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Abstract. Satellite observations of atmospheric methane are
a powerful resource for quantifying methane emissions over
any region worldwide. The inverse methods needed to in-
fer emissions from these observations require a high level
of scientific and technical expertise as well as access to
large computational and data processing resources. The Inte-
grated Methane Inversion (IMI) is an open-access cloud com-
puting tool designed for researchers and non-expert users
to obtain total sector-resolved methane emissions world-
wide at up to 0.25°× 0.3125° (≈ 25× 25km2) resolution
by analytical inversion of TROPOMI satellite observations
with closed-form error characterization. Here we describe
IMI version 2.0 with vastly expanded capabilities relative
to the original version. Major developments include (i) a
new blended TROPOMI+GOSAT dataset for higher data
quality, (ii) order-of-magnitude speed-up in Jacobian matrix
construction, (iii) improved error characterization through
use of super-observations, (iv) improved methods for ini-
tial and boundary conditions, (v) adaptive spatial resolution
linked to observational information content, (vi) incorpora-
tion of point source observations in state vector construc-
tion, (vii) option to optimize tropospheric OH (main methane
sink), (viii) global inversion capability, (ix) Kalman filter

option for continuous monitoring of emissions, (x) updated
default prior emission inventories, (xi) option for lognor-
mal error probability density functions to characterize emis-
sions, (xii) additional output visualization (sectoral emis-
sions, temporal variability), and (xiii) containerization to fa-
cilitate download to local computing facilities and operation
as part of the US GHG Center. A 2023 annual inversion with
28 d temporal resolution for the contiguous US (CONUS) is
presented as a demonstration of IMI 2.0 capabilities.

1 Introduction

Methane, a powerful greenhouse gas, has become a top pol-
icy concern for mitigating anthropogenic climate change.
Its short atmospheric lifetime (∼ 9 years) and high warm-
ing effect (∼ 82 times the global warming potential of CO2
for a 20-year time horizon) make reducing methane emis-
sions an attractive option for near-term climate benefits
(Naik et al., 2013; Forster et al., 2021). Over 150 coun-
tries have joined the Global Methane Pledge, committing to
collectively reduce global methane emissions 30 % by 2030
(Global Methane Pledge, 2023). Despite the recent atten-
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tion from policymakers, global atmospheric concentrations
of methane continue to rise rapidly, at a rate of 0.8 % per
year for 2020–2022 (Thoning et al., 2022). Quantification
and monitoring of methane emissions from different sectors
worldwide and with high resolution are crucial for under-
standing methane trends and developing mitigation methods
to achieve policy goals.

Methane has anthropogenic sources from many sectors
including livestock, oil and gas operations, coal mining,
landfills, wastewater treatment, and rice cultivation (Saunois
et al., 2020). Wetlands are the dominant natural source.
Emissions are estimated using either bottom-up or top-down
methods. Bottom-up methods either apply emission factors
to units of activity or use process-based models, but emission
factors can have large uncertainties, activity data may lag
by several years, and process-based models are often highly
parameterized. Top-down methods use observations of at-
mospheric methane combined with an atmospheric transport
model to infer emissions, but there may be errors in the ob-
servations and in the modeling of transport. Inversions of at-
mospheric observations blend these two methods by using
bottom-up estimates as prior information and adjusting them
to optimize the fit to observations through the atmospheric
transport model, with formal characterization of errors by
Bayesian synthesis (Brasseur and Jacob, 2017). Results from
these inversions can provide guidance for improving policy-
relevant bottom-up inventories.

Satellite observations of atmospheric methane have
greatly increased the potential of inverse analyses by provid-
ing global continuous coverage and high data density. Satel-
lites retrieve methane dry column mixing ratios XCH4 with
sensitivity down to the surface by measuring backscattered
solar radiation in the shortwave infrared (SWIR) (Jacob et al.,
2016). Observations are available from a range of satellite in-
struments to quantify emissions from the global scale down
to point sources (Jacob et al., 2022). TROPOMI, launched
in October 2017, has daily global coverage with 5.5× 7km2

nadir pixel resolution (Veefkind et al., 2012; Lorente et al.,
2021) and presently provides the most spatially dense top-
down resource for global mapping of total methane emis-
sions. A number of inverse studies have used TROPOMI ob-
servations to quantify methane emissions globally and for
specific regions (Cusworth et al., 2020; Zhang et al., 2020;
McNorton et al., 2022; Chen et al., 2023; Li et al., 2023;
Naus et al., 2023; Shen et al., 2023; Tsuruta et al., 2023;
Varon et al., 2023; Yu et al., 2023; Nesser et al., 2024a).
Point source imagers including GHGSat, EMIT, PRISMA,
and Sentinel-2 provide individual information on large point
sources (Jacob et al., 2022).

Inversions of satellite data require a high level of techni-
cal and scientific expertise, as well as large computational
and data processing resources. Transparency and accessibil-
ity of the methods are essential for making the resulting emis-
sion estimates actionable by stakeholders. These stakehold-
ers may be from government agencies at all levels (municipal

to national), international agencies, non-governmental orga-
nizations, industry, and advocacy groups. Greater impact can
be achieved if the methods are usable by the stakeholders
themselves. New inversion tools have recently been devel-
oped for this purpose including the Community Inversion
Framework (Berchet et al., 2021) and version 1.0 of the Inte-
grated Methane Inversion (IMI; Varon et al., 2022).

The IMI (https://carboninversion.com/, last access:
25 February 2025) is specifically designed to enable re-
searchers and non-expert stakeholders to exploit TROPOMI
satellite data for optimizing total methane emission estimates
at up to 25 km resolution. It uses a state-of-the-art analytical
inversion method with closed-form error characterization
documented in the research literature. It operates on the
Amazon Web Services (AWS) cloud, where both TROPOMI
data and the atmospheric transport model (GEOS-Chem)
reside, thus avoiding the need for local computing resources
and instead bringing the computing to the data. The IMI has
a user-friendly interface to enable stakeholders to optimize
emission estimates for any selected domain and period
through a configuration file, with default or user-defined
prior estimates and error specifications. It features an
open-source code base, comprehensive documentation
(https://imi.readthedocs.io/en/latest/, last access: 25 Febru-
ary 2025), and frequent versioning to keep the methods up
to date with current research. The IMI is actively being used
for research applications (Baray et al., 2023; Chen et al.,
2023; Nathan et al., 2023; Varon et al., 2023; Hemati et al.,
2024; Vara-Vela et al., 2024; Hancock et al., 2025).

Varon et al. (2022) documented the initial release of
IMI 1.0, limited at the time to regional inverse analyses
of TROPOMI observations with 0.25°× 0.3125° (≈ 25×
25km2) or 0.5°× 0.625° (≈ 50× 50km2) resolution. Since
then, the IMI has undergone substantial development, and we
document here the greatly enhanced capabilities of IMI 2.0
including the major new features listed in Table 1. These IMI
2.0 advancements improve the overall flexibility of the IMI
for a wider range of scientific and stakeholder applications
from regional to global scales and with low temporal latency
to enable continuous monitoring. Section 2 gives a summary
description of IMI 1.0 and Sect. 3 describes the major new
features of IMI 2.0. A 1-year demo inversion for the contigu-
ous US (CONUS) is presented in Sect. 4. Current limitations
for future development are discussed in Sect. 5.

