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Abstract. The proposed hybrid hydrological model with
vegetation (H2MV) uses dynamic meteorology and static
features as input to a long short-term memory (LSTM) to
model uncertain parameters of process formulations that
govern water fluxes and states. In the hydrological model,
vegetation states are represented by the fraction of absorbed
photosynthetically active radiation (fAPAR), and soil storage
capacity (SMmax), which depends on effective rooting depth
besides soil properties. SMmax and fAPAR are both learned
and predicted by the neural networks directly. These parame-
ters have an explicit role to model soil moisture (SM) storage
and the partitioning of evapotranspiration (ET). The model
is optimized concurrently against global observations and
observation-based data of terrestrial water storage (TWS)
anomalies, fAPAR, snow water equivalent (SWE), ET, and
gridded runoff in a 10-fold cross-validation (CV) setup. To
this end, we infer where the model is under-constrained such
that different processes could explain the observational con-
straints in the model due to equifinality. The model repro-
duces the observed patterns of global hydrological compo-
nents and fAPAR, while emergent patterns of runoff ratio,
evaporative fraction, and the ratio of transpiration to ET are
consistent with our current understanding. Despite robustly
predicted temporal patterns of TWS anomalies, we found
that the mean soil moisture state is not well constrained,
causing uncertainty in mean TWS. This emphasizes the im-
portance of SMmax and the necessity for associated enhanced
constraints. The proposed model is open-source and has a

highly flexible and modular structure to facilitate future in-
tegration of carbon and energy cycles, advancing toward a
hybrid land surface model.

1 Introduction

Global hydrological models (GHMs) play a foundational
role in understanding the Earth’s water resources on a large
scale. They provide important insights into predicting ex-
treme events, managing water scarcity, and planning sustain-
able water resources under a changing climate (Zhang et al.,
2023).

GHMs simulate key hydrological processes including
evapotranspiration, runoff, and soil moisture. They employ
process-based models (PBMs), which are abstracted rep-
resentations of the processes controlling water movement
and distribution within a hydrological system. PBMs rely
on established physical principles, such as the conservation
of mass and energy (Fatichi et al., 2016). By adhering to
these fundamental laws of physics, PBMs offer hydrologists
a unique approach to studying the global hydrological sys-
tem.

Despite their utility, PBMs encounter significant chal-
lenges. Some of the process knowledge can be incomplete,
and the theories and assumptions underpinning model devel-
opment can sometimes be subjective, leading to uncertain-
ties in parameter estimations within GHMs (Nearing et al.,
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2021). Additionally, PBMs were typically not designed to
fully harness the growing Earth observation (EO) data, which
can limit their capacity to capture unknown or unexpected
processes (Shen et al., 2018).

Machine learning (ML), particularly deep learning (DL),
effectively addresses the challenge of learning from and uti-
lizing large amounts of observational data. DL can signifi-
cantly decrease the requirement for domain expertise, oper-
ate with much fewer assumptions, and possess the capacity
to unveil unexpected processes due to their versatile internal
architectures (LeCun et al., 2015). DL models have been gar-
nering increasing attention in hydrology and have repeatedly
been shown to outperform physics-based models (Nearing
et al., 2021; Sit et al., 2020). However, DL models come with
noteworthy disadvantages. In contrast to PBMs, DL models
offer no assurance of respecting the laws of physics, even
when delivering outstanding predictions. Therefore, inter-
preting the learned internal functions of deep learning mod-
els becomes highly challenging (Alain and Bengio, 2016;
Shwartz-Ziv and Tishby, 2017), with potentially implausible
responses being learned, such as that trust in models when
applied on new data is limited (Geirhos et al., 2020).

Hybrid modelling aims to address this challenge. This ap-
proach facilitates the design of models that preserve certain
process representations of a PBM while incorporating the
ability to learn uncertain components through DL from ob-
servations (Reichstein et al., 2019; Shen et al., 2023).

Recent studies have been exploring the integration of pro-
cess knowledge into machine learning models to better con-
strain uncertain processes with hybrid approaches. For in-
stance, Zhao et al. (2019) developed a hybrid model that
merges a neural network (NN) with an evapotranspiration
model to estimate latent heat flux, ensuring it adheres to the
conservation of energy principle. This model performed bet-
ter in extrapolating beyond the data range of the training set
compared to a more data-driven model. Similarly, ElGhawi
et al. (2023) combined NN with a mechanistic latent heat
flux model to estimate the surface and aerodynamic resis-
tances of vegetation. While their model successfully esti-
mated latent heat flux, it faced the challenge of equifinality.
To address this, they applied both theoretical and data con-
straints. In a comparable effort, Koppa et al. (2022) utilized
a process-based model of terrestrial evaporation alongside
a NN to estimate transpiration stress. Zhong et al. (2023)
integrated deep learning with a hydrological model to esti-
mate runoff changes, demonstrating that this approach en-
hances the reliability of projections in permafrost-affected
mountain headwaters. Similarly, Bennett and Nijssen (2021)
combined neural networks with a process-based hydrological
model to simulate turbulent heat fluxes, concluding that this
method offers advantages over both purely process-based
models and purely machine-learning-based estimations. Ad-
ditionally, Bhasme et al. (2022) merged neural networks with
a conceptual hydrological model to effectively estimate evap-
otranspiration and streamflow in regional catchments.

Studies by Kraft et al. (2020, 2022) employed the hybrid
method in global hydrological modelling. They utilized a dy-
namic NN, specifically a long short-term memory (LSTM)
model (Hochreiter and Schmidhuber, 1997), to estimate co-
efficients of a simple conceptual hydrological PBM. The hy-
brid model is trained end to end; i.e. the feedback from the
PBM is used to optimize the weights of the NNs and sim-
ulates the dynamics of evapotranspiration, runoff, and wa-
ter storages. The study employed observational products of
TWS variations, snow, ET, and runoff to constrain (i.e. to
calibrate) the model. However, the model has certain limita-
tions. For instance, soil moisture was represented implicitly
by a cumulative water deficit term, evapotranspiration com-
ponents, transpiration, and soil; interception evaporation was
not resolved, and the role of vegetation, an important aspect
in global hydrological modelling (Trautmann et al., 2022),
was not explicitly accounted for.

We present here the global hybrid hydrological model
with vegetation (H2MV) that explicitly represents two piv-
otal properties of vegetation: the maximum soil water stor-
age capacity (SMmax) and fraction of absorbed photosynthet-
ically active radiation (fAPAR), extending previous work by
Kraft et al. (2022). The SMmax is a crucial parameter that
governs water availability for plants and thus the interac-
tions between water and carbon cycles. While Kraft et al.
(2022) estimated the cumulative soil water deficit as a proxy
for soil moisture and without any physical limitations to the
maximum deficit, the implementation of SMmax adds a rel-
evant conceptual constraint and facilitates an explicit repre-
sentation of plant available soil moisture. This parameter is
currently not observable on a global scale, and the spatial
patterns of SMmax remain highly uncertain (Stocker et al.,
2023). Vegetation state is represented by directly estimating
the daily patterns of fAPAR constrained against satellite ob-
servations. The inclusion of fAPAR in the model is relevant
for modelling ET components (transpiration, soil, and inter-
ception evaporation).

