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Abstract. Evapotranspiration (ET) and gross primary pro-
duction (GPP) are critical fluxes contributing to the energy,
water, and carbon exchanges between the atmosphere and the
land surface. Land surface models such as the Community
Land Model v5 (CLM5) quantify these fluxes, estimate the
state of carbon budgets and water resources, and contribute to
a better understanding of climate change’s impact on ecosys-
tems. Past studies have shown the ability of CLM5 to model
ET and GPP magnitudes well but emphasized systematic un-
derestimations and lower variability than in the observations.

Here, we evaluated CLM5’s predictions of water and en-
ergy fluxes using observations from eddy covariance stations
from the Integrated Carbon Observation System (ICOS), re-
mote sensing, and reanalysis data sets. We assess simulated
ET and GPP from the grid scale (CLM5grid) and the plant
functional type (PFT) scale (CLM5PFT). CLM5PFT exhibited
a low systematic error in simulating the ET at the ICOS sites
(average bias of −4.68 %), indicating that PFT-specific ET
closely matches the observations’ magnitude. GPP was un-
derestimated by CLM5PFT, especially in deciduous forests
(bias of −43.76 %). The results showed an underestimation
of the spatiotemporal variability in the simulated ET and GPP
distribution moments across PFTs for both CLM setups com-
pared to reanalysis data and remote-sensing products. These
findings provide essential insights for improving land surface
models, highlighting the need to enhance the CLM5’s ability

to capture the spatiotemporal variability in ET and GPP sim-
ulations across PFTs.

1 Introduction

Ecosystem processes, such as evapotranspiration (ET) and
gross primary production (GPP), play an important role
in cycling water, carbon, and energy between ecosystems
and the atmosphere. Changes in the magnitude and vari-
ability in these fluxes can indicate the ecosystems’ inhib-
ited performance due to changing environments (Kühn et
al., 2021; Migliavacca et al., 2021). These changes can lead
to short-term alterations and long-term trends in water re-
sources and carbon pools in the atmosphere and the land
surface. Thus, the accurate quantification of the variabil-
ity in ecosystem processes is pivotal for developing climate
change projections and formulating effective mitigation poli-
cies (Friedlingstein et al., 2023; Graf et al., 2023).

Notably, an accurate and functional understanding of land
surface processes is essential to identify threatened ecosys-
tems in the present and the future and facilitate carbon budget
calculations. Land surface models (LSMs) serve as determin-
istic and process-based simulators of ecosystems, capturing
energy, water, and carbon fluxes, while considering their in-
teractions and the heterogeneity of the land surface (Fisher
and Koven, 2020). LSMs can complement point scale ob-
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servations from in situ research infrastructures by providing
spatiotemporally uniform and extensive high-resolution out-
puts. Their high-resolution process-based simulations con-
trast the often coarsely resolved remote-sensing data. Hence,
LSMs are frequently used tools for investigating and project-
ing the current understanding of ecosystem processes, such
as GPP and ET, on various scales. However, there is uncer-
tainty in the LSM structure, the parameters, the input data,
and the initial conditions, which carry over to the simulated
variables. Therefore, assessing how well the general simu-
lated ET and GPP variability compares to the observations
is crucial. Such evaluations deliver an essential context on
LSM biases and form a basis for analyses of more complex
ecosystem responses. Recent studies already found discrep-
ancies between LSM simulations of ET and GPP and obser-
vations collected in the field and from remote sensing. For
instance, these discrepancies are evident in their magnitude
and variability (De Pue et al., 2023; Boas et al., 2023; Cheng
et al., 2021; Strebel et al., 2024) and their response to drought
(Ukkola et al., 2016; Wu et al., 2020; Green et al., 2024).
Therefore, assessing the accuracy of LSMs in representing
observed GPP and ET fluxes is crucial to test and improve
our current understanding of the ecosystem process variabil-
ity and identify the limitations of state-of-the-art LSMs.

Current land surface models, e.g., the Joint UK Land Envi-
ronment Simulator (JULES), the Community Land Model 5
(CLM5), or the Community Atmosphere Biosphere Land
Exchange Model (CABLE), employ a tiling system within
the grid cell to account for functional differences in distinct
patches on the land surface. The natural and crop vegetation
is grouped into plant functional types (PFTs), the entities for
which ecosystem process calculations are resolved (Fisher
and Koven, 2020; Bonan et al., 2002; Solomon and Shugart,
1993). Typically, PFTs are defined based on morphological
and phenological characteristics of the vegetation (e.g., leaf
type and leaf longevity) and climate (Bonan et al., 2002).
However, the usefulness of this PFT definition, or at least its
current coarsely resolved implementation, is a subject of de-
bate (Caldararu et al., 2016; Van Bodegom et al., 2012). The
primary argument against it is that observed plant traits im-
plemented as PFT-related parameters vary to some extent in
space and time in response to a changing environment. This
spatiotemporal dependence of PFT traits is only marginally
represented in LSMs. On top of that, most research assessing
LSMs only used a handful of observation sites and did not
analyze aggregated values for groups of sites observing the
same PFT. Such analyses would provide essential insights; a
recent study highlighted the differences between vegetation-
type concepts used in observation networks, e.g., the Interna-
tional Geosphere–Biosphere Programme (IGBP) classifica-
tion, and PFTs used in LSMs and underlined the importance
of improving these PFT concepts (Cranko Page et al., 2024).

The phenology of ecosystem processes, i.e., their seasonal
cycles and evolution through the year and the growing sea-
son length, have shifted in timing due to climate change.

A recent study investigated which factors drive the changes
in the mean annual dynamics of ecosystem processes in
Europe (Rahmati et al., 2023), and many of these discov-
ered feedbacks, for instance, the effect of increased atmo-
spheric dryness on growing season length, are only imple-
mented simplistically in LSMs. Furthermore, robust simu-
lations of LSMs for impact assessments become even more
critical as ecosystems experience more disturbances, along
with the changing climate. For example, projections show
that droughts have recently become more frequent in Europe
(Vautard et al., 2023; Rousi et al., 2022) and that these ex-
treme events will become even more frequent and severe in
the future (Lehner et al., 2017). While the combined effect of
a higher occurrence of compound drought events is currently
not fully understood, it is clear from observations that indi-
vidual drought years, or droughts in general, have already
had a profound impact on ecosystem processes in Europe
(Graf et al., 2020; Van Der Woude et al., 2023; Poppe Terán
et al., 2023). Given that the frequency and severity of ex-
treme events affect GPP and the ET statistical distributions,
investigating how the characteristics of the simulated distri-
butions compare with the observed can contextualize find-
ings of modeled ecosystem drought responses in Europe.

One predominantly used LSM is the Community Land
Model version 5 (CLM5) (Lawrence et al., 2019, 2018). In
the most recent version, CLM5 solves the biogeochemistry
(BGC), i.e., the carbon and nitrogen cycles between the at-
mosphere, vegetation, and soil. CLM5 has been widely em-
ployed for quantifying and examining ecosystems at various
scales, including global (Xie et al., 2020; Sitch et al., 2015;
Lawrence et al., 2019), regional (Cheng et al., 2021; Boas
et al., 2023), and site-scale (Strebel et al., 2024; Umair et
al., 2020; Song et al., 2020; Fisher et al., 2019) applications.
Several studies have highlighted the ability of CLM5 to sim-
ulate ecosystem processes close to the observations (Woz-
niak et al., 2020; Lawrence et al., 2019; Cheng et al., 2021;
Zhang et al., 2023; Boas et al., 2023). However, they have
also emphasized an underestimated magnitude and variabil-
ity in the simulations across different timescales and under
various conditions.

The present study assesses the CLM5’s ability to capture
ecosystem processes at a continental scale. To ensure com-
parability to point scale observations, we conducted high-
resolution simulations at 0.0275° (approx. 3 km) resolution
over the European Coordinated Regional Climate Downscal-
ing Experiment (CORDEX) domain (Giorgi et al., 2009), re-
sulting in 1544× 1592 grid cells. Notably, the output con-
tained variables from the subgrid scale, i.e., from within a
3 km grid cell, for PFTs present in the grid cell. We then
compared the CLM5 grid level (CLM5grid) and PFT level
data (CLM5PFT) to observations from a continental network
of sites. The Integrated Carbon Observation System (ICOS)
provides the Warm Winter 2020 data (Warm Winter 2020
Team and ICOS Ecosystem Thematic Centre, 2022), which
include eddy covariance measurements over a dense network
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of over 70 sites in Europe. It was named after and curated to
support research on the effect of the warm winter of 2020 on
terrestrial carbon fluxes. These ICOS data are regarded as the
gold standard for calibrating and evaluating process-based
models due to their ample spatial coverage as a network en-
compassing diverse land cover types. Thus, it offers an excel-
lent opportunity to comprehensively assess simulated GPP
and ET for specific PFTs from our CLM5 setup over Europe.

Additionally, we include remote-sensing data from the
Global Land Surface Satellite (GLASS; Liang et al., 2021)
and reanalyses from the European Center for Medium-
Range Weather Forecasts Reanalysis 5 – Land (ERA5-Land;
hereafter ERA5L; Muñoz Sabater, 2019), as well as from
the Global Land Evaporation Amsterdam Model (GLEAM;
Martens et al., 2017) in our analyses to identify common pat-
terns of ecosystem process variability between CLM5, in situ
observations, reanalysis, and remote-sensing data.

In summary, this study uses ICOS observations as ground
truth data. It compares them with grid level and PFT level
CLM5 data and terrestrial surface fluxes from reanalyses and
remote-sensing derivatives to the following:

1. Compare performance indices (root mean square error
and percent bias) between the models and ICOS mea-
surements on a per-site and PFT group basis to assess
the systematic error and accuracy of ET and GPP simu-
lations.

2. Investigate how the models represent the observed ET
and GPP for different PFTs regarding their sub-annual
averaged phenologies, standard deviation, and timing of
important phenological events.

