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Abstract. This study proposes using a data-driven statis-
tical model to freeze errors due to differences in environ-
mental forcing when evaluating surface turbulent heat fluxes
from weather and climate numerical models with observa-
tions. It takes advantage of continuous acquisition over ap-
proximately 10 years of near-surface sensible and latent heat
fluxes (H and LE respectively) together with ancillary pa-
rameters at the Météopole flux station, a supersite of the
Aerosol, Clouds and Trace Gases Research Infrastructure
in France (ACTRIS-FR), located in Toulouse. The statisti-
cal model consists of several multi-layer perceptrons (MLPs)
with the same architecture. A total of 13 variables character-
izing environmental forcing in the surface layer on an hourly
timescale are used as input parameters to estimate the ob-
served H and LE simultaneously. The MLPs are trained us-
ing 5-year observational data under a 5-fold cross-validation.
The remaining data are used to test the estimates under un-
known conditions. The performance of the statistical model
ranges within the state-of-the-art surface parameterization
schemes on hourly and seasonal timescales. It also has a good
generalization ability, but it hardly estimates negative H and
large LE. A case study is conducted with data from a regional
climate simulation. The statistical model is used to evaluate
the simulated fluxes in the simulated environment to better
examine the flaws of their numerical formulation through-
out the simulation. Comparison of simulated fluxes with ob-
served and MLP-based fluxes shows different results. Ac-
cording to MLP-based fluxes in the simulated environment,

the land surface scheme of this climate model tends to un-
derestimate large sensible heat flux. Thus, it incorrectly parti-
tions between surface heating and evaporation during the late
summer. Our innovative method provides insight into differ-
ent techniques for evaluating simulated near-surface turbu-
lent heat fluxes when a long period of comprehensive obser-
vations is available. It can usefully support ongoing efforts to
improve surface parameterization schemes.

1 Introduction

Surface sensible heat (H ) and latent heat (LE) fluxes de-
scribe the surface–atmosphere exchanges of heat and mois-
ture (Stull, 1988). They are major terms of the surface energy
budget (SEB) and key drivers of atmospheric boundary layer
(ABL) processes, such as turbulent mixing and convective
cloud formation. Numerical models are important tools for
weather forecasting and climate projection. Due to the coarse
spatio-temporal resolution of operational weather and cli-
mate numerical models, the surface turbulent heat fluxes are
computed with the help of surface parameterization schemes,
which have different levels of sophistication. The correct for-
mulation of turbulent heat fluxes in these schemes is neces-
sary for properly simulating the surface–atmosphere interac-
tions. However, the representation of convection and surface
processes is the most important source of systematic biases
in numerical simulations (Zadra et al., 2018; Frassoni et al.,
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2023). Therefore, it is of paramount importance to develop
improvements, and evaluation is crucial to provide guidance.

Surface parameterization schemes, particularly their for-
mulation of H and LE, are typically evaluated using two
main approaches (Henderson-Sellers et al., 1996). The first
involves carrying out full numerical simulations in which
meteorological forcing at the surface and turbulent heat
fluxes interact mutually. The simulated turbulent heat fluxes
are then directly confronted with observations. If this ap-
proach is useful for evaluating the overall skill of numeri-
cal models, it cannot unambiguously assess the formulation
of heat fluxes. Indeed, it blends biases from several other
factors, such as inaccuracies in simulated weather condi-
tions (cloudiness, temperature, moisture, wind, etc.), incon-
sistencies in landscape in the numerical model (e.g., vegeta-
tion and soil characteristics), the lack of representativeness
of local measurements with respect to the model grid scale,
and uncertainties in measurements itself (i.e., non-closure of
SEB, Mauder et al., 2020). These last two limits are usu-
ally not taken into account in comparisons, while diverse
strategies have been proposed to get rid of the biases related
to weather conditions, for example by investigating the re-
lationships between turbulent heat fluxes and driving atmo-
spheric variables (e.g., Zhou and Wang, 2016; Bastin et al.,
2018) or focusing on clear-sky conditions (e.g., Arjdal et al.,
2024). In the second approach, the surface scheme is exter-
nalized to the numerical model to suppress the biases from
other components. The turbulent heat fluxes are then com-
puted thanks to input from observations or reanalysis. The
main limitation is that the crucial influence of the turbu-
lence fluxes on the weather conditions is turned off. More-
over, surface representation is problematic since several re-
quired properties (roughness length, soil and vegetation pa-
rameters, etc.) are not routinely measured. The use of their
default or empirical values is an additional source of uncer-
tainty (Liu et al., 2013). The intrinsic limitations of these two
approaches demonstrate the need for another approach to re-
liably evaluate the numerical formulation of turbulent heat
fluxes.

In recent years, machine learning techniques have seen a
tremendous expansion in weather and climate sciences (de
Burgh-Day and Leeuwenburg, 2023), driven by unrivalled re-
sults and infinite possibilities. Because of their ability to act
as universal approximators (Cybenko, 1989; Hornik et al.,
1989), artificial neural networks (ANNs) have emerged as
a powerful tool in machine learning for data-driven statisti-
cal modeling (Goodfellow et al., 2016). They can effectively
model a broad range of complex relationships for quantitative
approximations, such as multivariate classification and re-
gression (Zhang, 2008; Kruse et al., 2013). ANNs are gener-
ally used to overcome the limitations of classical approaches.
Several studies have explored the use of ANN-based estima-
tors for replacing numerical atmospheric models or some of
their components (e.g., Bonavita and Laloyaux, 2020; Gen-
tine et al., 2018; Knutti et al., 2003; Sarghini et al., 2003;

Vollant et al., 2017). In the study of Abramowitz (2005),
a trained ANN with observational data is used as a bench-
mark to objectively assess how well a land surface scheme
should perform in estimating turbulent heat and net CO2
fluxes. Recently, Leufen and Schädler (2019) estimated the
scaling quantities needed in some surface parameterization
schemes to calculate momentum and sensible heat fluxes us-
ing an ANN-based model driven by meteorological factors.
The ANN has learned from multi-year comprehensive data
collected over several types of landscapes (grassland, forest,
etc.). They obtained satisfying results when this ANN was
implemented to replace the similarity functions in a one-
dimensional stand-alone land surface model. In the field of
hydrology, ANN-based models are increasingly being em-
ployed to estimate reliable evapotranspiration for near-real-
time monitoring of crop water demand (Kumar et al., 2011;
Kelley et al., 2020; Kelley and Pardyjak, 2019). The growing
availability of comprehensive data from atmospheric obser-
vatories offers an opportunity to explore ANN-based meth-
ods to better evaluate the numerical formulation of surface
H and LE, particularly within the framework of full simula-
tions, which is the ultimate goal of numerical models.

The Model and Observation for Surface-Atmosphere In-
teractions (MOSAI) project (Lohou et al., 2022) seeks to en-
hance the understanding of surface–atmosphere interactions.
The key objectives are to address the issue of observation
representativity and uncertainty, encourage the development
of novel methods to better compare simulations with obser-
vations, and improve surface heat flux parameterization over
heterogeneous surfaces. This paper is a contribution to the
second objective. It proposes a novel method to diagnose
the errors of numerical models in their formulations of H
and LE. The idea is to exploit the capabilities of machine
learning techniques on multi-year continuous observational
data, rather than performing a classical direct comparison of
simulated fluxes against observed fluxes. We present a pi-
lot study that uses data collected during several years at a
permanent French station, operational since June 2012, for
evaluating turbulent heat fluxes in a climate numerical model
over the period from 1 January 2012 to 31 December 2016.
Section 2 presents the proposed evaluation approach, which
involves using observational data to build a data-driven sta-
tistical model that approximates observed H and LE. The
data and methods of our experimental setup are described
in Sect. 3. Section 4 discusses the performance of the data-
driven model in observed conditions. In Sect. 5, the data-
driven model is applied to simulated conditions to better
identify the flaws in the numerical formulation of turbulent
heat fluxes. Finally, Sect. 6 delivers a conclusion.

2 Justification and objectives

The surface turbulent heat fluxes are primarily governed by
the net radiative flux (Rnet), which is the algebraic sum of in-
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coming (↓) and outgoing (↑) longwave (LW) and shortwave
(SW) radiations. Their magnitude is strongly linked to ther-
modynamic and dynamical conditions in the surface layer, a
thin atmospheric layer immediately above the ground where
turbulent fluxes are approximately constant. The fluxH is re-
sponsible for removing/depositing heat from/to the ground,
and LE is the energy exchanged through phase changes of
water from liquid (or ice) to vapor. H and LE are therefore
closely linked to the vertical gradients of temperature and
humidity in the surface layer. The relative predominance be-
tween H and LE depends on surface characteristics (vege-
tation and soil moisture). LE is predominant over wet sur-
faces and vice versa. The solar heating and annual evolution
of land cover induce diurnal and seasonal cycles of turbulent
heat fluxes. Thus, the turbulent fluxes result from complex
non-linear relationships between meteorological factors, sur-
face cover, and soil conditions.

