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Abstract. Climate feedbacks are a significant source of un-
certainty in future climate projections and need to be quan-
tified accurately and robustly. The radiative kernel method
is commonly used to efficiently compute individual climate
feedbacks from climate model or reanalysis output. De-
spite its popularity, it suffers from complications, includ-
ing difficult-to-locate radiative kernels, inconsistent kernel
properties, and a lack of standardized assumptions in radia-
tive feedback calculations, limiting the robustness and repro-
ducibility of climate feedback computations. We designed
the ClimKern project to address these issues with a kernel
repository and a separate but complementary Python package
of the same name. We selected 11 sets of radiative kernels
and gave them a common nomenclature and data structure.
The ClimKern Python package provides easy access to the
kernel repository and functions to compute feedbacks, some-
times with a single line of code. ClimKern functions contain
helpful optional parameters while maintaining standard prac-
tices between calculations.

After documenting the kernels and ClimKern package, we
test it with sample climate model output from an abrupt
2×CO2 experiment to explore the sensitivity of feedback
calculations to kernel choice. Interkernel spread exhibits con-
siderable spatial heterogeneity, with the greatest spread in the
surface albedo and cloud feedbacks occurring in the Arctic

and Southern Ocean. In the global mean, the Planck and sur-
face albedo feedbacks show the greatest interkernel variabil-
ity. Our results highlight the importance of using multiple
radiative kernels and standardizing feedback calculations in
climate feedback, sensitivity, and polar amplification studies.
As ClimKern continues to evolve, we hope others will con-
tribute to its development to make it an even greater tool for
the radiative feedback community.

1 Introduction

One of the fundamental questions in climate science is how
much the surface will warm in response to the radiative forc-
ing imposed by increasing CO2 concentrations. A typical
framework for answering this question is expressing the top-
of-the-atmosphere (TOA) radiative imbalance, 1R, as

1R =1F + λ1T, (1)

where 1F is the radiative forcing, λ is the net climate
feedback parameter, and 1T is the global mean surface
temperature response. The feedback parameter λ is the in-
crease in outgoing radiation per degree warming with units of
W m−2 K−1 and represents the effects of all global average
radiative feedbacks combined. Using this forcing–feedback
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framework, we can compute the equilibrium climate sensi-
tivity (ECS), which is the global mean surface temperature
response needed to restore the TOA imbalance to zero after
doubling CO2 (Sherwood et al., 2020) as

ECS=
1F2×CO2

−λ
. (2)

The complexity of the climate system and observational un-
certainty lead to large uncertainties in estimates of ECS, with
the climate feedback parameter λ considered a greater source
of uncertainty in ECS than the forcing 1F (Sherwood et al.,
2020). The uncertainty in λ stems from the significant un-
certainty in its components, notably the cloud and water va-
por feedbacks (Roe and Baker, 2007; Andrews et al., 2012;
Vial et al., 2013; Sherwood et al., 2020). Feedback uncer-
tainty is also important on regional scales. For instance, the
Arctic, which is warming faster than the global average in a
phenomenon known as Arctic amplification (AA), faces con-
siderable feedback uncertainty, making it challenging to at-
tribute warming to individual feedbacks (Pithan and Maurit-
sen, 2014; Hahn et al., 2021; Shi and Lohmann, 2024).

The net feedback parameter can be linearly decomposed
into a sum of individual feedbacks: λ=

∑
iλi, where λi rep-

resents the contributions of individual feedbacks: lapse rate,
Planck, water vapor, surface albedo, and cloud feedbacks.
There are two caveats to this decomposition worth noting.
First, representing λ as a linear combination of individual
feedbacks ignores the interaction between feedbacks, which
can be crucial, especially on local scales (Feldl and Roe,
2013; Knutti and Rugenstein, 2015; Feldl et al., 2017; Huang
et al., 2021; Bonan et al., 2025). Second, λ and its individ-
ual components are likely not constant, varying with the cli-
mate state and with the pattern of surface temperature change
(Knutti and Rugenstein, 2015; Gregory and Andrews, 2016;
Dong et al., 2019; Meyssignac et al., 2023). Even with these
caveats, the linear decomposition of feedbacks remains a
commonly used framework.

The most common way to calculate individual radiative
feedbacks is using radiative kernels (Soden et al., 2008). Ra-
diative kernels are the pre-calculated radiative sensitivities at
some vertical level, often the TOA, to incremental changes in
climate variables, such as temperature, water vapor, and sur-
face albedo. The TOA radiative imbalance due to feedbacks,
1Rλ (equivalent to λ1T ; see Eq. 1), is decomposed as

1Rλ =
∑
i

∂Ri

∂xi
1xi, (3)

where ∂R
∂x

is the radiative kernel, and 1x is the change in a
climate variable (e.g., following 2×CO2). The radiative ker-
nel method offers several advantages over other methods of
calculating radiative feedbacks. For example, radiative ker-
nels can be applied to virtually any gridded data (e.g., cli-
mate model output, reanalysis products) as long as standard
variables (e.g., temperature, specific humidity) are available.

Using existing radiative kernels also alleviates the need to
perform computationally expensive partial radiative pertur-
bation calculations or run offline radiative transfer mod-
els (Wetherald and Manabe, 1988; Colman and McAvaney,
2011; Smith et al., 2020). Another use of radiative kernels is
the decomposition of the effective radiative forcing into in-
dividual components, allowing for the separation and quan-
tification of specific adjustments, such as changes in cloud
properties or aerosol concentrations (Larson and Portmann,
2016).

The underlying assumption of the radiative kernel method
is that variations in kernels produced with different models
are minor compared to discrepancies in the climate responses
across models. This is because interkernel variation stems
only from differences in radiative transfer models and model
base states (Pincus et al., 2020), which are, ideally, physically
reasonable representations of the real world (Soden et al.,
2008). The assumption of minor differences across kernels
enables intermodel feedback comparisons and allows for us-
ing virtually any radiative kernel to calculate feedbacks.

A question naturally follows: are the differences between
kernels actually minor? Only a few studies have addressed
this question. Zelinka et al. (2020) assessed the variabil-
ity of global radiative feedbacks across six kernels (their
Fig. S2). Soden et al. (2008) found that among four kernels
calculated using three different models, vertically integrated,
zonal mean kernels varied by ∼ 10 %, except for the South-
ern Ocean, where they varied by ∼ 30 %. Global mean tem-
perature and water vapor kernels varied by less than ∼ 5 %,
although the surface albedo kernel varied considerably more
(∼ 18 %). In a more recent study, Hahn et al. (2021) found
that the relative importance of feedbacks as polar ampli-
fication mechanisms shows kernel dependence. Huang and
Huang (2023) documented a new set of kernels and found
agreement in the global mean TOA feedbacks among seven
sets of kernels but notable differences in feedbacks at the
surface. Although we do not seek to answer the question of
the importance of interkernel differences completely, we feel
that it deserves more attention given the method’s popularity.
However, the current research environment makes intercom-
paring radiative kernels difficult.