2 Integrated Methane Inversion (IMI) 1.0

We start with a summary description of the Integrated
Methane Inversion (IMI) 1.0, previously described by Varon
et al. (2022), to provide context for the new developments in
IMI 2.0. IMI is designed as an open-source software tool for
use on the cloud or local clusters to infer methane emissions
from TROPOMI satellite observations using GEOS-Chem
as the forward atmospheric transport model. The TROPOMI
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Table 1. Integrated Methane Inversion (IMI) capabilities.

IMI 1.0 (Varon et al., 2022) IMI 2.0 new capabilitiesa

– Emission optimization for regional domains with
25–50 km resolution by analytical inversion of
TROPOMI observations

– Smoothed TROPOMI fields as boundary conditions

– Open-source code on AWS cloud with user-friendly
interface

– IMI preview for visualizing data and assessing
information content before performing inversion

– Output data and imagery for posterior (optimized) fluxes
with error statistics

1. Blended TROPOMI+GOSAT dataset compatibility

2. Jacobian matrix construction speed-up

3. Super-observations

4. Optimization of boundary conditions

5. Adaptive information-based spatial resolution

6. Point source incorporation in state vector construction

7. Optimization of methane sink from OH

8. Global inversion capability

9. Low-latency emission updates (continuous monitoring)

10. New bottom-up emission inventories as prior estimates

11. Lognormal error statistics for prior emission estimates

12. Enriched output information

13. Docker container for code download to local systems

a Numbers correspond to sections in Sect. 3.

data are from the latest operational retrieval version archived
on the AWS cloud (currently v02.06.00; Lorente et al.,
2023). The data are filtered to remove retrievals with QA
value≤ 0.5, water pixels, and pixels south of 60° S. GEOS-
Chem is a global 3-D chemical transport model (Wecht
et al., 2014) that can operate in regional mode at up to
0.25°×0.3125° resolution using archived meteorological in-
put from the NASA Goddard Earth Observing System – Fast
Processing (GEOS-FP) and MERRA-2 datasets. The IMI
uses GEOS-Chem Classic with shared-memory paralleliza-
tion (Bey et al., 2001). Smoothed TROPOMI fields are used
as GEOS-Chem boundary conditions to ensure consistency
with the TROPOMI data within the inversion domain (Shen
et al., 2021).

IMI 1.0 conducts methane inversions on the native 0.25°×
0.3125° GEOS-FP grid (or alternatively the 0.5°× 0.625°
MERRA-2 grid) over the TROPOMI record from May 2018
to the present. Users perform methane inversions by filling
out a simple configuration text file (YAML format) select-
ing their region and period of interest. The region can be
set as a rectilinear domain (latitude and longitude bound-
aries) or by providing a shapefile with any geometry. The
state vector optimized by the inversion consists of temporal
mean emissions for the period of interest in individual emit-
ting grid cells (including offshore emissions) within the re-
gion of interest, plus buffer clusters surrounding the region
of interest to correct boundary conditions. Prior estimates
for the inversion are from a default IMI library of bottom-up
emission inventories, but users can substitute their own. The
cloud compatibility of the IMI allows users to leverage the

vast computation resources of the AWS cloud for perform-
ing inversions without the need for a local compute cluster.
It takes advantage of input data already being resident on the
cloud including the TROPOMI observations, the smoothed
TROPOMI fields used as boundary and initial conditions for
the inversions, the GEOS-FP and MERRA-2 meteorological
datasets used by GEOS-Chem, and the bottom-up emission
inventories used as prior estimates. Advanced users can ad-
just the inversion settings via the configuration file or through
manual update of the inversion workflow, which involves a
collection of Bash™ and Python® scripts.

The IMI follows the established Bayesian analytical inver-
sion technique described by Brasseur and Jacob (2017) to
optimize an emission state vector x (2-D gridded fluxes) by
minimizing the cost function J (x):

J (x)= (x− xA)
TS−1

A (x− xA)

+ γ (y−Kx)TS−1
o (y−Kx).

(1)

Here xA is the prior estimate, y denotes the observations as-
sembled into a vector, SA is the prior error covariance matrix,
So is the error covariance matrix of the observational sys-
tem, K is the Jacobian matrix describing the forward model
sensitivity of the observations to perturbations in emissions,
and γ ∈ [0,1] is a regularization parameter to compensate for
unaccounted error covariances in the observational system
(Lu et al., 2021). The optimized emissions x̂ (posterior esti-
mate) are obtained by solving analytically for the cost func-
tion minimum where ∂J/∂x = 0:

x̂ = xA+
(
γKTS−1

o K+S−1
A

)−1
γKTS−1

o (y−KxA). (2)
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The relationship of emissions to concentrations is linear so
that K fully defines the forward model for the purpose of
the inversion. It is constructed column by column by run-
ning embarrassingly parallel perturbation simulations with
the GEOS-Chem forward model.

A major advantage of the analytical solution is that it pro-
vides a closed-form expression for the posterior error covari-
ance matrix Ŝ:

Ŝ=
(
γKTS−1

o K+S−1
A

)−1
. (3)

Ŝ characterizes the error in x̂, and comparison to SA quanti-
fies the information content from the inversion. This is crit-
ically important for satellite observations, which generally
do not fully constrain the state vector. From Ŝ we derive
the averaging kernel matrix for the inversion A= ∂x̂/∂x =
I− ŜS−1

A , which measures the sensitivity of the inverse so-
lution to the true state. The trace of A measures the de-
grees of freedom for signal (DOFS), representing the num-
ber of independent pieces of information on the state vec-
tor obtained from the inversion, and the diagonal elements
aii = ∂x̂i/∂xi ∈ [0,1] measure the ability of the inversion to
quantify state vector element xi independently from the prior
estimate (fully if aii = 1, not at all if aii = 0). Another advan-
tage of the analytical solution is that once Khas been con-
structed, any ensemble of analytical inversions exploring the
sensitivity to different inversion parameters can be easily and
rapidly generated (Chen et al., 2022).

The regularization parameter γ is designed to avoid overfit
to the observations. Users can choose an optimal value of
γ such that (x̂−xA)

TS−1
A (x̂−xA)≈ n±

√
2n following Lu

et al. (2021), corresponding to the expected value of the chi-
square distribution. Again, once K has been constructed, it is
easy to conduct inversions with different values of γ in order
to determine the optimal value.

Regional inversions require unbiased boundary conditions,
as biases in boundary conditions would propagate to the opti-
mized emissions in the inversion domain. The IMI maintains
a global 3-D archive of bias-corrected GEOS-Chem fields
(called smoothed TROPOMI fields) to serve as unbiased
boundary conditions for any TROPOMI inversion domain or
period. The archive is produced by correcting a global con-
tinuous GEOS-Chem simulation at 4°× 5° resolution with
smoothed TROPOMI concentrations (12°×15° spatially and
+/− 15d temporally) and applying zonal mean corrections
over the oceans. In IMI 1.0, boundary conditions are further
corrected in the inversion using buffer grid cell clusters sur-
rounding the region of interest (Shen et al., 2021).

The IMI includes a preview feature to quickly estimate the
information content and computational cost of a proposed
inversion before investing resources in running the full inver-
sion. The preview provides maps of mean TROPOMI con-
centrations, observation density, prior emissions, estimated
averaging kernel sensitivities, and SWIR albedo for the se-
lected inversion period and domain, along with a cost esti-

mate for running on the cloud. The averaging kernel sensi-
tivities aii and DOFS=

∑
iaii are estimated without doing

the actual inversion by assuming uniform observations and a
simple transport parameterization:

aii =
σ 2
ai

σ 2
ai
+
(σo/k)2

m/n

, (4)

where σa,i is the prior error standard deviation for xa,i , σo
is the observational error standard deviation, m is the num-
ber of satellite observations in the domain, n is the number
of state vector elements, and k relates XCH4 to local emis-
sions with a simple advection–diffusion formulation (Nesser
et al., 2021). The DOFS from the preview estimate how well
an inversion with the specified configuration will be able to
quantify emissions, allowing users to modify their inversion
domain and/or period to improve this ability.