In this study, we also address the prevalent issue of equifi-
nality, which is one of the main limitations in PBM in general
(Beven and Freer, 2001; Beven, 2006) and hybrid modelling
in particular (Kraft et al., 2022). Equifinality is the condi-
tion where different combinations of model parameters or
different model configurations yield similar results, making
it challenging to identify a single “correct” model. This prob-
lem is exacerbated in the context of hybrid models that incor-
porate NNs due to their inherent flexibility. The structure of
these models imposes fewer constraints, potentially compli-
cating the equifinality issue further. Concurrently, traditional
methods for assessing parameter correlations and equifinal-
ity fall short when applied to hybrid models. This inadequacy
stems from the unique complexities and characteristics of
hybrid models, necessitating the exploration of alternative
approaches for the effective assessment of the equifinality
problem. Therefore, we develop a simple approach for the
quantification of parameter robustness, which allows for di-
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agnosing model shortcomings. The equifinality of estimated
parameters is assessed using a 10-fold cross-validation (CV)
approach. In total, 10 different models are trained with var-
ied training and validation sets, and a simple metric is used
to quantify equifinality in the estimated parameters.

For transparency and reproducibility, the model is de-
signed in a modular structure and shared with the commu-
nity. Comprehensive documentation accompanies the code,
which is openly shared on a public repository. This commit-
ment to transparency encourages open-source collaboration
and ensures full reproducibility for specifically developing
the model further towards a global hybrid land surface model.

Specifically, this work has the following key objectives:

– The first one is to extend previous work by (1) explicitly
representing vegetation, constrained by satellite obser-
vations; (2) partitioning ET into transpiration, soil evap-
oration, and interception evaporation; and (3) improving
representations of soil moisture by an improved param-
eterization via maximum soil moisture (SMmax).

– The second objective is to identify equifinality by quan-
tifying parameter robustness.

– The final objective is to ensure transparency and model
reproducibility.

2 Methods and datasets

2.1 Datasets

We use meteorological time series data – specifically precipi-
tation, net radiation, and air temperature – as temporal inputs
(forcing) for our model. In addition to these temporal inputs,
we incorporate static features such as soil properties, land
cover fractions, elevation, and wetlands as static inputs.

Our model is optimized against observations of terrestrial
water storage, fAPAR, and snow water equivalent, as well
as observation-based estimations of evapotranspiration and
runoff. We refer to these observations as constraints as they
confine the model’s behaviour to the observed patterns.

Table 1 shows the detailed information about the used
datasets. All meteorological forcing and model constraints
were aggregated to 1° spatial resolution. The spatial resolu-
tions of static inputs were aggregated to 1/30°. We use com-
pressed representations of the original static input that was
preprocessed in a separate modelling framework (for details,
the reader can refer to Kraft et al., 2022). Meteorological
forcing and SWE are kept in the native daily temporal res-
olutions, while monthly temporal resolution is used for the
rest of the model constraints.

Temporal coverage of the data we use vary:

– meteorological forcing (all) – 2001 to 2019 (19 years of
daily data),

– TWS – 2001 to 2017 (17 years of monthly data),

– fAPAR – 2001 to 2019 (19 years of monthly data),

– SWE – 2001 to 2018 (18 years of daily data),

– ET – 2001 to 2015 (15 years of monthly data),

– runoff – 2001 to 2019 (19 years of monthly data).

2.2 H2MV

This section outlines the workflow of our hybrid model,
which integrates modelled hydrological processes with a NN
within an end-to-end framework, as illustrated in Fig. 2. The
model is composed of two main parts: a dynamic sub-module
and a static sub-module.

In the dynamic sub-module, we use an LSTM model to
process both dynamic meteorological data and static fea-
tures. The LSTM model is designed to learn temporal pa-
rameters (coefficients) that are physically interpretable, aid-
ing in the prediction of parameters that are typically uncer-
tain due to the lack of direct observations or incomplete pro-
cess knowledge. These predictions are then utilized within a
conceptual hydrological model to estimate water fluxes and
storages, with some estimates being constrained by available
observational data.

The static sub-module processes static features through a
fully connected NN to determine spatially varying parame-
ters. This approach allows for the estimation of parameters
that do not change over time but vary across different spatial
locations.

Together, these sub-modules enable H2MV to provide a
comprehensive understanding of hydrological processes by
leveraging both dynamic and static data sources.

2.2.1 Hydrological model

In this section, we present the conceptual model of the hy-
drological cycle, offering a high-level overview of the mod-
elled processes, as depicted in Fig. 1. We focus on describing
the key hydrological processes and the underlying logic that
changed compared to Kraft et al. (2022). For a comprehen-
sive understanding, the full model is detailed in Appendix A.

In the equations below, parameters denoted with the super-
script < s, t > show variables varying in both space (s) and
time (t), while those marked with the superscript < s > re-
fer solely to spatial variation. Globally constant parameters,
fixed in both time and space, are shown without superscripts.
Most of the direct NN predictions are denoted by the Greek
letter α unless the parameter has a clear name and, hence,
a designated name (e.g. fAPAR). The Greek letter β is used
to represent globally constant parameters directly learned by
the NN.

The quantified evapotranspiration

ET<s,t> = E<s,t>i +E<s,t>s + T <s,t>
(

in mmd−1
)

(1)
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Table 1. Datasets used: meteorological forcing, static inputs and model constraints. The resolution column shows the original resolutions.

Resolution

Name Spatial Temporal Data Reference

Meteorological forcing

Precipitation 1° Daily GPCP 1dd v1.2 Huffman et al. (2016)
Net radiation 1° Daily CERES SYN1deg Ed4A Wielicki et al. (1996), Doelling (2017)
Air temperature 0.5° Daily CRUNCEP v8 Harris et al. (2014), Viovy (2018)

Static data

Soil properties 1/120° – Soil grids v2 Hengl et al. (2017)
Land cover fractions 1/360° – Globland30 v1 Chen et al. (2015)
Digital elevation model 1/120° – GTOPO Earth Resources Observation and Science Center et al. (1997)
Wetlands 1/240° – Tootchi Tootchi et al. (2019)

Model constraints

Terrestrial water storage 0.5° Monthly GRACE Tellus JPL RL06M v1 Watkins et al. (2015)
fAPAR 500 m 8 d MOD15A2H Myneni et al. (2015)
Snow water equivalent 0.25° Daily GlobSnow v2 Takala et al. (2011)
Evapotranspiration 0.5° Monthly FLUXCOM v1 Tramontana et al. (2016), Jung et al. (2019)
Runoff 0.5° Monthly GRUN v1 Ghiggi et al. (2019)

Figure 1. Simplified overview of the conceptual hydrological
model: beige boxes show water fluxes, blue buckets (cylinders)
show water storages, and blue arrows show how water can move
from/to water storages. Green boxes show direct predictions of
vegetation-related parameters’ vegetation state (used to partition
evapotranspiration into its components) and maximum soil mois-
ture capacity (used to model soil moisture).

refers to the sum of transpiration, soil, and interception evap-
oration.

The interception evaporation

E
<s,t>
i =min

(
min

(
rainfall<s,t>,

fAPAR<s,t> ·α<s,t>Ei

)
,R<s,t>n

)(
in mmd−1

)
(2)

is modelled as the amount of water that is intercepted by the
vegetation (represented by a flexible scaling of fAPAR), con-
strained by the amount of rainfall and available energy.