3. Evaluate the simulated PFT level ET and GPP statistical
distributions and their moments (mean, variance, skew-
ness, and excess kurtosis) to contextualize assessments
of factors like droughts, which impact the shape of these
distributions.

4. Compare the inter-site differences between ET and GPP
time series within PFT groups to estimate how the ob-
served intra-PFT variability is represented in the mod-
els.

Thus, these findings offer critical information for compar-
isons of GPP and ET from the evaluated models. Further-
more, this study also paves the way for a better-informed
analysis of the drought response of ET and GPP from the
models being assessed over Europe. We expect the follow-
ing:

1. There is a lower systematic bias, and the simulation is
closer to the observations by the PFT scale than the grid
scale CLM5 outputs and remote-sensing and reanalysis
data.

2. The remotely sensed and modeled data approximate
critical events in the phenologies of ET and GPP within

the standard deviation of the ICOS measurements for
sites of one PFT. However, this ability varies between
PFTs.

3. The remotely sensed and modeled ET and GPP data
distributions show a lower range among the moments
within the PFT groups than the ICOS measurements.

2 Methods and data

2.1 Community Land Model version 5

We use the CLM5 (Lawrence et al., 2018, 2019), which is
forced offline with custom input data. The land surface of a
region in CLM5 is first disaggregated into grid cells, which
are uniformly distributed and simulated individually. These
grid cells are tiled into land units (i.e., natural vegetation,
crops, lakes, urban areas, and glaciers) with a relative area
coverage within the grid cell. Importantly, plants in the nat-
urally vegetated land units compete for water in a single
soil column. The vegetation is grouped into PFTs (Lawrence
and Chase, 2007), which are distinguished through leaf
habit (evergreen or deciduous), morphology (needle- and
broadleaves, grass, and shrubs), and the bioclimate of the
grid cell location (boreal, temperate, and tropical). While
competition for soil moisture includes interactions among
different PFTs, this is closer to natural conditions than sep-
arated soil columns and encourages evaluations on the PFT
scale. Here, we use CLM5–BGC, which calculates vertical
carbon and nitrogen pools and fluxes between the vegetation,
soil, and atmosphere. In the following subsections, we briefly
describe the essential processes in CLM5 that are particularly
relevant to this study, as well as the input data and leading
features of the European CLM5 setup.

2.1.1 Gross primary production and
evapotranspiration

The stomatal conductance of plants (gs) couples the water ex-
change with carbon uptake between vegetation and the atmo-
sphere. In the CLM5, gs is calculated by the Medlyn stomatal
conductance model (Medlyn et al., 2011) as follows:

gs = g0+ 1.6
(

1+
g1
√
D

)
A

cs
, (1)

where g0 is the Medlyn intercept and defaults to
100 mol m−2 s−1, and g1 is the Medlyn slope, a PFT-specific
parameter. D is the vapor pressure deficit indicating atmo-
spheric water demand, and cs is the CO2 partial pressure at
the leaf surface relative to the total atmospheric pressure. A
is the carbon assimilated through photosynthesis, as follows:

A=
cs− ci

1.6rs
. (2)

The calculation of A is adapted from Bonan et al. (2011). It
is based on the Farquhar model (Farquhar et al., 1980) and
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limited by the photosynthetic capacity given by the LUNA
model (Ali et al., 2016). It requires knowledge of the gradient
of the CO2 concentration from the outside to the inside of
the leaf and neglects the CO2 storage at the leaf surface. cs
and ci are the leaf surface and internal partial CO2 pressures,
and rs is the stomatal resistance, which is the inverse of gs.
Furthermore, cs and ci are calculated.

cs = ca− 1.4rbA (3)
ci = ca− (1.4rb+ 1.6rs)A (4)

The factor of 1.4 refers to the diffusivity ratio between CO2
and H2O gases in the leaf boundary, and 1.6 is the same ratio
in the stomata. The equations for A, gs, ci, and cs are com-
puted iteratively until ci converges, using a hybrid algorithm
with the secant and Brent methods (Lawrence et al., 2018).
The photosynthesis is scaled to the canopy GPP by consider-
ing the effect of sunlit-to-shaded-area ratios of the total leaf
area.

The water input from the atmosphere to the land surface
can be snow accumulating on the ground, streamflow, lake
water, moisture intercepted by the vegetation canopy, or wa-
ter infiltrating the ground. The water in the ground percolates
through 20 soil layers and is stored, directly evaporated, or
taken up by plant roots relative to their transpiration demand.
Hydraulic stress in a plant is calculated in a hydraulic frame-
work using Darcy’s law for transient porous media flow (Bo-
nan et al., 2014).

The transpiration flux T is calculated with the resulting rs
from above.

T =
es− ei

rs
(5)

es is the H2O vapor pressure at the leaf surface, and ei is the
saturation H2O vapor pressure resulting from the leaf tem-
perature. If T cannot meet the atmospheric water demand
because of a soil moisture shortage, CLM5–BGC introduces
water stress and attenuates gs based on that transpiration
deficit factor. Through decreased gs, water stress also reg-
ulates photosynthesis, A.

Total evapotranspiration is then determined by summing
the transpiration and evaporation from vegetation intercep-
tion, surface water, the ground, and, potentially, snow.

2.1.2 Setup of the European CLM5

The European Coordinated Regional Climate Downscaling
Experiment (CORDEX; Giorgi et al., 2009) domain de-
limited the extent of this study, matching with the extent
of regional atmospheric models. With a resolution of 3 km
(0.0275°), our grid contains 1544× 1592 grid cells, includ-
ing the ocean. We used standalone CLM5 with the activated
BGC module and stub models for ice, sea, and waves.

The simulations were forced by the Consortium for Small-
Scale Modeling (COSMO) Reanalysis 6 (Bollmeyer et al.,

2015; Wahl et al., 2017), a 6 km resolution data set providing
meteorological variables over the European CORDEX do-
main from 1995 to 2019. The main advantage of using this
reanalysis is the high resolution and a better representation
of seasonal precipitation intensities compared to a coarser re-
solved global reanalysis (Bollmeyer et al., 2015). Using this
forcing in high-resolution LSM simulations should lead to a
more accurate simulation of sub-surface and surface hydro-
logical fluxes, especially in regions with a relatively hetero-
geneous land surface (Wahl et al., 2017; Prein et al., 2016).

The static surface information was initialized for the year
2000 and was determined using input data from a standard
repository (Lawrence et al., 2018). These data include land
use information (Hurtt et al., 2020), PFT distribution maps
(Lawrence and Chase, 2007), soil texture (IGBP, 2000), and
slope and elevation information (Earth Resources Observa-
tion and Science (EROS) Center, 2017).

The CLM5–BGC needs initial conditions for the carbon
pools. For that reason, a spin-up workflow is necessary to
bring the carbon pools and fluxes of carbon to a steady
state before starting with production simulations. The spin-
up method consists of two steps. First, an accelerated decom-
position simulation step, where carbon pools are artificially
minimized. Second, a conventional simulation step, grow-
ing the carbon pools to the desired equilibrium state. Dur-
ing both spin-up steps, the atmospheric forcing from 1995
to 2012 was cycled (i.e., a cycling period of 18 years). The
progress towards a steady state is monitored by assessing the
difference in total carbon fixed in the ecosystem between a
selected year within the last 18-year cycling period and the
same year in the previous cycling period. Ctot,y is the total
ecosystem carbon (including vegetation and soil) in the year
y, and Ctot,y−t is the complete ecosystem carbon in the year
y− t . A grid cell’s carbon pools are in carbon equilibrium if
the following is fulfilled:

1Ctot

t
< 1gCm2 yr−1. (6)

The following conditions define the final steady state on the
continental scale.

1. A total of 97 % of the grid cells (and the total area) is in
equilibrium.

2. The change in continental ecosystem carbon across the
continent is lower than 2 Tg C yr−1 for the three preced-
ing cycle periods.

The soil organic matter carbon pools in high northern lat-
itudes were the slowest to reach equilibrium, which was
reached after just about 1500 simulation years.

After the spin-up, we conducted a 24-year (1995 until
2018) transient simulation starting with the initial conditions
established by the spin-up. We output the simulated variables
from two model levels for the analyses.
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1. CLM5PFT . This is the model’s native resolution of
vegetation-related states and fluxes calculation. Using
output at this level (not the default configuration) allows
for multiple time series per grid cell, with each corre-
sponding to a single PFT. This enables a selection of
modeled data as needed. For instance, when comparing
model data to ecosystem level measurements, CLM5PFT
relates to the simulated time series of the corresponding
PFT, resulting in an adequate assessment of model func-
tions. When comparing to in situ observations, we will
refer to CLM5PFT when we subset the ICOS site loca-
tion and the agreeing PFT from the CLM5 data.

2. CLM5grid. The grid cell level output aggregates the PFT
and the other tiles (i.e., croplands, urban areas, and
lakes) that compose the grid cell area. Consequently,
these data do not relate to a single functional type. In-
stead, it informs us about the average state and fluxes
in the grid cell area. In this study, CLM5grid designates
CLM5 data extracted from the grid cell closest to the
station’s location.

2.2 Evaluation data

2.2.1 Station data

As ground truth data in the comparisons, we used the ICOS
research infrastructure, which has a station observation net-
work spanning 14 European countries (ICOS RI, 2021). Each
station has at least one eddy covariance measurement tower
and incorporates a processing workflow following a stan-
dardized protocol. We use the curated data, the Warm Winter
2020 data set (Warm Winter 2020 Team and ICOS Ecosys-
tem Thematic Centre, 2022), which consists of homogenized
variable time series following the ONEFlux data pipeline
(Pastorello et al., 2020). The ICOS Warm Winter 2020 data
have measurements of 73 stations totaling over 800 station
years (available years are station-dependent) corresponding
to multiple land cover types (see Fig. 1 for a map with the
station locations and Table S1 for more information on the
available years per station). Note that the land cover type
indicated by the ICOS site metadata and represented in the
measurements refers to the predominant PFT in the footprint
of the eddy covariance station. We omitted the stations over
wetland and mixed forest land cover types to ensure a coher-
ent analysis because no PFT counterpart is implemented in
CLM5PFT. Also, shrub PFTs were not included in our anal-
yses because there were insufficient shrubland sites in the
ICOS data to support a robust evaluation. The analyses also
excluded stations whose land cover type was not included in
metadata sites (e.g., DEIMS-SDR at https://deims.org, last
access: 20 February 2024), leaving a total of 42 stations for
our analyses. Because the land cover types from the selected
sites correspond well with PFTs in CLM5, we will also refer
to them as PFTs.