The IMI has extensive documentation available through its
website (https://imi.seas.harvard.edu, last access: 25 Febru-
ary 2025). The source code has undergone incremental devel-
opment since 1.0 with official releases of IMI 1.1 and 1.2 and
has an international following of users. Version 2.0 described
here represents a transformational leap in the capabilities of
the IMI.

3 New features in IMI 2.0

IMI 2.0 improves IMI 1.0 on a number of fronts includ-
ing accuracy, performance, capability, and versatility for sci-
entific and stakeholder applications. Table 1 lists the prin-
cipal features, and these are illustrated in Fig. 1. The fol-
lowing sections elaborate on each feature in the numeri-
cal order of the table. IMI 2.0 gives users the option of
a new blended TROPOMI+GOSAT dataset removing most
artifacts from the operational product (Sect. 3.1). Compu-
tational performance is improved several-fold through fast
construction of the Jacobian matrix (Sect. 3.2) and through
use of super-observations that also better account for obser-
vational error correlation (Sect. 3.3). Boundary and initial
conditions are improved, including synchronous representa-
tion of the stratosphere, and allowing for boundary condition
optimization through the inversion (Sect. 3.4). The capabil-
ity to conduct inversions over large domains is enhanced by
an adaptive k-means clustering scheme (Sect. 3.5) that ac-
counts for information on large point sources (Sect. 3.6).
The methane sink from oxidation by tropospheric OH can
be optimized (Sect. 3.7). Inversions can be conducted on the
global scale (Sect. 3.8). IMI 2.0 features a new capability for
time-dependent inversions, allowing continuous monitoring
of the evolution of emissions over a selected region of inter-
est (Sect. 3.9). New prior emission inventories are introduced
(Sect. 3.10). Users can select lognormal error probability
density functions (PDFs) for prior emissions to resolve the
heavy tail in the distribution (Sect. 3.11). The inversion out-
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Figure 1. Summary of major new features in IMI 2.0 divided into three categories: (a) expanded input options, (b) multiscale inversion
capabilities, and (c) enriched output. Numbering of individual features corresponds to the relevant section in Sect. 3. The methane plume
map in the top left panel is from Carbon Mapper (Methane Dashboard, Carbon Mapper Dashboard, 2024).

put includes new national and sectoral information on poste-
rior emission estimates as well as time series visualizations
(Sect. 3.12). The IMI is now in a software container to facili-
tate downloads to local computing clusters (Sect. 3.13). Most
improvements in IMI 2.0 are the heritage of research studies
referenced in the appropriate sections.

Table 2 gives a summary list of the user-controlled vari-
ables in the IMI 2.0 configuration file. Full documentation is
at https://imi.readthedocs.io (last access: 25 February 2025).
The default settings enable a basic user to run the IMI as sim-
ply as specifying a rectilinear inversion domain and time pe-
riod. More advanced users have a wide range of options. The
last column lists the settings used in the US demo inversion
of Sect. 4.

3.1 Blended TROPOMI+GOSAT dataset

TROPOMI observations are available from May 2018 to
present. The current TROPOMI operational retrieval is
posted with 2–3 d latency on the AWS cloud (presently ver-
sion 02.06.00; Sentinel-5P Level 2 – Registry of Open Data
on AWS, 2024; Lorente et al., 2023) and is accessed there
by the IMI as default. The retrieval is regularly updated to
resolve artifacts from surface albedo, aerosols, clouds, and
cross-track detector differences (Lorente et al., 2023). We
provide an option to use the blended TROPOMI+GOSAT
dataset of Balasus et al. (2023), which applies machine
learning to correct the TROPOMI version 02.06.00 retrieval
with the more accurate but much sparser retrieval from the
GOSAT satellite instrument (Parker et al., 2020). Glint ob-
servations over water were previously filtered out due to high
biases and artifacts in the TROPOMI retrieval, but with the
higher fidelity of the blended TROPOMI+GOSAT dataset
we include an option to include these observations in the in-

version. This can help to quantify offshore emissions, adding
to the information from when the offshore emission plume
is transported over land. The blended TROPOMI+GOSAT
data are available on the AWS cloud for the full duration
of the TROPOMI record and we keep them current for use
in the IMI. Comparison of the blended TROPOMI+GOSAT
and operational TROPOMI datasets through the IMI preview
can be insightful for identifying retrieval artifacts.

3.2 Fast Jacobian construction

Construction of the Jacobian matrix, K, is the most compu-
tationally expensive component of the IMI and has previ-
ously limited the size of the state vector to ∼ 2000 elements.
K is constructed column by column by conducting GEOS-
Chem simulations over the inversion time period, perturb-
ing individual state vector elements, and collecting the re-
sulting changes in concentrations. This was done in IMI 1.0
with separate GEOS-Chem simulations for each state vector
element, and additional overhead was incurred by compil-
ing methane emissions in GEOS-Chem with the Harmonized
Emission Component (HEMCO; Lin et al., 2021). For IMI
2.0 we made several improvements to our Jacobian construc-
tion practices. To avoid the effect of small nonlinearities in
the advection code (Lin and Rood, 1996), we construct our
Jacobian columns by specifying a low methane background
and initial conditions (1 ppb), applying a high relative per-
turbation such that the median emission is 10−8 kgm−2 s−1

for each grid cell in the perturbed state vector elements, and
setting all other emission state vector elements to zero. To
improve computational performance, we modified GEOS-
Chem to represent methane emissions from multiple state
vector elements in a single simulation as independently trans-
ported tracers so that several columns of the Jacobian can
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Table 2. IMI 2.0 configuration variablesa.

Setting Default Options US demo (Sect. 4)

Spatial domain Regional rectilinearb Shapefile or global CONUS shapefile
Time period Start and end dates Continuous monitoring 1 January–31 December 2023
Spatial resolution 0.25°× 0.3125° 0.5°× 0.625°, 2°× 2.5°, 4°× 5° 0.25°× 0.3125°
Observation dataset TROPOMI Blended TROPOMI+GOSAT Blended TROPOMI+GOSAT
Over water observations No Yes No
Point source datasetsc SRON Carbon Mapper, IMEO SRON
Temporal updates (Kalman filter) No Yesd Yes
State vector dimension Native resolution Clusteringe Clusteringf