Using different sets of kernels introduces uncertainty that
can limit the reproducibility and robustness of climate feed-
back studies. First, although many kernels have been pro-
duced since the early studies of Soden et al. (2008) and Shell
et al. (2008), they are scattered among different research
groups and institutions, making them difficult to locate; even
after accessing a kernel, there is often little to no guidance on
their proper usage. Second, kernels vary considerably in their
properties, such as horizontal and vertical grids, model tops,
sign conventions, and nomenclature, which may introduce
calculation discrepancies across studies. Lastly, using ker-
nels to calculate radiative feedbacks requires several choices
and assumptions; examples include what base temperature
to use when calculating the specific humidity increase from
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a 1 K increase in atmospheric temperature and how to han-
dle vertical integration to the surface while accounting for
surface pressure and terrain (Pendergrass, 2019; Huang and
Huang, 2023). These three factors make comparing results
between feedback studies difficult, even when studies may
use the same radiative kernels.

To standardize radiative feedback calculations and es-
tablish a central kernel repository, we created the ClimK-
ern project. This project consists of two distinct parts: the
ClimKern Python package, an open-source library for com-
puting radiative feedbacks, and the ClimKern repository,
which provides easy access to 11 sets of radiative ker-
nels computed from various climate models, reanalyses, and
satellite observations. The package provides functions for
calculating radiative feedbacks using any of the radiative ker-
nels in just one or two lines of code per feedback. The pack-
age greatly enhances the reproducibility of feedback studies
by standardizing the assumptions and choices. It also enables
straightforward interkernel comparisons to better understand
the role of kernel choice in feedback studies.

The remaining sections are organized as follows: Sect. 2
provides detailed information about ClimKern radiative ker-
nels and the sample data we included for demonstration pur-
poses. Section 3 covers the methodological choices made in
crafting the feedback calculation functions. Section 4 shows
the results of using the package with the sample climate
model output to calculate feedbacks. In Sect. 5, we put our
package and the sample results into the context of the greater
climate feedback and sensitivity community.

2 Data

2.1 Radiative kernels

We acquired 11 sets of all-sky (with clouds) and clear-sky
(cloudless) TOA radiative kernels that were publicly avail-
able or provided to us by the creators. To be included in
ClimKern, a kernel product must have 4-dimensional water
vapor and air temperature kernels, as well as 3-dimensional
surface temperature and surface albedo kernels. The kernels
must be monthly averages to capture the seasonal variations
in TOA radiative fluxes and must be on horizontal latitude–
longitude grids. The above requirements were chosen to en-
sure ease of use and that feedback calculations using different
kernels are directly comparable. In this version of ClimK-
ern, we excluded radiative kernels that require nontraditional
(i.e., considerably different from Soden et al., 2008) variables
to compute feedbacks; examples include the cloud kernels
from Zelinka et al. (2012), which require satellite-simulator-
produced output, and new kernels from the NASA Goddard
Institute for Space Studies that use column precipitable wa-
ter and sea ice fraction variables (Zhang, 2023). We also ex-
cluded band-by-band or “spectral” kernels, such as those in
Bani Shahabadi and Huang (2014) and Huang et al. (2024).

Seven of the 11 TOA kernel sets had corresponding sur-
face kernels for calculating radiative feedbacks from a sur-
face perspective, as in Pithan and Mauritsen (2014) and Laîné
et al. (2016). Although they are included in the repository for
ease of access, surface feedback calculations have not been
implemented in ClimKern, and our discussion exclusively
focuses on TOA kernels and feedbacks. Future versions of
ClimKern may expand compatibility to surface kernels and
other kernel types.

Details about each kernel set can be found in Table 1.
These 11 kernel sets were developed independently using
various data sources for their base states: climate model out-
put, reanalysis data, and satellite observations (Soden et al.,
2008; Huang et al., 2017; Kramer et al., 2019). Horizontal
resolutions range from several degrees to under 1° in lati-
tude and longitude. Nearly all the kernels were already avail-
able on standard pressure levels, the desired vertical coor-
dinate to ensure compatibility with climate model output to
calculate feedbacks. Kernels available on their native model
grids (i.e., CAM5 and HadGEM3-GA7.1) were linearly in-
terpolated to pressure levels. The native CAM5 kernels were
available on hybrid sigma–pressure vertical coordinates; iso-
baric levels in the upper troposphere were unchanged, while
hybrid levels in the lower and mid-troposphere were con-
verted to the standard pressure levels used in the Coupled
Model Intercomparison Project Phase 6 (CMIP6) (Eyring
et al., 2016). The native HadGEM3-GA7.1 kernels were on
a pure sigma vertical coordinate that lacks isobaric surfaces.
Because they were specifically developed with a high model
top and enhanced vertical resolution to capture stratospheric
adjustments (Smith et al., 2020), they were interpolated to 39
pressure levels, the highest standard CMIP6 vertical resolu-
tion. We also included in Table 1 information regarding the
data used to generate the kernel sets. See the corresponding
citing papers in Table 1 for additional information about each
kernel set.

After collecting and regridding the kernels, we combined
each kernel set into one netCDF file per source. The native
kernel variables were renamed to have a standardized set of
variables, and their units or other metadata were altered for
consistency and accuracy. For example, all surface albedo
kernels had their units changed to W m−2 %−1 if needed.
We then inspected the kernels to find inconsistencies with
their sign conventions, which were corrected. The result-
ing dataset was uploaded to Zenodo (Janoski et al., 2025a),
which can be downloaded manually or via a built-in script in
the ClimKern Python package.

2.2 Sample climate model output

We also provide a tutorial dataset within the package to cal-
culate, for verification purposes, the feedbacks given in Ta-
ble 2. The package includes a function that accesses the sam-
ple data derived from pre-industrial and abrupt-2×CO2 fully
coupled runs using the Large Ensemble version of the Com-
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Table 1. The 11 radiative kernel sets included in the ClimKern repository. The table contains the kernel names, horizontal resolution, number
of vertical levels and highest pressure level in their ClimKern version, and the main data source used. Additionally, the reference documenting
the kernel is provided.

