs implicit
LES (ILES). Sample results from several standard LES test
cases show that the model’s ability to capture the main as-
pects of the flows is comparable to other LES models. At
the same time, the results highlight limitations of the ILES
approach near the bottom boundary and suggest that ILES
might need to be augmented in some way, for example, by
distributing the convergence of surface fluxes over several
model layers. Also, results for a marine stratocumulus case
show a significant sensitivity to different options for the nu-
merical methods and parameters used. Further development
and application of the code would benefit from a deeper un-
derstanding of both the bottom boundary behaviour and the
sensitivities to numerics.

1 Introduction

Large eddy simulation (LES) has been an invaluable compu-
tational tool in atmospheric science since the early 1970s,
both for advancing our understanding of complex atmo-
spheric processes such as boundary layer turbulence and con-
vection and for informing the development of parameteriza-
tions of those processes for use in weather and climate mod-
els. This article presents the formulation of a new LES code
developed by the author with a threefold motivation:

1. to demonstrate the feasibility of using thermodynamic
potentials to achieve a consistent representation of moist
thermodynamics in a three-dimensional fluid dynamics
code,

2. to evaluate the use in LES of the sort of numerical meth-
ods more usually used in synoptic- and global-scale
models, and

3. to provide a modelling tool that is easy to set up and
run and in which it is easy to set up new test cases and
diagnostics.

The thermodynamics of moist air is complicated, and at-
mospheric models often make approximations. Some com-
mon approximations introduce inconsistencies between dif-
ferent aspects of the system or with the laws of thermo-
dynamics – see Thuburn (2017b) for examples. Thermody-
namic consistency can be ensured by deriving all thermo-
dynamic quantities from one of the four standard thermody-
namic potentials, internal energy, enthalpy, Helmholtz free
energy, or Gibbs function, expressed as a function of its natu-
ral variables. Provided any approximations are made directly
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to the thermodynamic potential before deriving other quanti-
ties, consistency is maintained. This approach has been pro-
posed for use in ocean modelling for consistent treatment of
the complex equation of state of seawater (IOC et al., 2010).
More recently, the approach has been advocated for deriv-
ing consistent equation sets for the thermodynamics of moist
air in atmospheric models (Vallis, 2017; Eldred et al., 2022;
Staniforth, 2022). As an alternative, a model can be formu-
lated and implemented directly in terms of the thermody-
namic potential and its derivatives (Thuburn, 2017b; Bowen
and Thuburn, 2022a, b); in this way different approximations
to the thermodynamics can be implemented by modifying the
minimal number of routines.

For the case of thermodynamic equilibrium (no supersatu-
ration, no condensate in subsaturated air, all components and
phases at the same temperature) and in the absence of ice,
Thuburn (2017b) presented a semi-implicit semi-Lagrangian
model solving the compressible Euler equations in which the
moist thermodynamics was formulated in terms of the Gibbs
function for moist air. Whilst encouraging, this initial imple-
mentation suffered several limitations. First, because the for-
mulation works in terms of the total Gibbs function for moist
air, the water content must be partitioned into vapour and
condensate whenever the Gibbs function is evaluated, com-
plicating the calculation. More importantly, since the natu-
ral variables for the Gibbs function pressure p and temper-
ature T are intensive variables, knowledge of p and T (and
total specific humidity q) alone is insufficient to completely
determine the equilibrium state, particularly the partition of
water into its three phases, at the triple point. Thus, the im-
plementation is restricted to two phases: vapour and liquid.
Finally, the formulation of Thuburn (2017b) could not rep-
resent important nonequilibrium effects such as the delayed
freezing of supercooled cloud droplets or the evaporation of
rain in subsaturated air.

These limitations were overcome by Bowen and Thuburn
(2022a, b). They formulated the thermodynamics in terms of
the internal energy, whose natural variables are the extensive
variables specific volume α and specific entropy η, avoid-
ing the difficulty at the triple point. Moreover, by working
with the individual internal energy potentials for dry air, wa-
ter vapour, liquid water, and ice, rather than a combined ther-
modynamic potential for the air parcel, they were able to sep-
arate the calculation of the potentials from the calculation of
the air parcel equilibrium state, simplifying the formulation.
By expressing the evolution of a subset of variables in terms
of thermodynamic forces and a resistivity matrix, they were
able to account for departures from thermodynamic equilib-
rium, while seamlessly approaching the equilibrium case in
the limit of zero resistivity.

The codes developed by Thuburn (2017b) and Bowen
and Thuburn (2022a, b) were two-dimensional vertical slice
models, and they were applied to simple buoyant bubble test
problems. The apparent complexity of the thermodynamic
potential approach, with accompanying concerns about its

computational cost, might discourage model developers from
pursuing the approach in three-dimensional models. A pri-
mary goal of the work described here is to demonstrate that
the approach can be applied successfully, without excessive
expense, in a three-dimensional model suitable for studying
complex boundary layer and convective flows.

Traditionally, LES models for atmospheric applications
are often based on relatively simple numerical methods sup-
plemented by more or less sophisticated subgrid models (e.g.
Siebesma et al., 2003). Typically, advection schemes are Eu-
lerian and time stepping is explicit, so that stability requires
the advective and diffusive Courant numbers to be less than
some threshold value of order 1. Global weather and climate
models, on the other hand, often use sophisticated (and rela-
tively expensive) advection schemes that are stable for large
advective Courant numbers (e.g. Temperton et al., 2001; Lin,
2004; Wood et al., 2014; Melvin et al., 2024), though they
require the deformational Courant number to be bounded.
Bartello and Thomas (1996) have argued that such large-
time-step advection schemes are no longer cost-effective in
flow regimes where the energy spectrum is shallower, the
Lagrangian and Eulerian timescales become more compara-
ble, and the deformational Courant number is much closer
to the advective Courant number. Nevertheless, traditional
LES codes are often run with time steps more than an or-
der of magnitude smaller than could be used by a semi-
implicit semi-Lagrangian scheme at the same resolution (e.g.
Stevens et al., 2005, and compare section 5 below). This
observation, combined with recent progress in improving
the efficiency of conservative semi-implicit semi-Lagrangian
solvers (Thuburn, 2024), encouraged the author to revisit the
question by implementing a semi-implicit semi-Lagrangian
LES model.

On a closely related point, global models with sophisti-
cated advection schemes sometimes do not include a sub-
grid model to handle the turbulent downscale cascades of
potential enstrophy and energy but rely instead on the dis-
sipative nature of the advection scheme to play that role (e.g.
Walters et al., 2017; ECMWF, 2023). In other words, they
use a form of implicit large eddy simulation or ILES (e.g.
Margolin et al., 2006; Grinstein et al., 2007). Although there
have been some pioneering attempts to use or evaluate ILES
for boundary layer and convective-scale atmospheric flows
(Margolin et al., 1999; Brown et al., 2000; Smolarkiewicz
and Prusa, 2002), and there is growing interest (e.g. Pressel
et al., 2017; Souza et al., 2023), the approach is still far from
mainstream, and there remain many open questions about its
strengths and weaknesses and how they depend on details of
the numerics. The need to answer these questions is becom-
ing increasingly pressing as global prediction models begin
to be used at the kilometre scale (Satoh et al., 2008; Stevens
et al., 2019; Hohenegger et al., 2023; Tomassini et al., 2023).
PTerodaC3TILES includes no subgrid model and uses the
ILES approach. An important secondary goal for its devel-
opment is to provide a tool to facilitate the study of the
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ILES properties of semi-implicit, semi-Lagrangian schemes
for simulating convective-scale flows.

Finally, the author perceived a need for an LES tool
that could be set up to run production science with
minimal effort on a desktop machine or even a laptop.
PTerodaC3TILES v1.0 comprises a single standalone fortran
code and a namelist file. No external packages are needed
other than a fortran compiler (with OpenMP shared mem-
ory parallel capability if desired). Just by selecting namelist
options, the code can generate initial data and implement
forcing terms for a number of standard test cases; new cases
can easily be implemented by using the routines for existing
cases as templates. To avoid large volumes of output, diag-
nostics are calculated online at run time. Many standard diag-
nostics are available via namelist switches; others can easily
be implemented and output using existing routines as tem-
plates. Further details are given in the user manual, available
from Zenodo; see the “Code availability” section.

Some aspects of the model formulation are novel or note-
worthy; these are introduced briefly here and discussed in
more detail in Sect. 2.

Unlike most atmospheric models, changes of phase of
water and latent heat release are not treated as separate
physics source terms but are fully integrated within the dy-
namical core’s semi-implicit semi-Lagrangian time stepping
(Thuburn, 2017b; Thuburn et al., 2022; Bowen and Thuburn,
2022a, b, Sect. 2.1 and 2.3 below). To maintain consistency
of the thermodynamics, surface fluxes of water imply surface
fluxes of mass. The same is true for the somewhat artificial
sources of water specified in the domain interior for some
test cases. Because of the model’s Charney–Phillips vertical
staggering, with total density stored at p levels and specific
humidities stored at w levels, special care is needed to main-
tain that consistency (Sect. 2.7). Mass sources accompanying
water sources are neglected in most atmospheric models.

In contrast to Thuburn (2017b) and Bowen and Thuburn
(2022a, b), in PTerodaC3TILES conservative options are
available for the advection of moisture and entropy variables.
Although the numerical methods do not exactly conserve
energy, energy conservation is significantly improved as a
side effect of a conservative treatment of entropy and water
(Thuburn, 2022).

Even with the use of cheap advection updates during the
main solver iterations (Thuburn, 2024), advection remains
one of the most expensive components of the model (along
with the elliptic solver). Some modifications are made to
the SLICE conservative semi-Lagrangian advection scheme
(Zerroukat et al., 2009) to improve its efficiency, particularly
to minimize the use of conditional code by avoiding search-
ing. Geometrical calculations of coordinate line intersections
to determine intermediate departure points are replaced by
additional trajectory calculations, and information generated
in remapping volume and mass is reused in remapping other
fields (Sect. 2.6).

Linearization of the thermodynamics leads to an 11×
14 linear subsystem at each model grid point that must be
diagonalized in order to build the Helmholtz problem and
to enable back substitution for the semi-implicit time step-
ping. To reduce what would otherwise potentially be a sig-
nificant computational expense, the equations and unknowns
are reordered to exploit the moderate sparsity of the thermo-
dynamic subsystem, which is essentially the same at all grid
points. The cost of the diagonalization is thereby reduced to
about 30 % of the cost of a full Gaussian elimination for the
case of equilibrium thermodynamics. The cost is further re-
duced by carrying out the diagonalization on all matrices in
a grid column at the same time, with the inner loop over ver-
tical levels, to improve vectorization (Sect. 2.10).

Some of the test cases implemented specify the use
of Monin–Obukhov theory to compute surface momen-
tum fluxes. Appendix A4 presents a slight reformulation of
Monin–Obukhov theory that, with the aid of some curve fit-
ting, enables the friction velocity U∗ to be obtained without
the need for an iterative calculation and guarantees the exis-
tence of a unique solution for U∗ even when the validity of
Monin–Obukhov theory breaks down.

Section 4 summarizes some of the ways in which the cor-
rectness of the formulation and implementation have been
verified. Section 5 presents some sample results from stan-
dard LES test cases to demonstrate the performance of the
model. The conclusions and areas where further work is
needed are discussed in Sect. 6.

2 Model formulation

The formulation of PTerodaC3TILES is inspired by
semi-implicit semi-Lagrangian dynamical cores such as
ENDGame (Wood et al., 2014) and GungHo (Melvin et al.,
2024) that iterate towards a (possibly off-centred) Crank–
Nicolson time discretization along trajectories. Such a for-
mulation has been found to be stable and robust at large
time steps for synoptic-scale flow. A significant departure,
though, is in the treatment of moist thermodynamics. First,
to guarantee consistency, the thermodynamics is expressed in
terms of thermodynamic potentials, in this case the internal
energy. Second, processes such as phase changes and latent
heat release are not treated as separate physics source terms
but directly couple to the dynamics through the dependence
of pressure and buoyancy on the thermodynamic state. The
wide range of timescales associated with the thermodynam-
ics, ranging from instantaneous for processes in equilibrium
to many minutes for some nonequilibrium processes, is nat-
urally handled by the semi-implicit time discretization.

A feature of the consistent treatment of thermodynamics
is that any surface or interior source of moisture implies a
corresponding source of mass (Sect. 2.7). Such a mass source
is neglected in most atmospheric models.
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PTerodaC3TILES version 1.0 includes only equilibrium
thermodynamics, but almost all of the machinery is in place
to deal with the nonequilibrium case. Also, this version in-
cludes no representation of microphysical processes; any
condensate is simply carried along with the flow. The inclu-
sion of a simple microphysics scheme is a priority for future
work.

2.1 Continuous governing equations

The continuous equations to be solved are the same as those
solved by Bowen and Thuburn (2022a), extended to three
spatial dimensions, and with the inclusion of Coriolis terms
and external source terms for mass, momentum, and water.
See that article for a derivation and in-depth discussion. For
the purpose of exposition it is convenient to split the govern-
ing equations into dynamics and thermodynamics.