There, fAPAR (−) is the predicted daily vegetation state,
0< αEi is a direct NN prediction for scaling fAPAR to in-
terception storage capacity, and Rn is the available energy
expressed in mmd−1 via the latent heat of evaporation.

The modelling of soil evaporation and transpiration, i.e.

E<s,t>s =
(
1− fAPAR<s,t>

)
·ET<s,t>pot ·α

<s,t>
Es(

in mmd−1
)
, (3)

T <s,t> = fAPAR<s,t> ·ET<s,t>pot ·α
<s,t>
T(

in mmd−1
)
, (4)

respectively, follows traditional, conceptual two-source mod-
els where fAPAR partitions the available energy for the soil
and plant canopies. The directly predicted parameters by a
NN, i.e. αT and αEs , are bounded to the interval [0,1] and
represent effective conductance or stress.

Incoming water, defined as follows:

w
<s,t>
in = rainfall<s,t>+ s<s,t>melt −E

<s,t>
i(

in mmd−1
)

(5)
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is distributed to surface runoff, soil moisture, and groundwa-
ter recharge (Appendix A). The relative partitioning among
the three water pathways is regulated by the soil moisture
state and predictions by the neural network. Soil recharge
fraction, defined as follows:

r
<s,t>
soilfraction

=min

(
1,

(
SM<s>

max −SM<s,t>

max
(
w
<s,t>
in ,ε

) ))
·α<s,t>rsoil

(−) (6)

represents the fraction of incoming water that will recharge
the soil and scales with the soil moisture deficit relative to the
incoming water. There, 0< SMmax (in mm) is the maximum
plant available soil water storage capacity, and 0< αrsoil < 1
represents uncertain processes. Both parameters are directly
learned by the NN. The additive term ε = 10−8 asserts the
function is differentiable under all circumstances, which is
important for stable NN training.

The groundwater recharge fraction

r<s,t>gwfraction
=

(
1− r<s,t>soilfraction

)
·α<s,t>rgw

(−) (7)

is modelled as a function of soil recharge fraction and the
NN-learned parameter 0< αrgw < 1. The soil recharge frac-
tion and the NN-learned parameter αrgw are used to model
the fraction of surface runoff:

q
<s,t>
surffraction

=

(
1− r<s,t>soilfraction

)
· (1−α<s,t>rgw

)(−) . (8)

The proposed hydrological model equations ensure that
the amount of water entering the system (i.e. precipitation)
equals the amount of water leaving the system (i.e. evapo-
transpiration and runoff) plus any change in storage within
the system. This constraint ensures that the neural networks
also adhere to the principle of mass balance (Appendix A).

2.2.2 Dynamic module

Estimations of the parameters that are represented in the dy-
namic module vary in both space and time. Time series forc-
ings of meteorology (net radiation, air temperature and pre-
cipitation) at time step t , estimated vegetation, and water
states at time step t − 1, and compressed representations of
the static input are given to an LSTM model as inputs. LSTM
is a type of recurrent neural network (RNN) that is designed
to process sequential data (e.g. time series). Apart from the
input mentioned LSTM also receives its own internal hidden
and cell states at time step t − 1 that are responsible for car-
rying useful information from the previous steps to the pre-
diction of future steps (e.g. memory effect). The output of an
LSTM is then fed into a fully connected (FC) layer (Good-
fellow et al., 2016), where it is transformed into interpretable
physical parameters. These direct predictions mostly repre-
sent the uncertain parameters that are directly connected to
a process layer (hydrological cycle) where the process equa-
tions occur. The process layer also receives the same time

series forcings of meteorology that are fed into the LSTM as
inputs. It outputs hybrid (intermediate) predictions, some of
which (SWE, runoff, ET, and TWS anomalies) are directly
constrained using observational data products. Note that the
vegetation state (fAPAR) is directly learned and constrained
(Fig. 2). The temporal resolution of the dynamic module is
1 d, and the spatial resolution is 1°.

2.2.3 Static module

In the static module, static features representing land sur-
face characteristics are fed into a FC layer that is connected
to another FC layer. The first FC layer represents higher-
dimensional patterns of the original input, while the sec-
ond FC layer reduces (compresses) the higher-dimensional
representation. The compressed data are then given to the
LSTM layer (dynamic module) and connected to a final
FC layer. The last FC layer is responsible for transforming
the compressed representation of the static features into an
interpretable and spatially varying hydrological parameter
(SMmax) that is connected to the process layer (hydrological
cycle) in the dynamic module. Note that the static module is
explicitly connected to the dynamic module in two ways: the
connection between the output of FC layer to LSTM and the
connection between the spatially varying estimation and pro-
cess layer (Fig. 2). There is also implicit connection between
the two sub-modules as the full model is trained end to end
and during optimization, learned spatially varying parame-
ters are updated in order to minimize the loss.

Global constants (fixed in both space and time) are train-
able parameters that are not directly connected to the input
(Fig. 2). During model optimization, these parameters are
updated. This means the input and the constraints have an
indirect impact on these learned parameters.

2.3 Model optimization

2.3.1 Cross-validation

We employ a 10-fold cross-validation (CV) to train and vali-
date H2MV, which entails training 10 separate models, each
with distinct training and validation sets. Additionally, the
weights of each model are randomly initialized during train-
ing. The objectives of the CV are twofold: to evaluate the
generalization capability of the model and to gain insights
into the equifinality of model estimations.

To mitigate spatial autocorrelation, we implement spatial
blocking as suggested by Roberts et al. (2017). During the
training of each fold, a unique set of validation data is utilized
to validate the model. It is important to note that a separate
testing dataset, unseen by any of the models during training,
is used to assess the model’s performance, robustness, and
equifinality after all models are trained (Fig. 3).
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Figure 2. High-level overview of H2MV: beige boxes show inputs, pink boxes are NN layers, green boxes are predictions, yellow boxes are
predictions that are directly constrained, and cyan boxes are the corresponding data constraints.

Figure 3. Validation sets for 10 different models and a fixed testing set. Note that, during training, each fold has a separate and unique
validation set, and all models were tested on the same testing set.

2.3.2 Loss function

To quantify the performance of the hybrid model for any in-
put data (X), NN weights (2), and global constraints (β), we
use the mean squared error (MSE):

L(X,2,β)=
1
Nc

C∑
c=1

Nc∑
i=1
(yc,i − ŷc,i)

2, (9)

as a loss function that aggregates individual losses to obtain
a final loss term. Here, C is the number of data constraints,
Nc is the number of examples (data points) in the constraint
c, and yc,i and ŷc,i are the observed and predicted values of
the data constraint c, respectively. During training, 2 and β
are updated to minimize the total loss L.

We apply a Z transformation to both the predictions and
their corresponding observations before calculating the loss.
This addresses the issue of differing units among model con-
straints and ensures that each individual loss has a similar
impact on the model’s behaviour.