The vast majority of numerical formulations of turbulent
heat fluxes relies on the validity of the Monin–Obukhov sim-
ilarity theory (MOST) in the surface layer, which assumes
horizontally homogeneous terrain and fair and steady-state
atmospheric conditions. The fluxes are then expressed in
terms of the vertical gradient of the corresponding thermo-
dynamic scalar (temperature for H and humidity for LE)
in the surface layer, along with various parameters describ-
ing ground wetness and roughness. The weather and climate
models usually apply MOST between the ground and the first
atmospheric level above, considered the top of the surface
layer (Liu et al., 2013). However, the relevance of this theory
in grid cells with heterogeneous land use is highly question-
able.

Another fundamental relationship, usually used in numer-
ical models, is the conservation of SEB as follows:

Rnet =H +LE+G, (1)

where G is the ground heat flux. However, this conservation
is rarely verified whenH and LE are measured with an eddy-
covariance (EC) method, the most recent and reliable tech-
nique (Mauder and Foken, 2004; Wolf et al., 2008; Aubinet
et al., 2012). Indeed, the available energy Rnet−G is very
often greater than the total turbulent flux H +LE, especially
over a heterogeneous surface (Hu et al., 2021; Mauder et al.,
2018; Foken et al., 2011). This imbalance can be quantified
by the residual energy (RES).

RES (%)= 100 ·
(Rnet−G)− (H +LE)

Rnet−G
(2)

Thus, the discrepancies in simulated and observed surface
turbulent heat fluxes could stem from inconsistencies in sur-
face representativeness, process parameterization, or obser-
vational and modeling biases. Therefore, a direct comparison
is less useful in identifying the weaknesses of the surface pa-
rameterization scheme for the formulations ofH and LE. The
study by Abramowitz (2005), based on observational data, is

the first to use a data-driven statistical model to reliably as-
sess land surface schemes. Inspired by the methodology of
this study, we propose an evaluation approach specifically
devoted to full numerical simulation that realistically repre-
sents the interplay between surface turbulent heat fluxes and
environmental factors. This approach consists of two suc-
cessive phases that are illustrated in Fig. 1. At first, a long
period of observations of turbulent heat fluxes and relevant
environmental factors is needed to build a data-driven statis-
tical model that approximates observed heat fluxes. It can be
regarded as a parameterization without any simplifying as-
sumptions. Then, the application of this statistical model to
the simulated environment generates the fluxes that would
have been observed under this environment from a statisti-
cal point of view. Thus, by comparing simulated heat fluxes
with corresponding statistically based fluxes for the same en-
vironment, the biases from other components of the numer-
ical model are frozen. This allows us to better isolate the
weaknesses in the formulations of H and LE or in the sur-
face parameters and characteristics. The problems of obser-
vation representativeness and uncertainty are not addressed
here. However, RES is used as an indicator of the reliability
of the observation in our analysis. The use of an indicator of
the representativeness of the observation is also in develop-
ment but is out of the scope of this paper.

3 Experimental setup

3.1 Observational data

This pilot study is based on high-temporal-resolution data
gathered over several years at the Météopole (43.57° N,
1.374° E; 157 ma.s.l.; Etienne, 2022), a measurement
site hosted by the Centre National de Recherches
Météorologiques (CNRM) in Toulouse, France. This site, op-
erated by Météo-France, is part of the Aerosol, Clouds and
Trace Gases Research Infrastructure in France (ACTRIS-
FR). The observation facility consists of several colocated
ground-based instruments installed in a large grass field.
Starting from 24 November 2012, the surface energy bud-
get and the corresponding environmental forcing (soil and
overlying meteorological conditions) are continuously doc-
umented through a comprehensive set of measurements; the
most relevant for our study are listed in Table 1. In addition
to turbulent fluxes H and LE, these include the four com-
ponents of the radiative budget, ground heat flux (G), air
temperature (T ), relative humidity (RH) at two conventional
heights 2 and 10 ma.g.l. (above ground level), surface pres-
sure (SP) and rainfall (RR), and soil volumetric water con-
tent (SWC). The surface and soil temperature are also mea-
sured at the Météopole station, but there is a lack of data
before 12 July 2015. We thus decided not to use these mea-
surements to avoid limiting the number of samples, which is
crucial when building a data-driven statistical model. Sensi-
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Figure 1. Schematic illustration of our proposed evaluation method. Several years of comprehensive observational data are first utilized to
build a data-driven model that statically estimates observed turbulent fluxes (H and LE) along with environmental factors (MLPOBS). This
data-driven model is then applied to approximate the fluxes that could potentially be observed in the simulated weather conditions (MLPGrd).
Thus, comparing the simulated fluxes (SIMGrd) with MLPGrd enables a relevant identification of weaknesses in their numerical formulations.

tivity analysis indicates no significant loss of key information
concerning the variability in H and LE.

The fluxes H and LE are measured with the EC method
(Aubinet et al., 2012) by high-frequency measurements
(20 Hz) of three-dimensional components of the wind,
T , and water vapor specific humidity (q) with a sonic
anemometer and a rapid hygrometer mounted at 3.7 ma.g.l.
Eventually, EddyPro 7 software (https://www.licor.com/env/
support/EddyPro/software.html, last access: 10 April 2025)
is utilized to compute turbulent heat fluxes at a half-hour tem-
poral resolution. Each of these observed fluxes is accompa-
nied by a quality flag by Mauder and Foken (2004) that ranks
the measurement into three categories: 0 for high quality, 1
for suitable to be used for research, and 2 for should not be
used. Moreover, the rapid hygrometer’s accuracy (LI-COR
7500 open path) is highly degraded in wet conditions (fog or
rain event). Therefore, the turbulent fluxes are normally not
estimated under these conditions, based on the sensor detec-
tion of rainfall occurrence. However, wrong measurements
could still be performed, as an accumulation of liquid water
persists on the sensor.

The environmental parameters are originally acquired ev-
ery minute and finally archived as half-hourly averages,
matching the temporal resolution of turbulent fluxes. Jomé
et al. (2023) analyzed the contribution of the surrounding
land cover types to the turbulent heat fluxes measured at the
Météopole station. It was found that the contribution of grass
cover ranges between 80 % and 90 %, with the remaining
contribution coming mostly from urbanized areas. The obser-
vational data from the Météopole station are freely available
via the AERIS platform (https://www.aeris-data.fr/, last ac-

cess: 10 April 2025). This database undergoes several quality
controls and is regularly updated after an annual exercise.

This study is based on the data collected until 23:30 UTC
on 31 December 2022, which represent nearly 10 consecutive
years of monitoring. The corresponding database contains
117782 half hours for which the required measurements (Ta-
ble 1) are simultaneously available, i.e., almost 66.5 % of the
samples expected since 00:00 UTC on 24 November 2012.
The lack of data is mainly due to the absence of observed tur-
bulent fluxes, mostly under wet conditions. Since the quality
and amount of the data on which the data-driven statistical
model is built determine its performance, several consider-
ations were applied to select the samples with the most re-
liable measurements. Firstly, only H and LE with a quality
flag of 0 or 1 (Mauder and Foken, 2004) were selected. Due
to the strong evolution of continental turbulent heat fluxes
throughout the day, several authors have preferred to evalu-
ate numerical simulations under well-established diurnal cy-
cles (e.g., Román-Cascón et al., 2021). For the final selec-
tion, we then considered sampling on a daily scale. The half-
hourly data included in our analyses are collected during the
diurnal cycles (starting at 00:00 UTC) that fulfill the follow-
ing three conditions: (i) they are described by at least half of
the expected samples (i.e., 24/48 of pre-selected samples);
(ii) the daily cumulative rainfall is less than 5 mm; and (iii) all
the items of Pearson’s correlation coefficient matrix between
H,LE, and SW↓ are greater than 0.6. The last two criteria
are a compromise to preserve a reasonable number of sam-
ples while reducing the amount of data possibly impacted
by wet conditions. This leaves us with 80683 half-hourly
samples (around 69 % of all available samples), document-
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Table 1. Observational data from the Météopole station used in this study. A negative height corresponds to a soil depth.

Variables Height of acquisition (ma.g.l.)