The processing workflow of the Warm Winter 2020
data extracts daily time series for GPP, partitioned from
the net ecosystem exchange (NEE), using the nighttime
method and a dependence on a variable friction veloc-
ity threshold (in g C d−1; GPP_NT_VUT_REF). We re-
tained negative GPP values in these data, which stem from
the uncertainty in the NEE measurements and partitioning
method, to avoid introducing bias into the GPP distribu-
tions (Reichstein et al., 2012; Pastorello et al., 2020). For
the ET evaluation, we also extracted the gap-filled latent
heat flux (W m−2; LE_F_MDS). Importantly, we verified
our results by checking for inconsistencies in the analy-
sis of ICOS NEE (NEE_VUT_REF), ecosystem respiration
(RECO_NT_VUT_REF), and energy-balance-corrected la-
tent heat flux (LE_CORR).

The conversion of latent heat (W m−2) into ET (mm d−1)
is achieved by multiplying with the factor 0.035, assuming a
constant enthalpy of vaporization decoupled from tempera-
ture because variable enthalpy has a negligible effect on the
overall outcome of the conversion.

Last, we use the leaf area index (LAI) from the ICOS
archive final quality data set (ETC L2 Archive). LAI is mea-
sured but only sparsely available, starting from 2017, and
thus only has 2 years intersecting with our study period (2017
and 2018). Furthermore, the data within this intersection pe-
riod are only available for a smaller number (in relation to
the eddy covariance (EC) data above) at evergreen needle-
leaf forest and cropland sites. Therefore, we do not include
the analysis in the main text but include these results only in
the Supplement for the context of the main analyses of ET
and GPP.

2.2.2 Remote-sensing and reanalysis data

To assess the CLM5 performance in the context of additional
complementary data products, we include remotely sensed
GPP data from the Global Land Surface Satellite (GLASS;
Liang et al., 2021). The GLASS GPP product uses the Mod-
erate Resolution Imaging Spectroradiometer (MODIS) and
Advanced Very High Resolution Radiometer (AVHRR) sen-
sors and the revised light use efficiency (LUE) model (Zheng
et al., 2020) in eight-times-daily resolution in time and 0.05°
resolution in space. We also compare the CLM5 outputs with
GLASS ET data, which apply a multi-model ensemble (e.g.,
MODIS-ET and remote-sensing Penman–Monteith ET) to
remote-sensing information to estimate eight-times-daily la-
tent heat on a 0.05° grid. We convert latent heat to ET, as
described in Sect. 2.2.1. Similarly, MODIS-derived GLASS
LAI data (Ma and Liang, 2022) are used in this study to pro-
vide context to the ET and GPP analyses (same 0.05° grid
and eight-times-daily resolution).

Last, we use LAI and ET reanalysis data for evaluation,
which fuse observations and models. They are the European
Center for Medium-Range Weather Forecasts Reanalysis 5
– Land product (ERA5L; Muñoz Sabater, 2019), which has
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a spatial resolution of 0.1° and hourly temporal resolution,
and the Global Land Evaporation Amsterdam Model (only
ET; GLEAM version 3.5a; Martens et al., 2017), which has
a spatial resolution of 0.25° and daily temporal resolution.

2.3 Data processing

First, the remote-sensing and reanalysis data are bilinearly
remapped to the 3 km European CORDEX grid and interpo-
lated to eight-times-daily means for 1995–2018. The ICOS
observation time series are interpolated to eight-times-daily
means for each station whose data availability overlaps with
our study period. Then, we extracted the CLM5grid, GLASS,
ERA5L, and GLEAM data from the grid cell closest to the
location of each selected ICOS station. Furthermore, we se-
lect the time series in CLM5PFT that coincides with that grid
cell and the station’s predominant PFT. Importantly, we fo-
cus only on the four predominant PFTs represented in the
entire ICOS station network, namely evergreen needleleaf
forest (ENF), deciduous broadleaf forest (DBF), grasslands
(GRA), and croplands (CRO), as outlined in Table 1. Finally,
the periods for which station data are absent or of bad qual-
ity (determined by the corresponding measurement or gap-
filling quality flag in the ICOS data) are discarded from the
simulations to ensure we are comparing the same set of con-
ditions.

The ICOS observations were also interpolated to eight-
times-daily means, encompassing a timescale with signifi-
cant variability in ecosystem processes (De Pue et al., 2023),
to match the coarsest time resolution of other data sets (i.e.,
GLASS remote sensing) and thus to facilitate comparison of
processes at the same scale. For a consistent comparison, the
analyses only account for time steps for which valid values
are present for all data sources. We evaluate the data for each
variable over each station and groups of stations with the
same PFT.

2.4 Analyses

2.4.1 Yearly evolution and statistical distributions

We calculate ET and GPP PFT-specific phenology (mean
sub-annual dynamics), resulting in day-of-year (DOY) plots.
This is done by averaging the same eight-times-daily time
step across years for each site and calculating the mean and
standard deviation of site-specific DOY belonging to one
PFT.

Furthermore, we determined the statistical distributions
as probability density functions resulting from the Gaus-
sian kernel density estimate (Scott, 1992). Subsequently, the
distribution moments (mean, variance, skewness, and ex-
cess kurtosis) are calculated. The distributions and their mo-
ments are based on all eight-times-daily values correspond-
ing to one PFT for each data source. The uncertainties in

the distribution moments are calculated based on Harding et
al. (2014).

2.4.2 Shift in phenological events

The three analyzed phenological events of ET and GPP – the
start of the growing season, the peak, and the end of the grow-
ing season – are determined for each PFT group and data
source as the average DOY of the event among the stations
and available years within that PFT group for each variable.
The eight-times-daily time series of each variable was first
smoothed with a 1-dimensional Gaussian filter to rule out
potential errors due to small-scale variability and dampen the
effect of potential outliers. More specifically, the peak timing
is the mean DOY of the overall maxima of the smoothed av-
eraged yearly evolution across stations for each PFT and data
source. The start and the end of the growing season were
determined by the mean DOY of the two infliction points
(Li et al., 2023; Lian et al., 2020; Whitcraft et al., 2015) of
the smoothed yearly averaged evolution across stations for
each PFT and data source. The shift in these events is sim-
ply the difference in the determined mean PFT-specific DOY
between the models and the observations. As a measure of
uncertainty in the mean PFT-specific DOY, we also calculate
the standard deviation of the DOY of the events across sta-
tions in each PFT group.

2.4.3 Performance metrics

The percent bias (PBIAS) measures systematic model error
and is calculated as follows:

PBIAS=
∑n
i=1XS,i −XO,i∑n

i=1XO,i
× 100, (7)

where n is the number of time steps, XS,i is the simulated
value of the variableX at the time i, andXO,i is the observed
value of the variableX at the time i. If the PBIAS for variable
X is positive then the model overestimates; if it is negative, it
underestimates the observed variable X. In our analysis, Xi
is the interpolated eight-times-daily mean.

Furthermore, we estimated the root mean square error
(RMSE) to indicate model accuracy and the root mean square
difference (RMSD) to indicate similarity. RMSE and RMSD
are calculated the same. However, the term “error” assumes
the truthfulness of the reference data. Hence, we use the
RMSD when comparing data only between models.

RMSE= RMSD=

√∑n
i=1
(
XS,i −XO,i

)2
n

(8)

A RMSE close to zero indicates that the model approximates
the observations nicely. Similarly, a low RMSD reveals a
high similarity between the two analyzed series. We calcu-
late these metrics on a per-station basis and a set of stations
belonging to the same PFT.
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Table 1. The predominant plant functional types (PFTs) in the Integrated Carbon Observation System (ICOS) Warm Winter 2020 obser-
vation data set that correspond with the International Geosphere–Biosphere Programme (IGBP) land cover classifications, the number of
corresponding sites, and the accordant PFTs in the European Community Land Model v5 (CLM5) setup.

ICOS IGBP PFT Number of stations Corresponding CLM5 PFTs

Evergreen needleleaf forest (ENF) 18 Needleleaf evergreen tree – temperate
Needleleaf evergreen tree – boreal

Deciduous broadleaf forest (DBF) 8 Broadleaf deciduous tree – tropical
Broadleaf deciduous tree – temperate
Broadleaf deciduous tree – boreal

Grasslands (GRA) 8 C3 arctic grass
C3 grass
C4 grass

Croplands (CRO) 8 C3 unmanaged rainfed crop
C3 unmanaged irrigated crop

2.4.4 Modified Taylor diagrams

The Taylor diagram (Taylor, 2001) depicts multiple model
performance indices in a single diagram by making use of
the relationship of the calculation terms of the standard devi-
ation, correlation, and RMSE. Their relationship can be sum-
marized in the following equation of error propagation:

RMSE2
= σ 2

O+ σ
2
S − 2σOσSr, (9)

where σO is the standard deviation of the observations, σS is
the standard deviation of the simulation, and r is the Pear-
son correlation coefficient. The multi-variate diagram can be
constructed due to the geometric relationship between these
statistical indices through the law of cosines. Thereby, plot-
ting the calculated Pearson correlation against the standard
deviation of the models and the observation on a trigonomet-
ric polar plane, the RMSE manifests as the polar Euclidean
distance from the reference observations. We calculate the
standard deviation and the Pearson correlation on the PFT-
grouped stacked time series and plot these for e for each data
source on one Taylor diagram per PFT. We modify the default
Taylor diagram by scaling each marker’s size by the absolute
PBIAS for the corresponding source and PFT.