Res. Vert. Min P
Kernel (lat× long) levels (hPa) Source Reference

BMRC 3.2°× 5.6° 19 1 Climate model Soden et al. (2008)
CAM3 2.8°× 2.8° 17 10 Climate model Shell et al. (2008)
CAM5 0.94°× 1.25° 22 3.64 Climate model Pendergrass et al. (2018)
CERES 0.5°× 1° 30 0.1 Satellite∗ Thorsen et al. (2018)
CloudSat 2°× 2.5° 17 10 Satellite∗ Kramer et al. (2019)
ECHAM6 1.88°× 1.88° 19 1 Climate model Block and Mauritsen (2013)
ECMWF-RRTM 2.5°× 2.5° 24 1 Reanalysis Huang et al. (2017)
ERA5 2.5°× 2.5° 37 1 Reanalysis Huang and Huang (2023)
GFDL 2°× 2.5° 17 10 Climate model Soden and Held (2006)
HadGEM2 1.25°× 1.88° 19 1 Climate model Smith et al. (2018)
HadGEM3-GA7.1 1.25°× 1.9° 39 3 Climate model Smith et al. (2020)

∗ For kernels with a satellite data source, reanalysis data were used to supplement calculations.

munity Earth System Model 1 (CESM1-LE). The CESM1-
LE model incorporates the Community Atmosphere Model
version 5 (CAM5) with 30 vertical levels and the Paral-
lel Ocean Program version 2 (POP2) with 60 vertical lev-
els. The model operates at a horizontal resolution of 1°
across all components (Kay et al., 2015). These experiments
have been extensively documented in prior studies (Mitevski
et al., 2021, 2022, 2023). We also provide the effective radia-
tive forcing (ERF), calculated as the difference between the
global mean net TOA flux between an abrupt 2×CO2 run
and pre-industrial control run where the sea surface temper-
atures and sea ice concentrations are fixed to pre-industrial
conditions in both runs (Forster et al., 2016).

3 Feedback calculations

The ClimKern Python package (Janoski et al., 2025b), here-
after referred to as simply “ClimKern”, contains many built-
in functions for calculating radiative feedbacks and other
valuable quantities of interest. Note that all outputs from
feedback functions are TOA radiative perturbations from the
feedback in units of W m−2; if the user wishes to express
feedback values per unit temperature (W m−2 K−1), that can
be achieved by dividing or regressing by the surface tem-
perature response. We avoided incorporating this step into
the functions as there are several ways of expressing feed-
backs, such as in the form of warming contributions (Pi-
than and Mauritsen, 2014; Goosse et al., 2018; Previdi et al.,
2020; Janoski et al., 2023), and the radiative perturbations
in W m−2 are helpful in calculating rapid adjustments to
radiative forcing (Vial et al., 2013; Block and Mauritsen,
2013; Smith et al., 2018). All functions can compute all-sky
and clear-sky feedbacks depending on the sky argument, ei-
ther “all-sky” or “clear-sky”. Additionally, because radiative

kernels are typically only available as monthly means and
monthly means are standard climate model output, ClimK-
ern currently only accepts monthly mean input fields. Below,
we document the required user input for the feedback calcu-
lation functions and provide details on their methodologies.
This is not an exhaustive list of functions available in ClimK-
ern, and specifics are subject to change in future versions.
Still, we hope it will prove helpful to discuss the philosophy
behind the design of each function.

3.1 Temperature feedbacks

Temperature feedbacks refer to the radiative perturbations at
the TOA from changes in the surface and atmospheric tem-
peratures. Traditionally, the total temperature feedback is de-
composed into the Planck feedback (or Planck response, de-
pending on the specific definition of “feedback” used) and
the lapse rate feedback (Soden and Held, 2006; Bony et al.,
2006; Soden et al., 2008). The Planck feedback is the radia-
tive response to a vertically uniform temperature change of
equal magnitude to that of the surface; it is the most funda-
mental response of the radiative budget to a change in tem-
perature, following the Stefan–Boltzmann law (Previdi et al.,
2021). The lapse rate feedback is instead the deviation from
vertically uniform warming to quantify the radiative effects
of an altered tropospheric lapse rate.

ClimKern provides the calc_T_feedbacks function
that computes the tropospheric Planck and lapse rate feed-
backs using user-provided 4-D air temperature and 3-D sur-
face temperature and pressure fields from two climate model
simulations: a control simulation (representing a baseline
state of the climate system) and a perturbed simulation (rep-
resenting the climate system under changed conditions, such
as increased greenhouse gas or aerosol concentrations), the
difference of which is used to calculate the temperature re-
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sponse. In the tutorial data provided with ClimKern, these
are a 1×CO2 and a 2×CO2 (relative to preindustrial levels)
simulation, respectively. Reanalysis data can be used simi-
larly by separating data into two time periods for compari-
son.

First, ClimKern checks the input to ensure its format
is compatible, including checking the time dimensions and
units; then, the function will either proceed, issuing a warn-
ing to the user if any assumptions are made for missing meta-
data or return an error for major incompatibilities (e.g., not
providing input in the form of an Xarray DataArray Hoyer
and Hamman, 2017). If the user did not provide an optional
model- or user-defined tropopause, ClimKern will create a
tropopause defined as 100 hPa at the Equator and linearly in-
creasing with the cosine of latitude to 300 hPa at the poles.
It will also read in the user-selected temperature and surface
temperature kernels from locally stored package data. Us-
ing the xESMF module (Zhuang et al., 2023), the kernels
are horizontally regridded using bilinear interpolation with
periodic boundary conditions to match the resolution of the
input model data. We elected to horizontally regrid to the in-
put data’s resolution so that the user always receives output
on the same horizontal grid as the input.

Following this setup, ClimKern creates a monthly clima-
tology from the control simulation surface and atmospheric
temperatures and subtracts it from the perturbed simula-
tion fields, yielding a surface and air temperature response.
ClimKern uses the control simulation’s climatological sur-
face pressure to mask values below the surface for the air
temperature response. The air temperature response is lin-
early interpolated to match the vertical kernel resolution;
subsequent testing for tropospheric feedbacks at the TOA
demonstrates little difference if the input vertical resolution
is used (not shown). Layer thicknesses are then calculated
for the subsequent vertical integration of the temperature
feedbacks. The user-supplied perturbed simulation pressure
and optional tropopause height are used when calculating the
layer thicknesses to ensure that the vertical integration only
extends from the surface to the tropopause.