Surface upward/downward long-/shortwave components 10
Turbulent heat fluxes (H and LE) and horizontal wind components (u,v) 3.7
Air temperature (T ) and relative humidity (RH) 2 and 10
Surface pressure (SP) and rainfall (RR) –
Ground heat flux (G) −0.05
Soil volumetric water content (SWC) at 16 levels, the first at −0.1

ing 2274 diurnal cycles. Figure 2a shows the distribution of
these samples per year, and Fig. 2b presents the distribution
of the corresponding diurnal cycles per month. None of these
diurnal cycles was fully sampled; the rate of data availability
is around 74 % on average. The annual cycles from 2015 to
2021 are relatively well sampled. The selected diurnal cycles
are homogeneously distributed throughout each year, mean-
ing that the four typical seasons (winter, spring, summer, and
autumn) are represented well. There are no selected samples
from June to September 2022 (Fig. 2b) due to missing data
of LW↑.

3.2 Numerical model data

To test our proposed evaluation method, we used data from
an existing climate simulation, carried out with the regional
Earth system model of the Institut Pierre-Simon Laplace
(RegIPSL). Within the settings of this model, the land sur-
face model ORganising Carbon and Hydrology In Dynamic
EcosystEms (ORCHIDEE; Krinner et al., 2005) provides
the bottom boundary conditions for the continental surface
to the atmospheric model, Weather Research and Forecast-
ing v3.7.1 (WRF; Skamarock et al., 2008). The simulation
has been carried out within the framework of the Mediter-
ranean Coordinated Regional Climate Downscaling Experi-
ment (Med-CORDEX) initiative (Ruti et al., 2016) and the
European Climate Prediction (EUCP) system H2020 project
(Coppola et al., 2020). It covers the Euro-Mediterranean
area with a horizontal resolution of 20 km on a Lambert-
conformal projection and spans 1 January 1979 to 31 Decem-
ber 2016. The atmospheric vertical column was discretized
by 46 hybrid sigma–pressure levels (full eta levels), with
16 levels roughly in the first 2 kma.g.l. The soil column,
which extends to 2 m below the ground, was subdivided by
11 nodes, with 7 nodes located within the first 15 cm. For
more details, the reader can refer to the studies of Guion et al.
(2022), who used this climate simulation to assess the impact
of droughts and heat waves on vegetation and wildfires in the
western Mediterranean, and Shahi et al. (2022), who used the
RegIPSL model to analyze the added value of a convective-
permitting climate simulation over the Iberian Peninsula.

The landscape in ORCHIDEE was categorized into 13
main classes, including bare soil and 12 plant functional
types (PFTs: eight for forests, two for grasslands, and two

for croplands). The total proportion of the grid cell occu-
pied by each class remained constant throughout the simula-
tion. Nonetheless, for PFTs, the proportion effectively occu-
pied by vegetation was allowed to vary, and the non-occupied
fraction was defined as bare soil (Ducharne et al., 2018; Al-
léon, 2022). The bare soil fraction is assumed to contain the
urbanized areas. For simulating the surface processes, OR-
CHIDEE requires several environmental parameters, includ-
ing surface precipitation and downward SW and LW, as well
as air temperature, humidity, and wind just above the ground.
These were taken at the lowest vertical level of WRF, located
within 20 ma.g.l. The near-surface turbulent heat fluxes are
computed using bulk aerodynamic formulations (Ducoudré
et al., 1993; Krinner et al., 2005; Alléon, 2022) in an implicit
surface–atmosphere coupling (Polcher et al., 1998). Several
other useful parameters are also computed, such as surface
temperature (TS), surface albedo, and emissivity, which are
needed to calculate the upwelling components of the radia-
tive budget. The calculations are performed at the grid cell
scale, by aggregating its landscape into three soil tiles: one
for the forest, one for grass and crops, and one for the bare
soil. The aerodynamic parameters of the grid cell correspond
to the averaged parameters weighted by the effective areal
fraction of each soil tile.

The raw output data of this climate simulation have been
post-processed, and a variety of specific variables describing
atmospheric and land surface conditions have been archived
for further use. These include atmospheric variables on half-
eta levels (M) such as q, potential temperature (θ ), and hor-
izontal wind components (u and v). The surface data in-
volve skin temperature TS,SP, precipitation rate, H and LE,
the four components of the radiative budget, and the under-
ground liquid water content. The most conventional meteo-
rological variables, such as T and RH at 2 ma.g.l., are also
available. The data were stored at a 3 h temporal resolution
for all variables except for the underground liquid water con-
tent. Specifically, the turbulent heat and radiative fluxes are
3 h time-centered averages, labeled at 01:30, 04:30, 07:30,
10:30, 13:30, 16:30, 19:30, and 22:30 UTC. Meanwhile, at-
mospheric variables at half-eta levels, qM ,uM , and vM , as
well as those near the surface, TS,SP,T2 m, and RH2 m, are
nearly instantaneous at 00:00, 03:00, 06:00, 09:00, 12:00,
15:00, 18:00, and 21:00 UTC. The underground water con-
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Figure 2. (a) Number of remaining half-hourly samples and diurnal cycles per year after the selection over the period from 24 November
2012 at 00:00 UTC to 31 December 2022 at 23:30 UTC (see text for details) and (b) monthly distribution of these diurnal cycles. The
rate of availability is the ratio of the selected half-hourly samples (second column) over the number of samples which fully describe the
corresponding diurnal cycles (48 samples, third column). The data of the 5 most covered years (in bold, a, with a black cross at the bottom,
b) composed the learning set, and the other years are used as the test set.

tent is archived daily and consists of the height of liquid wa-
ter within various sublayers, each containing one node.

It would be very interesting to extract the simulation data
at a grid cell with a landscape composition that resembles the
landscape contribution to the turbulent heat fluxes measured
at the Météopole station, as found by Jomé et al. (2023). This
grid cell should also be geographically close to the station to
preserve the local behavior of atmospheric forcing. However,
for all the grid cells located within a distance of 60 km to the
station coordinates (e.g., 3 times the simulation horizontal
resolution), at least 50 % of the surface is covered by crops
and forest PFTs. The areal fraction of grass PFTs ranges from
10 %–21 %. The simulation data are then extracted at the two
nearest grid cells to the Météopole site, as is usually done.
Figure 3 shows their landscape composition. The proportion
of bare soil and crops is respectively greater and smaller in
the closest grid cell (Grd1, Fig. 3b). Only the simulation cov-
ering the period from 1 January 2012 (the first year of heat
flux measurements at the Météopole station) to 31 Decem-

ber 2016 is considered. This period coincides with the se-
lected observation period from 24 November 2012. For con-
sistency with radiative and heat fluxes, the time-centered av-
erages of qM ,θM ,uM ,vM ,TS,SP,T2 m, and RH2 m are used.
SWC at the soil nodes is calculated as the ratio of liquid wa-
ter height to the thickness of the corresponding sublayer. For
each node, the value of SWC at a given day is assigned to
every 3 h timestamp of that day. Similar to the selected ob-
servational data, the days with cumulative rainfall exceeding
5 mm were excluded, reducing the simulation data by around
15 %.

3.3 The data-driven statistical model

Since the fluxesH and LE are continuous variables, our prob-
lem is formulated as multivariate regression settings. There
are several ways to perform regression with ANNs. The eas-
iest is to exploit the most basic ANN, the feed-forward net-
work, also known as the multi-layer perceptron (MLP). Due
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Figure 3. (a) The RegIPSL grid mesh (black stars) around the ge-
ographical location of the Météopole site (red circle). The dashed
lines indicate the administrative subdivisions. The two nearest grid
cells (Grd1 and Grd2) are highlighted with red edges. (b, c) Land-
scape composition in these two grid cells, with Grd1 (b) being the
closest.

to its exceptional ability to approximate complex multivari-
ate functions, MLP has become the most widely used type of
ANN. Accordingly, our data-driven statistical model is built
using MLP. This section begins by briefly introducing this
type of ANN. Subsequently, the implementation of the sta-
tistical model with half-hourly observational data is detailed.
Finally, the challenges involved in its application to the data
from climate simulations are outlined.

3.3.1 The multi-layer perceptron

The elementary unit of ANNs is the mathematical neuron
(Rosenblatt, 1960), which is illustrated in Fig. 4. It is a nu-
merical computational unit that receives information through
synaptic connections characterized by weights (w) and pro-
vides a response using an activation function (f ) and a bias

Figure 4. Schematic illustration of a mathematical neuron (adapted
from Zhang, 2008): xi and wi correspond to its numerical inputs
and synaptic weights respectively, whereas o is the response based
on its activation function (f ) and bias (b). This latter is schematized
by an input variable with a value and weight equal to +1 and b
respectively.