3 Results

3.1 Land surface representation

Before evaluating the GPP and ET variables from CLM5 and
how they are compared with observations, we first assess if
the PFT composition of the entire ICOS station network is
comparable to the PFT composition in the respective cells se-
lected in CLM5grid. This is important as GPP and ET magni-
tudes, variability, seasonality, drought responses, and trends
strongly depend on the present vegetation type. In Fig. 1, we
observe that ENF, the PFT of almost half of the present ICOS

stations, represents only around a quarter of the correspond-
ing CLM5grid area. DBF also covers a smaller share of the
area in those grid cells than in the ICOS station network.
On the other hand, GRA and CRO are overrepresented in
CLM5grid compared to the share of respective ICOS stations.
Consequently, when comparing with the ICOS observations,
the selected data from CLM5grid data are, on average, over-
representing the functionality of GRA and CRO and under-
representing ENF and DBF, which hampers the evaluation of
CLM5grid with in situ ET and GPP. Hence, we also included
the respective CLM5PFT GPP and ET in the subsequent anal-
ysis, enabling an accurate assessment of the functionality and
relationships between PFT in the model. Additionally, we as-
sess the similarities and differences between the two model
scales, CLMgrid and CLMPFT, and their approximation to the
observations.

3.2 General model performance

This section presents model performance indices correlation,
RMSE, and PBIAS, comparing each model’s ET and GPP
estimates with measurements from the ICOS sites. We com-
pared the RMSE and PBIAS on a per-site basis (Tables S2
and S3), which yielded good results for most sites. The focus
of this study, though, is the performance of PFT aggregations
through combining data from sites that belong to the same
PFT.

Figure 2 shows modified Taylor plots visualizing the per-
formance indices of the model ET against observations for
each PFT. For more specific information, Table S4 lists the
number of ET eight-times-daily time steps that went into cal-
culating these indices and their values. For ENF, all of the
models indicate a correlation of around 0.8 with the ICOS
observations, and CLM5grid, CLM5PFT, and GLEAM have
a similar variability to ICOS. CLM5PFT has a higher abso-
lute RMSE and a smaller absolute PBIAS than CLM5grid for
ET across PFTs, except in CRO. Notably, the systematic bias
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Figure 1. The share of represented plant functional types (by color, with evergreen needleleaf forest (ENF; green), deciduous broadleaf forest
(DBF; orange), grasslands (GRA; purple), and croplands (CRO; pink)) in panel (a) in the ICOS station network used in subsequent analyses
and panel (b) in the corresponding grid cells in our European CLM5 setup. In panel (c) is a map showing the locations of the ICOS stations,
with the marker type indicating their PFT and the color of the marker indicating their hydro-climate (adapted from Jafari et al., 2018) and
based on the mean annual precipitation from the Consortium for Small-Scale Modeling (COSMO) – Reanalysis 6. Our 3 km European CLM5
simulation domain corresponds to the entire map box in panel (c).

in CLM5 is generally negative, with the same exception. On
the other hand, ERA5L, GLASS, and GLEAM exhibit a gen-
erally positive systematic bias for ET. ERA5L and GLASS
show more significant deviations from the ICOS ET obser-
vations at ENF and DBF than CLM5PFT and CLMgrid but
have smaller RMSE values at GRA and CRO. GLEAM has
generally low RMSEs and performs best among the models
simulating ET at ENF and CRO. The most considerable sys-
tematic ET biases are found for ERA5L at CRO and DBF
sites, followed by GLASS for the same PFTs. The low abso-
lute PBIAS of CLM5PFT across all PFTs and the lower cor-
relation than the other model data at GRA and CRO points
to potentially missing or simplistic representations of ecohy-
drological processes or management. Besides, all models ap-
proximate the ICOS ET observations fairly well, with corre-

lations mostly over 0.8 but with partly high systematic biases
by ERA5L at DBF and CRO sites.

In Fig. 3, we show modified Taylor diagrams with the GPP
performance indices of the models against the ICOS observa-
tions for each of the selected PFTs. For more specific infor-
mation, Table S5 lists the number of GPP eight-times-daily
time steps that went into calculating these indices and their
values. CLM5PFT performed better than CLM5grid in approx-
imating the ICOS GPP observations at DBF sites, showing
a higher correlation and lower RMSE and GRA sites. Con-
versely, CLM5grid is closer to the observations for ENF and
CRO PFTs. The GLASS data show the lowest GPP RMSEs
and highest correlation values concerning ICOS measure-
ments across all PFTs. All models approximated the ICOS
GPP best (lowest RMSE) at ENF, and the worst performance
was at CRO sites. Furthermore, all models exhibit a nega-
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Figure 2. Modified Taylor diagrams with observations from the Integrated Carbon Observation System (ICOS) of evapotranspiration as
reference (black markers), showing model performances between the years 1996–2018 (years varying by station; see Table S1. Data sources
by color include the Community Land Model v5 (CLM5), CLM5grid in red; CLM5PFT in yellow; Global Land Surface Satellite (GLASS)
in green; European Center for Medium-Range Weather Forecasts Reanalysis 5 – Land (ERA5L) in brown; and Global Land Evaporation
Amsterdam Model (GLEAM) in purple). Each diagram shows these plots for one plant functional type. (a) Evergreen needleleaf forest
(ENF; circles). (b) Deciduous broadleaf forest (DBF; triangles). (c) Grasslands (GRA; squares). (d) Croplands (CRO; crosses). The azimuth
angle indicates the Pearson correlation with the ICOS data, the radial distance is the standard deviation, and the semicircles centered at the
reference standard deviation show the root mean square error (RMSE). The size of each marker indicates the percent bias (PBIAS).

tive, systematic bias in simulating the observed GPP across
all PFTs. Especially at DBF and GRA PFTs, CLM5grid,
CLM5PFT, and GLASS show large systematic underestima-
tions of the measurements. CLM5PFT has a notably small
PBIAS related to the ICOS data for ENF and CRO sites.
Especially at CRO sites, all models showcase comparatively
low correlation values (< 0.7). While the correlation is high
(> 0.75) for all models at DBF and GRA sites, especially for
CLM5PFT and GLASS at DBF sites (0.93 and 0.92), the high
PBIAS hints that modeled data do not incorporate important
processes or management practices that cause to the high car-

bon uptake at DBF sites over the long term. Because of the
slowly evolving carbon states in the terrestrial ecosystems,
the initial conditions of the carbon pools (e.g., soil organic
matter and carbon in plant organs in the vegetation) could be
a cause for the difference in the magnitude of the GPP.
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Figure 3. Modified Taylor diagrams with observations from the Integrated Carbon Observation System (ICOS) of the gross primary produc-
tion as a reference (black markers) and showing model performances between the years 1996–2018 (years varying by station; see Table S1.
For colors, labels, and acronyms, refer to Fig. 2).

3.3 PFT phenology and its variability

3.3.1 ET

This section describes the results of the investigation on the
mean and the standard deviation of the yearly evolution of
ET across PFTs and data sources (Fig. 4a, c, e, g). We will
analyze the ET mean and standard deviation for each PFT
sequentially. On average, the annual evolution of ET for
CLM5grid and CLM5PFT compares well to the ICOS mea-
surements, as already hinted by the good correlation values
in the previous section. They also capture the observed sea-
sonal transitions between low winter ET and high summer
ET well. Except for CRO sites, CLM5grid and CLM5PFT ET
are slightly lower than the ICOS observations throughout the
year but especially in summer (mean PBIAS of −13.08 %

and −18.70 %, respectively; see Table S4). ERA5L and
GLASS overestimate ET at sites of all PFTs, most predomi-
nantly in the ENF and DBF sites and during summer (mean
PBIAS of +28.64 % and +18.25 %, respectively). The mag-
nitude of variation across sites within each PFT (Fig. 4b, d,
f, h) is captured well, generally showing smaller variations at
DBF and CRO sites and larger variations at ENF and GRA.
Some specific aspects of this variation across sites are cap-
tured best by CLM5PFT. The bimodality of the intra-station
variation at GRA sites is seen across the year (Fig. 4f), and
the peak variability across stations at CRO sites is seen in the
second half of the year (Fig. 4h). This exhibits the ability of
CLM5PFT to differentiate ET between stations and the PFTs
better than CLM5grid and the other models. The GLASS ET
variability across stations compares remarkably well to the
observed across ENF at DBF sites (Fig. 4b and d).
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Figure 4. In the left column are the yearly evapotranspiration (ET) evolutions averaged across stations belonging to one plant functional
type (rows show evergreen needleleaf forest (ENF), deciduous broadleaf forest (DBF), grasslands (GRA), and croplands (CRO)) and across
the years (available years vary per station; see Table S1). We differentiate the data source by color (Integrated Carbon Observation System
(ICOS) observations in black; Community Land Model v5 (CLM5), CLM5grid in red; CLM5PFT in yellow; Global Land Surface Satellite
(GLASS) in green; European Center for Medium-Range Weather Forecasting Reanalysis 5 – Land (ERA5L) in brown; and Global Land
Evaporation Amsterdam Model (GLEAM) in purple). The corresponding standard deviations across the sites and across the years are plotted
in the right column to measure the spread around this mean.

Figure 5 reveals the shift in the timings of key phenologi-
cal events based on ET (growing season start, summer peak,
and growing season end) between each model and the ICOS
observations. Generally, for ENF and DBF sites (Fig. 5a, b),
all models show the earlier occurrence, and at CRO (Fig. 5d),
they show a later occurrence of these phenological events
than the measurements. CLM5PFT has the mean timing of
the events within the standard deviation of the ICOS timing
across all PFTs. However, it shows a substantial variability,
larger than observed in the event timings across GRA sites.
Similarly, GLASS and CLM5grid show close approximations

to the observed timings but simulate all these events signif-
icantly earlier at DBF sites and significantly later at CRO
sites, with little variation in the timings across sites. The
ERA5L and GLEAM data exhibit a much earlier growing
season start (24 and 20 d earlier) and summer peak (16 and
12 d earlier, respectively) than observed by ICOS at GRA
sites.