Country tagg No Yes Yes
Jacobian construction groupingh 5 Any positive number 5
Boundary condition optimizationi Yes No Yes
OH optimizationj No Yes No
Prior emission inventories Table 3 Other inventories Table 3
Prior error PDFsk Normal Lognormal Normal
Prior error standard deviation 0.5l Any positive value 0.5
Observational error, ppbm 15 Any positive value 15
Regularization parameter γ 1.0 Any positive value 0.2

a Full documentation is at https://imi.readthedocs.io (last access: 25 February 2025). b Defined by latitude–longitude boundaries. c To impose native resolution in the
inversion for locations of detected large point sources. Includes option to only include point sources above a certain value (default set to 2500 kg h−1) and above a
threshold of repeated observations above that value (default 50). The default values are used in the CONUS demo. d With choices for the update frequency (e.g., 1 week
or 1 month) and specification of the nudge factor, which is the percent weight of the original prior emissions to apply to the prior estimate for the next inversion interval.
See Sect. 3.9 and Varon et al. (2023) for more details. e k-means information-based clustering to reduce state vector size with default or user-set parameters and
including adaptive capability in Kalman filter mode (Sect. 3.5). Users can adjust cluster size distribution by setting the maximum cluster size (default 64 grid cells) and a
threshold for information content per cluster (default of DOFS/ n from the IMI preview). f With specification of 600 state vector elements. g Used in k-means clustering
algorithm to contain individual clusters within national borders and also for national output of emissions by sectors. h Number of state vector elements perturbed
(columns of Jacobian matrix constructed) in each GEOS-Chem simulation, chosen to balance CPU time and wall time (Sect. 3.2). i Setting ignored in global inversions.
Error standard deviation configured by user with default of 10 ppb. j Optimization of domain mean (regional inversions) or hemispheric mean (global inversions)
tropospheric OH concentrations expressed as methane loss frequencies and with user-adjustable default error standard deviation of 10 %. k For prior emission estimates.
l Fractional error standard deviation for a normal error PDF, geometric standard deviation for a lognormal error PDF. m Error standard deviation for individual
observations including contributions from measurement, retrieval, representation, and forward model errors.

be constructed at once with no additional overhead. Addi-
tionally, we apply HEMCO to precompute total emissions
for individual grid cells before running GEOS-Chem, re-
ducing the time to read in emissions. Running GEOS-Chem
with a large number of tracers can increase wall time be-
cause GEOS-Chem Classic simulations are limited to a sin-
gle node (shared-memory parallelization), while multiple
GEOS-Chem simulations for Jacobian construction can be
spread across nodes. We optimized the number of tracers
per GEOS-Chem simulation to balance the total CPU time
(which decreases with the number of tracers) and the wall
time (which increases with the number of tracers because the
IMI then uses fewer compute nodes). Tests on the Harvard
supercomputing cluster using 32 CPUs per GEOS-Chem
simulation indicate an optimum of five tracers per simula-
tion (Fig. 2). This yields a 5-fold speed-up in the construc-
tion of the Jacobian matrix relative to single-tracer simula-
tions in total compute hours, traded against a 60 % increase
in wall time, as shown in Fig. 2. Precompiling emissions with
HEMCO yields an additional 2-fold speed-up, for an overall
10-fold decrease in CPU cost and a net decrease in wall time.
Users with a large number of available nodes can reduce wall

time at the expense of CPU time by choosing fewer tracers
per simulation as specified in the configuration file (Table 2).

3.3 Super-observations

IMI 2.0 uses super-observations as the TROPOMI obser-
vation vector y in the inversion, following the work of
Chen et al. (2023). Super-observations average all individ-
ual TROPOMI observations for a given GEOS-Chem grid
cell and TROPOMI orbit. We call them super-observations
following Eskes et al. (2003) because they have lower er-
ror than individual observations. Loss of information in this
averaging of individual observations is negligible because
GEOS-Chem model values are the same for all observations
being averaged, and retrieval averaging kernels are similar.
Using super-observations reduces the storage size and com-
putational time associated with performing the inversion step
of the IMI by reducing the dimension of y. Additionally, it
provides a better characterization of observational error cor-
relations to avoid overfit in the inversion. Using individual
observations in the inversion with a diagonal observational
error correlation matrix assumes that errors in individual ob-
servations are uncorrelated. In fact, transport errors for in-
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Figure 2. Performance optimization of the number of state vector
elements (transported methane tracers) in GEOS-Chem simulations
used to construct the Jacobian matrix for the IMI. The plot shows
the run time per CPU and the total wall time for GEOS-Chem sim-
ulations conducted with different numbers of transported tracers. A
simulation with five tracers (elbow of the curve) provides the op-
timal performance for CPU and wall time. Tests were done on the
Harvard supercomputer cluster for 1-month GEOS-Chem simula-
tions with 32 CPUs (Intel 8480+ processors) at 0.25°× 0.3125°
resolution.

dividual TROPOMI observations within a GEOS-Chem grid
cell are perfectly correlated, and retrieval errors may be cor-
related as well. Using the residual error method (Heald et al.,
2004), Chen et al. (2023) derived the observational error vari-
ance σ 2

super for a super-observation by averaging P individual
TROPOMI observations:

σ 2
super = σ

2
retrieval

(
1− rretrieval

P
+ rretrieval

)
+ σ 2

transport, (5)

where σ 2
transport is the error variance associated with GEOS-

Chem transport, σ 2
retrieval is the single retrieval error vari-

ance, and rretrieval is the error correlation coefficient for the P
observations being averaged. We use rretrieval = 0.55 and
σtransport = 4.5ppb following Chen et al. (2023) for an inver-
sion at 0.25°×0.3125° resolution. σretrieval is set by the user,
with a default value of 15 ppb from previous applications of
the residual error method to TROPOMI data (Qu et al., 2021;
Shen et al., 2021; Chen et al., 2023). The improved observa-
tional error characterization from using super-observations
reduces our reliance on γ to account for overfit, allowing γ
to be set closer to 1.

3.4 Smoothed TROPOMI fields as boundary and
initial conditions

It is critical for the IMI to use unbiased initial and bound-
ary conditions (IC/BCs) because bias will otherwise prop-
agate to the emission correction. IMI 1.0 used an archive
of spatially and temporally smoothed TROPOMI fields as
IC/BCs to avoid systematic bias and further optimized buffer

clusters around the region of interest to correct for BC er-
rors (Sect. 2). In IMI 2.0 we make four updates to the treat-
ment of IC/BCs. First, we improve the process for generat-
ing smoothed TROPOMI fields to include a more accurate
and synchronous stratosphere (Mooring et al., 2024). Sec-
ond, we produce an additional parallel archive of smoothed
fields for the blended TROPOMI+GOSAT product (Balasus
et al., 2023). Third, we allow for the optimization of BCs
as well as buffer clusters. Fourth, we conduct the smooth-
ing backward in time (rather than centered in time) to allow
for near-real-time (low-latency) applications. The archives of
smoothed TROPOMI fields for both the operational product
and the blended product are kept current with ∼ 1 month la-
tency.

To produce the smoothed TROPOMI archives, we start
from a global GEOS-Chem simulation (version 14.3.1) at a
horizontal resolution of 2°×2.5°, improving upon the 4°×5°
resolution of IMI 1.0, with 47 vertical layers extending to
0.01 hPa. The simulation uses the default prior emission es-
timates for the IMI (Table 3). It starts on 1 April 2018 (1
month before the start of the TROPOMI record) with ICs
from a separate GEOS-Chem simulation initialized in 1985
(Mooring et al., 2024). This multidecadal spin-up simula-
tion uses monthly interpolated global surface observations
of methane concentrations from the NOAA GLOBALVIEW
flask dataset as BCs (Murray, 2016). GEOS-Chem transports
these surface BCs throughout the atmosphere, a process that
takes years for the stratosphere (Chabrillat et al., 2018). In
this manner, we create an 1 April 2018 IC that is consis-
tent with both long-term trends in tropospheric methane and
stratospheric transport (Mooring et al., 2024).