(b), as follows:

o= f

(
b+

N∑
j=1

wj · xj

)
, (3)

where N is the number of input variables. In general, the
input data of f and its output range within [−1,1]. The neu-
ron’s behavior, either linear or non-linear, is defined by its
activation function. Although there are many types of ac-
tivation functions, sigmoid-like functions (e.g., logistic and
hyperbolic tangent) and the identity function are commonly
used for regression (Zhang, 2008).

The MLP is a supervised ANN, which consists of fully
interconnected neurons organized in successive layers (see
Fig. 5 for illustration). These layers include an input layer to
receive the predictors, an output layer to get the outcome, and
at least one intermediate layer between them – the so-called
hidden layer(s). There is one neuron per input and output
variable. The neurons in the input layer just carry the data
without any calculations. The hidden layer(s) form the com-
putational core of MLP. Although the topography of hidden
layers (number of layers and neurons) has an impact on the
network’s capability to approximate the relationships, there
is not yet a universal rule defining the most suited topogra-
phy for a given problem. Thus, finding an appropriate con-
figuration for hidden layers (number of layers and neurons)
is generally a non-trivial and uphill task with expensive com-
putational costs.

As a supervised ANN, MLP acquires knowledge about
its task through a learning stage. During this stage, the net-
work is provided with examples of paired predictors and de-
sired outputs, and its weights and biases adjust accordingly.
The MLP’s understanding of physics laws then entirely re-
lies upon the quality and amount of data on which it has
learned. Thus, the more consistent the examples, the greater
the chances of the MLP being accurate over unseen input
data. The learning data are usually separated into two disjoint
subsets: training and validation. The MLP weights and biases
are updated using a backpropagation optimization technique,
which minimizes an error metric calculated on the training
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Table 2. The 13 MLP input variables, derived from observational data and their equivalent extracted from RegIPSL data. dd,1h, and Ny
included in the expressions of the temporal coordinates are the Julian date, hours relative to sunrise on dd, and number of days in the year
respectively.

Observations RegIPSL

Radiative forcing at the surface

Rnet Rnet

Thermodynamics and dynamics in the surface layer

– θsl =
θ10 m+θ2 m

2 ; 1θ = 1θ
1z

∣∣∣10 m

2 m
– θsl = θM=1; 1θ = 1θ

1z

∣∣∣M=1

surface

– qsl =
q10 m+q2 m

2 ; 1q =
1q
1z

∣∣∣10 m

2 m
– qsl = qM=1; 1q =

1q
1z

∣∣∣M=1

2 m

– [u,v]sl = [u,v]3.7 m; 1U = 1U
1z

∣∣∣3.7 m

surface
– [u,v]sl = [u,v]M=1; 1U = 1U

1z

∣∣∣M=1

surface

Underlying soil wetness

SM= SWC−10 cm SM= SWC−12.3 cm

Temporal coordinates

– dx = cos
(

2π · dd
Ny

)
; dy = sin

(
2π · dd

Ny

)
– dx ; dy

– hx = cos
(

2π · 1h24

)
; hy = sin

(
2π · 1h24

)
– hx ; hy

Figure 5. Architecture of the MLP used in this study. The input
variables are described in Table 2.

data between the MLP outputs and the desired values. The
mean square error (MSE) is the common error metric (Zhang,
2008) for regression. In general, there are three modes in
which backpropagation optimization may be applied: (i) the
“online” mode, in which the network weights and biases
are updated for each example in the training set; (ii) the
“batch” mode, in which all the training data are considered

at once; and (iii) the “mini-batch” mode, which is a mixture
of the first two and achieves their advantages while limiting
their inconveniences. The training data are subdivided into
a smaller fixed number of samples (the mini-batch), which
are used for modifying weights and biases. The default mini-
batch size is 32. Another key parameter of the learning stage
is the number of training data passages through the network,
also called epochs (Chicco, 2017; Zhang, 2008; Kruse et al.,
2013). Indeed, with small epochs, the network would not un-
derstand the complexity of the data, leading to an underfit-
ting. By contrast, large epochs may lead to overfitting; the
network would capture all the details of the training data
while performing badly on unknown data. The validation
data serve to assess the network performance during the up-
dating of its weights and biases. Thus, a fairly large number
of epochs can be considered to prevent underfitting, while
early stopping is applied when performance on the valida-
tion set no longer improves, thereby avoiding overfitting.

Thus, the implementation of MLP can be split into three
main points:

i. Define a set of relevant predictors based on the variables
to be approximated.

ii. Select learning data such that they would contain suffi-
cient examples to statistically describe the relationships
between predictors and targeted variables.

Geosci. Model Dev., 18, 3211–3239, 2025 https://doi.org/10.5194/gmd-18-3211-2025



M. Zouzoua et al.: Using a data-driven statistical model to better evaluate surface turbulent heat fluxes 3219

iii. Find a suitable MLP setting (topology of hidden
layer(s), activation function, etc.) through sensitivity ex-
perimentation.

Before processing with MLP, data should be scaled (i) for
consistency with f and (ii) to circumvent the relevance of
variables due to their magnitude. Moreover, the backpropa-
gation algorithm is stochastic, which often leads to variability
in the final weights and biases of MLP each time the network
is retrained with the same data. Indeed, the final state may
correspond to a local minimum of the error metric (Zhang,
2008). Although the difference between the MLP outputs is
usually slight, it can be annoying not to get the same re-
sults. The ensemble learning approach (Ganaie et al., 2022)
may limit the instability of the MLP-based estimates and
get closer to the optimal estimate. Instead of training a sin-
gle MLP, this approach involves training multiple MLPs and
then averaging their outputs for regression problems. One of
the standard strategies for generating these MLPs is bagging
(Breiman, 1996; Khwaja et al., 2015); a base MLP is trained
on a redistributed version of the original training or learning
set.

3.3.2 Implementation

In this work, each MLP is implemented using TensorFlow-
Keras (version 2, Abadi et al., 2016), a Python library specif-
ically designed for ANNs, known for its user-friendly inter-
face. Unless otherwise mentioned, the default parameters are
used. The three points mentioned above are addressed as fol-
lows:

i. As MLP predictors, we use 13 variables that can be
derived from observational and simulation data while
still having the same physical meaning. Their formula-
tions are shown in Table 2. Indeed, H and LE are the-
oretically quasi-constant within the surface layer and
strongly related to near-surface radiative, thermody-
namic, and dynamical forcing. Moreover, their rela-
tive predominance is controlled by the wetness of the
uppermost part of the soil. In numerical simulations,
the atmospheric level just above the ground is usu-
ally the top of the surface layer. Therefore, consider-
ing the observed variables in Table 1 and the variables
from the simulation that have been archived, we de-
rived a set of nine physical variables that may analo-
gously summarize the environmental forcing in the sur-
face layer. They include the radiative-energy-governing
surface processes (Rnet), the meteorological conditions
in the surface layer (θsl,1θ ,qsl,1q ,usl,vsl,1U ), and
the moisture in the uppermost soil layer (SM). Eventu-
ally, four trigonometric temporal coordinates are added
to describe seasonal (dx,dy) and diurnal (hx,hy) cy-
cles. Under the observed environment, SM is defined
by SWC−10 cm (the first depth of soil moisture measure-
ments), and the meteorological variables are calculated

assuming that the surface layer always extends above
10 ma.g.l. For the simulated environment, SM then cor-
responds to SWC−12.3 cm (the nearest node to the mea-
surement depth). Diagnostic variables derived from nu-
merical simulation (T2 m,RH2 m) are susceptible to con-
taining bias due to the interpolation technique and the
inconsistency of terrain elevation. To avoid these uncer-
tainties, the meteorological variables are taken directly
at the first half-eta level (M = 1, around 8 ma.g.l.) as
much as possible. In both observed and simulated envi-
ronments, 1U is calculated assuming a null horizontal
wind speed at the ground. Due to missing data, the sun-
rise hour required to compute hx and hy was retrieved
using the astral package (version 3.0) and rounded to
the nearest half hour.

ii. To train the statistical model over as many multivariate
cases as possible, the half-hour observational data from
the 5 most covered years (Fig. 2) were gathered as the
learning set. The remaining data were reserved for as-
sessing the model’s ability to generalize, referred to as
the test set.

iii. Since H and LE are complementary fluxes and to avoid
excessive sensitivity experiments in search of a relevant
architecture for MLP, the neurons in the output layer
were set to two, one for each flux. Following the liter-
ature (Kumar et al., 2011; Leufen and Schädler, 2019;
Kelley and Pardyjak, 2019; Kelley et al., 2020), hyper-
bolic tangent and identical functions were used as the
activation functions for neurons of the hidden and out-
put layers respectively. The weight and bias optimiza-
tion was carried out with the Adam AMSGrad back-
propagation algorithm (Kingma and Ba, 2017; Reddi
et al., 2019) in a default mini-batch mode, and MSE was
chosen as the error to minimize. Based on preliminary
results, we opted for the same strategy of network train-
ing used by Leufen and Schädler (2019). The network
update stops at most after 1000 epochs. Otherwise, the
update is stopped early if the MSE on the validation data
does not improve after 50 successive epochs, and then
the network state is finally set to the epoch with the best
MSE.