3.3.2 GPP

The GPP values of all PFTs show a summer peak and a
low period in winter (Fig. 6). The negative values present
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Figure 5. Mean shifts in ET phenological events (the start of the growing season, peak, and the end of the growing season) between the
Integrated Carbon Observation System (ICOS) observations (solid black line) and the models (by color, namely the Community Land Model
v5 (CLM5), CLM5grid in red; CLM5PFT in yellow; Global Land Surface Satellite (GLASS) in green; European Center for Medium-Range
Weather Forecasts Reanalysis 5 Land (ERA5L) in brown; and Global Land Evaporation Amsterdam Model (GLEAM) in purple) among
sites belonging to one plant functional type, namely evergreen needleleaf forest (ENF), deciduous broadleaf forest (DBF), grasslands (GRA),
and croplands (CRO). On the x axis is the day of the year of the event. Error bars in grey correspond to the standard deviation of the day of
the event in the models across sites of one plant functional type, and the error bars in black correspond to the standard deviation across the
respective observations.

in the ICOS measurements are caused by the processing of
the measurements by ICOS and are, therefore, not repre-
sented by CLM5 or GLASS. Again, a general underestima-
tion of observed GPP is shown across all PFTs (Fig. 6a, c,
e, g), particularly during the summer months from all mod-
els. CLM5PFT shows a larger GPP than CLM5grid and, there-
fore, has a lower systematic bias (mean PBIAS across PFTs
of −19.61 % and −27.65 %; see Table S5). GLASS GPP
is closer to the ICOS GPP at ENF, DBF, and GRA and
has the lowest mean PBIAS across PFTs of −16.67. The
most substantial underestimations are at DBF during sum-
mer (Fig. 6c), where CLM5grid and CLM5PFT have a PBIAS
of −38.88 % and −43.76 %, and GLASS −24.52 %. The
GPP variability across sites is, similar to ET, the lowest at
DBF sites. Notably, GLASS remote-sensing GPP underesti-
mates the variability among sites of one PFT substantially

throughout the year at GRA and CRO sites (Fig. 6f, h). The
observed variability dynamics across the year, e.g., the bi-
modality at GRA sites (Fig. 6f) that was also visible for ET,
is captured best by CLM5PFT. However, not all models cap-
ture the behavior of CRO GPP inter-site variability (Fig. 6h).
This supports the suspicion of the influence of management
and missing processes in CRO in the models, possibly con-
cerning the timings of planting, fertilizing, and harvesting the
crops as the cause of these mismatches. The overall negative
systematic bias in the models points at potentially missing
sensitivities to or lower levels of, e.g., atmospheric CO2 and
vapour pressure deficit (VPD) that have been recently found
to increase the water use efficiency and carbon assimilation
(Poppe Terán et al., 2023; Friedlingstein et al., 2023).

Shifts in phenological events between the observations and
the models are already noticeable in Fig. 6 but are quantified
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Figure 6. In the left column are the yearly gross primary production (GPP) evolutions averaged across stations belonging to one plant
functional type (rows show the evergreen needleleaf forest (ENF), deciduous broadleaf forest (DBF), grasslands (GRA), and croplands
(CRO)) and across the years (available years vary per station; see Table S1). We differentiate the data source by color (Integrated Carbon
Observation System (ICOS) observations in black; Community Land Model v5 (CLM5), CLM5grid in red; CLM5PFT in yellow; and Global
Land Surface Satellite (GLASS) in green). The corresponding standard deviations across the sites and across the years are plotted in the right
column to measure the spread around this mean.

and visualized in detail in Fig. 7. CLM5PFT and CLM5grid
predominantly simulate the timing of these events within
the standard deviation across ICOS stations for each PFT.
In the GLASS GPP data, the events are shifted further from
the measurements, most notably at DBF sites (16 d earlier
growing season start and 11 d earlier summer peak) and at
CRO sites (22 d belated peak and 45 d belated end of the
growing season). Generally, in both CLM5 scales, the shifts
to the ICOS observations were the largest in CRO. Similar
to the ET event timings, CLM5PFT shows the largest varia-
tion in these timings among the models, especially at GRA
sites, and also considerable differences in the timing of the

growing season end of ENF sites. These findings confirm the
ability of CLM5PFT to approximate PFT-specific variation in
ecosystem processes, but the contrasting results of the model
performance indices will be further reviewed in Sect. 4.

3.4 Statistical distributions

3.4.1 ET

In this section, we describe the results of the statistical dis-
tributions of ET in the model and the observations for each
PFT. Then, we give more details on the moments of these
distributions and how the models compare to the observa-
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Figure 7. Mean shifts in GPP phenological events (the start of the growing season, peak, and the end of the growing season) between the
Integrated Carbon Observation System (ICOS) observations (solid black line) and the models (by color, namely the Community Land Model
v5 (CLM5), CLM5grid in red; CLM5PFT in yellow; and Global Land Surface Satellite (GLASS) in green) among sites belonging to one plant
functional type, namely evergreen needleleaf forest (ENF), deciduous broadleaf forest (DBF), grasslands (GRA), and croplands (CRO). On
the x axis is the day of the year of the event. Error bars in grey correspond to the standard deviation of the day of the event in the models
across sites of one plant functional type, and the error bars in black correspond to the standard deviation of the respective observations.

tions. Generally, the models approximate well the shape of
the distributions (Fig. 8), with a pronounced peak in the oc-
currence of positive ET values close to 0 that represent low
winter values across all PFTs and, moreover, the slowly de-
creasing frequency of values towards the high ET summer
values, which is more variable among the models. The vari-
ability in the summer peak magnitude (see Sect. 3.3) among
stations of the same PFT causes the ICOS and CLM5 ET dis-
tributions to have only a slightly pronounced second mode at
the high summer ET values. On the other hand, the ERA5L
and GLEAM ET distributions show a very pronounced sec-
ond mode at the higher ET values for each PFT. This hints at
the lower variability in the summer peak magnitude among
these stations, which misrepresents the observed high varia-
tion in ICOS.

The moments of these distributions give more insights
into their specific characteristics. Furthermore, differences
in moments between the observations and the models can

yield important information on potential misrepresentations
(Fig. 9). For example, a differing mean between ICOS and
a model points to a general shift in the distribution, specif-
ically its center of mass. Therefore, we confirm a shift in
ET distributions of ERA5L, GLASS, and GLEAM towards
higher values for all PFTs in reference to ICOS. CLM5grid
and CLM5PFT have lower means, except for CLM5PFT at
CRO. The second moment, the variance, informs us about
the variability in values. Notably, GLEAM data underesti-
mate, and GLASS data overestimate, the observed variability
in ET at all PFTs. CLM5PFT has a broad range of variabil-
ity across PFTs, which corresponds well with ICOS observa-
tions, while CLM5grid and the other models show a very sim-
ilar level of variability independent of the PFT. All models
agree with the observed positive sign of the skewness (indi-
cating a longer right tail of the distribution) for all PFTs. And
while all the models simulate a platykurtic (negative excess
kurtosis and pronounced relative tail) characteristic of the
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Figure 8. The probability density curves for all evapotranspiration (ET) values from stations belonging to the selected plant functional types,
namely evergreen needleleaf forest (ENF), deciduous broadleaf forest (DBF), grasslands (GRA), and croplands (CRO). The data source
differs by color (Integrated Carbon Observation System (ICOS) observations in black; Community Land Model v5 (CLM5), CLM5grid
in red; CLM5PFT in yellow; Global Land Surface Satellite (GLASS) in green; European Center for Medium-Range Weather Forecasts
Reanalysis 5 Land (ERA5L) in brown; and Global Land Evaporation Amsterdam Model (GLEAM) in purple).

distributions across PFTs, ICOS shows a leptokurtic (positive
excess kurtosis, less pronounced tails, and more pronounced
peak) behavior at ENF and CRO sites. Furthermore, the vari-
ation in the reach model’s skewnesses and kurtoses (y axis
ranges for each color in Fig. 9c and d) across the PFTs is
considerably lower than the observed ranges (corresponding
x axis ranges). Altogether, these findings showcase the abil-
ity of CLM5PFT to model intra- and inter-PFT ET variance
better than the other considered models, on the one hand, but
also showcase the shortcomings of all the considered models
in representing the variation in the extreme ends of the ET
distributions across all PFTs on the other hand.

3.4.2 GPP

We continue to delineate the results of the same analyses for
the GPP distributions and their moments (Fig. 10). The fre-
quency peaks at the low GPP values, which correspond to
the base winter GPP, are overestimated by all models at ENF,
DBF, and GRA. This could partly be explained by negative
GPP values in the ICOS data, which the models do not repre-
sent. By definition, there is no negative GPP. However, these
negative values are given through the uncertainty range of the
NEE partitioning method and are retained in the analysis to

preserve the partitioning distribution (Reichstein et al., 2012;
Pastorello et al., 2020). This is probably related to underesti-
mating the observed winter GPP in ENF and GRA sites seen
in Fig. 6a and e. Another striking finding is the missing oc-
currence of the highest observed GPP values in the models at
all PFTs, but most noticeable at DBF sites, where the upper-
half range of GPP values (> 12 g C d−1) is not represented in
any model. The overrepresented mid-range GPP values and
the partly pronounced second modes in the mid-range GPP
values across PFTs are possibly caused by the low summer
peaks and low variability across sites (see Fig. 6).