The total air temperature response is decomposed into a
vertically uniform component and deviation to calculate the
Planck and lapse rate feedbacks separately. Both feedbacks
are calculated by multiplying the respective temperature re-
sponse component, temperature kernel, and layer thickness
array and taking a sum along the pressure axis. In the case
of the Planck feedback, the surface temperature response is
multiplied by the surface temperature kernel and added to
this sum. The function then returns both feedbacks. To the
user, all of this culminates in two lines of code:

import climkern as ck
LR,Planck = ck.calc_T_
feedbacks(ctrl.T,ctrl.TS,ctrl.PS,

pert.T,pert.TS,pert.PS,

pert.TROP_P,kern="GFDL",
sky="all-sky",fixRH=False),

where LR and Planck are the vertically integrated, monthly
and spatially varying lapse rate and Planck feedbacks, re-
spectively; ctrl and pert are Xarray Datasets (Hoyer and
Hamman, 2017) containing the control and perturbed simula-
tion output; T is the 4-dimensional air temperature; TS is the
3-dimensional surface temperature; PS is the 3-dimensional
surface pressure; TROP_P is the optional 3-dimensional
tropopause height; and kern is the optional kernel choice ar-
gument. All feedback calculations share this kern argument,
which defaults to “GFDL” to specify which of the 11 kernels
ClimKern should use.

This function contains several optional arguments, includ-
ing the kernel name, tropopause heights, whether to calculate
the all-sky or clear-sky feedbacks, and whether to use relative
humidity as a state variable, as in Held and Shell (2012). Fur-
ther details about the computations and optional parameters
can be found in the source code in Janoski et al. (2025b).

3.2 Water vapor feedback

ClimKern also offers a calc_q_feedbacks function to
compute water vapor feedbacks:

q_lw,q_sw = ck.calc_q_
feedbacks(ctrl.Q,ctrl.T,ctrl.PS,

pert.Q,pert.PS,pert.TROP_P,
kern="GFDL",method=1),

where q_lw and q_sw are the TOA radiative perturbations
from the longwave and shortwave water vapor feedbacks, re-
spectively; Q is the 4-dimensional specific humidity; and all
other variables are as they are in Sect. 3.1. Note that a “con-
trol” air temperature variable is required because water vapor
kernels are traditionally calculated not using a unit increase
in specific humidity but rather the specific humidity change
corresponding to a 1 K increase in temperature with constant
relative humidity (Shell et al., 2008); consequently, the unit
of the water vapor kernels is W m−2 K−1.

The flow of the function is similar to that of the tempera-
ture feedbacks: first, ClimKern checks all input data and tries
to identify proper units. If the user did not provide a DataAr-
ray with tropopause pressure, ClimKern constructs a default
one. Next, ClimKern produces a monthly climatology of the
control simulation surface pressure, specific humidity, and
air temperature. Like the temperature feedback function, the
kernels are regridded to the horizontal grid of the input data,
and the climatologies of the specific humidity, air temper-
ature, and the specific humidity response are put on kernel
pressure levels. Values on pressure levels below the control
simulations’s climatological surface pressure are masked and
not included in further calculations. The product of the ker-
nel, specific humidity response, and layer thickness is verti-
cally integrated over the troposphere; a normalization factor
must also be included, as discussed below.
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Water vapor feedbacks are commonly computed using the
change in the natural log of specific humidity because water
vapor’s absorption of longwave radiation is roughly propor-
tional to the logarithm of its concentration (Shell et al., 2008;
Lacis et al., 2013; Colman and Soden, 2021). The change in
the natural log of specific humidity can be written as

1ln(q)= ln(qpert)− ln(qctrl), (4)

where qpert and qctrl are the perturbed and control specific
humidities, respectively. Using logarithm properties, this can
be expressed as

1ln(q)= ln
(

1+
1q

qctrl

)
, (5)

where 1q = qpert− qctrl. For small changes in q such that
(1q/qctrl)� 1, the natural logarithm can be approximated
using a first-order Taylor expansion:

ln
(

1+
1q

qctrl

)
≈
1q

qctrl
, (6)

leading to the fractional approximation used in Pendergrass
(2019):

1ln(q)≈
1q

qctrl
. (7)

ClimKern allows the user to choose whether to use this
legacy fractional approximation or use the more precise, ac-
tual difference in natural logs of specific humidity for water
vapor feedback calculations via the method parameter in
the calc_q_feedbacks function, outlined below. Alter-
natively, users may instead use the linear change in specific
humidity, i.e.,

1q = qpert− qctrl. (8)

The water vapor kernels must be normalized by the change
in specific humidity per unit temperature increase. Ideally,
one would have this field from the kernel-producing sim-
ulation, as in Shell et al. (2008) and Pendergrass (2019),
but, in practice, this quantity is rarely included with the dis-
tributed kernels. Given the little information available about
the base states used in the individual kernel calculations,
ClimKern utilizes the climatological air temperature from the
user-provided control simulation to produce a water vapor
kernel normalization factor using the Buck (1981) empirical
formula for saturation vapor pressure. Note that the change
in specific humidity per unit temperature increase can sim-
ilarly either be the logarithmic or linear change and, in the
case of the former, use the fractional approximation.

The calc_q_feedbacks function contains four
“method” options to accommodate the variations in the
literature described above. The options and corresponding
numeric arguments are the following:

1. use the actual logarithm for both the specific humidity
response and normalization factor

2. use the actual logarithm for the specific humidity re-
sponse and fractional approximation for the normaliza-
tion factor

3. use the fractional approximation in the specific humid-
ity response and normalization factor

4. use the linear change for both the specific humidity re-
sponse and normalization factor.

The function defaults to option 1. Further details can be
found in the function’s docstring (Janoski et al., 2025b).

3.3 Surface albedo feedback

The calc_alb_feedback function, which computes sur-
face albedo feedback, is relatively straightforward; it requires
the user to provide the upwelling and downwelling short-
wave radiation at the surface from the control and perturbed
simulations. The first step is to compute the surface albedo
as the ratio of surface upwelling to downwelling radiation
while masking areas with a downwelling radiation value of
0 W m−2. ClimKern then takes the difference between the
perturbed simulation’s albedo and the control simulation’s
monthly climatological albedo. The desired albedo kernel is
loaded from memory, regridded to the input horizontal reso-
lution, and multiplied by the albedo response to produce the
surface albedo feedback.