The input and output data are scaled to the interval [0,1],
similarly to Leufen and Schädler (2019), as follows:

x̃ =
x− xmin

xmax− xmin
, (4)

where xmin and xmax correspond to the extreme values. They
are set to the theoretical values of the trigonometric functions
(e.g., −1 and 1 respectively) for the four temporal coordi-
nates. For the other nine physical parameters, these values
are set so that the resulting interval strictly holds both the
observational and the RegIPSL data (see Fig. A1 in the Ap-
pendix).
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The MLP base architecture used in this study involves
two hidden layers with four and three neurons respectively
(Fig. 5). This was found through several series of sensitivity
experiments with the learning set (not shown). A bagging-
based strategy was used to account for the strong inter-annual
variability of H and LE in their statistically based estimates.
Indeed, a 5-fold cross-validation (Andersen and Martinez,
1999) with year-wise data splitting was applied to the learn-
ing set to generate 55 bagged MLPs. Cyclically, the data from
1 year were used as the validation set, whilst the others com-
posed the training set, and 11 MLPs were trained by ran-
domly initializing weights and biases along with a shuffling
of the training data before composing mini-batch subsets. In
this way, each example in the learning set was used at least
once as validation or training data. Even though the number
11 was arbitrarily chosen based on the available computing
resources, it ensures the repeatability of estimates. Thus, the
statistically based estimates of observed fluxes are the aver-
age across the individual MLP outputs. In the following, we
refer to these as MLP-based fluxes or estimates.

3.3.3 Application to data from numerical model

The MLP-based model is built using half-hour observational
data to take advantage of more samples. After that, it is ap-
plied to the 3 h simulation data to provide H and LE that
are likely to be observed in the simulated environment. This
assumes that simulated and observed environments share a
common space, and the learning data represent that space.
On one hand, the difference in temporal resolution could in-
troduce artificial errors that might impact both the statistical
model’s performance and the comparison results. These po-
tential impacts are discussed at the beginning of Sect. 5. On
the other hand, if the simulated environment does not have
similar structures (distribution and interval ranges of input
variables) to the observations, the statistical model may per-
form poorly. Indeed, MLP has a good interpolation capabil-
ity but may not correctly extrapolate beyond the ranges of
values it has learned (Bonnasse-Gahot, 2022). Yet, for four
of the nine physical variables (1θ ,1q ,usl, and vsl), the sim-
ulation data spread beyond the observed values (Fig. A1).
A rigorous application of machine learning techniques re-
quires the use of transfer learning to mitigate performance
loss when a trained ANN is applied to data originating from
another source (Day and Khoshgoftaar, 2017). Since the ob-
served H and LE associated with the simulated environ-
ment are unknown, the most challenging transfer learning
approach, unsupervised domain adaptation, would normally
be used in our case. Numerous methods are available for
achieving unsupervised domain adaptation. We tried the eas-
iest and most popular methods over the simulation input data,
such as correlation alignment (Sun et al., 2016), feature aug-
mentation (Daumé III, 2009), subspace alignment (Fernando
et al., 2013), transfer component analysis (Pan et al., 2011),
and feature selection (Uguroglu and Carbonell, 2011) as im-

plemented in the ADAPT library (version 0.4.2, de Mathe-
lin et al., 2023). We either get unreasonable fluxes, particu-
larly in stable conditions, or have fluxes that vary from one
method to another, so it is hard to conclude the most suitable
method. The most sophisticated methods require the use of
an encoder, which may be an ANN, with the laborious and
time-consuming task of finding its appropriate configuration.
Further investigations are then needed to find a suited unsu-
pervised domain adaptation method, but that is beyond the
scope of this paper.

At this stage, our proposed evaluation method does not
yet include any transfer learning method. Under the tradi-
tional assumption that training and testing data come from
the same distribution and input space (Aggarwal, 2014), the
MLP-based statistical model is directly applied to simula-
tion data. Nonetheless, to gain insight into performance loss,
the relative contribution of each predictor to flux estimates is
calculated using the SHapley Additive exPlanations (SHAP)
algorithm (Lundberg and Lee, 2017). SHAP is attractive be-
cause it unifies several common methods for interpreting the
approximation with ANN. It is based on the game theory ap-
proach; for an individual game (MLP outputs), contributions
(called SHAP values) are assigned to each player (predictor).
The average of the SHAP absolute value in several instances
is then used to measure the predictor influence. The higher
the corresponding SHAP value, the more the input variable
contributes on average.

4 Assessing the data-driven statistical model

As mentioned previously, the MLP-based H and LE are the
average over the outputs of 55 MLPs trained with the learn-
ing set. The key objective in machine learning is generaliza-
tion, which means that the data-driven model should perform
well under known and unknown conditions. This section dis-
cusses the performance of our statistical model on learning
and test sets.

Figure 6 compares half-hourly MLP-based fluxes
(MLPOBS) against their observed values (OBS), for learning
and test sets (left and right panels respectively). It shows H
and LE (top and middle panels respectively) and the total
turbulent heat flux H +LE (bottom panels). Overall, the
root mean square errors (RMSEs) range from 20–30 Wm−2,
and Pearson’s correlation coefficients (r) are greater than
0.95, indicating excellent agreement between estimated and
observed fluxes. Interestingly, H +LE is particularly well
approximated, despite not being a direct output of MLPs.
Furthermore, the RMSE increases by less than 20 %, and
the correlation is almost the same from learning to test data.
Hence, under both known and unknown observed conditions,
the statistical model performs similarly on average, demon-
strating a fairly good generalization ability. Besides this
good performance, some noticeable shortcomings appear
in both the learning and the test sets. On the one hand,
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MLPOBS H is bound to about −50 Wm−2, while values
below −100 Wm−2 are observed (Fig. 6a and b). On the
other hand, MLPOBS LE tends to underestimate observed LE
above 200 Wm−2 (Fig. 6c and d), especially for the test set.
This indicates that the statistical model struggles to estimate
large LE and negative H , which are associated with highly
unstable and stable surface layer regimes respectively.

Figure 7 shows the cumulative distribution functions
(CDFs) of RES (Eq. 2) calculated with half-hourly observed
Rnet−G together with OBS and MLPOBS fluxes. For both
learning and test sets (Fig. 7a and b resp.), CDFs of OBS
and MLPOBS are close, but the MLP underestimates the
strong (negative or positive) RES values. Although the sam-
ple size is different for these two sets, their CDF curves look
quite similar, implying that they are individually represen-
tative of the main local characteristics of energy imbalance.
Closer inspection showed that the statistical model provides
smoothed fluxes that preserve the striking relationship be-
tween OBS H +LE and Rnet−G (not shown). This smooth-
ing is the main cause of intermittent departures between the
CDF curves. Overall, the CDFs are smaller than 0.15 for
RES lower than 20 %, indicating that both OBS H +LE and
MLPOBS H +LE are smaller than Rnet−G in the majority
of cases. This tendency is systematic for large H +LE (not
shown). Thus, the statistical model carries the limitations of
observed turbulent heat fluxes. The representativeness of tur-
bulent heat fluxes measured at the permanent Météopole site
on the coarser horizontal scale of numerical models is being
examined as part of the MOSAI project (e.g., Jomé et al.,
2023).

Figure 8 shows the composite seasonal cycles of OBS and
MLPOBS fluxes for the learning and test sets (left and right
panels respectively). The observed H +LE presents simi-
lar seasonal cycles for both sets, with a peak from April to
September (Fig. 8c and f). However, observed H and LE do
not typically present the same seasonal cycle. Indeed, from
April to September, H(LE) is on average stronger (weaker)
in the learning set than in the test set. In the learning set, LE
predominates over H from March to June, with the reverse
occurring from July to October (Fig. 8a and b), whereas in
the test set, the predominance of H starts later in August,
since LE slowly decreases from May to July (Fig. 8d and e).
The inter-annual variability presented in Fig. A2 explains this
disparity. Indeed, the year 2018 presents a seasonal cycle of
H and LE that differs from the one of other years, which dif-
ferent vegetation dynamics, driven by different atmospheric
conditions, may explain. This highlights the importance of
covering several annual cycles to effectively train the MLPs.