The 3-D methane concentration fields from our emissions-
driven global simulation starting on 1 April 2018 from
this unbiased synchronized atmosphere are archived every
3 h from 1 April 2018 until the present. We correct these
fields to the TROPOMI satellite observations to generate
the smoothed TROPOMI fields. For each observation, we
apply the TROPOMI operator, which describes the sensi-
tivity of the observation to different vertical levels, to the
co-located GEOS-Chem vertical profile, giving us pairs of
TROPOMI XCH4 and simulated GEOS-Chem XCH4 . We av-
erage these XCH4 values on a 2°× 2.5° daily grid and sub-
tract them to get a GEOS-Chem column bias: 1XCH4 =

XCH4,GEOS-Chem−XCH4,TROPOMI. The column-bias fields are
then smoothed with a rolling average spatially to 10°×12.5°
and temporally to 15 d back in time. If there are no obser-
vations for the past 15 d, we extend the temporal smoothing
to 30 d. For grid cells with no column-bias information af-
ter smoothing (such as over open oceans or high latitudes
in the winter), we use a zonal average of the column bias for
that latitude band or for the closest latitude band where infor-
mation is available. The resulting 2°× 2.5° daily smoothed
column-bias fields are removed from each of the 47 layers
to yield the bias-corrected 3-D GEOS-Chem fields (called
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Table 3. Default prior emission inventories in IMI 2.0.

Anthropogenic

United States EPA Gridded GHGI v2 – Express Extension (Maasakkers et al., 2023)
Mexico INECC (Scarpelli et al., 2020)
Canada ECCC NIR (Scarpelli et al., 2022a)
Rest of world

Fuel exploitation GFEI v2.0 (Scarpelli et al., 2022b)
Other EDGAR v8 (Crippa et al., 2023)

Hydroelectric reservoirs ResME (Delwiche et al., 2022)

Natural

Wetlandsa WetCHARTs v1.3.1 (Bloom et al., 2021); LPJ-wsl (Zhang et al., 2016)
Geological seeps Etiope et al. (2019) scaled to 2 Tga−1 (Hmiel et al., 2020)
Open fires GFED4 (Randerson et al., 2017)
Termites Fung et al. (1991)

a The IMI uses as default monthly wetland emissions from the mean of the WetCHARTs ensemble, but users can replace this
default with WetCHARTs or LPJ-wsl climatologies.

smoothed TROPOMI fields) used as IC/BCs in the inver-
sions.

Although our smoothed TROPOMI fields are intended
to avoid systematic IC/BC bias in inversions of TROPOMI
data, there may still be error in the BCs not captured by
the smoothing, particularly in areas with few observations
(oceans, high latitudes). In IMI 1.0 this was corrected by op-
timizing emissions in buffer clusters surrounding the region
of interest. In IMI 2.0 we implement a new option to allow
optimization of the BCs as part of the inversion. When en-
abled, BC optimization adds four additional elements to the
state vector, one for each edge of the GEOS-Chem domain
(when using a custom shapefile the domain is padded to be
rectilinear). Each edge is then optimized as a constant correc-
tion as part of the inversion. Optimization of BCs can be done
in place of or in addition to optimization of buffer clusters.
Recent work by Nesser et al. (2024b) finds that optimization
of BCs is preferable to optimization of buffer clusters and has
the advantage of being more physically based.

3.5 Adaptive state vector clustering

The maximum resolution of the IMI is set by the native
0.25°× 0.3125° grid cell resolution of the GEOS-Chem for-
ward model. Optimizing emissions at such a high resolution
may be computationally burdensome for large domains and
may not be justified by the information content of the obser-
vations. We introduce in IMI 2.0 an adaptive k-means clus-
tering algorithm following Nesser et al. (2021) that clusters
individual grid cells on the basis of proximity and informa-
tion content. This maintains high resolution in areas of high
emissions and dense observations while smoothing the so-
lution in areas with weak emissions or insufficient observa-
tions. The algorithm is adaptive in determining the best clus-
tering to apply given user specification of a desired number

of state vector elements and minimum resolution, as well as
in adjusting to changing observing conditions for temporally
resolved inversions (Sect. 3.9). It is interactive with the user
through the IMI preview. Users have options to exclude se-
lected grid cells from the clustering (force them to remain
at native resolution) on the basis of, for example, ancillary
observations of large point sources (Sect. 3.6). To improve
national emission accounting, users also have the option to
ensure that clusters respect country boundaries.

Figure 3 illustrates our clustering algorithm with the ex-
ample of the CONUS demo in Sect. 4. The user config-
ures their desired number of state vector elements and max-
imum cluster size (2°× 2.5° by default). The clustering al-
gorithm first applies the IMI preview to estimate averaging
kernel sensitivities, aii, (Eq. 4), for each native resolution
grid cell in the domain on the basis of the number of super-
observations and the prior emission estimates. Cells that have
an aii greater than a clustering threshold are kept at native
resolution (p = 1) in the state vector. They may also be kept
at native resolution if flagged by the user or by a point source
dataset (Sect. 3.6). The clustering threshold has a default
value of the DOFS divided by the desired number of state
vector elements (DOFS / n), but this can be configured by
the user. The algorithm then performs a k-means clustering
of proximate grid cell pairs (p ≈ 2) for the remaining lower-
information grid cells on the basis of latitude, longitude, and
aii and retains pairs in the state vector that exceed the clus-
tering threshold for the sum of their estimated averaging ker-
nel sensitivities. The procedure is repeated for p ≈ 3, and so
on. The iteration stops when either the desired number of
state vector elements is reached, the maximum cluster size is
reached, or continuing iteration would assign greater than the
desired number of clusters. In the latter case, the remainder
of the state vector is filled with elements of the maximum
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cluster size to achieve the desired number of state vector ele-
ments. At that point the final state vector is specified.

Users can determine a suitable number of state vector ele-
ments to balance information content and computational cost
by running the IMI preview for varying state vector sizes
and comparing the estimated DOFS (Fig. 4). The IMI pre-
view visualizes the clustered state vector and the gridded aii
of each state vector element for user inspection. By adjust-
ing the clustering threshold and maximum cluster size with
feedback from the IMI preview, users can effectively con-
trol the size distribution of state vector elements. For exam-
ple, in the CONUS inversion (Sect. 4) the estimated informa-
tion content over CONUS is bimodal, with many grid cells
of relatively high information content and many with very
low information content. This bimodal distribution causes
too many grid cell clusters to be above the default clus-
tering threshold (estimated DOFS/ n), leading to a prema-
ture filling of the grid with background clusters of the max-
imum cluster size to achieve a 600-element state vector. If
left unchecked, this would lead to low-resolution background
state vector elements having an outsized sensitivity to the ob-
servations. To fix this issue we apply a clustering threshold of
2.0. Alternatively, the user could increase the desired number
of state vector elements, but the information content may not
justify the added cost as illustrated in Fig. 4 with the DOFS
asymptote.