3.4 Cloud feedbacks

Cloud feedbacks are comparatively more complicated than
the other feedbacks, owing to nonlinearities in kernel com-
putations and the vertical overlapping of clouds (Soden and
Held, 2006; Soden et al., 2008; Shell et al., 2008). Conse-
quently, traditional kernel sets do not include explicit short-
wave or longwave cloud kernels, requiring alternate methods
for calculating cloud feedbacks – most commonly, the resid-
ual and adjustment methods. ClimKern contains a function
for each method, which we will detail below. Note that for
both methods, ClimKern optionally accepts radiative forcing
terms that will vary with the experimental setup (i.e., control
and perturbation simulations). In other words, there is not a
precise type of radiative forcing quantity that will suit ev-
ery scenario. ClimKern avoids making assumptions regard-
ing the forcing; if the user does not provide it, cloud feed-
back functions assume the radiative forcing terms are zero
by default. We use the ERF to compute cloud feedback in
our sample results (Sect. 4).
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3.4.1 Residual method

In the residual method, the cloud feedbacks are computed as
a residual of the TOA energy budget:

1Rcloud =1R−1F −
∑
i

1Ri, (9)

where 1Rcloud is the TOA radiative perturbation from the
cloud feedback, 1R is the all-sky net TOA radiative im-
balance, 1F is the radiative forcing (e.g., from CO2), and∑
i1Ri is the sum of the TOA radiative perturbations from

other non-cloud feedbacks (Soden and Held, 2006; Zhang
et al., 2018; Zhu et al., 2019). Put another way, the cloud
feedback is assumed to be the missing piece in the TOA ra-
diative budget after accounting for other terms. Although this
method provides a “clean” approach that fully closes the ra-
diative budget in a kernel feedback decomposition, it carries
two main drawbacks. First, it is highly sensitive to uncer-
tainties in the other terms and the often unavailable radiative
forcing, 1F (Soden et al., 2008). Second, since the cloud
feedbacks are assumed to close the radiative budget, feed-
back decompositions using this method yield no separate
error estimate, which is sometimes valuable for evaluating
radiative kernels. Despite these disadvantages, the residual
method is still used.

ClimKern contains separate calc_cloud_LW_res and
calc_cloud_SW_res functions to calculate the long-
wave and shortwave cloud feedbacks, respectively. For the
longwave, ClimKern requires net longwave radiative flux at
the TOA from the control and perturbed simulations, the
longwave all-sky radiative forcing, and the radiative pertur-
bations from the total temperature and longwave water vapor
feedbacks. The shortwave function instead requires the net
shortwave radiative flux at the TOA in the control and per-
turbed simulations, the shortwave all-sky radiative forcing,
and the radiative perturbations from the surface albedo and
shortwave water vapor feedbacks. From there, both functions
compute the cloud feedback using Eq. (9).

3.4.2 Adjustment method

The adjustment method for calculating cloud feedbacks is
named as such because the change in cloud radiative effect
(CRE) is “adjusted” for masking by other feedbacks and the
radiative forcing to produce a cloud feedback:

1Rcloud =1CRE+
∑
i

(1Ro
i −1Ri)+ (1F

o
−1F), (10)

where 1CRE is the CRE response, 1Ro
i and 1Ri are the

clear-sky and all-sky radiative feedbacks, and 1F o and 1F
are the clear-sky and all-sky radiative forcings (Soden et al.,
2008; Zhang et al., 2018).1CRE is computed as1R−1Ro,
i.e., the difference in the all-sky and clear-sky TOA radiative
flux. The adjustment method is considered less sensitive to
uncertainties in the other terms, especially the forcing term

(Soden et al., 2008). Additionally, since the resulting cloud
feedback is not computed as a residual, it allows one to sepa-
rately quantify the error in closing the TOA radiative budget.

The longwave and shortwave adjustment-method cloud
feedbacks can be computed via the calc_cloud_LW and
calc_cloud_SW functions. The longwave function ac-
cepts the change in the longwave CRE and the all-sky and
clear-sky radiative perturbations at the TOA from the to-
tal temperature feedback, longwave water vapor feedback,
and longwave radiative forcing. The shortwave function
uses the shortwave versions of the longwave function in-
put, except that it uses the surface albedo feedback instead
of the temperature feedback. ClimKern includes separate
calc_dCRE_LW and calc_dCRE_SW functions that eval-
uate the change in longwave and shortwave CRE and that
require several radiative fields from the user, including the
TOA all-sky and clear-sky LW or SW radiative fluxes in the
control and perturbation simulations. After reading in all the
necessary input, the adjustment method cloud feedback func-
tions calculate the differences between the all-sky and clear-
sky perturbations from non-cloud terms and combine them
with the change in CRE to return the desired cloud feedback.

3.5 Other functions

We included several other utility functions in ClimKern.
First, there are stratosphere versions of the temperature and
water vapor feedback functions, named calc_strato_T
and calc_strato_q, respectively. They are mostly anal-
ogous to their tropospheric counterparts, but the vertical in-
tegration is performed from the tropopause to the TOA.
Next, ClimKern provides a calc_RH_feedback function
to calculate the relative humidity feedback following Shell
et al. (2008), Held and Shell (2012), and Zelinka et al. (2020).
Typically, the relative humidity feedback would be a compo-
nent of a radiative feedback decomposition if the user calcu-
lated the temperature feedbacks with the fixRH option. Fi-
nally, the spat_avg function computes the spatial average
of a DataArray while weighting for the cosine of latitude.
We refer the reader to Janoski et al. (2025b) for additional
documentation.

4 Results with sample data

4.1 Radiative kernels

Having outlined the data and functions packaged with
ClimKern, we now focus on the characteristics of the TOA
radiative kernels. Figure 1 shows the annual- and zonal-
average mean kernel values and two across-kernel standard
deviation ranges after linearly interpolating to common 17
standard pressure levels. The mean and standard deviation
of the all-sky air temperature kernels (Fig. 1a) have two lo-
cal maxima in magnitude: one in the equatorial upper tropo-
sphere and the other in the mid- to high-latitude lower tro-
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posphere in the Southern Hemisphere (SH). In the clear-sky
kernels, the lower tropospheric maximum is located over the
Equator rather than the extratropical SH (Fig. 1b). Because
the all-sky and clear-sky kernels differ only by the existence
of cloud effects in their calculations, the different maxima
locations are likely a result of clouds, which exert consid-
erable influence on temperature kernels via cloud-top height
temperatures; for example, high, cold clouds reduce outgo-
ing longwave radiation efficiency by altering the effective
emission height, affecting temperature kernel values (Kramer
et al., 2019). The clear-sky air temperature kernels exhibit
less spread (max∼ 0.06 W m−2 K−1 100 hPa−1) than the all-
sky kernels (max∼ 0.13 W m−2 K−1 100 hPa−1) (Fig. 1a–b),
implicating the uncertainty introduced by clouds in radiative
schemes.

The longwave water vapor kernels (Fig. 1c–d) do not ap-
pear to show as large sensitivity to clouds as the air temper-
ature kernels, except for the deep tropics between 800 and
400 hPa. The longwave water vapor kernel mean is largest in
the equatorial upper troposphere and decreases with latitude,
consistent with the findings of Huang et al. (2007). The pat-
tern of the standard deviation mostly follows that of the mean
with equatorial maxima in both the high and low troposphere
(Fig. 1c–d), indicating that this region is particularly sensi-
tive to the base state and physics used in kernel production.
The shortwave water vapor kernels (Fig. 1e–f) exhibit an in-
crease in mean and standard deviation with latitude, opposite
to that of the longwave kernels. As suggested by Huang and
Huang (2023), the higher shortwave reflectivity of land and
ice surfaces vs. ocean surfaces likely causes this behavior. In-
terkernel spread in the shortwave water vapor kernel is larger
near the poles, which may be due to differences in the radia-
tive characteristics of the surface (e.g., sea ice extent, snow
cover) in the kernel base states.