2.3.3 Model training

We use Z transformation to standardize both inputs and out-
puts (targets) of H2MV during training. We use the unscaled
forcing data to compute hydrological equations, ensuring
proper constraint of the water balance. For optimization, we
opt for the Adam optimizer (Kingma and Ba, 2014). During
optimization, the learnable parameters (e.g. weights) of both
the dynamic and static NN are updated to minimize the total
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loss. To prevent overfitting, early stopping is implemented,
halting the training process once the model’s performance
on the validation set ceases to improve. Additionally, we run
the full model without updating weights to stabilize water
and vegetation states (spin-up), which are then fed as inputs
to the LSTM network at each iteration during training. The
model with the smallest total loss on the validation set during
training is selected as the final model. This best-performing
model is then utilized to make the final predictions on the
testing set.

2.4 Model evaluation

2.4.1 Performance metrics

We evaluate our model’s performance using root mean
square error (RMSE); Pearson’s correlation coefficient (r);
and standard deviation ratio (SDR), which is the ratio be-
tween the predicted and observed standard deviations.

2.4.2 Mean seasonal cycle

We define the mean seasonal cycle (MSC) as follows:

MSC(m) =
1
Y

Y∑
y=1

pm,y, (10)

where pm,y represents the modelled or observed parameter
for month m and year y and Y is the total number of years.

2.4.3 Interannual variability

We define the interannual variability (IAV) as follows:

IAV(m, y) = pm,y − MSC(m). (11)

In this equation, pm,y denotes the modelled or observed pa-
rameter for a given monthm and year y, while MSC(m) rep-
resents the mean seasonal cycle for that specific month m.

2.4.4 Equifinality evaluation

In H2MV, we incorporate a relatively high number of pro-
cesses while being constrained by a limited set of observa-
tional data. This makes H2MV susceptible to equifinality. To
address this, we use a 10-fold CV method, training 10 models
with varying sets of training and validation data and initial-
izing each model’s weights randomly.

This approach allows us to evaluate the sensitivity of pa-
rameter estimations to three key factors: (1) the validation
set, (2) the initial NN weights, or (3) the combination of
both. If we observe considerable variability in the parame-
ter estimations among the 10 trained models, it suggests that
the estimations for a particular parameter are equifinal. This
means that the parameter is subject to high uncertainty as
multiple mechanisms within the model can lead to similar

outcomes. In essence, our analysis of equifinality helps de-
termine whether a simulation of a variable in the model, par-
ticularly fluxes and states, is under-constrained by the obser-
vational and theoretical constraints we have applied.

We use a single, normalized metric value for each esti-
mated parameter across the 10 models, facilitating a clearer
understanding of the level of equifinality in the estimations.
This metric represents the average error between different
model realizations and therefore represents the variability of
a certain parameter.

Following Gupta et al. (2009), we use the decomposition
of MSE into phase, bias, and variance errors, respectively:

ephase =
1
Np
·

Np∑
p=1

2 · σp,1 · σp,2 ·
(
1− rp

)
vp

, (12)

ebias =
1
Np
·

Np∑
p=1

(
µp,1−µp,1

)2
vp

, (13)

evar =
1
Np
·

Np∑
p=1

(
σp,1− σp,1

)2
vp

. (14)

Here, p represents a pair of estimations for the same param-
eter obtained from two different models through CV; Np is
the total number of such pairs; and σp,1 and σp,2 denote the
standard deviations of the first and second estimations in the
pair p, respectively. Further, rp represents the correlation be-
tween the first and second estimations, while vp is the mean
variance between these estimations. Additionally, µp,1 and
µp,2 denote the mean of the first and second estimations in
the pair p, respectively. We normalize all of these error terms
by the mean variance between the two estimations to account
for different units. The computation is performed exclusively
on the predictions from the testing set.

We define the equifinality index (EI) as follows:

EI = ephase + ebias + evar. (15)

EI is essentially MSE normalized by the variance of the es-
timations. Higher EI values signify a larger degree of equi-
finality or reduced robustness, while lower values indicate
smaller equifinality and therefore a more robust prediction.

2.4.5 TWS decomposition

In our model, TWS is composed of three primary water stor-
age components that are not directly observed, except for
snow water equivalent, which is derived from observational
data. It is crucial and intriguing to evaluate which component
of TWS is the most dominant and where this dominance oc-
curs spatially. This is particularly important because previous
studies have highlighted significant modelling uncertainties
related to these components (Trautmann et al., 2018; Kraft
et al., 2022).

To decompose TWS variability, we use a technique intro-
duced by Getirana et al. (2017).
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First, we compute the absolute contribution for each water
storage, i.e.

Cabs(S)=

T∑
t=1

∣∣St − S∣∣ , (16)

with T being the total number of time steps, St the water
storage at the time step 1< t < T , and S the mean of the
water storage S over time. The relative contribution of each
modelled water storage

Crel(Si)=
Cabs(Si)∑NS
Sj=1Cabs,Sj

∈ [0,1] (17)

is then defined for all modelled water storages NS.

3 Results and discussion

3.1 Model performance

Here, the model evaluation is carried out on the same inde-
pendent test set for all the members (Fig. 3); these data have
not been seen during model training. The additional experi-
ment where we test our model’s spatio-temporal generaliza-
tion capability is discussed in Appendix C.

On the global scale, the observed patterns of fAPAR are
well reproduced and robust across CV members (Fig. 4a).
The MSC of fAPAR is well captured, although there is some
disagreement between the predictions and observations in
December (Fig. 4b), possibly due to artefacts in the satellite-
based fAPAR product due to snow contamination. The IAV,
in contrast, is more challenging to predict, and the agreement
with the observations is lower. While the general dynamics
of the IAV are represented relatively well, the trend is not re-
produced by the model (Fig. 4c). The model also captures the
observed patterns of fAPAR for all major regions (Fig. B4).

The TWS is well reproduced on the global scale (Fig. 5a).
The MSC matches the observations in terms of dynamics and
timing (Fig. 5b). There is a slight phase shift and underesti-
mation in the amplitude of the TWS predictions. A similar
pattern was noticed in previous studies (Kraft et al., 2022;
Trautmann et al., 2022) and is likely related to the missing
representation of surface water variations with snowmelt in
the Northern Hemisphere. Figure 5c shows that the patterns
of TWS IAV are captured well between 2002 and 2014, while
there is a shift afterwards. Overall, TWS predictions are ro-
bust across the CV members.

H2MV reproduces patterns of SWE, ET, and runoff well.
We show the model performance on these data in Ap-
pendix B1. The ET and runoff are reproduced well on all
temporal scales (Figs. B2 and B3). These variables have been
upscaled from sparse observations using ML, and, hence,
they are not directly observed. We do, therefore, expect
H2MV to be able to represent these variables well. The SWE,
in contrast, is directly observed. Here, the model represents

the IAV relatively well, but the MSC amplitude is under-
estimated (Fig. B1). The underestimation of SWE could be
linked to the lack of representation of surface water storage.
To reduce the TWS phase shift, the model may need to re-
duce snow accumulation as it has no mechanism to buffer
the meltwater. Furthermore, additional mass accumulation
via snow in the high latitudes would lead to a larger error
in TWS, which already matches the observations well from
January to March. Similarly, larger SWE would lead to an in-
creased runoff in northern spring, increasing the runoff error.
Hence, the low SWE may be caused by various trade-offs and
inconsistencies among data streams including precipitation,
which is very uncertain with respect to snowfall.