2.1.1 Dynamics

The subset of governing equations involving material deriva-
tives is the following:

1
V

D
Dt
(Vρ)= Sρ, (1)

Du

Dt
+ 2�×u+α∇p+∇8= Su, (2)

1
V

D
Dt
(Vρq)= ρSq , (3)

1
V

D
Dt
(Vρη)= ρJ TP + ρSη, (4)

DX

Dt
= J +SX. (5)

Here, ρ is the total fluid density, u= (u,v,w) is the fluid
(barycentric) velocity, q is the total specific humidity, η is the
total specific entropy, α = 1/ρ is the total specific volume,
p is the pressure, and � is the rotation vector of the frame of
reference.8= gz is the geopotential with g the gravitational
acceleration. S and S terms indicate external sources.

The vector X = (q l,qf,qvηv,q lηl,qfηf)T (superscript T
meaning transpose) encodes the additional thermodynamic
information that needs to be predicted in the nonequilibrium
case. Superscripts d, v, l, and f indicate dry air, water vapour,
liquid water, and frozen water, respectively. J is a vector of
thermodynamic fluxes, with P the corresponding thermody-
namic forces, defined below. The expression J TP in Eq. (4)
gives the entropy source per unit mass due to nonequilibrium
processes1.

D/Dt is the material derivative. In Eqs. (1), (3), and (4),
V is the material volume element. These equations are writ-
ten in a form that lends itself to numerical solution using a
conservative semi-Lagrangian scheme. The material deriva-

1This entropy source term does not include the effects of viscos-
ity and mixing of air parcels; see Sect. 4.6.

tive in Eq. (5) is written in a form that anticipates discretiza-
tion using an interpolating semi-Lagrangian scheme, on the
assumption that it will be sufficient to advect the total specific
humidity and entropy conservatively, with a cheaper non-
conserving scheme for the components of X. Nevertheless,
an option for conservative advection is available. In the equi-
librium case, however, J is not needed (see Eq. 13 below),
so advection of X becomes superfluous and is automatically
switched off.

The user can also choose to include additional tracers
stored either at p levels or at w levels (see Sect. 2.2). Since
these do not feed back on the dynamics or thermodynamics,
we largely omit them from further discussion.

2.1.2 Thermodynamics

The diagnostic equations describing the thermodynamics are
as follows:

qvαv
− qdαd

= 0, (6)(
1− δl

)
λl
− δlq l

= 0, (7)(
1− δf

)
λf
− δfqf

= 0, (8)

qv
+ q l
+ qf
− q = 0, (9)

qvαv
+ q lαl

+ qfαf
−α = 0, (10)

qdηd
+ qvηv

+ q lηl
+ qfηf

− η = 0, (11)

p+ ed
α + e

v
α = 0, (12)

RJ − (P −C)≡−RPE = 0. (13)

Where needed, the mass fraction of dry air is given by qd
=

1− q.
Equation (6) states that the water vapour and dry air oc-

cupy the same volume within an air parcel. Equations (9)–
(11) state that the total specific humidity equals q, the to-
tal specific volume equals α, and the total specific entropy
equals η.

Equation (12) expresses Dalton’s law of partial pressures
and is key for coupling the thermodynamics to the dynamics.
Here, ed(αd,ηd), ev(αv,ηv), el(ηl), and ef(ηf) are the inter-
nal energy potentials for dry air, water vapour, liquid water,
and frozen water, respectively, expressed as functions of their
natural variables (Appendix A2). As in Bowen and Thuburn
(2022a, b), condensate is assumed to be incompressible, with
αl and αf specified constants, so we suppress the dependence
of el on αl and of ef on αf, and the pressure within any con-
densate (for example, as needed to compute the Gibbs func-
tion) is equal to the total pressure of the surrounding gas.
Subscripts α and η on the species internal energies indicate
partial derivatives with respect to the respective natural vari-
ables.

Equation (13) is a set of phenomenological equations relat-
ing thermodynamic fluxes J to the thermodynamic forces P

that push the system towards equilibrium (de Groot and
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Mazur, 1984). RPE is a residual that should be driven towards
zero by the iterative solver. In the present system P is given
by

P =∇Xη =
1
T d

(
gv
− gl,gv

− gf,T d
− T v,T d

− T l,

T d
− T f

)T
, (14)

where the gradient ∇Xη is taken at constant mass and en-
ergy, T i is the temperature of species i, and gi is the Gibbs
function for species i, i ∈ {d,v, l, f} (Appendix A2). R is a
symmetric and positive semi-definite resistivity matrix con-
trolling the rate at which an air parcel approaches thermody-
namic equilibrium. C = ηref(δ

lλl,δfλf,0,0,0)T is a vector of
switched Lagrange multipliers, with δl, δf

∈ {0,1}, used in
enforcing the constraints that q l and qf must be non-negative.
For example, if the thermodynamic forces imply evaporation
of liquid but q l is already zero, then the liquid constraint is
switched on (δl

= 1) and the solution for λl balances the rel-
evant component of P . Finally, Eqs. (7) and (8) are a con-
venient way to express the complementarity conditions (e.g.
Nocedal and Wright, 2006) that either q l or λl must be zero
and either qf or λf must be zero. ηref is an arbitrary reference
value, here equal to 1000 J kg−1 K−1, introduced to ensure
that Eqs. (7) and (8) are dimensionally correct.

Bowen and Thuburn (2022b) show how R can be related to
the thermal conductivity of air and the molecular diffusivity
of water vapour in air for cloud droplets of a given radius. In
PTerodaC3TILES v1.0 the resistivity R is set to zero, impos-
ing local thermodynamic equilibrium. Nevertheless, almost
all of the machinery is in place to handle the nonequilibrium
case.

Note that PTerodaC3TILES has no explicit representation
of subgrid variability in temperature or humidity, hence in
condensate. Each grid cell is either entirely saturated or en-
tirely unsaturated. In other words, it is an all-or-nothing rep-
resentation of saturation and condensate.

2.2 Domain, grid, and discretization

The domain of PTerodaC3TILES v1.0 is rectangular and
doubly periodic in the horizontal, with flat rigid bound-
aries at the bottom and top. Cartesian coordinates (x, y, z)
are aligned with the domain. When a full three-dimensional
Coriolis force is used, then the x and y directions are as-
sumed to be east and north, respectively, but otherwise the
model is agnostic about which direction is north.

A C-grid staggering (Arakawa and Lamb, 1977) is used in
the horizontal, and a Charney–Phillips grid staggering (Char-
ney and Phillips, 1953) is used in the vertical (Fig. 1). The
choice of a Charney–Phillips vertical grid is unusual for LES
models but is more common in global models. It avoids com-
putational modes – oscillatory vertical profiles of thermody-
namic variables that spuriously satisfy discrete hydrostatic
balance – and gives more accurate coupling between vertical

Figure 1. Schematic showing the placement of model variables on
the vertically staggered Charney–Phillips grid. Superscript i can
stand for any of d, v, l, and f.

velocity and buoyancy on small vertical scales but makes it
difficult to formulate an exactly energy-conserving scheme.

In the following, integer indices are used for p points, with
an offset of 1/2 in the relevant direction for velocity points.
Vertical indices 1 and Nz correspond to the lowermost and
uppermost p levels; vertical indices 1/2 and Nz+ 1/2 cor-
respond to the w levels at the bottom and top model bound-
aries. Horizontal grid spacings 1x and 1y are uniform but
need not be equal to each other. The vertical grid spacing1z
may be uniform or stretched. See Appendix A1 for the grid
specification in the stretched case. All of the results shown in
Sects. 4 and 5 use uniform 1z.

Simple finite-difference or finite-volume approximations
are used for gradient and divergence operators. The compo-
nents of the pressure gradient (and similarly the geopotential
gradient) are needed at velocity points:

∂p

∂x

∣∣∣∣
i+1/2 jk

=
pi+1jk −pijk

1x
,

∂p

∂y

∣∣∣∣
ij+1/2 k

=
pij+1k −pijk

1y
,

∂p

∂z

∣∣∣∣
ijk+1/2

=
pijk+1−pijk

1zk+1/2
, (15)

where 1zk+1/2 = zk+1− zk and with the obvious modifica-
tions to allow for periodic boundary conditions. The diver-
gence of the velocity is needed at p points and is given by

∇ ·u|ijk =
ui+1/2jk − ui−1/2jk

1x
+
vij+1/2 k − vij−1/2 k

1y

+
wijk+1/2−wijk−1/2

1zk
, (16)

where 1zk = zk+1/2− zk−1/2, with an analogous expression
for the divergence of mass flux increments.

Averaging between velocity points and p points is needed
at various places in the discretization. Horizontal averaging
uses a simple two-point average with weights 1/2, indicated
by (.)

x
or (.)

y
. For example, the values of α used in the hori-

zontal components of Eq. (2) are given by 1/ρx or 1/ρy .
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Because the vertical grid may be stretched, four different
vertical averaging operators are possible:

– (.)
w

, linear interpolation from p levels to w levels;

– (.)
r
, piecewise constant conservative remapping from

p levels to w levels;

– (.)
p

, linear interpolation from w levels to p levels; and

– (.)
s
, piecewise constant conservative remapping from

w levels to p levels.

Complete expressions for these four operators along with
some useful conservation and discrete product rule proper-
ties are given in Appendix B of Thuburn et al. (2022). For
example, the averaging of velocity components to compute
the Coriolis terms (Eq. 2) and departure points (Sect. 2.6)
uses a combination of (.)

x
, (.)

y
, (.)

p
, and (.)

w
. When a value

for p is needed at the bottom and top boundaries, a variant of
the (.)

w
operator is employed that uses linear extrapolation

rather than the default constant extrapolation.
In order to ensure consistent and conservative transport of

water and entropy, a key aspect of the model formulation is
that a mass budget for a dual w-level density ρr that is con-
sistent with the p-level ρ budget should be satisfied (Konor
and Arakawa, 2000; Thuburn, 2022; Bendall et al., 2023).
Achieving this consistency requires some care in the advec-
tion ofw-level scalars (Sect. 2.6), both for SLICE and for the
cheap advection updates, and also in the discrete formulation
of surface sources and interior sources (Sect. 2.7).

In the following sections, for clarity, details of the spatial
discretization are suppressed except to indicate where differ-
ent vertical averaging operators are used.

2.3 Overview of information flow

Before delving further into details, it is useful to take an
overview of the flow of information between the dynamics
and thermodynamics parts of the model formulation (Fig. 2)
to help clarify the organization of the linearization and the
derivation of the Helmholtz problem in Sect. 2.8–2.10.

For the continuous equations, the role of the thermody-
namics is to return the pressure p, given the density ρ, total
water q, and total entropy η. To do so, the thermodynamics
must determine how q and η are partitioned among the dif-
ferent components and phases qv, q l, qf, ηd, ηv, ηl, and ηf.

The situation is more complicated when discretized with a
Charney–Phillips vertical grid staggering, since p and ρ are
stored at p levels while q and η are stored at w levels. More-
over, in order to obtain optimal coupling between vertical ve-
locity and buoyancy, thew-level specific volume that appears
in the vertical pressure gradient term in Eq. (2) must be cal-
culated not simply from a vertically averaged density 1/ρr ,
but from the w-level η and q and a vertically averaged pres-
sure pw (Thuburn, 2017a). It is convenient to express this
requirement through an additional equation,

Figure 2. Schematic showing the flow of information between
the dynamics, thermodynamics at p levels, and thermodynam-
ics at w levels for the case of equilibrium thermodynamics. (For
the nonequilibrium case the w-level thermodynamics retains some
memory of qi and ηi .) Superscript i stands for any of d, v, l, or f.
An overbar indicates a vertical averaging operation from p levels to
w levels or vice versa.

pw −p(w) ≡−Rp = 0, (17)

where p(w) is the pressure appearing in Eq. (12) on w levels,
and Rp is a residual that should be driven to zero by the it-
erative solver. Thus, on w levels a full set of thermodynamic
equations (Eqs. 6–13) is solved, while on p levels the follow-
ing subset of thermodynamic equations is solved:

qvpαv(p)
+ q lpαl

+ qfpαf
−

1
ρ
= 0, (18)

qvpαv(p)
− qdpαd(p)

= 0, (19)

p+ ed
α + e

v
α = 0. (20)

Equation (18) determines the p-level specific volume of wa-
ter vapour αv(p), and then Eq. (19) determines the p-level
specific volume of dry air αd(p). Finally, the pressure is com-
puted from the dry air and water vapour internal energy po-
tentials in terms of their p-level natural variables αd(p), ηdp,
αv(p), and ηvp. Note that the specific volumes αd(p) and
αv(p) are calculated directly from ρ on p levels rather than
using vertical averages of the w-level values αdp, αvp, en-
suring that p responds correctly and locally to changes in ρ.