The surface temperature and albedo kernels are 3-
dimensional, so the annual and zonal averages only vary
with latitude (Fig. 1g–j). The surface temperature kernel
is highly sensitive to clouds, especially in the extratrop-
ics, as evidenced by local maxima near 60° N/S in the all-
sky kernels only (Fig. 1g–h). Interkernel spread is rela-
tively constant with latitude. In the case of the all-sky sur-
face albedo kernel (Fig. 1i–j), interkernel spread is larger
in the tropics (∼ 0.4 W m−2 %−1) than the extratropics (∼
0.2 W m−2 %−1). The clear-sky version of the kernel ex-
hibits the greatest variability in the Northern Hemisphere
tropics (∼ 0.3 W m−2 %−1) and decreases with latitude. The
clear-sky surface albedo interkernel spread is less than the
all-sky spread at all latitudes, indicating that clouds are a
main contributor to the latter. In the next section, we explore
how the spatial structure of the kernel means and interkernel
spread influence the resulting radiative feedbacks.

Figure 1. (a–b) The mean (shaded) and standard deviation (con-
toured, dashed) of the all-sky (left) and clear-sky (right) temperature
kernels, representing the response to a 1 K increase in temperature.
Panels (c–d) are as in (a–b) but for the longwave water vapor ker-
nels, which reflect specific humidity changes associated with a 1 K
warming and fixed relative humidity. Panels (e–f) are as in (a–b) but
for the shortwave water vapor kernels. (g–h) The mean (solid line)
represents ± 1 standard deviation (shading) of the all-sky (left) and
clear-sky (right) surface temperature kernels. Panels (i–j) are as in
(g–h) but for the surface albedo kernels, corresponding to a 1 % in-
crease in surface albedo.

4.2 Feedback results

Having quantified the kernels themselves, we now focus
on how the interkernel differences translate into differences
in individual feedbacks. Recall that all feedbacks are cal-
culated using identical methodologies between kernels and
with the same CESM1-LE sample model output data de-
scribed in Sect. 2.2 such that feedback variability is solely
the result of the kernel choice. Feedbacks were computed
using the difference in the monthly climatology of the last
30 years of the preindustrial control and a standard 150-
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Figure 2. First and third columns from left: the annual, kernel mean (a) lapse rate, (c) Planck, (e) water vapor, (g) surface albedo, (i)
longwave cloud, and (k) shortwave cloud feedbacks. Second and fourth columns: as for the first and third columns, but showing the standard
deviation (SD) among kernels. Cloud feedbacks were calculated using the adjustment method. Values are expressed in units of W m−2 K−1

by normalizing by the global mean surface temperature response. Note the nonlinear color bar scales for both the means and standard
deviations used to make maps comparable.

year-long 2×CO2 simulation. Temperature and water va-
por feedbacks are vertically integrated from the surface to
the model-derived tropopause in the 2×CO2 simulation via
the TROP_P function argument. Water vapor feedbacks were
calculated using the method-1 option, which uses the actual
change in the natural log of specific humidity in calculations,
although we later show global average results with the other
three methods as well. Please note that all results use a sin-
gle model run from CESM1-LE to compute the climate re-
sponse.

The choice of defining the response as the difference be-
tween abrupt 2×CO2 and pre-industrial control simulations
was made to minimize the sample data size distributed with
ClimKern while aligning with this study’s goal of highlight-
ing interkernel spread. Additionally, this approach is com-
monly used, as in Pithan and Mauritsen (2014), Goosse et al.
(2018), Previdi et al. (2020), and Hahn et al. (2021). A no-
table consequence of this choice is that feedback values pre-
sented here include rapid adjustments that occur after CO2
increases (Zelinka et al., 2020; Hahn et al., 2021).

Figure 2 shows the kernel mean (first and third columns)
and standard deviation (second and fourth columns) of the
lapse rate, Planck, water vapor, surface albedo, longwave
cloud, and shortwave cloud feedbacks. Generally, the lapse
rate and Planck feedbacks’ mean and standard deviation
magnitudes are greater at the poles (Fig. 2a–d). The strong
latitudinal gradient and sign change in the lapse rate feedback
(Fig. 2a) are well-recognized features in climate model sim-

ulations subjected to increasing CO2. They are products of
latitudinal differences in lower- and upper-tropospheric cou-
pling, sea ice loss, and heat transport (Manabe and Wether-
ald, 1975; Graversen et al., 2014; Feldl et al., 2020; Colman
and Soden, 2021; Previdi et al., 2021). Similarly, the kernel
mean Planck feedback is most negative over the Arctic with
values less than −12 W m−2 K−1 (Fig. 2c). This is where the
surface temperature increase is greatest via Arctic amplifica-
tion, producing large increases in outgoing longwave radia-
tion via the Stefan–Boltzmann law. Strongly negative Planck
feedbacks of less than −8 W m−2 K−1 occur over the South-
ern Ocean (Fig. 2c). The spatial distribution of lapse rate and
Planck feedback standard deviations imply enhanced kernel
sensitivity in the Arctic and Southern Ocean (Fig. 2b, d);
however, standard deviation values are small compared to
some other feedbacks, including the surface albedo and cloud
feedbacks.

The water vapor feedback is most positive in the trop-
ical Pacific, with values ranging from 2 to 4 W m−2 K−1

(Fig. 2e). Here, the increase in water vapor concentra-
tion per degree of warming is greatest via the Clausius–
Clapeyron relationship. Interkernel spread is also maximized
in the tropics but exhibits a different longitudinal distribu-
tion, with the greatest variability located over the West Pa-
cific (Fig. 2f). The maximum in standard deviation in the
West Pacific extends along the Equator and to the south-
east, indicating that this feature may be related to the dou-
ble Intertropical Convergence Zone (ITCZ) bias present in
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many climate models (Lin, 2007; Tian and Dong, 2020). As
with the temperature feedbacks, interkernel spread is small
(SD< 0.3 W m−2 K−1) relative to the feedbacks discussed
next.

The surface albedo feedback is largest over high-latitude
oceans (Fig. 2g–h), driven by sea ice loss (Curry et al., 1995;
Riihelä et al., 2021). This sea ice loss leads to large bottom-
heavy warming in these regions, resulting in a strong positive
lapse rate feedback, negative Planck feedback, and similarity
in the spatial patterns of the lapse rate, Planck, and surface
albedo feedbacks (Croll, 1875; Ingram et al., 1989; Previdi
et al., 2021). It is important to note that in the Arctic and
Southern Ocean, the standard deviation of the surface albedo
feedback is larger than that of the lapse rate, Planck, and wa-
ter vapor feedbacks, with values nearly as much as 50 % of
the kernel mean. Considering the difference in spread be-
tween the all-sky vs. the clear-sky albedo kernels (Fig. 1i–
j), clouds likely play a role in the polar-amplified spread in
albedo feedback.