Overall, the seasonality has been reproduced well for all
target variables in terms of Pearson correlation (r), with val-
ues close to 1, while the correlation varied for the interan-
nual variability (IAV), ranging from 0.47 to 0.83 (Fig. 6).
In terms of the RMSE, IAV generally shows lower RMSEs,
except for TWS. The SDR (the ratio between predicted and
observed standard deviation) indicates that fAPAR seasonal-
ity is well represented by the model in terms of variability,
while the IAV magnitude is underestimated. The TWS vari-
ability is underestimated due to an underestimation of sea-
sonal amplitude, while the interannual variance is matched
well. The SWE is underestimated, with an SDR of 0.75 for
the mean seasonal cycle (MSC) and 0.5 for the IAV. Both
ET and runoff are matched well in terms of variance, except
for the ET IAV, which is overestimated by a factor of 2. The
apparent overestimation of ET interannual variance by the
model is likely due to a substantial underestimation of in-
terannual variance by the FLUXCOM approach (Jung et al.,
2019) used to generate the reference ET product.

Overall, H2MV performance is qualitatively consistent
with the findings of Kraft et al. (2022). For a comprehensive
assessment of the model’s global performance and compari-
son with the results from Kraft et al. (2022), refer to Fig. B5.

3.2 Equifinality of the intermediate predictions

Here, we assess the equifinality of H2MV’s predictions re-
garding water states, as illustrated in Fig. 7. Figure 7a dis-
plays the predicted anomalies of each modelled water state
across different models (represented by the thickness of the
lines that shows the range of the estimations). Predicted
anomaly refers to the predicted state minus the mean of the
predicted state. Notably, the dynamic patterns of all mod-
elled water storages exhibit high robustness, indicating that
temporal patterns are sensitive to neither the random weight
initialization of the neural network during training nor the
different training / validation set splits (Fig. 7a).

However, upon assessing the means of the trained mod-
els, it becomes evident that there is uncertainty regarding
the mean values of the water storages (Fig. 7b), particu-
larly for SM and TWS. It is worth noting that SWE is well
constrained, which is expected as it is directly constrained
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Figure 4. Predicted versus observed mean fAPAR over the testing set (spatial domain) across different folds: (a) monthly, (b) mean seasonal
cycle, and (c) interannual variability.

Figure 5. Predicted versus observed mean TWS (anomaly) over the testing set (spatial domain) across different folds: (a) monthly, (b) mean
seasonal cycle, and (c) interannual variability.

by the observational data in high latitudes. Figure 7c illus-
trates a positive correlation between the predicted mean of
SM and TWS. The source of this variability of the means of
SM and TWS may be caused by the uncertainty in estimat-
ing the magnitude of SMmax (note that the estimated spatial
patterns of SMmax are very robust), which provides the up-
per bound of the soil moisture water storage. Therefore, by
constraining the estimations of SMmax, we could potentially
improve SM predictions. Given that TWS is the sum of SM,
GW, and SWE, and since SWE is already robustly estimated,
constraining SMmax would consequently provide a more ro-

bust estimate of GW and TWS. Interestingly, the small uncer-
tainty observed in the mean value of GW (Fig. 7b) does not
appear to be related to the uncertainty in either SM or TWS
(Fig. 7c). Enhancing H2MV’s representations of the param-
eters that control GW dynamics could improve our repre-
sentation of SM and, consequently, TWS. This suggests that
by choosing to refine our constraints on either GW or SM –
whether through incorporating more process details or apply-
ing data constraints – we could indirectly improve our esti-
mates of the other water state as well, thus presenting another
promising avenue for future work.
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Figure 6. Model performance on the testing set. Cross bars show the maximum and minimum error, and the lines show the mean error
across 10 folds. The rows are metrics, and the columns are model constraints. RMSE refers to root mean squared error, and SDR is standard
deviation ratio (the ratio between predicted and observed standard deviation).

Figure 7. Predicted water states averaged over testing set across 10 different folds: the thickness of the line shows the range of the estimations.
(a) Predicted anomalies (state− mean(state)). (b) Range of means across folds: the lines show the average mean and the cross-bars show the
maximum and minimum mean values across the folds. (c) Predicted means of SM versus TWS: the points are different folds and the line is
the regression line. Colors of the points indicate the values of GW.
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The analysis of the equifinality reveals that, overall, the
most dominant error component of MSE in H2MV is phase
shift (covariance error) (Fig. 8). This could be attributed to
the fact that most of H2MV constraints operate at a monthly
temporal resolution, whereas H2MV operates at a daily tem-
poral resolution at which the metric was calculated. At the
same time, a phase shift may occur due to missing represen-
tation of surface water storage and river routing.

Equifinality metric values for SMmax; SM; and TWS
(Fig. 8a); as well as soil and interception evapora-
tion (Fig. 8b), groundwater recharge, predicted fractions
(Fig. 8d), and snowmelt (Fig. 8e) are relatively large. In con-
trast, the remaining parameters exhibit relatively small equi-
finality values, which are all smaller than 0.1.

GW demonstrates a smaller equifinality value relative
to TWS and SM (Fig. 8a), which supports the informa-
tion depicted in Fig. 7. Notably, transpiration is predicted
more robustly compared to interception and soil evaporation
(Fig. 8b), indicating that equifinality of ET partitioning is pri-
marily between soil and interception evaporation. This indi-
cates that the identifiability of the neural network’s learned
parameters for evapotranspiration partitioning is weak, par-
ticularly for the parameters used to model soil and intercep-
tion evaporation.

Snow accumulation is highly robust and primarily gov-
erned by represented processes with limited impact from the
NN (due to globally constant snow correction) (Fig. 8e).

3.3 Emerging global patterns

One of the capabilities of the proposed hybrid model is
to retrieve information on intermediate processes and pat-
terns that lack direct observational constraints. This section
presents some of the emerging global patterns after training
the model.

3.3.1 Evaporative fraction

The evaporative fraction (EF), defined as the ratio of evap-
otranspiration to the total available energy (net radiation),
serves as a valuable intermediate parameter shedding light on
whether the Earth’s surface is dominated by evaporation (in
areas with ample water availability) or sensible heat flux (in
water-limited regions). As depicted in Fig. 9a, higher EF val-
ues are anticipated predominantly in the southeast of North
America, much of Central and South America, western Eu-
rope, central Africa, and southeast Asia. These regions typ-
ically experience moderate to high precipitation levels and
boast significant vegetation coverage. Conversely, relatively
low EF values are projected for most of Canada and the
southwestern United States (US), specific eastern regions of
Brazil, the southwestern part of South America, extensive ar-
eas of western Russia, the southern and western regions of
Africa, and most of Australia. It is worth noting that this re-
sult is based on the predicted ET that is constrained using

observation-based data and net radiation, which is a meteo-
rological input to the model.