The models show lower GPP means than the ICOS mea-
surements for all PFTs in Fig. 11a. Similarly, for all models
across all PFTs, the underestimated GPP variance indicates
a lower spread of the PFT distributions than in ICOS. While
models agree on the positive skewness of the GPP distribu-
tion (skewed to the left), the largest skewness at CRO sites is
not well represented by all the models. Finally, similar to the
findings with ET kurtosis, the models fail to distinguish the
distinct leptokurtic characteristics (tails that are less heavy)
of the GPP distribution of CRO sites compared to the other
PFTs, as seen in the observations. Across PFTs and for all
models, the ranges spanned by the intra-PFT distribution mo-
ments are smaller than those observed. Most strikingly, the
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Figure 9. The mean (a), variance (b), skewness (c), and excess kurtosis (d) of the evapotranspiration (ET) distributions (visualized in Fig. 8)
from the models (y axis; colors, namely Community Land Model v5 (CLM5), CLM5 grid in red; CLM5PFT in yellow; Global Land Surface
Satellite (GLASS) in green; European Center for Medium-Range Weather Forecasts Reanalysis 5 Land (ERA5L) in brown; and Global Land
Evaporation Amsterdam Model (GLEAM) in purple) as opposed to the corresponding values from observations (x axis) aggregated for each
plant functional type (marker type), namely evergreen needleleaf forest (ENF), deciduous broadleaf forest (DBF), grasslands (GRA), and
croplands (CRO). The error bars are the standard errors in the respective moment, depending on the sample size.

GPP variance range across PFTs, which is, among the mod-
els, the largest for CLM5PFT (between 8 and 12 g C d−1), is
much smaller than for ICOS (11 to 27 g C d−1). This suggests
the models do not simulate GPP differently enough between
the PFT groupings. Thus, model development and parameter
optimization studies that aim to improve these representa-
tions should focus on enhancing the variability in DBF.

3.5 The inter-site similarity of PFT groups

To support the interpretations of our findings, we quantify the
similarity of ET and GPP across sites of the same PFT and
compare the differences between the models and the obser-
vations. In this section, we analyze the mean RMSD of each
PFT per ET and GPP data sources. A low RMSD indicates

that the stations corresponding to one PFT are similar, while
a high RMSD hints at a greater diversity within the PFT. By
comparing the mean RMSD per PFT for ET and GPP across
data sources, we can evaluate how much diversity is captured
in the data of a particular PFT in the observations and mod-
els. The standard deviation of the RMSD for each PFT gives
information on the spread of the inter-site RMSDs within the
PFT group around that mean.

Figure 12 shows that CLM5grid and GLEAM have lower
ET time series differences between the corresponding sites
for all PFTs than ICOS. CLMPFT has a lower mean RMSD
than CLM5grid among ENF and DBF sites. Both CLM5PFT
and CLM5grid underestimate the observed diversity of ET at
ENF and DBF sites. Interestingly, the variation in ERA5L
and GLASS ET time series for ENF is higher than observed,
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Figure 10. The probability density curves for all gross primary production (GPP) values from stations belonging to the selected plant
functional types are shown, including evergreen needleleaf forest (ENF), deciduous broadleaf forest (DBF), grasslands (GRA), and croplands
(CRO). The data source differs by color (Integrated Carbon Observation System (ICOS) observations in black; Community Land Model v5
(CLM5), CLM5grid in red; CLM5PFT in yellow; and Global Land Surface Satellite (GLASS) in green).

and they also show the most significant variation in RMSD.
Meanwhile, the DBF mean RMSD of all models is lower
than that of ICOS. CLM5PFT shows a higher diversity of
ET between GRA sites and CRO sites than CLM5grid. The
CLM5PFT surpasses the observed mean RMSD for the GRA
PFT, highlighting the potential to simulate GRA sites vari-
ably. All other models underestimate it slightly (CLM5grid,
ERA5L) or in a more pronounced manner (GLASS and
GLEAM). Particularly at CRO sites, the ET RMSD of
CLM5PFT is substantially higher than the other models and
at a similar level to ICOS observations. In contrast, all other
models show significantly lower mean RMSDs there. Gener-
ally, a higher ET RMSD mean in a PFT group comes with a
higher spread (higher standard deviation) for all data sources.
The RSMD in ET between stations is lower for CLM5grid and
GLEAM than for ICOS for all PFTs.

Figure 13 shows that for GPP, the models generally have
a lower mean RSMD than ICOS across stations for all
PFTs, except for CLM5grid at DBF. CLM5PFT has a more
diversely simulated ET across ENF, GRA, and CRO sites
than CLM5grid. Interestingly, the observed magnitude of
the RMSD is lowest for DBF and highest for CRO and
has a more extensive range across PFTs than the models.
For example, the RMSDs of ICOS data differ by approxi-
mately 1.3 g C d−1 between GRA and CRO, while CLMgrid,

CLM5PFT, and GLASS indicate similar RMSDs for those
PFTs. Especially CLM5grid shows a constant within-PFT
variability in around 1.5 g C d−1 independent of the PFT.
Higher mean GPP RMSD values also come with a higher
standard deviation. These results hint at a complex relation-
ship of variability representation within the PFTs. The higher
RMSE values of CLM5PFT in the general model performance
analysis (Sect. 3.2) suggest that the variation across sites of
one PFT seen here does not directly translate to better model
performance. Apart from the magnitude of the variability,
its accurate and proportionate timing is pivotal for enhanced
model performance.

4 Discussion

Our results show that CLM5grid and CLM5PFT approximate
the ET observations from ICOS better than GLASS remote-
sensing and ERA5L reanalysis but worse than GLEAM re-
analysis. Moreover, especially for CLM5PFT, the system-
atic error in simulating ET is lower than all other evaluated
data sets. For GPP, we found that CLM5grid and CLM5PFT
performed worse than GLASS data, indicated by a larger
PBIAS and larger RMSE. Surprisingly, CLM5PFT generally
had a higher RMSE than CLMgrid but, at the same time, a
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Figure 11. The mean (a), variance (b), skewness (c), and excess kurtosis (d) of the gross primary production (GPP) distributions (visualized
in Fig. 10) from the models (y axis; colors, namely Community Land Model v5 (CLM5), CLM5 grid in red; CLM5PFT in yellow; and
Global Land Surface Satellite (GLASS) in green), as opposed to the corresponding values from observations (x axis) aggregated for each
plant functional type (marker type), namely evergreen needleleaf forest (ENF), deciduous broadleaf forest (DBF), grasslands (GRA), and
croplands (CRO). The error bars are the standard errors in the respective moment, depending on the sample size.

lower PBIAS. Averaged ET and GPP phenologies were rela-
tively well simulated but exhibited underestimations across
all PFTs, especially in DBF, compared to ICOS measure-
ments. CLM5PFT better captured the PFT-specific mean and
standard deviation of the ET and GPP annual dynamics than
CLM5grid and reanalyses and remote-sensing data. The GPP
and ET distributions analysis showed underestimations of
their observed variability for all models, namely CLM5grid,
CLM5PFT, GLASS, ERA5L, and GLEAM. Last, we found
that for most PFTs, the modeled and remotely sensed data
were too similar between stations of the same PFT group
compared to the ICOS observations.

4.1 Uncertainty

4.1.1 Observations

Notably, the EC measurements carry uncertainties that might
affect the results of this study, especially related to the sys-
tematic errors in the simulations. For instance, EC measure-
ments neglect the energy from large eddies. To check for
possible inconsistencies, we evaluated the energy-balance-
corrected ET (ETcorr) from the ICOS sites (Pastorello et al.,
2020). This methodology assumes a constant Bowen ratio
to close the energy imbalance. Simulated ET underestimates
ETcorr to a greater degree than the non-corrected ICOS ET
(Figs. S1, S2), suggesting a higher systematic error than in
the analysis of non-corrected ET. Besides that, we discov-
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Figure 12. The bars indicate the mean of the root mean square difference (RSMD) of evapotranspiration calculated for sites with the same
plant functional type. The error bars are their standard deviation. Low values indicate high similarity between the sites, and high values show
high dissimilarity. The color of the bars differentiates the data source (Integrated Carbon Observation System (ICOS) in black; Community
Land Model v5 (CLM5), CLM5grid in red; CLM5PFT in yellow; Global Land Surface Satellite (GLASS) in green; European Center for
Medium-Range Weather Forecasts Reanalysis 5 Land (ERA5L) in brown; and Global Land Evaporation Amsterdam Model (GLEAM) in
purple).

ered the same patterns with the corrected ET, concluding that
the energy balance error did not introduce significant bias
to our results and the interpretations. Furthermore, GPP is
not directly measured but partitioned from NEE. The NEE
partitioning method has an underlying uncertainty stemming
from potentially unfulfilled assumptions that propagate to
the GPP and ER variables in the ICOS data. So, we also
ensured that our results remained consistent by evaluating
the non-partitioned NEE and the ER variables (Figs. S3, S4,
S5, S6). We discovered a substantial underestimation and
missing variability in NEE and ER across PFTs in CLM5,
confirming the systematic underestimation in our analysis
of GPP. While we believe that our analyses have followed

meticulous approaches to ensure robust results by applying
the ICOS quality flags and comparing these additional vari-
ables, many studies still emphasized the biases arising from
a shifting footprint with varying wind direction and wind
speed and the energy balance correction method assuming
a constant Bowen ratio (Jung et al., 2020; Eshonkulov et
al., 2019; Chu et al., 2021). Therefore, we encourage de-
veloping and using novel and more accurate energy-balance-
closure methods (Zhang et al., 2024). Furthermore, dropping
bad-quality gap-filled data from the ET and GPP time series
might introduce a bias that underrepresents periods of low-
friction velocity and atmospheric inversion conditions. Last,
based on the geographical distribution of the ICOS station
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Figure 13. The bars indicate the mean of the root mean square difference (RSMD) of gross primary production calculated for sites with the
same plant functional type. The error bars are their standard deviation. Low values indicate high similarity between the sites, and high values
show high dissimilarity. The color of the bars differentiates the data source (Integrated Carbon Observation System in black; Community
Land Model v5 (CLM5), CLM5grid in red; CLM5PFT in yellow; and Global Land Surface Satellite (GLASS) in green).

network, the results might misrepresent southern and eastern
Europe and semi-arid and arid hydro-climates (Fig. 1; also
read Ohnemus et al., 2024). Those factors might have influ-
enced the diversity of ET and GPP values and the ranges of
their distributions.