The last two feedbacks we consider are the longwave and
shortwave cloud feedbacks in Fig. 2i–l. The kernel mean
longwave cloud feedback shows spatial inhomogeneity with
maxima in the tropical Pacific and western Indian oceans
and minima over northern South America, Africa, and In-
donesia (Fig. 2i). The standard deviation of the longwave
cloud feedback tends to increase poleward aside from rela-
tively large values (∼ 0.4 W m−2 K−1) in the equatorial Pa-
cific (Fig. 2j). Considerable spatial inhomogeneity is also
found in the kernel mean shortwave cloud feedback, rang-
ing from −4 W m−2 K−1 in the western equatorial Pacific
to 7 W m−2 K−1 in northern South America (Fig. 2k). The
shortwave cloud feedback standard deviation is largest over
the Arctic and Southern Ocean (Fig. 2l). The highest stan-
dard deviation values among all feedbacks are those of the
surface albedo and shortwave cloud feedbacks in these re-
gions, highlighting the importance of kernel choice near the
poles.

Having analyzed the spatial distribution of interkernel
spread, we focus on the differences between individual ker-
nels in the zonal mean feedbacks in Fig. 3. The lapse rate
and Planck feedbacks show minimal spread throughout the
tropics and midlatitudes, with the greatest spread in the Arc-
tic (Fig. 3a–b). The lapse rate feedback varies between 4
and 6 W m−2 K−1 poleward of 80° N but varies by less than
1 W m−2 K−1 elsewhere (Fig. 3a). For the Planck feedback,
interkernel spread is greatest poleward of 80° but gener-
ally less than 1 W m−2 K−1 everywhere (Fig. 3b). The zonal
mean water vapor feedback shows little sensitivity to ker-
nel choice but is most sensitive in the tropics with a spread
of ∼ 0.5 W m−2 K−1 (Fig. 3c), similar to the spatial map
(Fig. 2f).

Interkernel spread in the surface albedo feedback is large
relative to the kernel mean, especially in the Arctic. The area-
average interkernel spread north of 70° N is 2.8 W m−2 K−1,
roughly two-thirds of the kernel mean surface albedo feed-

back for the same region (4.2 W m−2 K−1). There is a similar,
albeit weaker, interkernel spread in the surface albedo feed-
back in the Southern Ocean. These features are particularly
important in polar amplification studies, which we discuss
in Sect. 5.

The cloud feedbacks are particularly sensitive to kernel
choice because they are prone to uncertainties in the other
feedback and radiative forcing terms, even when using the
adjustment method (Soden et al., 2008). The interkernel
spread in the zonal mean longwave cloud feedback is largest
at the poles such that its sign in the Arctic depends on ker-
nel choice (Fig. 3e). The shortwave cloud feedback (Fig. 3f)
is similarly most sensitive to kernel choice in the high lati-
tudes, with a zonal distribution of variability similar to that
of the surface albedo feedback. This is not a coincidence: the
surface albedo feedback is used to calculate the shortwave
cloud feedback via the adjustment method, so a large spread
in the former translates to a large spread in the latter.

How do these zonal-average variations manifest in the
global mean? We include the global, annual mean feedback
values for all 11 kernels in Table 2, along with the multi-
kernel mean and standard deviation. While the lapse rate
and Planck feedbacks are consistently negative and the wa-
ter vapor, surface albedo, and shortwave cloud feedbacks are
consistently positive, the sign of the longwave cloud feed-
back is kernel-dependent, with values ranging from −0.07
to 0.10 W m−2 K−1. Interkernel variability, as gathered from
the standard deviation, is greatest in the Planck feedback,
followed by the surface albedo, water vapor, and shortwave
cloud feedbacks (Table 2).

It is worth comparing how global, annual mean water va-
por feedback values depend on the calculation method, as
outlined in Sect. 3.2. Table S1 shows the global annual mean
all-sky water vapor feedbacks for each kernel and method.
Method 3 (fractional approximation for the specific humidity
response and normalization factor) yields the greatest water
vapor feedback values for all kernels, followed by methods
4, 1, and 2. This occurs because the fractional approxima-
tion systematically overestimates the change in natural log-
arithms for large perturbations such as 2×CO2, while the
linear change ignores the damping by the logarithm entirely.
The range in kernel–mean water vapor feedback values in-
troduced by method choice is 0.26 W m−2 K−1, with kernel
mean values ranging from 1.41 to 1.67 W m−2 K−1.

Following this finding, a natural question is whether a par-
ticular kernel set does a better job at closing the radiative
budget than others. This study only uses two simulations
from one model for sample data and is, thus, ill-equipped to
answer this question more generally; however, we may use
clear-sky linearity tests to identify which kernel best closes
the budget in this particular CESM1 experiment, as in Shell
et al. (2008). Consider the clear-sky radiative budget at some
point in time after 2×CO2:

1Ro
=1F o

+ λo1T +Re, (11)
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Figure 3. Annual zonal mean (a) lapse rate, (b) Planck, (c) total water vapor, (d) surface albedo, (e) longwave cloud, and (f) shortwave cloud
feedbacks calculated using the adjustment method for each of the 11 kernels included in ClimKern in W m−2 K−1; 6 W m−2 K−1 is added
to the Planck feedback, and 4 W m−2 K−1 is subtracted from the surface albedo feedback for visualization and comparison purposes.

Table 2. The global annual mean feedback values (in W m−2 K−1), calculated using each kernel and the same sample CESM1-LE data.
From left to right, they are the lapse rate, Planck, total (longwave + shortwave) water vapor, surface albedo, longwave cloud, shortwave
cloud, and total cloud feedbacks. The cloud feedbacks are calculated using the adjustment method. The last two rows contain the kernel
mean and standard deviation of the feedbacks.