2.4 Semi-implicit semi-Lagrangian scheme

Splitting the momentum equation into its horizontal and
vertical components with v = (u,v,0) being the horizontal
velocity, a semi-implicit semi-Lagrangian discretization of
Eqs. (1)–(5) is[
ρ− a1tSρ

]n+1
−
[
ρ+ b1tSρ

]n
T ≡−Rρ = 0, (21)
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[v +a1t ((2�×u)H+α∇Hp−Sv)
]n+1

−
[
v− b1t ((2�×u)H+α∇Hp−Sv)

]n
D

≡−Rv = 0, (22)

[w +a1t
(
(2�×u)V+α

∂p

∂z
+
∂8

∂z
− Sw

)]n+1

−

[
w− b1t

(
(2�×u)V+α

∂p

∂z
+
∂8

∂z
− Sw

)]n
D

≡−Rw = 0, (23)[
ρr
(
η− a1tSη

)]n+1
−
[
ρr
(
η+ b1tSη

)]n
T

−1tρrJ TP n+1
≡−Rρη = 0, (24)[

ρr
(
q − a1tSq

)]n+1
−
[
ρr
(
q + b1tSq

)]n
T

≡−Rρq = 0, (25)

[X− a1tSX]n+1
− [X+ b1tSX]nD−1tJ = 0. (26)

Here, superscripts n and n+ 1 are time step indices. Sub-
scripts H and V indicate horizontal and vertical components,
respectively. Subscript D indicates a quantity interpolated or
remapped to a semi-Lagrangian trajectory departure point or
cell, while subscript T indicates a conservatively transported
quantity defined by Vn+1ψT = [Vψ]nD.
1t is the time step, and a and b = 1− a are off-centring

parameters for the dynamics. To damp acoustic waves that
might be generated by initial perturbations imposed to trig-
ger turbulence or by the switching on of forcing terms at the
initial time, a is smoothly adjusted from 1 to a user-specified
value over the first 900 s of a model run. A value of a = 0.51
(after the initial adjustment) is used for the results shown in
Sect. 5.

The terms Rρ , Rv , Rw, Rρη, and Rρq represent residuals
in their respective equations. In the target discretization these
residuals should be zero. The iterative solver described in the
following sections attempts to drive those residuals to zero.
No residual appears in Eq. (26) because that equation is used
to diagnose the fluxes J so it is always satisfied exactly.

The subsystem of thermodynamics equations (Eqs. 6–13)
is solved at step n+1, and it is P n+1 that appears in Eq. (24),
effectively giving a backward Euler treatment of the thermo-
dynamics. The thermodynamic processes of interest typically
involve relaxation towards equilibrium rather than oscilla-
tion about equilibrium. A backward Euler treatment should
be sufficiently accurate for nonequilibrium processes whose
timescale is much longer than 1t , such as evaporation of
falling rain. For processes whose timescale is shorter than
about 1t/2, a backward Euler step is preferable to a Crank–
Nicolson step since Crank–Nicolson can overshoot the equi-
librium solution. If the form of the resistivity matrix implies
that any part of the system is in equilibrium (e.g. T v

= T d),
then a backward Euler step is essential, since the equilibrium
must be imposed at step n+ 1 and not as a time average.

2.5 Time-stepping algorithm

The semi-implicit semi-Lagrangian scheme described in
Sect. 2.4 is both nonlinear in the unknown step n+ 1 values
and nonlocal because unknown values at neighbouring grid
points are coupled. The equations are solved using an itera-
tive quasi-Newton algorithm (Algorithm 1). By elimination
of unknowns, the linear system for the Newton update is re-
duced to a more or less standard Helmholtz problem, which
is solved using a multigrid method (Sect. 2.11). To avoid the
expense of computing conservative semi-Lagrangian trans-
port multiple times per step, a single full advection calcula-
tion is made once at the start of the time step, and relatively
cheap updates to the transport are made at each solver it-
eration (Zerroukat and Allen, 2020). These cheap transport
updates use simple upwind or centred schemes and are made
in such a way that the transport of scalars remains conser-
vative and bounded (assuming conservative and bounded op-
tions have been chosen by the user) and consistent with the
transport of mass at every solver iteration (Thuburn, 2024).

Algorithm 1 Computations performed to take one model
time step.

Compute time step n terms
Initialize step n+ 1 state variables to step n state
Full advection calculation: compute [.]D and [.]T terms
for `= 1 to N` do

Compute step n+ 1 terms based on iteration `− 1 values
Compute residuals
Build and solve the Helmholtz problem
Back-substitute, updating all transport terms and state vari-
ables

end for

The number of solver iterations takes a default value N` =
3. This was found to be sufficient for all test cases simulated
except DYCOMS, for which N` = 4 was needed. This ex-
ceptional case is discussed in Sects. 4 and 5.

When cheap transport updates are employed, the resulting
time integration scheme at solver convergence is not quite
as written in Sect. 2.4, with semi-Lagrangian advection by
the trajectory-average velocity. Rather, the net transport re-
sults from semi-Lagrangian advection using the first-guess
trajectory-average velocity followed by a sequence of small
corrections. Nevertheless, the end result is very close to the
target discretization and appears to work well in practice.

An attractive aspect of the use of the consistent and con-
servative cheap transport updates is that, after the first solver
iteration, the residuals in Eqs. (21), (24), and (25) and the
equations for any advected tracers are very small and result
only from changes in source terms between one iteration and
the next (Thuburn, 2024). It is likely that this helps solver
convergence (Sect. 4.4).
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Figure 3. Departure points and cascade remapping in two dimen-
sions. The red line Df to Af is an example full trajectory to a v-
point arrival point Af from the corresponding departure point Df.
The x and y coordinates of Af are known, and the x and y coordi-
nates ofDf are to be calculated. The blue lineDi toAi is an example
intermediate trajectory to Ai from Di. The x coordinate of Ai and
the y coordinate ofDi are known, and the y coordinate ofAi and the
x coordinate of Di are to be calculated. Once the intermediate and
full departure points are found, fields are conservatively remapped
in the x direction, from the model grid cells (straight black lines) to
intermediate cells (dashed blue lines), and then in the s direction to
the departure cells (red curves). The remapped field is then trans-
ported from its departure cells (e.g. pink cell) to the corresponding
arrival cells (e.g. grey cell).

2.6 Advection

All advection terms are computed using semi-Lagrangian
schemes. Different advection options are available depend-
ing on the advected variable and its location on the grid. All
momentum equation components are advected with an inter-
polating (non-conservative) semi-Lagrangian scheme. Terms
in the total fluid density equation and the mass fractions of
any p-level tracers are advected using the mass-conserving
SLICE scheme (Zerroukat et al., 2009). Advected terms in
the water and entropy equations (Eqs. 24–26), as well as any
w-level tracers, may be advected with either an interpolating
semi-Lagrangian scheme or with SLICE.

Both the interpolating semi-Lagrangian scheme and
SLICE use the cascade idea (Purser and Leslie, 1991) to re-
place a three-dimensional interpolation or remapping by a
sequence of one-dimensional interpolations or remappings
(Fig. 3).

The interpolating semi-Lagrangian scheme is based on
cubic Lagrange interpolation. For the vertical interpolation,
modifications are needed near the upper and lower bound-
aries. Between the uppermost pair of data points and between
the lowermost pair of data points a modified cubic interpola-
tion is used that uses only the two nearest data points and is
very close to a linear interpolation. For terms in the u and
v equations, when extrapolation above the uppermost data

point is needed constant extrapolation is used. When extrapo-
lation below the lowest data point is needed, the scheme uses
either constant extrapolation or linear interpolation between
the data value at level 1 and zero at the surface, according to
whether the user selects a freeslip or nosliptt bound-
ary condition for the advection.

For the SLICE scheme, for each advected field the user
may choose between piecewise constant, piecewise parabolic
(Colella and Woodward, 1984), and parabolic spline (Zer-
roukat et al., 2007) remapping schemes. Experimentation
suggests that, for most purposes, piecewise constant remap-
ping is adequate for cell volume, divergence, and density.
The results shown in Sect. 5 use this option, with parabolic
spline method remapping for entropy and water. For each
advected field the user has the option to use a simple lim-
iter ensuring boundedness of the advected field. The limiter
is redundant in the case of SLICE advection with piecewise
constant remapping. In Sect. 5 the limiter is used for advec-
tion of entropy and water but not for advection of velocity
components.

Some modifications to previous implementations of cas-
cade advection schemes are made to reduce expensive
searching and conditional code and to maximize reuse of in-
formation. First, in addition to the trajectory departure points,
three-dimensional cascade interpolation or remapping re-
quires two sets of intermediate departure points. Rather than
construct these intermediate departure points by computing
intersections between the arrival coordinate system defined
by the model grid and the departure or Lagrangian coordinate
system, as in previous work (e.g. Purser and Leslie, 1991;
Nair et al., 2002; Zerroukat et al., 2002), here they are com-
puted by separate trajectory calculations. The idea is illus-
trated in Fig. 3 for the two-dimensional case. A first guess
followed by a single fixed point iteration is used for all tra-
jectory calculations.

Second, we want to remap the density field using a volume
coordinate to ensure consistency with the trajectory-average
divergence (see below), and we want to remap water, entropy,
and tracers in a mass coordinate to ensure that their advection
is conservative, bounded if desired, and consistent with the
density advection. However, neither the volume coordinate
nor the mass coordinate is a simple function of cell index,
so it might appear, at first glance, that expensive searching is
needed to determine the necessary origin grid indices in these
coordinates. This difficulty is circumvented with the aid of
the following insight. To compute a one-dimensional remap-
ping of a field f from an origin grid to a destination grid,
the information needed comprises the origin grid cell aver-
age values of f , the origin grid coordinate intervals 1sk , the
origin grid indices ki corresponding to destination grid cell
edges i, and the cell fractions ξi in the s coordinate (Fig. 4).
Fields are then remapped in the following sequence.
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Figure 4. Information used for one-dimensional conservative
remapping of a field between an origin grid (cell edges indicated in
blue) and a destination grid (cell edges indicated in red). The remap-
ping coordinate s may be a geometrical coordinate (x, y, or z), vol-
ume, or mass.1sk is an origin grid cell size in the s coordinate. ki is
the origin grid cell index in which the destination grid edge i sits.
ξi is the fraction of the origin grid cell ki , measured in the s coordi-
nate, to the left of destination edge i.

1. Remap cell volume in a geometrical coordinate x, y,
or z; the origin grid indices ki and cell fractions ξi are
easily determined.

2. Remap density in a volume coordinate; the origin grid
indices ki are unchanged while the cell fractions ξi are
obtained as a by-product of the volume remapping. For
example, if Fig. 4 represents the remapping of volume
in a geometrical coordinate, then the volume-coordinate
cell fraction needed for the density remapping is given
by the ratio of the dark shaded area to the full shaded
area.

3. Remap p-level tracer mass fractions in a mass coor-
dinate; the origin grid indices ki are again unchanged
while the cell fractions ξi are obtained as a by-product
of the density remapping.

4. Remap w-level scalars in a mass coordinate. The origin
grid indices ki and cell fractions ξi must correspond to
a mass coordinate based on ρr ; they can be computed
from the mass coordinate ki and ξi at the p levels im-
mediately below and above the w level in question.

Thuburn et al. (2010) found that the accuracy of a
semi-implicit semi-Lagrangian scheme with conservative
semi-Lagrangian advection of density relies on the semi-
Lagrangian departure volumes (departure areas in the shal-
low water context) being consistent with the trajectory-
average divergence. Subsequent work showed that this diver-
gence consistency criterion is crucial for stability too, unless
a strong off-centring is employed. However, it appears very
difficult to enforce this criterion directly within the trajec-
tory calculations. Thuburn et al. (2010) solved this problem
by conservatively advecting the divergence field, hence con-
structing the required departure cell areas, and using an area
coordinate for the final SLICE remapping sweep in the ad-
vection of mass. Here a slightly different approach is taken

to enable the remapping sequence discussed above. First, the
divergence field is conservatively advected, and the informa-
tion is used to compute the required departure cell volumes.
These required departure cell volumes are compared with
the actual departure cell volumes returned by SLICE, and
the difference is used to compute a (small) divergent veloc-
ity increment sufficient to correct the discrepancy. The semi-
Lagrangian advection of all other advected fields is then car-
ried out, following which the machinery for making cheap
advection updates is used to update the advection of all fields
using this velocity increment and so satisfy divergence con-
sistency.

One of the benefits of the Charney–Phillips vertical grid is
that the colocation of w and η permits a tight coupling be-
tween vertical motion and buoyancy. However, when the en-
tropy transport is computed in flux form, that tight coupling
is lost unless the horizontal fluxes are corrected to account
for the vertical gradients of η, Fx = ρxu, and Fy = ρ

yv

(Thuburn, 2022). Thuburn (2022) showed how the horizon-
tal remapping of w-level fields in SLICE could be modified
to implement the required correction. Here, since the correc-
tion is generally small, a much simpler approach is taken.
Before carrying out the main SLICE advection of entropy, a
small transport correction is made to the entropy using the
horizontal fluxes,

F ηx = a
wbw1z2 ∂Fx

∂z

∂ηx

∂z

w

,

F ηy = a
wbw1z2 ∂Fy

∂z

∂ηy

∂z

w

, (27)

where aw and bw are the coefficients associated with the
(.)
w

operator. All quantities are evaluated at step n, and the
fluxes are applied over the time step 1t . Subscripts k+ 1/2
indicating the vertical level have been omitted for clarity.
Equation (27) is a slight generalization of Eq. (7) of Thuburn
(2022) to allow for a vertically stretched grid. An analogous
correction is applied to the transport of all conservatively
transported w-level scalars. However, because this simple
formulation does not guarantee boundedness of advected
scalars, the user may choose whether or not to include the
correction. The correction is included for the results shown
in Sect. 5.