4.1.2 Forcing

Importantly, discrepancies between the COSMO Reanalysis
used to force the European CLM5, and the station observa-
tions might introduce deviation into our analyses that could
hamper interpretations of our results regarding the model
functionality. While the high-resolution forcing data already
include information from observations through data assimi-
lation, particular locations and conditions might be less well

represented than others, and a resulting bias in the meteo-
rological variables would propagate to the simulation of ET
and GPP. However, data assimilation approaches minimize
the systematic error in the atmospheric model to the obser-
vations. Furthermore, the probability and potential influence
of including a bias from the forcing of a single location is
lowered by considering multiple sites in the performance and
statistics of the PFTs. Nevertheless, we assessed the meteo-
rological variables from the COSMO Reanalysis 6 (temper-
ature, shortwave incoming radiation, precipitation, and rela-
tive humidity) with the ICOS station data to scrutinize po-
tential errors arising from the forcing. We used the same ap-
proach for the GPP and ET evaluation (Figs. S7–S14). We
discovered that the forcing variables’ average yearly dynam-
ics and distributions represent the ICOS observations well.
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More minor yet notable misrepresentations include under-
estimations of shortwave downward radiation and precipita-
tion in summer and relative humidity over GRA and CRO
sites throughout the year compared to the measurements.
This could explain some of our analyses’ ET and GPP un-
derestimations by CLM5. Notably, the mean and variance
across the PFTs and their ranking are represented reason-
ably well for all forcing variables compared to our results
with GPP and ET. Furthermore, the skewness and excess
kurtosis of the forcing temperature and shortwave downward
radiation compare well to the ones from ICOS, indicating
well-matching distributions between the COSMO Reanaly-
sis 6 and the observations. However, in particular, the higher-
degree moments of the distribution are not well simulated
for precipitation and relative humidity. These characteristics
of the distributions affect the CLM5 simulations of GPP and
ET and might have influenced our results. Further consider-
ations, including ensemble simulations with perturbed forc-
ings, are required to capture the uncertainty introduced into
CLM5 fully, but this is beyond the scope of this study.

4.1.3 Static information and initial conditions

The static surface information, including the soil texture, el-
evation, aspect, land unit, and PFT distributions, affect the
simulation of ET and GPP in CLM5. The soil texture com-
position will define how water is stored and conducted in the
soil, contributing to the evaporation from the soil, an essen-
tial ET component. Furthermore, the soil texture will influ-
ence root water uptake if vegetation is present in the soil col-
umn, indirectly impacting plants’ transpiration, another criti-
cal ET component. Furthermore, ET is regulated by the avail-
able energy, which is determined by how the canopy, the ele-
vation, and the aspect of that location influence the incoming
radiation. Especially the diversity between these input vari-
ables across the locations of the ICOS stations might have
played an essential role in the simulation of the PFT-specific
ET and GPP distributions.

Last, particularly for CLM5grid, GLASS, GLEAM, and
ERA5L, the distribution of PFTs across the domain and in
the grid cells corresponding to the ICOS stations define the
equations and parameters that will be used for the calculation
of ET and GPP. Consequently, if the grid cells corresponding
to ICOS stations are dominated by PFTs that do not comply
with the stations’ footprints, the simulations of specific PFTs
in the model are negatively affected. Importantly, this does
not apply to CLM5PFT because we could select the data that
belong to the adequate PFT. Therefore, interpretations of our
results relating directly to vegetation functions implemented
in CLM5 are here primarily focusing on the CLM5PFT data.

The initial conditions of the carbon cycle, most notably
the size of the soil and vegetation carbon pools, are another
source of uncertainty. Essentially, our spin-up and produc-
tion simulations were restricted to the years where the high-
resolution forcing was available (1995–2018). The spin-up

simulations, therefore, recycle atmospheric forcings for a
substantial period, which we also use in the production simu-
lations. Hence, the production simulations adopted the equi-
librium state (incoming carbon equals outgoing carbon) re-
quired to conclude the spin-up. However, in natural condi-
tions, there was no carbon equilibrium in the simulated years.
Instead, the carbon cycle experiences dynamic changes, such
as long-term trends resulting from changing environmen-
tal conditions. Many European ecosystems exhibited a net
carbon uptake, thus acting as a carbon sink (Pilli et al.,
2017; Winkler et al., 2023), and were measured in ICOS ac-
cordingly. The negative long-term mean NEE indicates car-
bon sources, evident across all PFTs in the EC observations
(Fig. S4a). On the other hand, the simulations show a NEE
close to zero for all PFTs, directly showing the effect of the
equilibrium state of the land surface in the model. The results
of DBF, which is the most significant carbon sink in the ICOS
data and simultaneously shows the largest GPP underestima-
tions by CLM5, underline a potentially important role of the
carbon equilibrium in our results. Future work will conduct
a more comprehensive spin-up under conditions closer to a
real-world carbon equilibrium (the 1950s or earlier) and a
transition run before the production simulations to capture
the dynamic trends of the land surface processes. Possibly,
the bias in the EC measurements towards conditions with
low-friction velocity and atmospheric inversion might also
cause overestimations of GPP and the resulting carbon sink
in ICOS.

4.2 PFT-specific evaluation

While CLM5PFT showed a smaller systematic error than
CLMgrid for most PFT compared to the observations (lower
absolute PBIAS), the ability to approximate the observation
time series is worse (higher RMSE). A shifting sign in the
bias of the CLM5PFT data explains these counterintuitive re-
sults. The presence of both positive and negative bias (in
time and across stations) cancels out and yields an over-
all low PBIAS. In summary, we find in the evaluation that
the ET time series of CLMPFT are not closer to observa-
tions than CLM5grid for any PFT, but CLM5PFT generally
approximates the ET sum over time better than CLM5grid for
ENF, DBF, and CRO. However, it is also clear that, on av-
erage, the phenology of CLM5PFT is closer to the observed
than CLM5grid, for instance, for both ET and GPP at DBF
and GRA sites. Furthermore, the timings of the phenologi-
cal events in CLM5PFT are most often closer to the observed
than in CLM5grid. Importantly, critical PFT-specific charac-
teristics, like the timing of DBF’s steep spring GPP increase,
are only captured by CLM5PFT and the inter-site variability
in ET and GPP throughout a standard year. This discrepancy
between the evaluation metrics and the vegetation phenology
suggests that CLM5PFT could better capture the PFT-specific
variability that ICOS observes. However, this variability is
modeled in a way that did not contribute to a low RMSE that
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is, for instance, shifted in time or space, so the averaged PFT-
specific comparisons (the phenology and the distribution mo-
ments) compare better with ICOS than CLM5grid. Further
evidence of this explanation is that CLM5PFT generally cap-
tures more variability (higher ET and GPP standard deviation
across sites throughout the year for ENF, GRA, and CRO and
higher variance for each PFT). This ability to capture more
variability than the other models, closer to the observed vari-
ability, can improve the represented variability in CLM5PFT
if the suitable variation can be modeled at the right time and
location. This spatiotemporal discrepancy of simulated and
observed GPP and ET variability could potentially be solved
with optimized PFT parameters (Baker et al., 2022; Birch et
al., 2021; Cheng et al., 2021; Dagon et al., 2020; Deng et al.,
2021; Fisher et al., 2019).

Several past studies also indicated the underestimation of
ET and GPP in CLM5 compared to observations (Boas et al.,
2023; Strebel et al., 2024; Cheng et al., 2021; Birch et al.,
2021), which we confirm in this study. Parameter improve-
ments could also alleviate these general underestimations of
GPP and ET across PFTs, especially during summer (Dagon
et al., 2020). However, optimal parameters might vary from
site to site (Lin et al., 2015), even if they have the same
PFT. Thus, CLM5 and, more generally, LSMs that imple-
ment plant traits as parameters on the PFT level cannot cap-
ture this intrinsic PFT variability resulting from these traits.
Although optimized parameters might still reduce the bias
on the continental level, a more comprehensive approach to
the spatiotemporal variability in plant traits might improve
regional simulations drastically (Anderegg et al., 2022; Van
Bodegom et al., 2014; Kattge et al., 2011).

Given the hydraulic role of vegetation leaves in control-
ling transpiration, there is a tight relationship between ET,
GPP, and LAI. In CLM5–BGC, the assimilated carbon by
GPP gets further partitioned to respiration and the carbon
storage in the plant organs, i.e., leaves, roots, and stems. Fur-
thermore, the leaf carbon then controls the development and
state of the vegetation leaves and, thus, the LAI. On the other
hand, LAI controls GPP by determining the upscaling fac-
tors from leaf photosynthesis to the canopy, thereby driv-
ing canopy conductance. Unfortunately, no large-scale LAI
in situ measurements and no CLM5PFT simulated LAI are
available, and comparisons between CLM5grid LAI and re-
analysis or remote-sensing LAI suffer from known biases
in the latter and yield no further context for our evaluation
based on ground truth information. We adhered to an LAI
evaluation of CLM5 with sparse but systematic ICOS mea-
surements, ERA5L reanalysis, and GLASS based on MODIS
(Fig. S15). Notably, the ICOS LAI measurements are only
available for 2 years of the study period (2017 to 2018) and
are limited to ENF and CRO sites. Additionally, LAI mea-
surements’ expensive and time-intensive nature restricts the
time resolution to a few yearly measurement points. As a re-
sult, the data points for comparison are few, and the uncer-
tainties are larger (noticeable larger error bars in Fig. S15).