3.6 Point source incorporation in the state vector
construction

We refer to point sources as emissions over 100 kgh−1 from
individual facilities. Point source satellite imagers with high
spatial resolution are variably able to detect plumes from
individual point sources and quantify emissions, but in-
tegrating this growing dataset into inversions is challeng-
ing due to uncertainties in point source observability, vari-
ability, and persistence (Cardoso-Saldaña and Allen, 2020;
Cusworth et al., 2020; Watine-Guiu et al., 2023). Possi-
ble methods include enforcing high state vector resolution
where point sources have been observed (Chen et al., 2023),
introducing additional point source state vector elements
(Naus et al., 2023), and using point source data to evalu-
ate posterior results in a TROPOMI-only inversion (Cus-
worth et al., 2020). Here, we integrate point source infor-
mation into the IMI when constructing a reduced state vec-
tor (Sect. 3.5) by enforcing native resolution for state vec-
tor elements with point sources above a specified thresh-
old (default of> 2500kgh−1) for a minimum number of re-
peated observations (default of 50) in the continually updated
global datasets from SRON (Schuit et al., 2023; Methane
Plume Maps, 2024), IMEO (International Methane Emis-
sions Observatory, 2024), and Carbon Mapper (Cusworth
et al., 2024). These datasets include satellite point source in-
formation from TROPOMI, Sentinel-2/3/5, EMIT, PRISMA,
EnMAP, GOES, and Landsat-8/9. Point source locations are

included as an overlay on the prior emission maps in the IMI
preview.

3.7 Optimization of methane sink

IMI 1.0 only optimized methane emissions, but sinks also
affect the methane concentrations. Global inversions com-
monly optimize tropospheric OH (the main methane sink)
in the state vector as a methane loss frequency separately
from emissions (Maasakkers et al., 2019; Yin et al., 2021).
A common misconception is that regional inversions (either
Eulerian or Lagrangian) do not need to optimize OH because
the ventilation timescale is much shorter than the methane
lifetime (Sheng et al., 2018), but the exact same considera-
tion would apply to the effect of emissions. In IMI 2.0 we
provide the option to optimize the tropospheric OH concen-
tration (as the methane loss frequency) averaged over the re-
gional domain or as hemispheric quantities for global inver-
sions (Sect. 3.8). Prior estimates are the 4°× 5° global 3-D
monthly fields of OH concentrations used in GEOS-Chem
(Wecht et al., 2014). These fields yield a global methane life-
time of 10.7 years against tropospheric OH, within the obser-
vationally constrained range of 11.2± 1.3 years from proxy
observations (Prather et al., 2012). Users can modify the de-
fault GEOS-Chem configuration with alternative OH prior
estimates if desired. The default prior error standard devia-
tion for the inversion is 10 % (Zhang et al., 2018) but can be
modified by the user in the configuration file. We find in our
default regional inversions that optimization of tropospheric
OH is effectively done by optimization of the BCs, rather
than by optimization of OH itself, so that the methane loss
frequency does not need to be in the state vector. This is be-
cause the default OH concentration field is relatively smooth.
Users may want to include OH in their regional inversions
if they replace the default OH concentration field or if they
modify the default prior error variances to have lower errors
in BCs and/or higher errors in OH.

3.8 Global inversion capability

IMI 2.0 supports global inversions with optimization of both
methane emissions at up to 2°× 2.5° resolution and hemi-
spheric OH concentrations (two additional state vector ele-
ments), following Qu et al. (2021). The same analytical in-
version method used in regional inversions is applied glob-
ally. The global inversion is necessarily coarser than regional
inversions. The Kalman filter approach (Sect. 3.9) for time-
dependent optimization of emissions can be used.

A critical requirement for global inversions is unbiased ini-
tial conditions. The smoothed TROPOMI archive described
in Sect. 3.4 is effective for this purpose. It provides an un-
biased synchronous representation of the stratosphere at the
initial time that can then evolve with the forward simulation.
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Figure 3. Spatial clustering of state vector elements in IMI 2.0 using iterative k-means and illustrated for the CONUS emission state vector in
the demo of Sect. 4. The native resolution state vector, consisting here of 0.25°×0.3125° grid cells, is transformed into an ensemble of multi-
sized state vector elements aggregating p grid cells depending on information content. The algorithm considers point source information,
observation density, prior emissions, and country borders to construct an optimally reduced state vector (right panel) based on the user-
specified number of state vector elements, maximum cluster size, and information content per element. The reduced state vector in the right
panel has 600 elements with the number p of 0.25°× 0.3125° grid cells being aggregated ranging from p = 1 (no aggregation) to p ≈ 64.
The methane plume map in the top left panel is from Carbon Mapper (Methane Dashboard, Carbon Mapper, 2024).

Figure 4. Optimizing state vector size with the IMI preview
(Sect. 2.2). The DOFS are estimated from the IMI preview for dif-
ferent user selections of state vector clustering sizes. The example
is from the CONUS demo inversion (Sect. 4), where the gain in
information content levels off beyond 800 elements. We use 600
elements for the purpose of the demo.

3.9 Temporal emission updates with Kalman filter

IMI 2.0 enables temporal emission updates and continuous
emission monitoring at low latency with a Kalman filter ap-
proach as described by Varon et al. (2023). This workflow is
depicted in Fig. 5. The IMI conducts successive methane in-
versions over user-specified time intervals (such as weekly or
monthly) using observations for that interval. Prior emissions
are taken as the posterior emissions of the preceding interval
(Kalman filter), the original bottom-up estimates, or a combi-

nation of the two through a nudge factor α (α = 0 for the pre-
ceding interval, α = 1 for the original bottom-up estimate).
Relative error standard deviations for the prior emissions are
not updated from their original values (50 % in the default)
because of unresolved prior error in the temporal variability
of emissions. Varon et al. (2023) used α = 0.1 in their weekly
inversions for the Permian Basin to retain some information
from the original prior distribution and to prevent state vector
elements from getting locked at low values when a fixed rel-
ative error in the prior emission is assumed. The state vector
can be updated from one interval to the next with the adaptive
k-means clustering scheme (Sect. 3.5) to take advantage of
changing spatial patterns in information content. The latency
of temporal emission updates is dependent on the availability
of the IMI input data. At present the latency is about 1 month
behind real time, limited by availability of the GEOS meteo-
rological data to drive GEOS-Chem.

3.10 Updated bottom-up inventories for use as prior
estimates

Table 3 lists the default bottom-up inventories used as prior
estimates in IMI 2.0. Users may add or substitute their own
prior estimates as NetCDF files to be read through HEMCO
(Lin et al., 2021). New bottom-up inventories introduced
in IMI 2.0 include worldwide emissions from hydroelectric
reservoirs (Delwiche et al., 2022), an updated gridded ver-
sion of US emissions from the EPA Greenhouse Gas Inven-
tory (Maasakkers et al., 2023), and updated global anthro-
pogenic emissions from EDGAR v8 (Crippa et al., 2023).
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Figure 5. Flowchart of the IMI 2.0 Kalman filter methodology for temporal emission updates with adaptive clustering enabled. Starting
from initial conditions and bottom-up emission inventories used as prior estimates, the IMI reduces the state vector dimension by adaptive
clustering (if desired) and conducts an inversion of TROPOMI observations for an N -day period to quantify the posterior emissions as
averages for that period. At the end of the period, the posterior emissions are nudged back towards the original prior emissions (if desired)
and used as prior estimates for the next N -day period.

Bottom-up anthropogenic inventories are reported with lag
times of a few years or more and we use as default the most
recent reported year, but this is of little consequence because
most reported anthropogenic emissions and their distribu-
tions generally vary little from year to year. Wetland emis-
sions can have large year-to-year variability but also large un-
certainties, so we use as default the monthly emissions from
the mean of the WetCHARTs inventory ensemble for indi-
vidual years (Bloom et al., 2021), which users can replace
by monthly WetCHARTs or LPJ-wsl climatologies. GFED4
open fire emissions have daily temporal resolution and are
for individual years.