In the back-substitution stage of the time step, cheap up-
dates are made to all transported terms [.]D and [.]T to ac-
count for the velocity increments u′, applied over the back-
ward part of the time step a1t . The transported terms in
the momentum equation are updated using an advective-form
first-order upwind scheme. The transported term in the den-
sity equation is updated using a flux-form scheme with mass
flux increments F ′ = ρ̂u′, where the cell edge values ρ̂ are
given by a second-order centred scheme. The transported
terms in any p-level tracer equations are updated using a
flux-form scheme with tracer flux increments F ′χ = F ′χ̂ ,
where the cell edge values χ̂ are given by a first-order upwind
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scheme. Finally, the transport terms for any w-level scalars
are updated using a flux-form scheme with scalar flux incre-
ments F ′χ = F ′

d
χ̂ , with χ̂ again given by a first-order up-

wind scheme. The notation (.)
d

here indicates that horizontal
mass flux increments have been mapped to w levels using
the (.)

r
operator and vertical mass flux increments have been

mapped to p levels using the (.)
p

operator for consistency
with the dual mass budget (Thuburn et al., 2022). This way of
constructing the scalar flux increments ensures that the scalar
transport remains consistent with density transport and con-
servative and bounded if the full semi-Lagrangian transport
was conservative and bounded.

2.7 Boundary and interior forcing terms

Each simulated case requires the implementation of appro-
priate boundary and interior forcing terms. For clarity of the
code, these boundary and forcing terms are implemented on
a case-by-case basis. For the surface fluxes, the cases that are
already implemented include examples of the setups most
commonly used in LES: heat and moisture fluxes as speci-
fied functions of time, heat and moisture fluxes determined
from a specified surface temperature and relative humidity
using a simple bulk model, momentum fluxes determined by
a simple bulk model, and momentum fluxes determined by
Monin–Obukhov similarity theory.2 A case using Monin–
Obukhov theory to determine heat and moisture fluxes has
not yet been implemented.

This section highlights some aspects of how the boundary
and interior forcing terms are implemented for consistency
with the rest of the model formulation.

2.7.1 Consistent surface fluxes of mass and water

Under a careful and consistent treatment of the moist ther-
modynamics, a surface flux of water implies a surface flux
of mass. Most atmospheric models neglect that flux of mass.
Because of the Charney–Phillips vertical staggering and the
fact that the predicted density is the total density rather than
the dry density, care is needed in computing the density and
water increments to ensure that the changes in both total
mass and total water within the model agree with the time-
integrated surface fluxes.

First consider the forward part of the time step, i.e. the
[. . .]n terms in Eqs. (21) and (25). Let Fρ be the surface
flux of mass and ρn

r
1/2Fq be the surface flux of water

(both in kg m−2 s−1). Recall that the w-level density at level
k+1/2 must equal the conservatively remapped p-level den-
sity ρrk+1/2. Thus, any change in total density at level 1 af-

2The ATEX case definition calls for momentum fluxes to be de-
termined by near-surface wind direction and a specified friction ve-
locity. However, the ILES formulation performs poorly with that
setup, so a simple bulk model is used instead. The specified friction
velocity setup can be restored with very minor code changes.

fects the density of water at level 3/2, ρnr3/2q3/2, as well as
the density of water at level 1/2, ρnr1/2q1/2. Nevertheless,
imposing the constraints that

– only the density at level 1 may change, and the to-
tal change in column mass per unit area must equal
Fρb1t , and

– only the specific humidity at level 1/2 may change, and
the total change in column water mass per unit area must
equal ρnr1/2Fqb1t ,

leads to unique solutions for the increment in density at
level 1,

δρ1 =
Fρb1t

1z1
, (28)

and the increment in specific humidity at level 1/2,

δq1/2 =

(
ρn1F

q
− qn

s
1Fρ

)
b1t

ρ+1 1z1/2
, (29)

where ρ+1 = ρ
n
1 + δρ1, and we have used the fact that ρr1/2 ≡

ρ1.
For the backward part of the time step, i.e. the
[. . .]n+1 terms in Eqs. (21) and (25), an analogous argument
leads to

δρ1 =
Fρa1t

1z1
(30)

and

δq1/2 =

(
ρn+1

1 Fq
− qn+1s

1Fρ
)
a1t

ρ−1 1z1/2
, (31)

where ρ−1 = ρ
n+1
1 −δρ1. Terms at time step n+1 are approx-

imated by the latest available estimate.
The treatment of surface entropy fluxes is analogous, with

q replaced by η and Fq replaced by Fη.

2.7.2 Surface drag

The various test cases implemented specify how the vertical
flux of horizontal momentum is to be parameterized at the
surface. Since there are no parameterized subgrid fluxes in
the interior of the domain, the convergence of the parame-
terized momentum flux occurs entirely in the lowest model
layer; i.e. it is applied to the u and v components at model
level 1.

Some of the test cases implemented specify that the
surface momentum flux is to be computed using Monin–
Obukhov similarity theory. However, there are two difficul-
ties. First, Monin–Obukhov similarity theory expresses the
mean flow speed U(z) at some height z as a nonlinear func-
tion of the friction velocity U∗. What we require in a numeri-
cal model is to express the friction velocity, hence the surface
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momentum flux, in terms of the known flow speed at the low-
est model level; however, in the usual approach, this requires
the iterative solution of a nonlinear problem in each grid col-
umn. Second, and more seriously, in the stable case (negative
surface buoyancy flux) in light winds Monin–Obukhov sim-
ilarity theory is valid only over a limited height range that
might be less than the height of the lowest model level z1. In
this case, with commonly used stability functions, the theory
can produce either no solution or multiple solutions for U∗,
given U(z1). To avoid these difficulties, a slight reformula-
tion of Monin–Obukhov theory is used to compute surface
momentum fluxes (Appendix A4).

2.7.3 Consistent interior forcing terms

For test cases that require a source of moisture in the interior
of the model domain, consistency between the p-level mass
budget and the w-level dual mass budget requires that(
ρSq

)
k+1/2 =

(
Sρ
r
)
k+1/2

. (32)

The simplest way to satisfy this condition is to specify the re-
quired moisture/mass source first on p levels and then remap
conservatively to w levels. For simplicity, interior entropy
sources are specified in the same way.

2.8 Linearized dynamics

To take a model time step, a quasi-Newton method is used to
solve Eqs. (21)–(26) along with the p-level and w-level ther-
modynamic equations. After some number of quasi-Newton
iterations, using the latest available estimates to evaluate step
n+ 1 terms, the residuals Rρ , Rv , Rw, Rρη, Rρq , RPE, and
Rp will generally be non-zero. We seek increments or up-
dates to the step n+ 1 model variables that will reduce those
residuals. This is done through an approximate linearization
of the governing equations (this section and Sect. 2.9), lead-
ing to a large linear system for the increments. Despite the
apparent complexity of this system, systematic elimination
of unknowns, partly manually and partly numerically, leads
to a nearly standard Helmholtz problem for a single unknown
per model grid point: the pressure increment p′ (Sect. 2.10).
The Helmholtz problem can be solved efficiently using well-
established methods; here a multigrid method is used. Once
p′ is found, the other increments can be found through back
substitution (Sect. 2.11).

The approximate linearization of Eqs. (21)–(26) is

ρ′+ a1t∇ ·F ′ = Rρ, (33)
v′+ a1t

(
α∗∇Hp

′
−S′v

)
=Rv, (34)

w′+ a1t

(
α∗
∂p′

∂z
+α′

∂p∗

∂z

)
= Rw, (35)

ρ(`+1)
r
η′+ ρ′

r(
η− a1tSη

)(`)
−
[
ρr
(
η+ b1tSη

)]′
T

= Rρη, (36)

ρ(`+1)
r
q ′+ ρ′

r(
q − a1tSq

)(`)
−
[
ρr
(
q + b1tSq

)]′
T

= Rρq , (37)
X′−1tJ ′ = 0. (38)

An asterisk on any variable indicates a reference value for
the linearization. Here the most recent estimate for the step
n+ 1 value is used as the reference value, avoiding the need
to store additional three-dimensional fields. Certain terms in
Eqs. (36) and (37) are explicitly evaluated at iteration num-
ber ` or `+ 1. This specific way of writing the linearization
ensures that, when Eqs. (36) and (37) are used in the back
substitution, η and q are incremented exactly according to
the consistent and conservative transport updates. Since the
source terms Sρ are generally non-stiff, their linearizations
are mostly omitted. The exception is a linearization of the
surface drag at model level 1 S′v =−v′/τdrag, where τdrag is
a surface drag timescale computed alongside the surface mo-
mentum flux. This term is omitted from the Helmholtz prob-
lem (in principle it could be included) but is included in the
back substitution.

In order to arrive at a standard Helmholtz problem for the
pressure increments we must make a w′N2 term appear in
the linearization, whereN2 is an appropriately defined buoy-
ancy frequency squared. This requires us to work with a lin-
earization of advective-form transport equations for η and q.
Consider the η equation (Eq. 36). In the back substitution the
transport increment is computed as[
ρr
(
η+ b1tSη

)]′
T =−a1t∇ ·

(
F ′
d
η̂
)

(39)

for some (upwind) cell edge values η̂. Thus, Eq. (36) be-
comes

ρ(`+1)
r
η′+ρ′

r(
η− a1tSη

)(`)
+a1t∇ ·(F ′

d
η̂)= Rρη. (40)

Subtracting η̂ times a vertical average of Eq. (33) and ap-
proximating ρ(`+1)

r
by a generic reference density ρ∗ gives

η′+ a1tw′
∂η

∂z
=
Rρη− η̂Rρ

ρ∗
≡ Rη. (41)

Proceeding in a similar way for the q equation (Eq. 37) gives

q ′+ a1tw′
∂q

∂z
=
Rρq − q̂Rρ

ρ∗
≡ Rq . (42)

2.9 Linearized thermodynamics

When the w-level thermodynamic state is updated, certain
fields are diagnosed, ensuring that Eqs. (6)–(11) are satisfied
exactly: qd is set equal to 1− q, Eq. (9) gives qv, Eq. (10)
gives αv, and Eq. (6) gives αd. Also, the updating of terms
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in Eqs. (7) and (8) during back substitution is done in such
a way that those equations remain exactly satisfied. Thus, no
residual term appears in the linearized versions of these equa-
tions.

The linearized forms of Eqs. (6)–(11) are then as follows:

qvαv′
+αvqv′

− qdαd′
+αdq ′ = 0, (43)(

1− δl
)
λl′
− δlq l′

= 0, (44)(
1− δf

)
λf′
− δfqf′

= 0, (45)

qv′
+ q l′

+ qf′
− q ′ = 0, (46)

qvαv′
+αvqv′

+αlq l′
+αfqf′

−α′ = 0, (47)

qdηd′
− ηdq ′+ qvηv′

+ ηvqv′
+ q lηl′

+ ηlq l′
+ qfηf′

+ ηfqf′
− η′ = 0. (48)

Note that qd′
=−q ′ has been used to eliminate increments

of the dry mass fraction. The linearization of Eq. (17) is

p′
w
−p(w)′ = Rp. (49)

With the aid of Eq. (38), the linearized phenomenological
equations become

1
1t

RX′−P ′+C′ =RPE; (50)

for brevity the details of P ′ and C′ are suppressed.
Two modifications are then made to the linear system.

First, a change of variable is made, introducing λ̃l′
= λl′
+q l′

and λ̃f′
= λf′

+ qf′. Second, ηref times Eq. (44) is added to
the q l′ phenomenological equation and ηref times Eq. (45)
is added to the qf′ phenomenological equation. These two
modifications guarantee that the coefficient of q l′ in Eq. (44)
and the coefficient of qf′ in Eq. (45) are nonzero and that
the coefficients of λ̃l′ and λ̃f′ in the relevant phenomenolog-
ical equations are nonzero. In this way, the sparsity pattern
of the system matrix is known irrespective of the state of the
switches δl and δf and is then effectively the same at all grid
points.

The resulting system of linear equations may be compactly
written

M̃Z′ = R̃M, (51)

where M̃ is an 11× 14 matrix, and
(Z′)T = ((Y ′)T,q ′,α′,η′), where (Y ′)T =

(αv′,q l′,qf′,qv′,αd′,ηd′,ηv′,ηl′,ηf′, λ̃l′, λ̃f′). The dif-
ferent ordering of the rows and columns of M̃ compared to
Bowen and Thuburn (2022a) allows a better exploitation of
the sparsity in the Gaussian elimination step discussed in
Sect. 2.10.