3.3.2 Runoff coefficient

The runoff coefficient, representing the ratio of total runoff
to precipitation, serves as a critical indicator of how much
precipitation transforms into runoff rather than being ab-
sorbed into the soil, evaporated, or transpired by vegetation.
H2MV projects varying runoff coefficient values across dif-
ferent regions. Moderate to high values are anticipated for
the northeast and northwest of North America, the Amazon
Basin, much of the northern part of South America, north-
ern Europe, extensive areas of Russia, southeast Asia, and
New Zealand. Conversely, low runoff coefficient values are
forecasted for central and southern regions of North Amer-
ica, specific eastern areas of Brazil, most of the southwestern
part of South America, parts of central Asia, and Australia
(see Fig. 9b). This outcome strongly aligns with global trends
identified in a comprehensive study by Wang et al. (2022),
which analysed data from 23 advanced models within the
Coupled Model Intercomparison Project Phase 6 (CMIP6).
This result is derived from model’s constrained estimation of
runoff and precipitation that is one of the key meteorological
inputs of the model.

3.3.3 Transpiration versus evapotranspiration

The ratio of transpiration to evapotranspiration reflects the
amount of water transpired by the vegetation relative to the
total water leaving the surface. Transpiration is very impor-
tant for both understanding water cycle components and the
coupling between carbon and water cycles. Figure 9c reveals
that globally, in most places, transpiration is the more domi-
nant parameter compared to the other modelled components
(interception and soil evaporation) of ET. Specifically, the
highest domination of transpiration can be seen in northwest
and southeast Canada, most parts of South America (espe-
cially the Amazon Basin area), high latitudes of Europe and
Asia, and the Congo Basin in central Africa. These regions
are known to have a moderate to high amount of vegetation
with moderate to high annual precipitation patterns. Most of
the low values were predicted to be around arid regions that
are known to have low amount of vegetation. Overall, our
findings (mainly spatial patterns) align qualitatively with re-
ported estimations by Martens et al. (2017), Wei et al. (2017),
and Nelson et al. (2024). However, compared to these find-
ings, H2MV indicates a more pronounced dominance of tran-
spiration in the Amazon and Congo basins compared to other
regions within their respective continents. Note that this com-
parison focuses on spatial patterns rather than on magnitudes.

3.3.4 Maximum soil moisture content

The maximum soil moisture content available for plant tran-
spiration, denoted as SMmax (also known as the rooting zone
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Figure 8. Equifinality index averaged over all the combinations of 10 folds: TWSA indicates anomalies of TWS, Ei is interception evapora-
tion, Es is soil evaporation, ET is evapotranspiration, T is transpiration, rgw refers to groundwater recharge, rsoil is soil recharge, runoffsurf
is surface runoff, subscript f refers to fractions of these components, sacc and smelt are snow accumulation and snowmelt, respectively.

water storage capacity), represents a crucial parameter in cli-
mate modelling, particularly for studying carbon–water cy-
cle processes. However, our current grasp of this parameter,
especially its spatial variability, remains highly limited due
to the lack of direct observations. Several studies (Wang-
Erlandsson et al., 2016; Tian et al., 2019; Stocker et al.,
2023), as well as related research on plant rooting depth
(Yang et al., 2016; Fan et al., 2017), have attempted to es-
timate this parameter. While there are qualitative agreements
among these studies, significant discrepancies exist, likely
stemming from diverse methodologies and underlying as-
sumptions. A noteworthy aspect of our proposed model is
its direct learning of SMmax from static inputs (such as land
cover and soil properties) using neural networks. Globally,
H2MV predicts high spatial variability for SMmax (Fig. 9d).
The highest SMmax values are predominantly estimated in
South America, central Africa, southeast Asia, and extreme
northern and southern regions of Australia. This observation
aligns with the regions known for substantial and seasonal
rainfall, abundant radiation, and extensive vegetation cov-
erage. Conversely, the lowest SMmax values are identified
in the high latitudes of the Northern Hemisphere. Interest-
ingly, there are substantial qualitative agreements, in terms
of spatial patterns, between our estimations and those re-
ported by Wang-Erlandsson et al. (2016), Tian et al. (2019),
and Stocker et al. (2023). For instance, these studies, along
with our own, predict higher values across much of South
America, central Africa, and southeast Asia. Conversely,

they estimate significantly lower values for the high lati-
tudes of the Northern Hemisphere. Our estimations are more
closely aligned, in terms of magnitude, with those reported
by Stocker et al. (2023). In contrast, both Wang-Erlandsson
et al. (2016) and Tian et al. (2019) report significantly lower
values for this parameter. This discrepancy across different
models highlights the necessity for additional global-scale
studies and validation efforts concerning this parameter.

3.3.5 TWS decomposition

Another critical yet uncertain aspect in hydrological mod-
elling pertains to the contribution of water storages to ob-
served TWS variability. Figure 9e illustrates the breakdown
of modelled daily TWS variability into its components, high-
lighting their relative contributions to TWS variability. In
regions of very high latitudes in the Northern Hemisphere,
SWE emerges as the dominant factor influencing TWS vari-
ability, a finding consistent with existing literature, including
studies by Kraft et al. (2022) and Trautmann et al. (2022).
Conversely, the contribution of GW predominates only in
the northwest of South America, a relatively small area in
central Africa (around the Congo basin), and some parts of
southeast Asia. The remainder of terrestrial land globally is
estimated to be primarily influenced by SM variability. This
finding closely aligns with previous research, in particular
that of Kraft et al. (2022), which used similar techniques and
datasets.
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Figure 9. Emerging intermediate global patterns averaged across 10 folds: (a) the ratio of evapotranspiration to total net radiation (evaporative
fraction), (b) the ratio of runoff to precipitation (runoff coefficient), (c) the ratio of transpiration to evapotranspiration, (d) predicted maximum
soil moisture capacity (rooting zone water storage capacity), (e) decomposition of terrestrial water storage into snow water equivalent (SWE),
soil moisture (SM) and groundwater storage (GW), and (f) the ratio of baseflow (Qbase) to the total runoff (Qtotal) (baseflow index).

3.3.6 Baseflow index

The baseflow index (BFI), indicating the ratio of baseflow
to total runoff, plays a crucial role in understanding the
proportion of streamflow contributed by baseflow which is
discharged from groundwater storage. H2MV’s estimations
(Fig. 9f) indicate a significant predominance of baseflow in
the central regions of North America, Europe, western Asia,
and the Amazon Basin. Conversely, the contribution of base-
flow is relatively low in other areas. This estimation is quali-
tatively consistent with the findings reported in the studies by
Beck et al. (2013, 2015). These studies’ and our results show
higher BFI values for the mid and high latitudes of North
America, majority of Europe and western Asia, and regions
within South America, particularly the Amazon Basin. How-
ever, in contrast to these studies, our estimated BFI values for
central Africa are significantly lower.

3.4 Challenges and future perspective

H2MV heavily relies on the quality of both input and ob-
served target data as they directly influence the results. The
satellite-based observational data used for model optimiza-
tion can contain measurement errors. For instance, TWS
anomaly (GRACE) (Landerer and Swenson, 2012; Soltani
et al., 2021), fAPAR (MODIS) (Xu et al., 2018), and SWE
(GlobSnow) (Luojus et al., 2021) are known to exhibit sig-
nificant uncertainties. Furthermore, both runoff and ET prod-
ucts are not directly observed on a global scale and are
thus expected to have significant uncertainties (Ghiggi et al.,
2019; Jung et al., 2019). The total uncertainty, which in-
cludes the uncertainty in the input data, may substantially
impact the estimations of the represented parameters. How-
ever, it is important to note that hybrid modelling may be

less sensitive to the uncertainty in the target data compared
to a purely data-driven approach, such as pure ML, due to the
incorporation of process knowledge that governs the predic-
tions to some extent. For instance, we calibrate our estimates
of ET using the FLUXCOM ET product as a benchmark.
Upon comparing the IAV of our ET estimates with FLUX-
COM data, it becomes evident that H2MV tends to overesti-
mate IAV. This discrepancy is actually plausible, considering
the fact that FLUXCOM is known to substantially underesti-
mate ET’s IAV (Jung et al., 2019).