3.11 Lognormal error PDFs for heavy-tailed emissions

IMI 2.0 includes an option to use lognormal error PDFs for
the prior emission estimates. The frequency distribution of
methane emissions often exhibits heavy tails that can be bet-
ter characterized using lognormal errors rather than normal
errors (Yuan et al., 2015; Cui et al., 2019). An added benefit
of using lognormal errors is that it enforces positivity in the
posterior solution (Miller et al., 2014), considering that we do
not optimize the soil sink in the IMI. Following Maasakkers
et al. (2019), we implement lognormal error PDFs for the
prior emission estimates by optimizing for the logarithm of
the emissions and otherwise using the same equations. The
forward model relating methane concentrations to the log-
arithm of emissions is nonlinear, requiring an iterative ap-
proach to find the solution through repeated update of the Ja-
cobian matrix K (Rodgers, 2000). Updates to K in log space
are readily computed through simple scaling without having
to re-run GEOS-Chem (Maasakkers et al., 2019). The itera-
tive nature of the solution increases the computational cost
dependent on the number of iterations needed to reach con-
vergence. Only the prior emission elements of the state vec-
tor in the region of interest are optimized in log space; buffer

elements, boundary conditions, and OH concentrations con-
tinue to be optimized with normal errors (Maasakkers et al.,
2019; Chen et al., 2022).

When using the lognormal error PDF option, the inver-
sion optimizes the median of the posterior PDF, starting from
the median of the prior PDF. But the prior estimates re-
ported in Table 3 should be viewed as the means of their
PDFs, with a geometric error standard deviation σg (for ex-
ample, σg = 2 states a factor of 2 uncertainty). The median
of a lognormal PDF is related to its mean by xmedian =

xmean exp[−(lnσ 2
g )/2], and we apply this correction to the

prior estimates for input to the inversion. The inversion then
returns the median of the posterior PDF with posterior error
covariance matrix in log space. We convert the median to the
mean of the posterior PDF with geometric error standard de-
viations by following the reverse of the above procedure. See
Hancock et al. (2025) for further details on the method.

3.12 Enriched output

IMI 1.0 output included gridded posterior emission esti-
mates with error standard deviations, averaging kernel sen-
sitivities, and tables of emission totals. It also compared
the GEOS-Chem simulations with posterior versus prior
emissions to the TROPOMI observations as a diagnostic of
the improved fit resulting from the inversion, with means
and spatial standard deviations of the time-averaged GEOS-
Chem–TROPOMI differences as indicators. Here we add
tabulated and gridded posterior emissions by source sectors,
using the prior sectoral contributions within individual grid
cells to assign corrections from the inversion to individual
sectors (Wecht et al., 2014). This assumes that the relative
contributions from different sectors within individual state
vector elements are correct, which is a better assumption at
high resolution because emissions within a given state vector
element are then more likely to be dominated by a single sec-
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tor. This also assumes that the prior error is the same for all
sectors, which could be improved by using sector-dependent
prior error variances (Shen et al., 2021). Sectoral output can
be further partitioned by individual countries within the in-
version domain. We also provide time series of emissions
when using temporal emission updates (Sect. 3.9). Output
for the IMI preview now includes gridded visualization of
both TROPOMI datasets (operational and blended), overlay
of point source locations (Sect. 3.6) on the map of prior emis-
sions, and visualization of estimated averaging kernel sensi-
tivities. The averaging kernel sensitivities are estimated in the
preview using the density of super-observations (Sect. 3.3)
with a modified version of the IMI 1.0 formula in Eq. (4):

aii =
σ 2
ai

σ 2
ai
+
(σsuper,i/k)2

msuper,i

, (6)

where the variables are the same as in Eq. (4) except σsuper,i
and msuper,i . σsuper,i is the observational error standard devi-
ation for state vector element i calculated as in Eq. (5) using
the average number of grid cell observations, P , within that
element over the inversion time period.msuper,i is the number
of super-observations for state vector element i over the in-
version time period. The IMI configuration file is also written
to the output directory for user reference.

3.13 IMI Docker container

IMI 2.0 includes a software container to facilitate installation
of the IMI to local systems and support scheduled inversion
workflows (e.g., once a week or once a month). A container
is a lightweight, stand-alone, and executable software pack-
age that encapsulates an application and all its dependencies,
including libraries, frameworks, and system tools. Creating
an IMI container provides a stable and reproducible envi-
ronment. It ensures that the IMI can run consistently across
different systems, such as local clusters, cloud servers, and
even local computers regardless of operating system. Once
the container is downloaded, the only dependency needed to
run the software is Docker® (a container engine). The neces-
sary input data are automatically downloaded from the AWS
cloud upon running the IMI container.

The IMI container is built in two stages: a base con-
tainer and an operational container. The base container
builds the environment and dependencies needed to run the
IMI (Python packages, forward model dependencies, system
tools). The build of the base environment is performed with
two commonly used scientific package managers, Spack™
and Micromamba™. The operational container build simply
downloads and configures the IMI source code into the con-
tainer. The operational container is built automatically via
GitHub Actions upon new IMI version releases and archived
on a publicly accessible cloud repository with download in-
structions on the IMI documentation site.

An application of the containerized IMI is to support
the US GHG Center, a multi-agency initiative to provide a
trusted repository of greenhouse gas data from models and
observations on the AWS cloud (U.S. Greenhouse Gas Cen-
ter, 2024). The US GHG Center uses a Multi-Mission Algo-
rithm and Analysis Platform (MAAP; Earthdata, 2024) cloud
environment designed to ingest containers. The IMI operates
within MAAP to provide an inversion tool as part of the US
GHG Center capabilities.

4 Example application to the contiguous United States

To demonstrate the new capabilities of the IMI, we show
an example out-of-the-box application of IMI 2.0 to quan-
tify methane emissions in the contiguous United States
(CONUS). The inversion period runs from 1 January 2023–
31 December 2023 with 28 d Kalman filter emission up-
dates and the blended TROPOMI+GOSAT observations.
The prior emissions are the defaults described in Sect. 3.10.
The Kalman filter is designed to resolve any seasonal varia-
tion not included or wrongly included in the prior estimates
(Table 3). The CONUS domain is provided as a shapefile,
and Canada and Mexico are included as 16 buffer clusters.
The inversion uses GEOS-Chem as the forward model at
0.25°×0.3125° resolution, which is therefore the native res-
olution of the state vector, corresponding to 11 698 elements
over CONUS. We apply adaptive state vector clustering to
reduce the state vector size from 11 698 to 600 elements for
each 28 d inversion interval, as described in Sect. 3.9 and il-
lustrated in Fig. 3. We apply a clustering threshold of 2.0 to
prevent a bimodal size distribution in elements with high in-
formation content, as described in Sect. 3.5. We apply a reg-
ularization parameter γ = 0.2 to prevent overfit. Other con-
figuration settings for this demo CONUS inversion are given
in Table 2.

Figure 6 shows the spatial distribution of results as re-
turned by the IMI. Starting from the EPA Gridded GHGI v2 –
Express Extension taken as the prior estimate on 1 January
2023, together with other prior estimates (Table 3), the in-
version applies mean correction factors for each 28 d period,
resulting in annual mean correction factors shown in Fig. 6.
A GEOS-Chem simulation with these posterior emission es-
timates provides a better fit to the TROPOMI data over the
inversion domain than with the prior estimates, as indicated
by the monthly mean bias and spatial standard deviation of
the 1 (GEOS-Chem–TROPOMI) difference. The averaging
kernel sensitivities returned by the inversion are highest, ap-
proaching unity, in regions of high emissions, and near zero
in regions of low emissions. They are generally higher in
summer than winter for northern CONUS because of a higher
fraction of successful TROPOMI retrievals.