The linearized versions of the p-level thermodynamic
equations (Eqs. 18–20) are

qv′pαv(p)
+ qvpαv(p)′

+ q l′pαl
+ qf′pαf

+
ρ′

ρ2
∗

= 0, (52)

qv′pαv(p)
+ qvpαv(p)′

+ q ′
p
αd(p)

− qdpαd(p)′
= 0, (53)

p′+ ed
ααα

d(p)′
+ ed

αηη
d′p + ev

ααα
v(p)′
+ ev

αηη
v′p = 0. (54)

2.10 Derivation of the Helmholtz problem

In order to derive a Helmholtz problem, it will be useful to
express all other thermodynamic increments at w levels (the
components of Y ′) in terms of q ′, α′, and η′. This is done by
carrying out a numerical Gaussian elimination on M̃ to leave

MZ′ =RM, (55)

where M is of the form

M= (I C1 C2 C3) . (56)

I is the 11× 11 identity matrix, and C1, C2, and C3 are
columns of (generally) nonzero entries. For efficiency, the
Gaussian elimination exploits the known sparsity pattern of
the matrix M̃, and, since the sparsity pattern is the same for
all grid points, the elimination can be done without condi-
tional code and can be implemented with the innermost loop
over model levels.

The entries Mij of the eliminated matrix M and the en-
tries RMi of the eliminated right-hand side RM are used
in building the coefficients and right-hand side of the
Helmholtz problem. A subset of them (rows 2, 3, and 7–
11 of C1, C2, C3, and RM, corresponding to the equations
for (λl′,λf′,q l′,qf′,ηv′,ηl′,ηf′)) are saved for use in back
substitution.

Next, we need an equation relating p′, α′, and w′ at w lev-
els and an analogous equation relating p′, ρ′, andw′ at p lev-
els. With the aid of Eq. (55), the pressure perturbation at
w levels is given by

p(w)′ =−ed
ααα

d′
− ed

αηη
d′
− ev

ααα
v′
− ev

αηη
v′

=
∂p

∂q
q ′+

∂p

∂α
α′+

∂p

∂η
η′+RTDP, (57)

where

∂p

∂q
= ed

ααM5 12+ e
d
αηM6 12+ e

v
ααM1 12+ e

v
αηM7 12, (58)

∂p

∂α
= ed

ααM5 13+ e
d
αηM6 13+ e

v
ααM1 13+ e

v
αηM7 13, (59)

∂p

∂η
= ed

ααM5 14+ e
d
αηM6 14+ e

v
ααM1 14+ e

v
αηM7 14, (60)

RTDP = e
d
ααRM5+ e

d
αηRM6+ e

v
ααRM1+ e

v
αηRM7. (61)

Defining the sound speed c by

∂p

∂α
=−ρ2

∗c
2 (62)
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and using Eqs. (36) and (37) to eliminate η′ and q ′, Eq. (49)
becomes

p′
w

c2 + ρ
2
∗α
′
+ a1tρ∗w

′
N2

g
= Rbuoy, (63)

where

ρ∗
N2

g
=

1
c2

{
∂p

∂q

∂q

∂z
+
∂p

∂η

∂η

∂z

}
(64)

and

Rbuoy =
1
c2

{
Rp +RTDP+

∂p

∂q
Rq +

∂p

∂η
Rη

}
. (65)

Deriving the analogous equation on p levels is a little more
subtle because p′ depends both on ρ′ and, via qi ′ and ηi ′, on
thew-level α′ averaged to p levels. Setting qi ′ and ηi ′ to zero
in Eqs. (52)–(54) shows that

∂p

∂ρ

∣∣∣∣
αp
=

1
ρ2
∗

(
ed
αα

qdp
+
ev
αα

qvp

)
≡ ĉ2, (66)

where ĉ is a reduced sound speed (typically very close to and
slightly larger than c). Hence

∂p

∂αp

∣∣∣∣
ρ

=−ρ2
∗

(
c2
− ĉ2

)
, (67)

while ∂p/∂q and ∂p/∂η are given sufficiently accurately by
their w-level values averaged to p levels. Proceeding in this
way, Eq. (54) becomes

p′− ĉ2ρ′+ ρ2
∗

(
c2
− ĉ2

)
α′
p
−
∂p

∂q
q ′
p
−
∂p

∂η
η′
p
= RTDP

p
. (68)

Using Eq. (63) to eliminate α′ and Eqs. (36) and (37) to elim-
inate η′ and q ′ leaves

p′

ĉ2 − ρ
′
+

(
1
c2 −

1
ĉ2

)
p′
wp

+ a1tρ∗w′
N2

g

p

= Rbuoy
p
−
Rp

p

ĉ2 . (69)

Next, use Eq. (63) to eliminate α′ from Eq. (35) and com-
bine the terms involving p′ into a single operator:

ρ∗w
′
+D1(p

′)=
ρ∗Rw + a1tgRbuoy

1+ a21t2N2 ≡ ρ∗RwDp, (70)

where

D1(p
′)≡

a1t

1+ a21t2N2

(
∂p′

∂z
+

g
c2p
′
w
)
. (71)

Also, use Eq. (69) to eliminate ρ′ from Eq. (33) and combine
the terms involving w′ into a single operator:

p′

ĉ2 +

(
1
c2 −

1
ĉ2

)
p′
wp

+ a1t∇H ·
(
ρ∗v
′
)
+D2

(
ρ∗w

′
)

= Rbuoy
p
−
Rp

p

ĉ2 +Rρ, (72)

where

D2
(
ρ∗w

′
)
≡ a1t

(
∂

∂z
ρ∗w

′
+
N2

g
ρ∗w′

p
)
. (73)

Finally, eliminate u′, v′, and w′ using Eqs. (34) and (70) to
obtain the Helmholtz problem

p′

ĉ2 +

(
1
c2 −

1
ĉ2

)
p′
wp

− a21t2∇H · ∇Hp
′
−D2D1(p

′)

= Rbuoy
p
−
Rp

p

ĉ2 +Rρ − a1t∇H ·Rv −D2
(
ρ∗RwDp

)
. (74)

The form of the Helmholtz problem is slightly unusual in
the appearance of the first two terms rather than a single term

p′/c2. As noted above, the p′
wp

term appears because of
the dependence of p′ on α′

p
and of α′ on p′

w
. Nevertheless,

this slightly different form does not affect the stencil of the
discrete Helmholtz operator or the difficulty of solving the
Helmholtz equation numerically.

The vertical part of the Helmholtz operator must be mod-
ified near the top and bottom boundaries to impose w′ = 0
there. This modification amounts to

– omitting the contributions from levels 1/2 andNz+1/2
in D2(ρ∗RwDp) on the right-hand side of Eq. (74) and

– omitting the contributions D1(p
′) from levels 1/2 and

Nz+ 1/2 in D2D1(p
′).

The switching of the Lagrange multipliers used to en-
force non-negativity of q l and qf can significantly change the
linearization of the thermodynamics, particularly the value
of N2. Therefore, the matrix M and the coefficients of the
Helmholtz problem are rebuilt at every solver iteration.

2.11 Helmholtz solver and back substitution

The Helmholtz problem is solved using a horizontal multi-
grid method. Each smoother iteration uses a Jacobi method
in the horizontal with a tridiagonal direct vertical solve. Key
parameters of the multigrid solver – the depth of the V cy-
cles, the number of smoother iterations on the coarsest grid,
and the number of V cycles – are automatically chosen to
ensure that the pressure increments are sufficiently accurate
(Appendix A3).

Having found the solution for p′, increments to other vari-
ables are found through back substitution:

– u′, v′, and w′ are found using Eqs. (34) and (70);

– velocity increments are used to compute mass flux in-
crements F ′ and hence ρ′ using Eq. (33);

– velocity and mass flux increments are used to update all
transported terms and hence increment q and η; and
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– α′ is computed using Eq. (63), and then
(λl′,λf′,q l′,qf′,ηv′,ηl′,ηf′) are computed from q ′,
η′, and α′ using the coefficients saved after the
Gaussian elimination Eq. (55).

Before applying the increments (λl′,λf′,q l′,qf′,ηv′,ηl′,ηf′),
a check is made to see if they would imply breaking any
of the constraints q l

≥ 0, qf
≥ 0, λl

≤ 0, and λf
≤ 0. If they

would, then, at that grid point, a partial increment is made
to these seven variables such that the updated variables sit at
the constraint boundary, and the corresponding δi is switched
from 0 to 1 or vice versa. All other variables receive their full
increments.

After the completion of the solver iterations the model’s
pressure field is diagnosed using Eqs. (18)–(20). This en-
sures that the pressure is consistent with the other model ther-
modynamic fields and enables bit-reproducible restarts with-
out the need to save the pressure field. During early stages
of model development, Eqs. (18)–(20) were also used to re-
compute p at the end of each solver iteration. However, this
formulation is adversely impacted by the switching of con-
straints, as follows. The total entropy always receives its full
increment η′. When constraint switching leads to partial in-
crements ηv′, ηl′, and ηf′, the dry entropy must take up the
slack. Consequently, using Eqs. (18)–(20) to update the pres-
sure can result in local pressure changes much larger than
the p′ returned by the Helmholtz problem, leading to large
local residuals in the momentum equation. Therefore, in the
present formulation, p is updated by adding the increment p′

returned by the Helmholtz problem at each solver iteration.
In the presence of constraint switching, this alternative way
of updating the pressure greatly reduces the residuals in the
momentum equation but leads to a larger residual Rp in
Eq. (17). Nevertheless, the overall effect is beneficial, accel-
erating solver convergence.

3 Test cases

3.1 Generating initial data

The model includes general-purpose routines for construct-
ing a horizontally uniform initial state in discrete hydro-
static balance given specified vertical profiles of a temper-
ature variable, a humidity variable, and the horizontal wind
components. The temperature variable may be potential tem-
perature, liquid water potential temperature, virtual poten-
tial temperature, or temperature itself. The humidity variable
may be total specific humidity or relative humidity.

PTerodaC3TILES version 1.0 has routines in place, which
can be selected via namelist options, to generate initial
data and forcing terms for the following test cases: ATEX
(Stevens et al., 2001), ARM (Brown et al., 2002), BOMEX
(Siebesma et al., 2003), BUBBLE (a 3D version of Bryan
and Fritsch, 2002), CBL (a dry convective boundary layer,
Sullivan and Patton, 2011), DYCOMS (Stevens et al., 2005),

and a NEUTRAL boundary layer with shear. The user can
easily implement new test cases by using existing routines as
templates.

PTerodaC3TILES version 1.0 can also generate initial data
for the LBA case (Grabowski et al., 2006). However, the cur-
rent version cannot represent the microphysics and precip-
itation necessary to simulate this case successfully, and the
forcing terms are not yet implemented.

3.2 Output and diagnostics

A variety of diagnostics are computed online and may be
selected by the user for output. These include

– time series of global diagnostics such as total mass and
total water, along with accumulated source terms;

– column diagnostics of horizontal means of model fields
and derived quantities such as turbulent kinetic energy,
vertical fluxes, and cloud fraction;

– two-dimensional slices in the x–y, x–z, and y–z planes
of the main model fields plus some derived quantities
like cloud top height;

– diagnostics of quasi-Newton solver convergence; and

– diagnostics of quantities potentially related to model
stability.

Full details are given in the user manual, available from Zen-
odo; see the “Code availability” section.

4 Verification

All components of the model have been thoroughly tested
during development. This section highlights some aspects
that require particularly careful checking or that can appear
to work despite errors in formulation or coding.

4.1 Advection

The advection routines have been tested with specified ve-
locity fields, independently of the rest of the model, to ver-
ify their overall accuracy, including correct behaviour at ver-
tical and lateral boundaries and, where relevant, to confirm
their conservation, consistency, and boundedness properties.
It is particularly important that the w-level dual mass bud-
get is satisfied (Sect. 2.2) so that w-level scalars are correctly
advected. Conservation, consistency, and boundedness have
also been verified in full model simulations to ensure that
they are maintained by both the full cascade advection and
the cheap advection updates.

4.2 Divergence consistency

It has been verified that the divergent velocity increments dis-
cussed in Sect. 2.6 correctly compensate for any discrepancy
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between the departure volumes computed by SLICE and the
trajectory-average divergence. When these compensating in-
crements are not included the model is found to become un-
stable, as expected theoretically.

4.3 Thermodynamics and linearized thermodynamics

The correctness and consistency of the formulation of
thermodynamics in terms of internal energy potentials
was verified in standalone code before incorporation in
PTerodaC3TILES. The use of switched constraints and par-
tial increments within the quasi-Newton solver allows q l

and qf to be zero but not negative, as intended. For the
PTerodaC3TILES implementation, the correctness of the var-
ious test case initial states, constructed to be in hydrostatic
balance and thermodynamic equilibrium, and the broadly
correct evolution of thermodynamic profiles and clouds pro-
vide further verification of the thermodynamics.

The correct linearization of the thermodynamics encoded
in the matrix M̃ is critical to the success of the formulation
but is fiddly and susceptible to errors. The linearization has
been verified by comparing the actual changes in the left-
hand sides of Eqs. (6)–(13) with the changes predicted by
the linearization when individual thermodynamic variables
are perturbed. This testing considered base states with and
without liquid and frozen water to ensure that all cases were
covered.