Overall, the MLPOBS fluxes correctly reproduce the ob-
served seasonal cycles along with day-to-day variability for
both learning and test sets. This is particularly true for the
total turbulent heat flux (Fig. 8c and f). Interestingly, the rel-
ative predominance between H and LE is remarkably well
replicated in the two sets. In the learning set, the absolute
difference between estimated and observed fluxes remains

smaller than 5 Wm−2 for all the fluxes. However, in the test
set, striking differences appear between May and Septem-
ber, when the total turbulent heat flux is at its maximum. In-
deed, while MLPOBS H +LE is quite similar to observations
(Fig. 8f), MLPOBS H overestimates observations (Fig. 8d) by
more than 10 Wm−2 in June and July, and MLPOBS LE un-
derestimates observations by more than 14 Wm−2 from July
to September (Fig. 8e). This likely comes from the fact that
the MLPs have learned respectively weaker LE and stronger
H on average (Figs. 8 and A2).

In conclusion, the statistical model, constructed with half-
hourly observational data, provides highly consistent esti-
mates of observed H and LE. It especially approximates the
total flux H +LE quite well. The non-closure of SEB em-
bedded in the observed fluxes is also reproduced but slightly
reduced for the strongest values. Its performance in terms of
RMSE and linear correlation ranges within the best reported
by the literature on surface parameterization schemes (e.g.,
Liu et al., 2013; Leufen and Schädler, 2019; Román-Cascón
et al., 2021). In particular, the relative predominance between
heating and evaporation is faithfully reproduced at the sea-
sonal scale. The most fundamental local links between tur-
bulent fluxes and environmental factors seem to be well cap-
tured by the data-driven model. However, it shows limitations
with estimating large LE and negative H and does not gen-
eralize well in the spring and summer months. The limited
number of samples in the learning set and/or the MLP input
variables do likely not fully convey the strong inter-annual
variability of turbulent heat fluxes.

Increasing the learning data at the expense of the test data
does not noticeably improve the generalization ability of the
statistical model (not shown). Moreover, uncertainties will
always remain when the statistical model is applied to unseen
data and cannot be assessed in the absence of correspond-
ing observations, as is the case for numerical simulations.
By convention, 30 years of observational data is required for
good climatological coverage, while around 10 years is cur-
rently available at the Météopole permanent site. The spring
and summer seasons are usually characterized by intense
vegetation activity. Moreover, the relationship between sur-
face latent heat flux and soil moisture could be modulated
by the state of the vegetation (e.g., Román-Cascón et al.,
2020). However, the MLP input variables lack a key factor
that could capture vegetation dynamics, such as the leaf area
index (LAI). Adding such a parameter to the input variables
would provide a more robust description of the annual vari-
ability of surface turbulent heat fluxes. This is likely to en-
hance the generalization ability of the statistical model, es-
pecially during the spring and summer seasons.
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Figure 6. Half-hourly MLP-based estimates of observed sensible heat flux (MLPOBS H , a, b), latent heat flux (MLPOBS LE, c, d), and total
turbulent heat flux (MLPOBS H +LE, e, f) with observed input data against observed fluxes (OBS), for learning (a, c, e) and test (b, d, f)
sets. The values at the top of each panel correspond to root mean square error (RMSE) and Pearson’s correlation coefficient. The lines in red
and orange represent the linear regression and identical fits respectively. The axis labels are colored according to the schematic illustration
in Fig. 1 (right side).

5 Using the data-driven statistical model to evaluate
simulated surface turbulent heat fluxes

The simulated surface turbulent heat fluxes from 1 January
2012 to 31 December 2016, by the RegIPSL model, are eval-
uated in this section. The benefits of our proposed evaluation
approach, compared to the traditional direct comparison be-
tween observed and simulated time series, are discussed.

For as much consistency as possible with the archived
simulation data, 3 h of “adapted” observational data
(OBS′,15739 samples in total from November 2012 to De-
cember 2022) was derived from half-hour observations (see
Table 1). Indeed, SWC,H,LE, and the four radiative fluxes
were time-centered averaged on a 3 h window to get the same
timestamps. The timestamp is excluded when more than half
of the expected half-hour data (e.g., three out of six ex-

pected samples) are missing. Half-hour data at these times-
tamps are used directly when available for the other variables
(T ,RH,SP,u, and v). If not available, T ,RH, and SP values
are obtained through linear interpolation, while u and v are
taken from the nearest half hour. First, the sensitivity of the
data-driven model’s performance to changes in temporal res-
olution and the effects of simulated data extending beyond
the learning range are assessed. Then, the data-driven model
is applied to evaluate the simulated heat fluxes over the com-
mon period.

5.1 Impact of temporal resolution and extrapolation on
flux estimates using the data-driven model

Table 3 shows the RMSE, r , and linear regression coeffi-
cients (slope and intercept) obtained when all MLPOBS H

and LE from November 2012 to December 2022 are com-
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Figure 7. Cumulative density functions (CDFs) of RES (Eq. 2) cal-
culated with half-hourly observed turbulent heat fluxes (OBS, in
black) and competing MLP-based estimates (MLPOBS, in blue) for
the learning set (a) and test set (b) in Fig. 6.

Table 3. Comparison of the root mean square error, linear corre-
lation, and linear regression fitting coefficients (slope and inter-
cept) when applying the MLP-based statistical model to half-hour
raw and 3 h average observational data. The statistical model has
been constructed using the half-hour sampling of the learning set
(Fig. 2a).

H LE

RMSE (Wm−2) half-hour 22.1 20.5
3 h 17.8 16.6

Correlation half-hour 0.97 0.96
3 h 0.97 0.97

Slope half-hour 0.95 0.91
3 h 0.97 0.93

Intercept half-hour 2.98 2.98
3 h 1.71 1.68

pared with their target values, for both the adapted 3 h OBS′

and the half-hour OBS from which OBS′ was derived. Fig-
ure 9 shows their composite diurnal cycles for the sub-
periods during which the fluxes are weaker (November, De-
cember, January, and February), stronger with a predomi-
nance of LE (March, April, May, and June), and stronger with
a predominance of H (July, August, September, and Octo-
ber). The RMSE of MLPOBS′ improves by 4 Wm−2, and the
other parameters in Table 3 remain the same, between OBS
and OBS′ datasets. The composite diurnal cycles of the ob-
served fluxes and the MLP-based estimates for both tempo-
ral resolutions align closely with each other. This indicates
that the mismatches between half-hour and coarser 3 h time
resolutions do not significantly affect the performance of the
statistical model.

Figure 10 presents averages of SHAP absolute values for
each input variable across the trained MLPs, for the MLP-
based H and LE for learning and test sets (in Fig. 6) and

simulated environments at Grd1 and Grd2. The variables are
ranked on the y axis in descending order according to their
values at Grd1, the nearest geographical grid cell. Note that
the SHAP value increases with the relative contribution of
the input variable. Thus, this figure allows for a discussion of
performance loss due to extrapolation, e.g., when the input
data extend beyond the learning interval.

Regardless of the environment, Rnet is by far the most con-
tributing variable, followed by SM and θsl for both H and
LE estimates. Thus, the trained MLPs composing the statis-
tical model clearly understood that the net radiative budget
at the surface is the primary driver of turbulent heat fluxes
and that the soil wetness is a crucial factor for the partition-
ing between heating and evaporation. This probably explains
the better agreement between observed fluxes and the corre-
sponding MLPOBS at coarser, seasonal, and 3 h timescales,
since the noise in the observational data is reduced. The im-
portance of the other variables varies with the environment,
the grid cells, and the fluxes. Notably, 1θ is one of the least
influential variables under observed conditions, unlike in the
simulated environment. This demonstrates that the statisti-
cal model takes into consideration changing environmental
contexts. Overall, the aggregated contribution of the three
physical variables (1θ ,usl, and vsl), whose simulated val-
ues spread beyond the learning interval, is overall smaller
than 20 % of the aggregated contribution of Rnet, SM, and
θsl. Therefore, we hypothesize a modest loss of performance
due to extrapolation when the statistical model is directly ap-
plied to data from the RegIPSL model.

5.2 Evaluating the simulated heat fluxes using the
data-driven model

Remember that MLP-based fluxes are approximations of ob-
served fluxes in a given environmental forcing (see Sect. 4).
When applied to the simulation, they correspond to the fluxes
that would have been measured if the simulated conditions
were effectively observed. In the following, OBS′ data (e.g.,
3 h time-centered averages) are used as observed conditions.
They are referred to as OBS for simplicity.