λLR λPL λQ λα λCL,LW λCL,SW λCL,total
Kernel

BMRC −0.41 −3.07 1.52 0.57 0.00 0.31 0.31
CAM3 −0.40 −2.99 1.48 0.32 −0.07 0.51 0.44
CAM5 −0.43 −3.16 1.48 0.54 0.10 0.28 0.38
CERES −0.42 −3.14 1.54 0.36 0.06 0.27 0.33
CloudSat −0.42 −3.02 1.34 0.43 0.02 0.39 0.40
ECHAM6 −0.39 −3.07 1.37 0.41 −0.01 0.38 0.37
ECMWF-RRTM −0.38 −3.21 1.53 0.51 −0.00 0.30 0.30
ERA5 −0.37 −3.18 1.51 0.52 0.01 0.33 0.34
GFDL −0.41 −3.12 1.44 0.38 0.03 0.38 0.42
HadGEM2 −0.39 −3.35 1.59 0.49 −0.03 0.39 0.36
HadGEM3-GA7.1 −0.39 −3.17 1.50 0.41 −0.01 0.44 0.43

Mean −0.40 −3.13 1.48 0.45 0.01 0.36 0.34
SD 0.02 0.09 0.07 0.08 0.04 0.07 0.05

where 1Ro is the clear-sky TOA radiative imbalance; 1F o

is the clear-sky 2×CO2 ERF; λo is the clear-sky total feed-
back parameter; and Re is the residual term accounting for
feedback nonlinearities, kernel errors, etc. All terms are
global annual means. Kernel sets that produce the smallest-
magnitude Re values do the best job closing the clear-sky

radiative budget. Table S2 lists the residual values for all
11 kernel sets and 4 water vapor feedback calculation meth-
ods. The best-performing kernel set depends heavily on the
water vapor feedback calculation method; for example, the
Bureau of Meteorology Research Centre (BMRC) kernel
set does the best job of closing the radiative budget us-
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ing water vapor feedback method 1 (no fractional approxi-
mation) with a residual of −0.01 W m−2 K−1, but it is the
second-to-last kernel set in terms of budget closure when us-
ing method 3 (with fractional approximation) with a resid-
ual of −0.25 W m−2 K−1 (Table S2). Focusing only on the
first method, which is the most physically sound and uses
the fewest assumptions, both CAM3 and CAM5 kernel sets
perform well and are the second and fourth best at closing
the clear-sky radiative budget, respectively. This result is,
perhaps, unsurprising given that CAM5 is the atmosphere
model included in CESM1, and CAM3 is an earlier version
of CAM5. We avoid making claims regarding these kernel
sets’ performance when applied to other models and sim-
ulations and simply assert that kernel choice is potentially
important for accurately decomposing a model simulation’s
radiative budget.

5 Conclusions

The radiative kernel method is a popular and efficient way
of diagnosing radiative feedbacks in climate model simula-
tions. We were motivated to develop ClimKern to stream-
line these sometimes complicated calculations, shed light on
kernel choice’s importance in feedback studies, and provide
access to a growing collection of existing kernels. We used
ClimKern to compute basic radiative feedbacks from a sam-
ple climate model output to quantify kernel differences, lead-
ing us to the following conclusions.

ClimKern makes radiative feedback calculations with ker-
nels considerably easier while standardizing the underlying
assumptions and methods. The ClimKern Python package
contains straightforward, one-line commands for the most
common calculations required for computing radiative feed-
backs and can automatically load in data from the ClimK-
ern data repository. The code is well-documented and eas-
ily accessible on GitHub and the Python Package Index for
full transparency. Operations like vertical integration or hor-
izontal regridding are consistent across the functions, even
while offering the user different options. The repository sim-
ilarly employs standard and consistent nomenclature across
all kernels, making it a practical resource for anyone wishing
to compute radiative feedbacks.

Kernel choice is a non-negligible source of uncertainty in
radiative feedback calculations, especially in the polar re-
gions. In terms of global average feedbacks, the lapse rate
feedback appears to be the least sensitive to kernel choice. In
contrast, the surface albedo and cloud feedbacks show con-
siderably more sensitivity to the choice of kernel (Table 2).
Interkernel spread is horizontally and vertically inhomoge-
neous, with all but the water vapor feedback showing the
greatest kernel sensitivity at the poles (Fig. 2); spread may
be a result of either differences in the base states or radiative
schemes used to produce the radiative kernels. The spread
in the clear-sky temperature and surface albedo kernels is

smaller than their all-sky counterparts, suggesting that clouds
are an important source of interkernel variability.

Polar amplification studies frequently use the radiative
kernel method to compare surface warming contributions at
the poles to the global or tropical average and then rank the
relative importance of the individual feedbacks (Pithan and
Mauritsen, 2014; Stuecker et al., 2018; Previdi et al., 2020;
Hahn et al., 2021; Janoski et al., 2023). Two of the feed-
backs most often identified as dominant polar amplification
contributors, the lapse rate and surface albedo feedbacks (Pi-
than and Mauritsen, 2014; Goosse et al., 2018; Previdi et al.,
2020, 2021; Hahn et al., 2021), exhibit maximum interkernel
variability in the Arctic (Fig. 2), further complicating com-
parisons between studies that use different radiative kernels.

Kernel choice can impact climate sensitivity studies that
use global mean values. The mean Planck and surface albedo
feedbacks show the greatest interkernel variability, while
the sign of the mean longwave cloud feedback is kernel-
dependent in this single CESM1 experiment. Although it is
unclear how the variability introduced by kernel choice com-
pares to that of other methodological choices, e.g., model or
forcing scenario, it highlights its impact across spatial scales,
leading to our final point.

Future studies invoking the calculations of climate feed-
backs can be more robust if they include a discussion of the
sensitivity of the results to kernel choice. One option would
be to use multiple kernels from the ClimKern repository in a
sensitivity analysis to explore this. Another option would be
to take the kernel average of feedbacks instead of relying on
individual kernels. Although a kernel average may dilute the
benefits of using more advanced or better-performing ker-
nels, it may reduce the sensitivity to individual kernel biases.
This choice may be especially appropriate in studies using
multimodel ensembles to avoid relying on a single kernel that
may or may not align well with all models. Future work will
include comparing the sensitivity to kernel choice to other
sources of uncertainty in climate studies and evaluating ker-
nel mean performance compared to individual kernels in the
computation of radiative feedbacks.

We intend for ClimKern to become a community-wide
project and invite potential collaborators to contribute. The
easiest way is to visit the ClimKern GitHub and fork the
repository. New features and bug fixes can also be requested
there.

Code and data availability. The ClimKern kernel and data repos-
itory is located at https://doi.org/10.5281/zenodo.14743752
(Janoski et al., 2025a). The version of the ClimKern
Python package documented in this work can be found
at https://doi.org/10.5281/zenodo.14743210 (Janoski et al.,
2025b). Those interested in contributing to ClimKern or
wishing to use the latest version should instead navigate to
https://github.com/tyfolino/climkern (Janoski et al., 2025c). The
Jupyter Notebook containing the code to produce our figures
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is located at https://doi.org/10.5281/zenodo.14757435 (Janoski,
2025).

Supplement. The supplement related to this article is available on-
line at https://doi.org/10.5194/gmd-18-3065-2025-supplement.
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