4.4 Solver convergence

Good solver convergence is also critical for the success of
the formulation. A useful rule of thumb is that the residuals
should decrease by roughly an order of magnitude per solver
iteration so that only a small number of iterations is needed
per time step. However, ensuring correct performance of the
solver is far from trivial, as it depends on correct formula-
tion and implementation of the linearization, derivation of
the Helmholtz problem, solution of the Helmholtz problem,
and back substitution. Therefore, the ability of the solver to
correct known errors was directly verified, as follows.

A known solution for the model state at step n+ 1 is re-
quired. This may be a known steady state such as a hori-
zontally uniform state in hydrostatic balance or a more com-
plex three-dimensional state obtained by taking a sufficiently
large number of solver iterations. When a small perturbation
is made to this state, the solver should be able to fix that
perturbation almost completely in one iteration. Testing in-
cluded perturbing each model state variable in turn and con-
sidered perturbations with different spatial structures, includ-
ing globally uniform, horizontally uniform vertically local-
ized, horizontally localized vertically uniform, and localized
at a single point in the domain interior or at a top or bottom
boundary.

Figure 5 shows the maximum residuals in the q and
u equations and the maximum pressure increment versus it-

eration number at hour 9 of the ARM case when both the
dynamics and moist thermodynamics are very active. For
the purpose of calculating these diagnostics, the model was
restarted for a single time step, and 12 solver iterations were
taken rather than the default 3. There is a very large drop in
the maximum q residual between the first and second itera-
tions associated with the cheap transport updates (Sect. 2.6).
There is a rather small reduction in the pressure increment
between the first and second iterations, probably related to
constraint switching in the thermodynamics. Otherwise, all
three quantities steadily decrease by nearly an order of mag-
nitude per iteration. Note that the residuals and pressure in-
crements calculated at the fourth iteration are a measure of
the errors due to incomplete solver convergence that remain
upon completion of the third iteration.

As discussed in Sect. 2.11, when the thermodynamic state
switches between absence and presence of condensate, a sub-
set of thermodynamic variables local to the switch receive
only partial increments. It is important to understand the ex-
tent to which such partial increments adversely affect the
solver convergence. The DYCOMS case is especially chal-
lenging in this regard. If the cloud deck begins to break up,
then holes form in the cloud (e.g. Fig. 12). If the horizontal
advective Courant number is greater than 1, then a very large
number of grid cells per step switch between absence and
presence of liquid water. Moreover, the extremely large gra-
dients in humidity and entropy at cloud top, which get folded
into the cloud holes, make the thermodynamic state at the
cloud top and cloud hole edges very sensitive to the solver
advection updates, so that switching can occur at the second
and subsequent solver iterations.

An initial attempt to run the DYCOMS case at 128×128×
300 resolution (1x =1y = 25 m, 1z= 5 m) with N` = 3
solver iterations resulted in failure of the model after about
32 min. Diagnostics indicated that the switching had not
completely settled down after three solver iterations. Nev-
ertheless, the number of switches decreases by 2 orders of
magnitude per iteration, and increasing the number of itera-
tions to N` = 4 is sufficient for virtually all of the switching
to settle down (Table 1), allowing the DYCOMS case to run
successfully. Although constraint switching can slow solver
convergence, no cases have been encountered in which con-
straint switching prevents solver convergence.

4.5 Stability

The semi-implicit semi-Lagrangian formulation of
PTerodaC3TILES should be stable for large acoustic,
gravity-wave, and advective Courant numbers. Diagnostics
optionally output by the model confirm that the model does
run stably with advective Courant numbers greater than 1
and with very large acoustic Courant numbers. For example,
in the ARM case presented in Sect. 5.2 the horizontal
and vertical acoustic Courant numbers remain around 53
and 87, respectively. The horizontal advective Courant
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Figure 5. Maximum absolute value within the model domain of (a) q equation residual (dimensionless), (b) u equation residual (m s−1),
and (c) p′ (Pa) versus iteration number. These diagnostics were computed for a single time step, restarting from hour 9 of the ARM case and
taking 12 solver iterations.

Table 1. Representative number of grid points at which switches
occurred at different solver iterations. The numbers were monitored
over 10 time steps 1 h into the DYCOMS case. The total number of
model grid points was 128× 128× 300.

Iteration Number of
number switches

1 ∼ 60000
2 ∼ 600
3 ∼ 10
4 ∼ 0

number in the x direction varies in the range 1.5 to 2, while
the vertical advective Courant number peaks at about 3.
Both the gravity-wave and convective Courant numbers√

max(N2)1t and
√

max(−N2)1t , respectively, peak at
around 0.6. For the DYCOMS case presented in Sect. 5.3,
the horizontal and vertical acoustic Courant numbers remain
around 49 and 344, respectively. The horizontal advective
Courant numbers in both the x and y directions are greater
than 1, while the vertical advective Courant number peaks at
over 3. The gravity-wave Courant number is about 0.9 while
the convective Courant number varies between 0.8 and 1.4.

Because the ILES formulation does not include an eddy-
diffusion-based subgrid scheme, the diffusive Courant num-
ber is not relevant for model stability.

In all cases the model does become unstable if the time
step is chosen too large. Further careful study is needed to
understand exactly what limits the model stability. However,
based on the theoretical properties of the methods and expe-
rience to date, likely candidates for instability mechanisms
include the following.

1. When the deformational Courant number, or, more
precisely, the maximum magnitude of the eigenvalues
of b1t∇u, approaches 1, the semi-Lagrangian trajec-
tory calculations become increasingly inaccurate. This
might lead to badly distorted departure cells such that
the simple small-amplitude advecting velocity correc-

tion cannot restore divergence consistency (Sect. 2.6),
or there might be other feedbacks via advection that am-
plify errors. Diagnostics of the components of1t∇u for
the cases presented in Sect. 5 suggest that the model is
close to that regime in the surface layer where vertical
shear is strongest.

2. If a2N21t2 approaches −1, then the factor 1+
a2N21t2 in the denominator of Eqs. (70) and (71) ap-
proaches zero and those coefficients blow up. This is
a known limitation of the semi-implicit treatment of
gravity waves when the stratification becomes unstable
(Davies et al., 2005); it can be mitigated by bounding
the value of N2 that appears in those coefficients. In
PTerodaC3TILES no such bound is applied.

3. Any factors that inhibit convergence of the quasi-
Newton solver can mean that the theoretical stability
of a semi-implicit, semi-Lagrangian scheme is not at-
tained. This could occur, for example,

– if the change in state over one time step is too large,
hence too nonlinear, to be captured by the quasi-
Newton linearization;

– if insufficient iterations are taken for constraint
switching to settle down (as discussed in Sect. 4.4);
and

– if terms omitted from the linearization, such as
u∂η/∂x, become important.

(Coriolis terms are omitted from the linearization
Eqs. (34) and (35), but |�|1t is unlikely to be large
enough, in practice, for this to matter.)

It would be a valuable addition to the model to include miti-
gation strategies, such as adaptive time stepping, if the mech-
anisms limiting the model stability could be better under-
stood and quantified.
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4.6 Conservation

PTerodaC3TILES is designed to have closed budgets for
mass, water, and entropy. This property requires conservative
advection of these quantities by both SLICE and the cheap
transport updates (Sect. 2.6), as well as careful formulation
of surface and interior sources (Sect. 2.7), all taking into ac-
count the w-level dual mass budget (Sect. 2.2).

Figure 6 shows time series of various budget quantities
for the ARM case. Figure 6a shows that the change in to-
tal mass (blue curve) agrees with the accumulated source
of total mass, in this case due to the surface moisture flux
(blue symbols), while the dry mass is exactly conserved.
Figure 6b shows that the change in total water mass (black
curve) agrees with the accumulated source of water (black
symbols), even while some water condenses into liquid (red
curve). Figure 6d shows that the change in total entropy
(black curve) agrees with the accumulated source of en-
tropy (black symbols). Figure 6c confirms that the momen-
tum budget is not closed because the semi-Lagrangian ad-
vection of momentum is not conservative. Figure 6e shows
that the change in total energy (black curve), which averages
432 W m−2, is slightly less than the accumulated total energy
source (black symbols). The difference, shown in Fig. 6f,
is due to numerical dissipation of kinetic energy and mix-
ing of water and entropy. This energy loss averages about
12 W m−2.

Dissipation of kinetic energy and mixing of constituents
and heat should result in a source of entropy that ex-
actly compensates for this energy loss; however, this en-
tropy source is currently neglected. See further discussion
in Sect. 6. Because the current formulation assumes thermo-
dynamic equilibrium in each grid cell, entropy sources due
to departures from equilibrium (the J TP term in Eq. 4) are
zero.

4.7 Bit reproducibility

PTerodaC3TILES produces bit-reproducible results when
restarted from a checkpoint file3. This property is invalu-
able for development and testing, as well as when rerun-
ning sections of a simulation to obtain additional diagnos-
tics. PTerodaC3TILES also produces bit-identical answers
whether run with or without OpenMP shared memory par-
allelism, verifying the correctness of the parallel implemen-
tation.

3In theory, the multigrid solver parameters automatically set by
the model could change upon restart, breaking bit reproducibility.
The author has not noticed any cases where this happens. Neverthe-
less, this loophole should be closed in a future model version.

5 Evaluation

This section presents results from some standard LES test
cases to demonstrate the performance of PTerodaC3TILES
version 1.04. The same spatial resolution is used as in the
original intercomparison articles defining the test case spec-
ifications. Although relatively coarse by current-day stan-
dards, this facilitates comparison with those published results
and helps to highlight any limitations of PTerodaC3TILES
version 1.0 that might be less conspicuous at finer resolution.

All results shown in this section used SLICE advection
with piecewise constant remapping for density and parabolic
spline remapping with a limiter and the Charney–Phillips
grid correction for water and entropy. Semi-Lagrangian ad-
vection of velocity components used no limiter and the
freeslip option for extrapolation near the bottom bound-
ary.

5.1 BOMEX

The BOMEX test case (Siebesma et al., 2003) is based on
observations made during the Barbados Oceanographic and
Meteorological Experiment. It simulates a scenario of shal-
low cumulus over the ocean in which large-scale forcing, ra-
diation, and turbulent and convective fluxes maintain a quasi-
steady balance.

As in Siebesma et al. (2003), PTerodaC3TILES used a
64× 64× 75 grid with 1x =1y = 100 m, 1z= 40 m. The
time step was 1t = 10 s and the simulation was run for 6 h.

Figure 7 shows time series of three key quantities: total
cloud cover, liquid water path (LWP), and turbulent kinetic
energy (TKE). All three time series agree broadly with Fig. 2
of Siebesma et al. (2003). After an initial spin-up during the
first hour or so, the total cloud cover and LWP fluctuate but
have little trend, while the TKE continues to grow slowly.
The PTerodaC3TILES cloud cover is slightly lower and the
TKE slightly larger than the ensemble means in Siebesma
et al. (2003) but within the typical inter-model spread.

Figure 8 shows several horizontally averaged profiles from
the BOMEX case. Figure 8b–d agree well with the corre-
sponding figures from Siebesma et al. (2003) (their Figs. 6,
3d, and 4a). Figure 8a, e, and f also broadly agree with
the corresponding figures from Siebesma et al. (2003) (their
Figs. 3c, 4e, and 5a). However, an excessively strong shear
layer has formed between model levels 1 and 2, consistent
with the idea that the ILES approach poorly represents ver-
tical subgrid transports near a horizontal boundary. This ex-
cessively strong shear layer leads to noise in the lowest two
to three levels in the profiles of u, momentum flux, and TKE.

4While this paper was under review an error was noticed in the
code for the Monin–Obukhov surface momentum flux calculation.
Therefore, the results presented here for the ARM case use the bug-
fixed version 1.2. The results for BOMEX and DYCOMS are unaf-
fected.
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Figure 6. Global changes and accumulated sources versus time for key budget quantities for the ARM case. (a) Total mass and dry
mass (kg m−2). (b) Total water; 100× global liquid water and frozen water (kg m−2). (c) u momentum and v momentum (kg m s−1 m−2).
(d) Entropy (J K−1 m−2). (e) Energy (J m−2). (f) Numerical energy change, i.e. the actual energy change minus the change due to explicit
sources (J m−2).

Figure 7. Time series of (a) total cloud cover, (b) liquid water path,
and (c) turbulent kinetic energy for the BOMEX case.

On a closely related point, numerical experimentation re-
vealed that the momentum budget and the boundary layer
u profile are strongly sensitive to the details of the semi-
Lagrangian interpolation scheme for velocity components
near the bottom boundary (Sect. 2.6). For example, switching
on the limiter for velocity advection or using the nosliptt
bottom boundary extrapolation option resulted in a large spu-
rious numerical source of eastward momentum and a signifi-
cant shift to the right of the boundary layer u profile.

5.2 ARM

The ARM test case (Brown et al., 2002) simulates the diurnal
evolution of shallow convection over land, starting from an
initially stable and cloud-free boundary layer. The number,
size, and depth of clouds evolve during the day, and clouds
often overshoot their level of neutral buoyancy.