Figure 7 shows the time series of CONUS 28 d emissions
and the mean annual totals by sector. The annual mean prior
emission is 34 Tga−1 and peaks in July. We find an annual
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Figure 6. Application of IMI 2.0 to a demo CONUS inversion with configuration settings given in Table 2. The inversion is for 1 year
(1 January–31 December 2023) over the CONUS domain provided as a shapefile and with buffer clusters for Canada and Mexico. Obser-
vations are from the blended TROPOMI+GOSAT product (Balasus et al., 2023). The top row shows the annual average prior emissions
(a) and correction factors from the inversion (b). The middle row shows the differences in parts per billion (ppb) between the observations
and simulated concentrations using the original prior emissions (c) and the posterior emissions (d) for each inversion interval. Mean bias and
spatial standard deviations are given in the inset. The bottom row shows the averaging kernel sensitivities for the 18 June–16 July (e) and
3–30 December (f) inversion intervals with DOFS in the inset.

mean posterior emission of 42 Tga−1 for 2023 with mean
DOFS per 28 d inversion interval of 49 and maximum emis-
sion in September. The seasonal offset from July to Septem-
ber is largely driven by wetlands, which may be explained by
WetCHARTs’ use of air temperature rather than soil temper-
ature to predict wetlands emissions. The same issue is found
for boreal wetlands (East et al., 2024). Upward corrections
to emissions are largest for livestock as well as oil and gas,
as is apparent in the posterior and prior correction patterns in
Fig. 6. Our results are broadly in agreement with the range
of emission estimates for other CONUS inverse studies (Lu
et al., 2022, 2023; Worden et al., 2022; Shen et al., 2023;
Nesser et al., 2024a). Differences could be investigated in
the IMI with sensitivity inversions swapping prior emissions,
observational products, and inversion parameters.

5 Current limitations

While IMI 2.0 introduces major improvements over IMI 1.0
and can be regarded as state of the art for methane emission

estimation using TROPOMI observations, important limita-
tions remain that will need to be addressed in future versions.
Bias in the observations is a particular concern. Operational
TROPOMI retrievals have been improving rapidly (Lorente
et al., 2023), and machine-learning-based corrections have
brought further improvements (Balasus et al., 2023; Bradley
et al., 2024), but artifacts can still remain. The independent
University of Bremen TROPOMI retrieval product (Schneis-
ing et al., 2023) will be important to include in future IMI
versions.

Observations from surface sites and aircraft campaigns can
provide independent evaluation of the posterior simulation
and this is good practice in IMI applications (Varon et al.,
2023; Hancock et al., 2025), but they could also be used as
alternative or joint datasets in the inversion and this will be
included in future IMI versions. Observations from the re-
cently launched MethaneSAT satellite instrument will also
be brought into the IMI when mature. Observations from the
growing fleet of point source imagers should be more com-
pletely exploited, the main unresolved concern being the per-
sistence of the detected point sources (Cusworth et al., 2021).

https://doi.org/10.5194/gmd-18-3311-2025 Geosci. Model Dev., 18, 3311–3330, 2025
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Figure 7. CONUS sectoral emissions for 2023 and 28 d variability as obtained by the demo inversion using IMI 2.0. Panel (a) compares
annual mean posterior and prior 2023 emission estimates by sector. Panel (b) shows the evolution of posterior sectoral emissions over 28 d
inversion intervals, along with total posterior and prior emissions. Each symbol on the prior and posterior emissions line represents the
middle of the 28 d inversion interval.

The 25 km resolution of the IMI is presently limited by the
resolution of the NASA GEOS meteorological product used
to drive the GEOS-Chem forward model. A GEOS dataset
at 12 km resolution has recently been generated and is being
applied in a prototype version of the IMI for 12 km urban in-
versions (Wang et al., 2024). Even higher resolution together
with more precise transport can be achieved in the future with
the high-performance GEOS-Chem (GCHP; Martin et al.,
2022) and by using the Weather Research Forecasting (WRF)
model to drive GEOS-Chem (WRF-GC; Feng et al., 2021).

IMI applications are presently limited to 1 month behind
real time because of the workflow in processing the GEOS
meteorological data to drive GEOS-Chem. We are working
to lift this limitation, enabling inversions up to 2–3 d behind
real time. This will provide greater capability for near-term
monitoring, but the satellite observation density will then be-
come limiting. Varon et al. (2023) found that weekly inver-
sions of TROPOMI observations could be achieved over the
Permian Basin, but this is a favorable observing environment.

The ability to quantify emissions at high resolution is an
underdetermined problem because of the limitations in ob-
servational coverage, so prior inventory estimates play an im-
portant role in guiding inversion results. Errors in the prior
distribution of emissions propagate to bias in the inversion
results (Yu et al., 2021), and errors in the contributions from
different sectors propagate to errors in sectoral attribution.

We plan to continually update the prior emission inventory
database in the IMI with improved products, such as GFEI
v3 (Scarpelli et al., 2025) and the Global Rice Production In-
ventory (GRPI; Chen et al., 2025). Error characterization in
the prior estimates is a difficult issue. Inversion results are
sensitive to the choice of prior error estimates and whether
a normal or lognormal error PDF is assumed. Spatial error
correlations in the prior estimate are also certainly present
but difficult to define and have been ignored for now.

6 Conclusions

The Integrated Methane Inversion (IMI) is a cloud-based,
user-friendly software tool for researchers and stakeholders
to infer methane emissions from TROPOMI satellite obser-
vations. Here we presented major new developments in IMI
2.0 that increase its value and reliability to quantify emis-
sions from the global scale down to 25 km resolution, also in-
corporating additional information from point source imag-
ing satellite instruments. IMI 2.0 features a capability for
low-latency monitoring of the temporal variability of emis-
sions for any user-selected region. It can be used on the cloud
or downloaded to local compute clusters. Full documentation
and a user’s manual are available at https://imi.readthedocs.io
(last access: 25 February 2025).
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The IMI is a living software tool with a steady stream of
development from scientific users. We have already launched
new developments to include (1) reducing latency to 2–3 d,
(2) increasing the spatial resolution to 12× 12km2, (3) in-
tegrating methane observations from new satellite instru-
ments (MethaneSAT), (4) incorporating information from
point source imagers (GHGSat, Carbon Mapper) directly
into the inversion, (5) adding an IMI preview tool to provide
guidance on boundary conditions, and (6) extending the IMI
to CO2. These and other developments will provide the basis
for IMI 3.0.

Code availability. The IMI source code and documentation
are available at https://imi.seas.harvard.edu/ (IMI, 2025).
The code used in this paper is permanently archived at
https://doi.org/10.5281/zenodo.14201400 (Estrada et al., 2024).

Data availability. The TROPOMI methane data are avail-
able on the Amazon Web Services (AWS) cloud at
https://registry.opendata.aws/sentinel5p/ (AWS, 2024).
The blended TROPOMI+GOSAT data are available at
https://registry.opendata.aws/blended-tropomi-gosat-methane/
(AWS, 2025a; Balasus et al., 2023). The GEOS-FP emission fields,
boundary condition fields, and meteorological fields are available
from AWS at https://registry.opendata.aws/geoschem-input-data/
(AWS, 2025b).
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