Another challenge arises in balancing the estimation of
more uncertain processes with their interpretability. Cur-
rently, we have a limited number of constraints for the mod-
elled hydrological components. Adding more processes to
the model without incorporating additional data constraints is
likely to introduce more equifinality unless the implementa-
tion of the process requires no or few parameters to calibrate.
Despite its apparent simplicity, H2MV represents a relatively
high number of water cycle processes from a hybrid mod-
elling perspective. However, the directly learned uncertain
parameter estimations by the NN should be interpreted with
caution. As a concrete example, we partition ET into tran-
spiration, soil, and interception evaporation using relatively
well understood processes (e.g. as a function of vegetation
and available radiation) along with uncertain parameters di-
rectly learned by the NN. We directly predict three parame-
ters (one for each component of ET), and theoretically, there
could be infinite combinations of these parameters that can
lead to the same ET value (equifinality). While our method to
assess equifinality provides valuable insights into the robust-
ness of our estimations, it does not guarantee that parameters
with very high robustness across 10 different models with
different weight initializations (in a 10-fold CV setup) are
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not equifinal. This is because we do not explore the weight
space to its full extent, and there are many hyperparameters
of the NN that can impact the robustness of our predictions.

One of our next objectives is to delve deeper into under-
standing the uncertainty surrounding the mean estimation of
SM, which appears to correlate with the mean of TWS. In-
vestigating whether refining and constraining SMmax estima-
tion leads to a more accurate representation of SM, GW, and
TWS would be particularly intriguing.

Furthermore, our approach enables coupling the hydrolog-
ical model with the carbon cycle. This coupling could sub-
stantially enhance our understanding of both the water and
carbon cycles as well as their interactions. By incorporat-
ing additional observational satellite data products related
to the carbon cycle, we can further elucidate these com-
plex interactions. Given that H2MV already represents im-
portant carbon-cycle-related parameters such as vegetation
state, SMmax, and transpiration, it provides a unique avenue
for studying key water–carbon cycle interactions that remain
largely uncertain in current research (Humphrey et al., 2018;
Jung et al., 2017; Gentine et al., 2019).

4 Conclusions

This study delves into the concept of combining machine
learning with process knowledge to model the global terres-
trial hydrological cycle. The proposed hybrid model learns
physically interpretable parameters, coefficients, and vari-
ables from input meteorology and static land features. These
learned parameters are then seamlessly integrated into a pro-
cess layer where computations of the hydrological cycle oc-
cur.

A key innovation of the proposed model lies in its explicit
learning of vegetation-related state parameters, which have
been shown to directly influence the water cycle but are not
commonly utilized in hydrological modelling. These param-
eters include fAPAR, constrained against satellite observa-
tions, and maximum soil moisture capacity, directly learned
from the static land features.

During model evaluation against observations, we find a
high overall agreement between the predictions and the ob-
served data. Additionally, we assess the learned global pat-
terns of several intermediate hydrological parameters and
find that these patterns align well with current knowledge.

Given the inherent flexibility of combining a machine
learning model with a process-based model, equifinality is a
pivotal challenge. With the quantification of equifinality via
CV ensemble uncertainty, we illustrate a pathway to improve
hybrid models and to assess their physical consistency. Given
the significant flexibility of neural networks, it is important
to assess the equifinality of hybrid models (Acuña Espinoza
et al., 2024). However, the quantification of equifinality in
hybrid models is often less emphasized in the current lit-
erature. We observe that the temporal patterns of the mod-

elled mean global water storages demonstrate high robust-
ness. However, we note that the predicted means of soil mois-
ture and terrestrial water storage lack robustness, indicating
equifinality issues within the hybrid model. The covariation
observed between the predicted means of soil moisture and
terrestrial water storage suggests that refining or constraining
SMmax in the model could enhance the representation of soil
moisture, groundwater, and terrestrial water storage.

Appendix A: Hydrological model

A1 Snow

Snow accumulation (snowfall) (mmd−1) is a function of air
temperature (Tair, in °C) and precipitation (prec, in mmd−1):

s<s,t>acc =

{
prec<s,t> · βsnow, if T <s,t>air ≤ 0°C

0,otherwise
. (A1)

Here (Eq. A1), βsnow is a NN-learned parameter (globally
constant and 0 < βsnow < 1) that is used to account for the
reported overcorrection of snow (Decharme and Douville,
2006).

We use a degree–day method to model the melting of the
snow (mmd−1):

s
<s,t>
melt = min

(
max

(
T
<s,t>

air , 0
)
· α<s,t>smelt

,

SWE<s,t−1>
)
, (A2)

where αsmelt (> 0) is directly learned by the NN. The snow
storage snow water equivalent (SWE, in mm) is updated as
follows:

SWE<s,t> = max
(

SWE<s,t−1>
+ s<s,t>acc

− s
<s,t>
melt , 0

)
. (A3)

A2 Evapotranspiration

Rainfall (mmd−1) is simply the total precipitation depending
on the temperature:

rainfall<s,t> =

{
prec<s,t>, if T <s,t>air > 0°C

0,otherwise
. (A4)

Interception evaporation (Ei, in mmd−1) is modelled as
the amount of water that is intercepted by the vegetation and
that will eventually evaporate back to the atmosphere:

E
<s,t>
i = min

(
min

(
rainfall<s,t>,

fAPAR<s,t> ·α<s,t>Ei

)
, R<s,t>n

)
, (A5)

where fAPAR (–) is the predicted daily vegetation state, αEi
(> 0) is a direct NN prediction that accounts for uncertain
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processes, and Rn is the net radiation (mmd−1). To conserve
the energy balance, the net radiation is updated as follows:

R<s,t>n = R<s,t>n − E
<s,t>
i . (A6)

Potential evapotranspiration (ETpot, in mmd−1) is simply
the minimum of the available energy (Rn) and the current soil
moisture state (SM, in mm):

ET<s,t>pot = min
(
R<s,t>n , SM<s,t−1>

)
. (A7)

Soil evaporation (Es, in mmd−1) is modelled as a function
of vegetation, potential evapotranspiration (ET), and NN-
learned parameter αEs (0 < αEs < 1):

E<s,t>s =
(
1 − fAPAR<s,t>

)
· ET<s,t>pot · α

<s,t>
Es

. (A8)

Then, SM (mm) is updated as follows:

SM<s,t>
= SM<s,t−1>

− E<s,t>s . (A9)

Potential ET is updated again using Eq. (A7). Transpira-
tion (mmd−1) is represented in a similar way to soil evapo-
ration (Eq. A8):

T <s,t> = fAPAR<s,t> · ET<s,t>pot · α
<s,t>
T , (A10)

where 0 < αT < 1. SM is updated using transpiration:

SM<s,t>
= SM<s,t−1>

− T <s,t>. (A11)

ET (mmd−1) is the sum of transpiration, soil, and inter-
ception evaporation:

ET<s,t> = E
<s,t>
i + E<s,t>s + T <s,t>. (A12)

Note that ET is constrained directly.