As in Brown et al. (2002), PTerodaC3TILES used a 96×
96×110 grid with1x =1y = 66.7 m,1z= 40 m. The time
step was 1t = 10 s and the simulation was run for 14.5 h.
Large-scale forcing terms were omitted, since they have only
a small effect on the simulation (Brown et al., 2002).

Figure 9 shows a time–height plot of cloud fraction and
TKE. The evolution of the cloud fraction, which peaks at a
little over 0.15 around 6 or 7 h, as well as the height of cloud
base and cloud top, agrees well with Fig. 5 of Brown et al.
(2002). The intensity of TKE in the boundary layer grows
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Figure 8. Vertical profiles of horizontally averaged quantities from
the BOMEX case. (a) u and v (m s−1). (b) Cloud fraction (dimen-
sionless). (c) Liquid water ql (dimensionless). (d) Vertical eddy flux
of total water 〈w′q ′〉 (m s−1). (e) Vertical eddy fluxes of momen-
tum 〈w′u′〉 and 〈w′v′〉 (m2 s−2). (f) TKE (m2 s−2). Panels (a)–(c)
are averaged over the last hour of simulation; panels (d)–(f) are av-
eraged over the last 3 h.

Figure 9. TKE (shading) and cloud fraction (contours) versus time
and height for the ARM case. The contour values are 0.0001, 0.05,
0.1, and 0.15. The peak TKE value is 1.74 m2 s−2.

and then decays in concert with the strength of the surface
heat flux, and there is a clear signature of the formation of
gravity waves in and above the cloud layer.

Figure 10 shows profiles of u and w variances at 3 and
9 h. The peak in w variance after 3 h is somewhat smaller
than most ensemble members in Brown et al. (2002) (their
Fig. 6), but otherwise these profiles agree well with Brown
et al. (2002), including the secondary peak in w variance in
the cloud layer at 9 h and the small peak in u variance near
the boundary layer top at 3 h, which disappears after clouds
form (see discussion in Brown et al., 2002, Sect. 3b).

Figure 10. Vertical profiles of (a) w variance and (b) u variance for
the ARM case at 3 and 9 h. The profiles are also averaged in time
between minus and plus 30 min of the nominal diagnostic time.

Figure 11 shows snapshots of cloud top height at selected
times. The behaviour is consistent with that documented for
the ARM case, with many small and shallow clouds at early
times, gradually growing in depth, evolving towards fewer,
larger, and deeper clouds with smaller total cloud cover at
later times. The horizontal motion of the higher cloud tops is
almost exactly in the x direction (the direction of the back-
ground geostrophic wind), while near cloud base there is a
small component of motion in the y direction, leading to a
distinct characteristic tilt to the clouds.

5.3 DYCOMS

The DYCOMS test case (Stevens et al., 2005) simulates
a very different boundary layer regime from BOMEX and
ARM: a nocturnal stratocumulus cloud layer over the ocean.
The cloud layer is capped by a very strong and sharp inver-
sion, with q decreasing by a factor of 6 and a jump in po-
tential temperature of more than 9 K over 5 m, the recom-
mended vertical grid spacing. Observations suggest that the
cloud cover should be maintained close to 100 %. However,
LES often fail to maintain the cloud cover, since excessive
mixing across the inversion can lead to evaporative cooling
driving cloud-free downdraughts.

The DYCOMS case is expected to be particularly testing
for the PTerodaC3TILES formulation, for several reasons.
First, there are no physical parameters that can be adjusted
to control the strength of mixing near the inversion, since
the mixing is entirely associated with the numerics. There is,
however, some sensitivity to the choice of numerical options
and parameters, as discussed below. Second, good conver-
gence of the semi-implicit iterative solver depends on hav-
ing a sufficiently good linearization. The presence of near
discontinuities in the distributions of total entropy and total
specific humidity mean that the linearized advection terms
Eqs. (41) and (42) are necessarily less accurate. The solver
convergence is also affected by the switching of thermo-
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Figure 11. Snapshots of cloud top height (grey) for the ARM case at 6, 8, and 10 h. For this purpose, grid cells with ql
+ qf > 10−5 are

defined to be cloudy (though qf
≡ 0 for ARM). The green background indicates no cloud in that column, and the contour interval is 100 m;

refer to Fig. 9 for the lowest cloud base and highest cloud top at these times.

Figure 12. Snapshots of cloud top height (pale grey) for the DYCOMS case at 1, 2, and 3 h. The blue background indicates no cloud in that
column, and the contour interval is 50 m; refer to Fig. 14 for the lowest cloud base and highest cloud top at these times.

dynamic constraints (Sects. 2.11 and 4.4). Once cloud-free
downdraughts form (Fig. 12) and are advected across the
grid with horizontal Courant numbers greater than 1, con-
densate appears or disappears at large numbers of grid points
every step. Moreover, the large gradients in entropy and spe-
cific humidity mean that transport increments resulting from
small velocity increments at one solver iteration are enough
to cause constraint switching at the next solver iteration. Ex-
perience to date suggests that more solver iterations per step
are required for DYCOMS than for other test cases in order
for the constraint switching to settle down (Sect. 4.4).

As in Stevens et al. (2005), PTerodaC3TILES used a 96×
96×300 grid with1x =1y = 35m,1z= 5m. The time step
was 1t = 5s and the simulation was run for 4h.

Figure 13 (compare Stevens et al., 2005, Fig. 2) shows
that in the PTerodaC3TILES simulation cloud cover gradu-
ally falls to about 40 % while the liquid water path falls to
around 0.02 kg m−2 (about 0.035 kg m−2 for the ensemble
mean in Stevens et al., 2005). The TKE settles down at about
200 kg s−2, about half of the ensemble mean in Stevens et al.
(2005) (noting the different units used). The gradual reduc-
tion in cloud cover is also clearly illustrated in Fig. 14. The
figure confirms that turbulence grows initially both from the
surface (due to the surface sensible heat flux) and from cloud
top (due to cloud top radiative cooling).

The PTerodaC3TILES simulation of cloud in the DY-
COMS case appears to be quite sensitive to the choice of
numerical options and parameters. For example, when the
time step is reduced from 5 to 2 s, the cloud breakup is
slowed, leaving 70 % cloud cover after 4 h. On the other
hand, when parabolic spline remapping is replaced by piece-
wise parabolic method remapping for the advection of en-
tropy and water, almost all cloud disappears after 4 h. Further
experiments and diagnostics to understand these sensitivities
would be valuable.

5.4 Computational cost

While noting the usual caveats that computational costs are
sensitive to computing platform, compiler, output files writ-
ten, and many other factors, it is nevertheless useful to
give would-be users an idea of the computational cost of
PTerodaC3TILES. Table 2 gives the wall-clock times for the
three test cases discussed in this section. The cases were run
on a 2022 MacBook Pro with an 8 core M2 chip. The gfor-
tran compiler was used with the −O3 optimization flag and
OpenMP for shared memory parallelism. The parallel speed-
up ranged from 574 % for BOMEX to 652 % for DYCOMS.
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Figure 13. Time series of (a) total cloud cover, (b) liquid water
path, and (c) turbulent kinetic energy for the DYCOMS case.

Figure 14. TKE (shading) and cloud fraction (contours) versus time
and height for the DYCOMS case. The contour values are 0.3 to 0.9
in steps of 0.1 and 0.99. The peak TKE value is 1.16 m2 s−2.

The multigrid elliptic solver and the full transport calcu-
lation dominate the cost, accounting for approximately 40 %
and 35 % of the total cost, respectively, with some variation
from case to case. Creating the thermodynamic subsystem
matrix and carrying out the Gaussian elimination account for
less than 15 % of the total cost.

The cost of the model scales linearly with the number
of time steps and hence almost inversely with the time step
size1t . The scaling is not exactly inverse because the multi-
grid scheme parameters take account of the acoustic Courant
number (Appendix A3). The scaling of the cost with spatial
resolution is affected by memory usage as well as floating
point operations, so it will be strongly system dependent.

Table 2. Computational cost of PTerodaC3TILES for three standard
test cases on a 2022 MacBook Pro laptop.

Case Number of Number of N` Wall-clock
grid cells time steps time (s)

BOMEX 64× 64× 75 2160 3 903
ARM 96× 96× 110 5220 3 6840
DYCOMS 96× 96× 300 2880 4 12 659

6 Conclusions and discussion

It has been demonstrated that a consistent treatment of moist
thermodynamics, expressed in terms of internal energy po-
tentials, can be incorporated, without excessive computa-
tional expense, in a three-dimensional computational fluid
dynamics code suitable for the study of atmospheric bound-
ary layers and shallow convection. In the current implemen-
tation the moist thermodynamics is fully incorporated within
the dynamical core rather than treated as separate physics
source terms.

The iterative solver for the semi-implicit time integration
scheme requires a linearization of the thermodynamics, with
elimination of unknowns to leave a typical Helmholtz prob-
lem for the pressure increment. The moderate sparsity and
fixed sparsity pattern of the Jacobian matrix of the (w-level)
thermodynamic subsystem are exploited to reduce the cost of
the elimination.

The use of internal energy potentials has several advan-
tages over the Gibbs function approach used by Thuburn
(2017b) (see Sect. 1). However, one disadvantage of the in-
ternal energy potential approach is that it does not permit
seamlessly switching to a (quasi-)Boussinesq equation of
state since eα terms (used throughout the algorithm) would
become undefined. A nearly Boussinesq fluid could be sim-
ulated by making the sound speed extremely large. Alterna-
tively, if a Boussinesq option is a requirement, then the above
difficulty could be avoided by using specific enthalpies as the
potentials in formulating the thermodynamics (Chris Eldred,
personal communication, 2024).

The numerical methods used by PTerodaC3TILES are
more typical of those used in global weather and climate
models than traditional LES models. The semi-implicit semi-
Lagrangian scheme permits time steps significantly larger
than are commonly used in traditional LES models at similar
resolution. Experience to date, consistent with the theoretical
properties of the numerical methods, suggests that the defor-
mational Courant number is most often the factor limiting
the maximum stable time step. However, there is no simple,
easily monitored stability criterion (computing the eigenval-
ues of 1t∇u at every grid point and every step would be
expensive), so a degree of experimentation is required to find
a suitable time step for each simulation. An important caveat
is that stability does not imply accuracy. For example, the
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DYCOMS case (Sect. 5.3) shows significant sensitivity to
the size of the time step. Further investigation is required to
quantify the extent to which accuracy declines as we push the
time step towards the stability limit and which flow regimes,
like DYCOMS, are especially sensitive to the time step.

For the BOMEX, ARM, and DYCOMS cases presented
here, and other cases not discussed, PTerodaC3TILES can
produce plausible simulations of standard LES test cases,
comparable to other model results in the literature. These
results are encouraging for the ILES approach and, more
widely, for the use of global models at sub-kilometre resolu-
tion. At the same time, these results have given some useful
initial indications of the limitations of the ILES approach, as
well as highlighting areas in need of further investigation.

Most notably, ILES produces weak vertical fluxes of mo-
mentum and scalars near the bottom boundary. These weak
fluxes lead to excessive vertical gradients, which, in turn,
result in further errors. For example, in BOMEX the spuri-
ously strong vertical shear exacerbates the conservation er-
rors of the cubic semi-Lagrangian advection of momentum
and makes the results very sensitive to the details of the semi-
Lagrangian interpolation in the lowest levels. In an ARM
simulation with finer vertical resolution near the surface (not
shown), the spuriously weak mixing near the surface allows
a thin layer of fog to form briefly during the first hour. Some
initial experimentation showed benefits in distributing the
convergence of the surface momentum flux over several lay-
ers near the surface rather than just a single layer. In future
work it is planned to investigate this idea further, applied to
scalars as well as momentum, and to try to determine how the
optimal distribution depends on the flow regime as well as
numerical factors such as the grid resolution and anisotropy.

Another broad area in need of further investigation is the
sensitivity to numerical methods and parameters. The sensi-
tivity of the DYCOMS case to the time step and the advection
remapping scheme has been mentioned already. Other poten-
tially significant factors include the grid isotropy, the use of
different advection options such as the use of limiters and the
Charney–Phillips grid correction (Eq. 27), and the modifica-
tions to momentum interpolation near the bottom boundary.

Taking inspiration from global models that predict poten-
tial temperature, PTerodaC3TILES has a closed budget for
entropy rather than energy. The entropy source that should
be associated with numerical mixing of scalars and dissipa-
tion of kinetic energy is neglected, resulting in a small but
systematic energy loss (Fig. 6). If desired, the global numer-
ical energy loss could easily be diagnosed and returned as an
entropy source to close the energy budget. Initial attempts to
diagnose the local numerical energy loss (not shown) suggest
that the calculation is subtle and far from trivial and might not
even be well defined, in large part because of the Charney–
Phillips vertical grid staggering. Further work will be needed
to diagnose the local numerical energy loss, if, indeed, it
is possible at all. A strong motivation to continue these at-
tempts is that such an estimate of energy dissipation would

be a key input to a stochastic parameterization of backscatter
(e.g. Mason and Thomson, 1992; Brown et al., 1994), which
would be a useful extension to the model’s functionality.