Another caveat is the potential mismatch of the land sur-
face representation between the EC tower footprint (ET and
GPP measurements) and the area covered by the LAI mea-
surement campaigns. However, some key findings from this
analysis are still robust. For example, all models overestimate
LAI at ENF and CRO sites (Fig. 14a), contrasting the results
of GPP and ET. The variance in ENF sites is much more
significant in GLASS and ERA5L than in CLM5grid, which
is closest to the observations. The higher-order moments are
more uncertain because of the small number of data points.
The contrasting results, especially between the LAI and GPP
PFT level averages, suggest that processes and parameters
connecting the assimilated carbon to the leaf area, depending
on the environmental conditions, must be revisited. However,
we make an even stronger case for systematic, long-term, and
high-resolution LAI in situ measurements (for example, us-
ing drones; Bates et al., 2021), which would support a more
robust and diverse evaluation of the simulations of this es-
sential variable.

4.3 Inter-site similarity of PFT groups

For all models (CLM5grid, CLM5PFT, ERA5L, GLASS, and
GLEAM), the distributions of ET and GPP across PFTs
are very similar, which is not the case for the observations.
This is especially true for their variances (i.e., their spread
around the mean) but also notable for the means, skewnesses,
and kurtoses. We expected CLM5PFT to show more signifi-
cant variability than CLM5grid and the other grid scale mod-
els because the aggregated mixed-PFT data of the grid cell
would homogenize the variables and cancel out some of the
variability. While CLM5PFT shows a more extensive range
of variation in ET and GPP across PFTs than CLM5grid,
ERA5L, GLASS, and GLEAM, it still vastly underestimates
the observed range of variance by ICOS, especially for GPP
(Figs. 9, 11).

The mean RMSD across sites of the same PFT indicates
that ET across sites can be as different in CLMPFT for GRA
and CRO as in the observations (Fig. 12). However, the ET
differences across sites with the same PFT were underesti-
mated at ENF and DBF. GPP differences across sites with
the same PFTs were underestimated for all PFTs (Fig. 13).
This suggests that the missed variance could mainly stem
from missed PFT internal inter-site differences or unresolved
differences in site-specific abiotic conditions (e.g., soil depth
and texture). Possibly, this could not be improved through
optimization of PFT-specific parameters, as these sites would
still share the same set of parameters. An enhanced concept
of functional types in vegetation, focusing on the spatiotem-
poral variability in observed plant traits, could better facili-
tate improvements that raise the simulated ET and GPP vari-
ance in space and time.
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4.4 Data requirements

As outlined above, beyond parameter optimizations, a com-
prehensive implementation of functional ecosystem diversity
could significantly improve the LSM simulation outputs re-
garding multiple aspects of their distributions. This could in-
troduce a state-of-the-art understanding of vegetation func-
tion into LSMs, which is essential to evaluate different the-
ories of plant trait evolution and their effect on current and
future energy, water, and carbon cycles.

In that light, we encourage sites to co-locate research in-
frastructures (Futter et al., 2023), like ICOS and the inte-
grated European Long-Term Ecosystem Research Infrastruc-
ture (eLTER RI). Thereby, sites cover additional observation
spheres like biodiversity (e.g., functional diversity of plants)
and socio-ecology (through forest and crop management and
driving land use change) and establish a strong base for stud-
ies to increase the understanding of the whole system (Ohne-
mus et al., 2024; Mirtl et al., 2018, 2021; Baatz et al., 2018).
Furthermore, this would promote large-scale observations
needed to introduce more trait variability into LSMs. Last,
combining LSMs and these holistic observations by data as-
similation, going beyond decoupled modeling efforts (Bloom
et al., 2020) and resulting in an ecosystem reanalysis (Baatz
et al., 2021), would provide essential, explicit and accurate
data on the carbon cycle, which are currently unavailable.

4.5 Distribution moments and droughts

Investigating the influence of drought on the analyses, or
generally the ability of the models to simulate drought and
the vegetation response, is complex due to the differences
in drought response functionality. For instance, plant wa-
ter stress might occur due to different magnitudes of water
deficit in the soil on different aggregation timescales and
with a variable lag to the water deficit. A future study will
investigate the PFT-scale drought responses from the model
and how the drought propagates through the ecohydrologi-
cal sphere and compare it to observations. However, drought
frequency, duration, and severity affect the shapes of the
distribution of the precipitation and, eventually, the ecosys-
tem processes. Thus, we briefly discuss possible insights into
their drought responses.

Importantly, the skewness and excess kurtosis moments,
which inform us about the characteristics of the distribution
tails (relativity between the tails and the general tailed as-
pect, respectively) of precipitation (Guo, 2022), as well as
vegetation states and function (Kanavi et al., 2020; Liu et
al., 2022; Cooley et al., 2022), are influenced by dry condi-
tions, depending on their frequency, duration, and severity.
We found a low variability in the skewness and excess kurto-
sis of the precipitation used to force our CLM5 simulations
(Fig. S10c and d), specifically a significantly lower skewness
and excess kurtosis at ENF and DBF sites. A lower positive
skewness than the observations means that the distribution is

less skewed towards lower values, and a lower positive ex-
cess kurtosis than the observations indicates generally larger
tails. A possible interpretation of these differences in the
distribution moments is that the atmospheric forcings show
more frequent, longer, and more severe extreme precipitation
events, while the ICOS measurements are more concentrated
around their mean. While the propagation of these extreme
events could be complex and non-linear, we generally found
the same results (lower skewness and smaller absolute ex-
cess kurtosis) for the simulated distributions of ET and GPP
for almost all models and PFTs (Figs. 9c–d and 11c–d), sug-
gesting a more direct relationship. However, because of the
possible non-linearity and the influence of other factors, the
detailed relationship between these findings and the ability of
CLM5 to simulate ecosystem drought responses must be ex-
amined in future studies. In any case, the missing accuracy in
representing higher distribution moments in the atmospheric
forcings and in land surface models must be considered in
studies using these to investigate drought.

5 Conclusions

We evaluated the simulated evapotranspiration (ET) and
gross primary production (GPP) from a 3 km resolved Com-
munity Land Model v5 (CLM5) set up over the European
CORDEX domain. We differentiated the model outputs be-
tween the grid scale (CLM5grid) and the plant-functional-
type scale (CLM5PFT) and compared them with ICOS sta-
tion data as ground truth data. Furthermore, we compared
with ET and GPP from remote-sensing-derived data from
the Global Land Surface Satellite (GLASS) and reanal-
ysis products such as the European Centre for Medium-
Range Weather Forecast Reanalysis 5 – Land (ERA5L) and
the Global Land Evaporation Amsterdam Model (GLEAM).
CLM5grid and CLM5PFT exhibited promising skills in ap-
proximating the observations and often performed better than
ERA5L, GLASS, and GLEAM. CLM5PFT showed a lower
systematic bias (lower percent bias) but approximated the
ICOS observations in a generally worse manner (larger root
mean square error) than CLM5grid (Figs. 2 and 3 and Ta-
bles S4 and S5). ET and GPP were systematically underes-
timated across all PFTs throughout the year for both model
scales. Especially during summer at DBF sites, GPP was sub-
stantially lower for CLM5PFT and CLM5grid than for ICOS
observations (Figs. 4, 6).

Essentially, CLM5PFT and, to a greater degree, CLM5grid,
ERA5L, GLEAM, and GLASS showed a lower spatiotem-
poral variability in ET and GPP than the measurements ex-
hibited by a lower range of all the modeled ET and GPP dis-
tribution moments across PFTs than in ICOS. This smaller
range and a lower root mean square difference between sites
of one PFT group suggests that CLM5grid and, more surpris-
ingly, CLM5PFT simulate GPP and ET more similarly across
PFTs than the ICOS measurements.
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Future studies should investigate whether optimizing pa-
rameters in CLM5PFT with observation data increases the
diversity of ET and GPP values or whether this is a struc-
turally induced bias. This work provides essential insights for
studies that aim to find optimized parameters and meaningful
context for analyses of more specific ET and GPP dynamics
using the evaluated data.

Code and data availability. A frozen version of the CLM5 version
used here is stored here at https://doi.org/10.5281/zenodo.11091890
(CTSM Development Team, 2024). The case setup for the Eu-
ropean 3 km simulation and a post-processing script are avail-
able under https://doi.org/10.5281/zenodo.11091845 (Poppe Terán,
2024a). Analysis, processing, and plotting scripts are available
at https://doi.org/10.5281/zenodo.13885473 (Poppe Terán, 2024b),
which require the helper scripts in the additional repository at
https://doi.org/10.5281/zenodo.13885466 (Poppe Terán, 2024c).

We used publicly available data, namely the Warm Win-
ter 2020 data set from the Integrated Carbon Observation Sys-
tem (ICOS; https://doi.org/10.18160/2G60-ZHAK; Warm Win-
ter 2020 Team and ICOS Ecosystem Thematic Centre, 2022,
and https://doi.org/10.18160/G5KZ-ZD83; ICOS RI et al., 2024),
the ERA5-Land reanalysis (https://doi.org/10.24381/cds.e2161bac;
Muñoz Sabater, 2019), the Global Land Surface Satellite (GLASS)
data derived from remote sensing (http://www.glass.umd.edu/
ET/AVHRR/, last access: 31 September 2023, for ET, and
http://www.glass.umd.edu/GPP/AVHRR/, last access: 31 Septem-
ber 2023, for GPP; Liang et al., 2021), and reanalysis data
from the Global Evaporation Amsterdam Model (GLEAM; https:
//www.gleam.eu/, last access: 12 December 2023; Martens et
al., 2017). Intermediary tabular data in parquet format corre-
sponding to the location of the ICOS stations are stored in
https://doi.org/10.5281/zenodo.11091898 (Poppe Terán, 2024d) for
each data source used here, including CLM5grid and CLM5PFT.
The raw CLM5 outputs over the whole European domain, which
were not used in this study, can be made available upon request (ap-
prox. 8 TB).
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