A3 Soil and groundwater recharge

Water input (win, in mmd−1) is defined as the amount of
water that arrives on the land surface:

w
<s,t>
in = rainfall<s,t> + s

<s,t>
melt − E

<s,t>
i . (A13)

Soil recharge fraction (–) represents the fraction of incoming
water that will infiltrate into the soil:

r
<s,t>
soilfraction

= min

(
1,

(
SM<s>

max − SM<s,t>

max
(
w
<s,t>
in , ε

) ))
· α<s,t>rsoil

, (A14)

where SMmax (mm) (> 0) is the maximum amount of wa-
ter that can be held by the soil which is directly available to
plants via transpiration and αrsoil (0 < αrsoil < 1) represents
uncertain processes. Both of these parameters are directly
learned by NN. ε is a small value (10−8) that is used to make
the function differentiable under all circumstances, which is

important for stable NN training. Incoming water and soil
recharge fraction is used to model soil recharge (mmd−1):

r
<s,t>
soil = r

<s,t>
soilfraction

· w
<s,t>
in . (A15)

Soil recharge infiltrates into the soil:

SM<s,t>
= SM<s,t>

+ r
<s,t>
soil . (A16)

Groundwater recharge fraction (–) is modelled as a func-
tion of soil recharge fraction and a NN-learned parameter
αrgw (0 < αrgw < 1):

r<s,t>gwfraction
=

(
1 − r

<s,t>
soilfraction

)
· α<s,t>rgw

, (A17)

which is used to model groundwater recharge (mmd−1) de-
fined as the amount of incoming water that will enter the
groundwater.

r<s,t>gw = r<s,t>gwfraction
· w

<s,t>
in (A18)

A4 Runoff

The soil recharge fraction and the NN-learned parameter αrgw

are used to model the fraction of surface runoff (–):

q
<s,t>
surffraction

=

(
1 − r

<s,t>
soilfraction

)
· (1− α<s,t>rgw

). (A19)

Surface runoff (mmd−1) refers to the amount of incoming
water that becomes runoff:

q
<s,t>
surf = q

<s,t>
surffraction

· w
<s,t>
in . (A20)

Baseflow runoff (mmd−1) is defined as the total amount of
water that is discharged from the groundwater:

q
<s,t>
base = GW<s,t−1>

· βgw, (A21)

where GW (mm) is the current groundwater storage and βgw
is a global constant that is directly learned by NN and refers
to the baseflow recession.

Total runoff (mmd−1) is the sum of surface runoff and
baseflow (and it is directly constrained):

q
<s,t>
total = q

<s,t>
surf + q

<s,t>
base . (A22)

A5 Groundwater storage

Groundwater storage (GW, in mm) is updated as a function
of the current GW, groundwater recharge, and baseflow as
follows:

GW<s,t>
= GW<s,t−1>

+ r<s,t>gw − q
<s,t>
base . (A23)

A6 Terrestrial water storage

Terrestrial water storage (TWS, in mm) is the sum of all the
modelled water storages:

TWS<s,t> = SWE<s,t> + GW<s,t>
+ SM<s,t>. (A24)

Note that the modelled anomalies of TWS (not the raw sim-
ulations of TWS) is directly constrained.
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Appendix B: Model evaluation

B1 Performance on SWE, ET, runoff, and fAPAR for
major regions

This section shows the model performance with respect to
the observation-based SWE (Fig. B1) and fAPAR (for ma-
jor regions) (Fig. B4) and ML-based model constraints ET
(Fig. B2) and runoff (Fig. B3).

B2 Global model performance

In this section, we demonstrate H2MV’s performance on pre-
dicted global patterns and compare it to the performance
of H2M (Kraft et al., 2022) (Fig. B5). Overall, our model
performs slightly worse than H2M on the parameters TWS,
SWE, and ET in terms of RMSE and on TWS and SWE in
terms of SDR. We argue that this slight performance drop is
expected because H2MV incorporates more physical formu-
lations than H2M, resulting in stronger physical constraints,
i.e. regularization. On the other hand, H2M has greater flexi-
bility in adapting to the data, and it likely explains the slight
performance decline of H2MV compared to H2M.

Figure B1. Predicted versus observed mean SWE over the testing set (spatial domain) across different folds: (a) monthly, (b) mean seasonal
cycle, and (c) interannual variability.
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Figure B2. Predicted versus target mean ET over the testing set (spatial domain) across different folds: (a) monthly, (b) mean seasonal cycle,
and (c) interannual variability.

Figure B3. Predicted versus target mean Runoff over the testing set (spatial domain) across different folds: (a) monthly, (b) mean seasonal
cycle, and (c) interannual variability.
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Figure B4. Predicted fAPAR (MSC) versus observations for major regions across different folds.

Figure B5. Model performance on the global data. Cross bars show the maximum and minimum error, and the lines show the mean error
across 10 folds. The rows are metrics and the columns are model constraints. The dots show the model performance of H2M.
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Appendix C: Model generalizability in terms of space
and time

In this section, we demonstrate the generalizability of our
model across both spatial and temporal dimensions. We con-
ducted an additional experiment by training the model while
holding out the last 5 years of data to assess its spatio-
temporal generalizability. Figure C1 illustrates the perfor-
mance comparison between spatially split CV folds and
spatio-temporal CV folds for time series data post-2014.
The spatial split refers to the model trained using the com-
plete time series data from 2001 to 2019, with only spa-
tial grids held out. Conversely, the spatio-temporal split in-
volves training the model with 14 years of time series data
(2001–2014) and holding out the data after 2014 for spatio-
temporal testing. Overall, the results indicate that our model
generalizes well in both time and space (Fig. C1). The per-
formance is consistent across all parameters in both experi-
ments, as measured by Pearson’s r and SDR. The RMSE is
also similar for all parameters except for TWS. The RMSE
of TWS is slightly higher in the spatio-temporal split ex-
periment (approximately 2 mm), while correlations remain
consistent, suggesting that the larger error is associated with
larger variance of TWS. This suggests that the original model
effectively generalizes across both temporal and spatial di-
mensions.

Figure C1. Model performance on the testing set based on the time series data post-2014. Spatial split refers to the model trained on the full
time series (2001–2019) while holding out spatial grids only. Spatio-temporal split uses 14 years of data (2001–2014) for training, holding
out post-2014 data for testing. Cross bars show the maximum and minimum error, and the lines show the mean error across 10 folds. The
rows are metrics and the columns are model constraints. RMSE refers to root mean squared error, and SDR is standard deviation ratio (the
ratio between predicted and observed standard deviation).
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Code and data availability. The model simulations, ag-
gregated to a monthly resolution, are accessible via
https://doi.org/10.5281/zenodo.12583615 (Baghirov et al.,
2024). The initial release of the complete model code can be
accessed via https://doi.org/10.5281/zenodo.12608916 (Baghirov,
2024). For the most current version of the code, please visit the
public repository at https://github.com/zavud/h2mv (last access:
12 May 2025). We are open to sharing the original daily simulations
and additional variables (that are not shared) upon request.
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