Two closely related priorities for future work are the in-
clusion of a simple microphysics scheme with precipita-
tion and the inclusion of thermodynamic nonequilibrium ef-
fects. These developments will enhance the capabilities of
PTerodaC3TILES, allowing it to be applied to a wider range
of cases. Equally importantly, they will test whether the ther-
modynamic potential approach can be applied straightfor-
wardly and efficiently to more complex physical processes,
beyond the coupling of the equation of state to the dynamical
core.

Appendix A

A1 Stretched vertical grid

When a stretched vertical grid is chosen, the height of the
model level with index k is given by

zk = a(z) log
(

1+ d(z)bk(z)
)
+ c(z), (A1)

where k is an integer for p levels and an integer plus 1/2
for w levels. The parameters in Eq. (A1) are set so that the
grid spacing approaches a stretching factor b(z) per level
for small k and a uniform grid spacing u(z) for large k,
with b(z) and u(z) specified by the user when creating ini-
tial data. In terms of Nz, the number of p levels, and Dz =
zNz+1/2− z1/2, the domain depth with z1/2 = 0 the height of
the bottom boundary, the parameters are given by

a(z) = u(z)/ logb(z), (A2)

d(z) =
1− exp(Dz/a(z))

b
1/2
(z)

(
b
Nz
(z)− exp

(
Dz/a(z)

)) , (A3)

c(z) =Dz− a(z) log
(

1+ d(z)b
Nz+1/2
(z)

)
. (A4)

Importantly, Eq. (A1) has the virtue of being invertible, al-
lowing the cell index k to be determined for any height z
without the need for expensive searching in the semi-
Lagrangian departure-point calculations.

A2 Expressions for internal energy and related
quantities

The expressions used for specific internal energy of dry air,
water vapour, liquid water, and frozen water are

ed
(
αd,ηd

)
= Cd

vT0 exp

(
ηd
−Cd

p

Cd
v

)(
αd

0
αd

)Rd/Cd
v

, (A5)

ev (αv,ηv)
= Cv

vT0 exp
(
ηv
−Cv

p

Cv
v

)(
αv

0
αv

)Rv/Cv
v

+Ls
00, (A6)
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el
(
ηl
)
= ClT0 exp

(
ηl
−Cl

Cl +
Lv

00−α
lpsat

0
ClT0

)
+Lf

00, (A7)

ef
(
ηf
)
= CfT0 exp

(
ηf
−Cf

Cf +
Ls

00−α
fpsat

0
CfT0

)
. (A8)

These expressions differ from those used by Bowen and
Thuburn (2022a) in that the constant Ls

00/T0 has been sub-
tracted from the specific entropy of all water phases.

For i = d,v, l, f, the species temperature is given by

T i = eiη. (A9)

For i = d,v, the species partial pressure is given by

pi =−eiα. (A10)

The Gibbs function for water vapour is given by

gv
= ev
+αvpv

− ηvT v, (A11)

while for i = l, f,

gi = ei +αip− ηiT i, (A12)

with p = pd
+pv. (The Gibbs function for dry air is not

needed.)

A3 Parameters for multigrid scheme

The tuning of parameters in numerical solvers for elliptic
problems is often empirical and case-dependent. Here, both
the Helmholtz problem and the properties of the multigrid
solver are well understood, which allows some key parame-
ters in the multigrid scheme to be set automatically.

Let Cxac = c1t/1x and Cyac = c1t/1y be the horizontal
acoustic wave Courant numbers in the x and y directions,
respectively, appropriate to whichever grid in the hierarchy
is under consideration. Let Cac =max(Cxac,C

y
ac). In the fol-

lowing calculations the temporal off-centring parameter a is
effectively set to 1.

Each smoother iteration uses a direct solve in the vertical
direction; thus, we must consider the action of the smoother
on errors of different horizontal scales. The error amplifica-
tion factor for a uniform error for one Jacobi smoother itera-
tion is

Aε = 1−
µ

1+ 2
((
Cxac

)2
+
(
C
y
ac
)2) , (A13)

where µ is the under-relaxation parameter, while the error
amplification factor for a checkerboard pattern error is

Aε = 1−µ−
2µ
((
Cxac

)2
+
(
C
y
ac
)2)

1+ 2
((
Cxac

)2
+
(
C
y
ac
)2) . (A14)

1. Under-relaxation parameter. The under-relaxation pa-
rameter is set to µ= 0.8. This provides an appropriate
compromise between the damping of large-scale errors
on the coarsest grid, where Cac ≈ 1 implies Aε ≈ 0.85,
and the damping of grid-scale errors on the finest grid,
where Cac� 1 implies Aε ≈ 0.6.

2. Depth of V cycles. As the horizontal grid is coarsened,
the horizontal acoustic wave Courant number Cac de-
creases, the horizontal part of the Helmholtz problem
becomes more diagonally dominant, and the smoother
iterations damp the error more and more quickly. Once
the horizontal acoustic Courant number reaches about 1,
there is little to be gained by coarsening the grid further.
Thus, the desired V-cycle depth is set to the smallest
depth needed to reduce the horizontal acoustic Courant
number below 1. The maximum possible V-cycle depth
permitted by the number of grid points in the x and y di-
rections is also computed. The actual V-cycle depth is
set equal to the minimum of the desired depth and the
maximum permitted depth. If the maximum permitted
depth is smaller than the desired depth, then a warning
message printed and the scheme attempts to compensate
by increasing the number of coarsest-grid smoother it-
erations.

3. Number of coarsest-grid smoother iterations. The rate
at which large-scale errors are damped is determined by
the damping of uniform errors on the coarsest grid. Us-
ing Eq. (A13) to estimate the large-scale error damping
rate, the number of smoother iterations on the coarsest
grid is chosen so that a uniform error is damped by a
factor 1/10 on each V cycle.

4. Number of V cycles. To ensure mass conservation, the
back substitution computes density increments from the
divergence of mass flux increments, with velocity in-
crements computed from the gradient of pressure incre-
ments. As a consequence of the gradient and divergence
operations, any grid-scale errors in the pressure incre-
ments due to imperfect convergence of the multigrid
solver get amplified by a factor equal to the (fine-grid)
horizontal acoustic Courant number squared. Thus, to
ensure good convergence of the quasi-Newton solver,
any grid-scale errors in the pressure increments com-
puted by the multigrid solver must be much smaller, by
a factor an order of magnitude smaller than 1/C2

ac, than
the pressure increments themselves. Using the estimate
from Eq. (A14) that |Aε| ≈ |1− 2µ| for large Cac, we
can estimate the total number of fine-grid smoother it-
erations required and hence the number of V cycles.
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Figure A1. Dimensionless friction velocity Û∗ = ζ 1/3 versus di-
mensionless wind speed Û = 1/̂s at height z in the stable regime
given by Monin–Obukhov theory with the Businger–Dyer stabil-
ity function (Dyer, 1974, asterisks), with the Cheng and Brutsaert
(2005) stability function (open circles), with the modified Cheng
and Brutsaert stability function Eq. (A26) (filled circles), and with
the fit Eq. (A29) (thick curve) (a) for r = z0/z= 0.001 and (b) for
r = z0/z= 0.1. Note that with the Businger–Dyer stability function
there may be zero or two solutions for Û∗, while with both the orig-
inal and modified Cheng and Brutsaert stability functions there may
be multiple solutions for Û∗.

A4 Alternative formulation of Monin–Obukhov theory
for surface momentum flux

Monin–Obukhov similarity theory gives the flow speed U(z)
at height z in terms of the friction velocity U∗ (e.g. Stull,
1988):

U(z)=
U∗

κ
{log(z/z0)+9 (ζ,ζ0)} , (A15)

where κ is the von Kármán constant; ζ = z/L is a non-
dimensional height; ζ0 = z0/L, where z0 is the surface
roughness length; L=−U3

∗ /F
b is the Obukhov length with

F b the surface buoyancy flux; and 9 is an integrated sta-
bility function, discussed below. As written, Eq. (A15) must
be solved iteratively to obtain U∗, given U(z) at some z.
Moreover, in the stable case (F b < 0) with light winds
Monin–Obukhov similarity theory is valid only for suffi-
ciently small z and may be outside its range of validity at
the height of the lowest model level; in that case, with com-
monly used expressions for 9, the solution for U∗ might not
be unique or might not exist (e.g. Fig. A1).

Here a slight modification of the usual Monin–Obukhov
similarity theory is presented that ensures the existence of a
unique solution for U∗ even when Monin–Obukhov similar-
ity theory is outside its range of validity. (The modification
does not, of course, extend that range of validity.) We focus
on the case in which F b is known and the task is to deter-
mine U∗. The case in which F b is also to be determined is
more complicated (Bull and Derbyshire, 1990).

Since the expressions used for stability functions are typ-
ically derived by curve fitting to observations or simula-
tions, it seems reasonable to attempt to provide an inverse
to Eq. (A15) with aid of some curve fitting. The fitting can
be done in such a way as to guarantee the existence of a

unique solution for U∗ satisfying the reasonable requirement
U∗→ 0 as U(z)→ 0.

It is convenient to define r = z0/z= ζ0/ζ and to introduce
a non-dimensional inverse flow speed,

ŝ =

(
−F bz

)1/3
κ (U (z1)+ ε)

, (A16)

where ε is a small safety parameter to prevent infinite ŝ as
U(z1)→ 0. Then Eq. (A15) becomes

ŝ =
ζ 1/3

{− logr +9(ζ,rζ )}
. (A17)

To parameterize the surface momentum flux we need to be
able to compute ζ = ζ (̂s, r); ζ is a function of the two pa-
rameters ŝ and r .

To construct a functional fit for ζ (̂s, r), proceed as follows.
For both the stable case and the unstable case, carry out an
asymptotic expansion of Eq. (A17) for the limits of small |̂s|
and large |̂s| and rearrange to obtain the limiting expressions
for ζ (̂s, r). Then seek a simple expression that agrees with
the asymptotic expressions in the two limits.

For the unstable case we begin with the integrated stability
function given by Benoit (1977):

9(ζ,rζ )= log

{(
x2

0 + 1
)
(x0+ 1)2(

x2+ 1
)
(x+ 1)2

}
+ 2(arctan(x)− arctan(x0)) , (A18)

where

x = (1− 15ζ )1/4, x0 = (1− 15rζ )1/4. (A19)

We find

ζ 1/3
∼ ŝ

{
− logr −

15
4
(1− r)(logr)3̂s3

}
as ŝ→ 0 (A20)

and

ζ 1/3
∼ ŝ

{
−

1
15

(
4
(
r−1/4

− 1
))4

ŝ−3
}1/7

as ŝ→∞. (A21)

These asymptotic limits are captured by the functional fit

ζ 1/3
=

(
ã+ b̃

(
c̃+ (−̂s)p̃

)q̃)r̃
, (A22)

with the parameters given by

p̃ = 3; q̃ = 2/7; r̃ = 3/(7p̃q̃); (A23)

Ã=− logr;B̃ =
15
4
(1− r)(logr)3;

C̃ =

{
1
15

(
4
(
r−1/4

− 1
))4

}1/7

; (A24)

ã = Ã1/r̃
− b̃c̃q̃; b̃ = C̃1/r̃

; c̃ =

(
B̃Ã(1−r̃)/r̃

b̃q̃ r̃

)1/(q̃−1)

. (A25)
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For the stable case we begin with a modification of the
integrated stability function given by Cheng and Brutsaert
(2005):

9(ζ,rζ )= a log

(
ζ +

(
cb
+ ζ b)1/b

ζ0+
(
cb+ ζ b

0
)1/b

)
, (A26)

with a = 3, b = 2.5, and c = 0.5. (The original Cheng and
Brutsaert (2005) scheme corresponds to a = 6.1, b = 2.5,
and c = 1. Figure A1 shows the effect of this modification.)
We find

ζ 1/3
∼ ŝ

{
− logr +

a

c
(1− r)(− logr)3̂s3

}
as ŝ→ 0 (A27)

and

ζ 1/3
∼ ŝ{−(1+ a) logr} as ŝ→∞. (A28)

These asymptotic limits are captured by the functional fit

ζ 1/3
= c̃+

(
ã+ b̃̂s)p̃

)q̃
, (A29)

with the parameters given by

p̃ = 3; q̃ =−3; (A30)

Ã=− logr;B̃ =
a

c
(1− r)(− logr)3;

C̃ =−(1+ a) logr; (A31)

ã = (Ã− c̃)1/q̃; b̃ = B̃ã1/q̃/q̃; c̃ = C̃. (A32)

Code availability. The model code used to produce the results in
this paper (PTerodaC3TILES 1.0, PTerodaC3TILES 1.2), an exam-
ple namelist file, example plotting routines, and the user manual are
available from Zenodo: https://doi.org/10.5281/zenodo.13899066
(Thuburn, 2025). The code is made available under the MIT licence.

The namelist files needed to create initial data for the BOMEX,
ARM, and DYCOMS cases and to reproduce the simulations pre-
sented here, along with the plotting routines used to produce Figs. 5
to 14, are provided in the Supplement.
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