The scatter plots in Fig. 11 illustrate the consistency of
the MLP-based fluxes in the simulated environment. They
also highlight errors resulting from disparities in observed
and simulated environmental forcing. The scatter plots com-
pare 3 h MLP-based fluxes with environmental conditions at
Grd1 (MLPGrd1) against the corresponding 3 h fluxes (OBS,
left panels) and MLP-based fluxes in observed conditions
(MLPOBS, right panels). The figure only includes the times-
tamps between 24 November 2012 and 31 December 2016,
for which both simulated and corresponding OBS are avail-
able, accounting for around 50 % of all simulation data. In
each panel, the flux varies within the same interval range,
between −50 and 400 Wm−2 for H and LE and between
−50 and 500 Wm−2 for H +LE. Moreover, the correla-
tion coefficient is greater than or equal to 0.9, indicating
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Figure 8. Composite monthly averages of observed (OBS in black) and MLP-based (MLPOBS in blue) sensible heat flux (H , a, d), latent
heat flux (LE, b, e), and total turbulent heat flux (H +LE, c, f) for the learning (a–c) and test sets (d–f) respectively. The solid lines represent
the means, and the error bars correspond to the 10th and 90th percentiles, calculated by gathering the daily averages of half-hourly samples
in Fig. 6.

that the variability in MLPGrd1 fluxes is consistent with
OBS and MLPOBS. These findings also hold for the second
grid cell (Fig. A3). Hence, the disparities between simulated
and observed fluxes mostly lie in their magnitudes. Since
the difference is much more pronounced for large fluxes,
the divergence would occur mainly during daylight hours.
MLPGrd1 H and H +LE are stronger than those observed.
The same tendency has been found when comparing simu-
lated Rnet to observations (not shown).

Figure 12 compares 3 h simulated heat fluxes at Grd1
(SIMGrd1) to OBS and MLPGrd1 (left and right panels respec-
tively) at the same timestamps as in Fig. 11. The scatter is
considerably reduced with a better alignment along the linear
regression fit when MLPGrd1 values are used as the reference
values instead of OBS. These changes agree well with a re-
duction in uncertainties, particularly those related to the dis-
parities in environmental conditions. The non-closure of SEB
for MLP-based fluxes may (Fig. 7) explain the imperfect fit
between SIMGrd1 H +LE and corresponding MLPGrd1. This
suggests that substantial uncertainties remain. Nonetheless,
comparing with MLPGrd1 better highlights the shortcomings
of the surface scheme than a direct comparison with OBS, as
the bias in Rnet is frozen. According to MLPGrd1, the surface
scheme tends to quasi-systematically underestimate large H

(Fig. 12a and b). This tendency is more pronounced for Grd2
(Fig. A4), which comprises a smaller fraction of bare soil
and a larger cropland fraction, which enhance evaporation. In
contrast, the simulated environment promotes overestimat-
ing large observed H (Figs. 11 and A3a and b), mostly due
to higher Rnet and weaker SM. Thus, by using the statisti-
cal model, we can detect that the Rnet overestimation com-
pensates for and hides an underestimation of H in RegIPSL.
This underestimation may be due to (i) incorrect surface land
use (with crop instead of grass and bare soil instead of urban
area) and (ii) inadequate formulations of fluxes.

Additionally, SIMGrd1 and SIMGrd2 differ very slightly.
As a result, the direct comparison with observations leads
to nearly similar RMSE and correlation. Meanwhile, using
MLP-based fluxes shows a larger departure for Grd2, since
its landscape induces slightly drier soil on average (Fig. A1i).
Thus, formulations of H and LE in ORCHIDEE appear to
lack sensitivity to soil wetness.

Another key advantage of our method is that data on any
simulation timestamps can be used for comparison, since
the availability of observations at the same timestamps is no
longer necessary. The statistical significance of the results is
thus enhanced. Overall, including all the timestamps between
1 January 2012 and 31 December 2016 in the comparison
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Figure 9. Composite diurnal cycles of half-hour and 3 h observed heat fluxes (OBS and OBS′, in black) and their competing MLP-based
estimates (MLPOBS and MLPOBS′ respectively, in blue), for H (a, c, e) and LE (b, d, f), by splitting the annual cycle into three typical
sub-periods (see the text for more details). They are calculated based on diurnal cycles where at least six out of eight expected OBS′ samples
are available (approximately 85 % of all selected diurnal cycles).

Figure 10. Averages of SHAP absolute values for each input variable in MLP-based estimates of H (a) and LE (b) within the simulated
environment at Grd1 and Grd2 and the observed environment of learning and test sets, according to the caption. For a given MLP, the SHAP
absolute values are calculated for each estimate and then averaged over the samples of each dataset. The colored bars indicate the median
values, and the error bars correspond to the minimum and maximum values across the 55 trained MLPs that compose the statistical model.
In each panel, the input variables are ranked in descending order under the simulated environment at Grd1.
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Figure 11. Comparison of 3 h MLP-based fluxes in the simulated environment at Grd1 (MLPGrd1) against 3 h observations (OBS, a, c, e)
and MLP-based fluxes in the associated environment (MLPOBS, b, d, f) at the Météopole site, for H (a, b), LE (c, d), and H +LE (e, f).
The data include only 3 h timestamps between 24 November 2012 and 31 December 2016, for which both simulation and observational
data are available. The values at the top of each panel correspond to the number of samples (N ), the root mean square error (RMSE), and
Pearson’s correlation coefficient (r). The lines in red and orange represent the linear regression and identical fits respectively. The axis labels
are colored according to the schematic illustration in Fig. 1.

does not greatly change the previous finding that the surface
scheme struggles with large H (Fig. A5).

The seasonal cycles of SIMGrd1 and SIMGrd2, as well as
those of OBS, MLPOBS, MLPGrd1, and MLPGrd2 for H,LE,
and H +LE in Fig. 13 show the following:

– Simulated fluxes during the spring and summer seasons
(from April to August) are the most tricky to evalu-
ate because of significant differences in environmental
forcing between the simulation and observations. The
direct comparison between the simulation and obser-

vations is mainly hampered by the systematic bias in
simulated Rnet (Fig. A6). This overestimation of Rnet
is no doubt due to more shortwave radiation reaching
the surface caused by a lack of low clouds in the nu-
merical simulation, as found in several modeling stud-
ies over mid-latitudes (e.g., Cheruy et al., 2014; Bastin
et al., 2018; Chakroun et al., 2018). Moreover, compar-
ing SIMGrd fluxes against MLPGrd seems to mitigate the
effect of the SEB non-closure in observations. Indeed,
the data-driven model tends to underestimate strong val-
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Figure 12. Comparison of 3 h simulated fluxes at Grd1 (SIMGrd1) with observed fluxes at the Météopole site (OBS, a, c, e) and MLP-based
estimates in the simulated environment (MLPGrd1, b, d, f) for H (a, b), LE (c, d), and H +LE (e, f). The data correspond to the same
timestamps as in Fig. 11. The values at the top of each panel correspond to the number of instances (N ), the root mean square error (RMSE),
and Pearson’s correlation coefficient (r). The lines in red and orange represent the linear and ideal fits respectively. The axis labels are colored
according to the schematic illustration in Fig. 1.

ues of RES (Sect. 4, Fig. 2). Hence, if its effect was so
strong, MLPGrd H +LE would have been much weaker
than SIMGrd H +LE, which is not necessarily the case
(Fig. 13).

– Strikingly, the partitioning between H and LE in June,
July, and August differs between SIMGrd and MLPGrd.
The fraction of grid cell effectively occupied by vege-
tation (crops and grass) is at its maximum during the
summer months. Hence, the larger Rnet in the simula-
tion mainly leads to higher simulated LE than what is

observed. In contrast, this stronger energy is converted
into higher H and weaker LE by the statistical model
to mimic what it has learned from observations. This is
somewhat consistent with the fact that urban surfaces
are not represented in ORCHIDEE and are replaced by
bare soil, which evaporates more than impervious sur-
faces.

– As mentioned above, the simulated heat fluxes are
not very sensitive to soil wetness, whilst the MLP-
based estimates are. Hence, the two grid cells show
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Figure 13. Composite monthly averages of heat fluxes simulated at Grd1 and Grd2 (SIMGrd1, a–c, and SIMGrd2, d–f, respectively); MLP-
based estimates for their respective environments (MLPGrd1 and MLPGrd2) observed at the Météopole site (OBS); and MLP-based estimates
in the observed environment (MLPOBS) forH (a, d), LE (b, e), andH+LE (c, f). The curve colors are according to the schematic illustration
in Fig. 1. The solid lines correspond to the means, and the error bars represent the 10th and 90th percentiles, calculated by gathering daily
averages using 3 h data. Only the timestamps between 1 December 2012 and 31 December 2016, for which both simulation and observational
data are available, have been considered. The days involving fewer than six timestamps were excluded.

important differences for the MLP-based fluxes but
not for the simulated fluxes. On average, the soil at
Grd2 is drier between May and September (Fig. A7),
which explains the relatively higher MLPGrd2 H and
lower MLPGrd2 LE during this period, compared with
MLPGrd1 fluxes. The same results are found when all
the diurnal cycles of the model sample data are con-
sidered (Fig. A8). This deficiency opens an avenue for
improvements in ORCHIDEE.

There is clear evidence that the simulated H and LE
are highly biased from late spring to late summer. This
is undoubtedly due to an inappropriate representation of
land cover and inaccurate weather conditions. Our statisti-
cal model also shows weak generalization ability during this
period (Fig. 8), illustrating the challenge of using environ-
mental variables to parameterize surface turbulent heat fluxes
that include contributions from heterogeneous patches. How-
ever, using the statistical model shows consistent differences
between the two grid cells, which are not as evident when us-
ing observations. The MLPs were trained on observed fluxes

involving contributions from urban land use types, whereas
urban areas were replaced by bare soil in the version of OR-
CHIDEE used in the RegIPSL model. Yet, bare soil heats the
atmosphere less than impervious surfaces such as urban ar-
eas. This likely explains why the surface scheme tends to un-
derestimate largeH and, conversely, overestimate the associ-
ated LE when evaluated in the simulated environment using
the data-driven model. Since bare soil typically evaporates
less than vegetated areas, the errors are relatively smaller for
the nearest grid cell, likely due to its higher proportion of
bare soil. This limitation in the land surface scheme likely
contributes to a misrepresentation of the intense convective
heating of the atmosphere by the surface during the summer.
Efforts are ongoing to improve the representation of urban
areas in ORCHIDEE (e.g., Lalonde et al., 2024).

6 Conclusions

The representation of surface processes, especially the for-
mulation of surface turbulent heat fluxes H and LE, is the

Geosci. Model Dev., 18, 3211–3239, 2025 https://doi.org/10.5194/gmd-18-3211-2025



M. Zouzoua et al.: Using a data-driven statistical model to better evaluate surface turbulent heat fluxes 3229

second most important source of biases in the numerical
weather and climate simulations. However, it is very chal-
lenging to unambiguously quantify this error with exist-
ing evaluation methods. In the framework of the MOSAI
project (Lohou et al., 2022), this study proposes a different
evaluation approach when a long period of comprehensive
observational data is available. Based on the observations,
a data-driven statistical model is first developed to approx-
imate observed H and LE with near-surface environmen-
tal factors as inputs. The data-driven model is then applied
to the simulated environment to generate possibly observed
fluxes under this environment. By comparing the simulated
fluxes against their statistically based estimates, the evalua-
tion is performed in the environment as seen by the numerical
model.

A demonstration study was carried out with about 10 con-
secutive years of observational data acquired at one of the
permanent French instrumented sites of the ACTRIS-FR re-
search network. The data-driven model is a collection of
several multi-layer perceptrons, trained on the data of the
5 most covered years after cleaning. A total of 13 variables
characterizing the environmental forcing in the surface layer
are used as inputs to simultaneously provide estimates of
observed H and LE. The analysis of variable contribution
showed that the estimates are largely based on three clas-
sical physical parameters, namely the surface net radiative
flux, the mean potential temperature of the surface layer, and
the wetness of underlying soil. This opens the possibility
to reduce the number of input parameters. Overall, the sta-
tistically based fluxes under observed conditions are rather
consistent with the observed fluxes for known and unknown
cases by the MLPs. Similar to the observed fluxes, the esti-
mated fluxes do not close the surface energy budget, but they
reduce its impact. Nevertheless, the model does not correctly
approximate negativeH and tends to underestimate large LE.
Moreover, its ability to generalize is altered from spring to
late summer, likely because the leading input parameters do
not fully describe the strong inter-annual variability in this
period. This limitation can probably be overcome by adding
a typical vegetation parameter (e.g., LAI) to the inputs.

The data-driven model was subsequently applied to a
regional climate simulation performed with the RegIPSL
model to freeze the uncertainties which may come from the
inaccuracy of simulated environmental forcing. The simu-
lation data were extracted at the two nearest grid cells to
the station. The comparison between simulated and observed
fluxes gives the error resulting from the compensation be-
tween the components of the numerical model. A noticeable
difference is found from late spring to late summer, in agree-
ment with previous studies. Overall, both simulated H and
simulated LE are stronger than those observed, consistent
with stronger net radiative flux. The comparison of simu-
lated and statistically based heat fluxes in the simulated en-
vironment revealed that the numerical formulation of fluxes
combined with the inconsistency of surface characteristics in

the grid cells mainly causes an underestimation of large H
and an overestimation of associated LE, which were hidden
by the overestimation of Rnet. Moreover, the partitioning be-
tween heating and evaporation is not properly sensitive to
soil moisture.

By circumventing the challenge of comparing the turbu-
lent heat fluxes from different environments, our evaluation
method offers promising perspectives for adequate evalua-
tion of the surface parameterization schemes. The ACTRIS-
FR network offers the possibility of applying this methodol-
ogy to other supersites where the variables required for this
analysis have been also measured for several years, allow-
ing for investigation in different types of surfaces and cli-
mates. The ReOBS approach (Chiriaco et al., 2018) has been
applied to these long-term colocated multi-variable datasets,
which eases their use for different applications.

At this early stage, our proposed approach firstly fo-
cused on discrepancies in environmental forcing between
the simulation and observations. However, the non-closure
of SEB and the representativeness of in situ measurements
at the horizontal resolution of the numerical models are
also key sources of uncertainties. Hence, our evaluation
method should be further refined to address these two chal-
lenges, ensuring better agreement with the simplifying as-
sumptions used in the numerical models. Thanks to the MO-
SAI project, the Toulouse region benefited from a 1-year en-
hanced observation period, which would allow for a more
detailed regional-scale characterization of the representative-
ness of the fluxes measured at the Météopole permanent sta-
tion (Jomé et al., 2023). For instance, the input variables for
the data-driven model could incorporate a description of land
use composition. In addition, this model may learn to esti-
mate observed fluxes that verify the closure of SEB (e.g.,
Hu et al., 2021), usually applied in numerical models. There
is also a need to include a transfer learning strategy to pre-
vent the possible deterioration of performance when the data-
driven model is applied to situations with the leading input
variables ranging out of its known domain. Moreover, this
novel approach could be used to evaluate community numer-
ical simulations like reanalysis and to revisit intercomparison
of land surface schemes.
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Appendix A

Figure A1. Box plots summarizing the interval ranges of the nine physical variables used as input to our MLP-based statistical model
(Table 2). The corresponding datasets are indicated on the x axis. The whiskers represent the minimum and maximum values of each dataset.
The horizontal dashed red lines indicate the extreme values used for scaling.
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Figure A2. Composite monthly averages of observed sensible heat flux (H , a), latent heat flux (LE, b), and total turbulent heat flux (H +LE,
c) for each year included in the observational data, calculated from the daily averages of half-hourly samples. The years of learning and test
sets are in solid and dashed lines respectively. The thick lines correspond to the means on each subset, and the error represents the 10th and
90th percentiles.
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Figure A3. Same as in Fig. 11 but for Grd2.
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Figure A4. Same as in Fig. 12 but for Grd2.
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Figure A5. The 3 h simulated sensible heat flux (H , a, d), latent heat flux (LE, b, e), and total turbulent heat flux (H +LE, c, f) at Grd1 (a–c)
and Grd2 (d–f) against corresponding MLP-based estimates in the simulated environment. All selected timestamps from 1 January 2012 to
31 December 2016 are considered here. The values at the top of each panel correspond to the number of samples (N ), root mean square error
(RMSE), and Pearson’s correlation coefficient (r). The lines in red and orange represent the linear and ideal fits respectively. The axis labels
are colored according to the schematic illustration in Fig. 1.

Figure A6. Composite monthly averages of simulated surface net radiative flux (Rnet, magenta lines) at Grd1 (a) and Grd2 (b) and those of
their respective observations at Météopole (black lines). They are computed as in Fig. 13.
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Figure A7. Same as in Fig. A6 but for soil wetness (SM).

Figure A8. Composite monthly averages of simulated H (a, d), LE (b, e), and H +LE (c, f) at Grd1 and Grd2 (SIMGrd1 and SIMGrd2, lines
in magenta) together with those of MLP-based estimates under the simulated environment (MLPGrd1 and MLPGrd2, lines in brown). The
solid lines correspond to the means, and the error bars represent the 10th and 90th percentiles, calculated by gathering daily averages of 3 h
data. All selected diurnal cycles from 1 January 2012 to 31 December 2016 are considered here.
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