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Abstract. Carbon monoxide in the atmosphere adversely af-
fects air quality and climate, making knowledge about its
sources crucial. However, current global bottom-up emission
estimates retain significant uncertainties. In this study, we at-
tempt to reduce these uncertainties by optimizing emission
estimates for the second half of the year 2018 on a global
scale with a focus on the Northern Hemisphere through the
top-down approach of inverse modeling. Specifically, we in-
troduce observations from the TROPOspheric Monitoring
Instrument (TROPOMI) into the TM5-4DVAR model. The
emissions are further constrained using NOAA surface flask
measurements. We conducted six experiments to investigate
the impact of data use in our inversions, varying the a priori
emissions and observational datasets.

Notably, the inversion driven by satellite observations
alone agrees with flask measurements south of 55° N almost
as well as the inversions that included those measurements.
This indicates that our method could be suitable for inver-
sions based purely on satellite observations. Compared to
the bottom-up estimates, all experiments result in strong (up
to 75 %) broad-scale emission reductions in China and India
throughout the entire inversion period. Part of the reduction
in China can be attributed to policy and technology changes
(e.g., coal to gas). Additionally, the OH climatology used to

simulate chemical loss appears to be underestimated in that
region, which also skews the inversions towards lower emis-
sions. In the experiments that include the surface flask mea-
surements, we find strong localized emission increments over
Europe and the Sahara, which are traced back to limitations
of the model in reproducing point measurements on moun-
tain tops.

1 Introduction

Carbon monoxide (CO) is toxic (Ryter et al., 2018) at high
mixing ratios (> 9 ppm for an exposure of 8 h; much shorter
at even higher mixing ratios, according to the World Health
Organization; WHO, 1999). However, CO mixing ratios in
the atmosphere are usually low enough that its toxicity and
the resulting direct health effects are overshadowed by its
indirect effect on air quality. Most notably, CO is an ozone
(O3) precursor in the presence of nitrogen oxides (NOx) and
solar radiation (Holloway et al., 2000). The resulting tro-
pospheric O3 is also detrimental for the health of humans
and plants alike, even at low mixing ratios (> 120 ppb for
an exposure of 1 h; or less for a longer exposure; Mckee,
1993). Most CO will eventually be converted to carbon diox-
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ide (CO2) via reaction with the hydroxyl radical (OH) (Lo-
gan et al., 1981). As such, CO reduces the oxidative ca-
pacity of the atmosphere and both directly (by formation
of CO2) and indirectly (through the reduced OH abundance
and thus longer methane, CH4, lifetime) increases green-
house gas loads (Raub and McMullen, 1991; Daniel and
Solomon, 1998; Heilman et al., 2014). As for the sources
of atmospheric CO, almost half of it comes from the oxi-
dation of methane and (non-methane) volatile organic com-
pounds (NM)VOCs, i.e., secondary CO production. The rest
comes mostly from incomplete combustion of fossil fuels
and biomass (e.g., wildfires or domestic wood burning) but
also, in smaller quantities, from direct emissions from plants
(biogenic CO) and the oceans (Zheng et al., 2019). While
biomass burning makes up less than a quarter of the total CO
source in most years, those emissions come with the largest
uncertainty (see Sect. 2.3.1 for more details), which is linked
to their high spatial and temporal variability compared to the
other sources.

Estimating regional CO emissions and partitioning them
by source category (i.e., distinguishing CO from secondary
production, fossil fuel combustion, and biomass burning) on
a global scale is challenging. While current remote sens-
ing techniques allow for the observation of CO mixing ra-
tios globally and at relatively high spatial and temporal res-
olutions, they carry insufficient information to directly in-
fer the underlying emissions by source category. Global re-
mote sensing instruments usually feature very limited ver-
tical resolution and cannot inherently distinguish between
when, where, and by what process (secondary production,
biomass burning, etc.) each observed CO molecule was pro-
duced. In addition, the temporal resolution of global remote
sensing instruments at a given location is limited to their re-
visit period (typically on the order of days), which may be in-
sufficient to adequately resolve rapid events, such as biomass
burning. The temporal coverage might be further reduced
when clouds or other data quality issues make observations
temporarily impossible. However, indirect estimation of CO
emission sources from remote sensing data is possible using
either bottom-up or top-down approaches. In bottom-up es-
timates, the process that produces the emission is modeled
based on observations that constrain that process. For ex-
ample, if the cause of the CO emissions is a wildfire, the
emissions can be estimated based on knowledge about the
burned vegetation and the intensity of the fire. Conversely, in
top-down estimates, the concentrations that resulted from the
emissions are measured and traced back to their source. Us-
ing the same example of wildfire CO emissions, their effect
in the atmosphere is an elevated CO concentration that can
be observed and then traced back and attributed to its source
using atmospheric modeling.

Both approaches are subject to various sources of error.
Bottom-up estimates typically require direct observations
of the source event (e.g., to have remote sensing informa-
tion on fire intensity in the case of biomass burning) in ad-

dition to certain assumptions about the source itself, such
as fuel characterization (ecosystem type, fuel loading, and
fuel consumption rates) and emission factors in the case of
biomass burning. Top-down estimates do not necessarily re-
quire observations of the source event itself. Instead, it is usu-
ally sufficient to gather observations of the resulting atmo-
spheric tracer concentrations during the time span between
the source event and them falling below the detection limit
due to loss processes and dispersion. However, while the
observational requirements of top-down estimates are less
strict, such estimates often require a set of more elaborate as-
sumptions for the atmospheric modeling, for example, about
chemistry and atmospheric transport. Overall, there is little
overlap between the error sources, and, therefore, one ap-
proach may be used to reduce the uncertainties of the other.

In this study, we use a top-down approach in the form
of four-dimensional variational (4DVAR) inverse modeling,
specifically the state-of-the-art inverse modeling framework
TM5-4DVAR. Initial inversion studies using the global atmo-
spheric chemistry transport model TM5 (Krol et al., 2003)
or the extended TM5-zoom (Krol et al., 2005) in combina-
tion with their respective adjoint versions can be found in
Gros et al. (2003, 2004) for methyl chloroform and CO, and
in Bergamaschi et al. (2005, 2007) for methane. The TM5-
4DVAR inversion suit, as described in detail in Meirink et al.
(2008b), is based on TM4-4DVAR (Meirink et al., 2006). A
first application of TM5-4DVAR can be found in Meirink
et al. (2008a). In this study, the CO branch (Krol et al., 2008)
of the TM5-4DVAR inversion suit is employed, which has
been the basis for multiple other studies already (Hooghiem-
stra et al., 2011, 2012a, b; Krol et al., 2013; Nechita-Banda
et al., 2018; Naus et al., 2022).

The basic concept of inversions in the TM5-4DVAR model
is to modify a set of prior emissions (a priori) in a way that
minimizes the mismatch between the model and one or more
sets of observations of atmospheric mixing ratios to obtain
an optimized set of posterior emissions (a posteriori). By in-
corporating information from additional observations beyond
those used to create the a priori emissions, inverse model-
ing is able to reduce the uncertainties in the a priori emis-
sions that are typically taken from bottom-up inventories.
The observations used in inverse modeling can range from
spatially and temporally sparse surface flask data (Bergam-
aschi et al., 2000; Pétron et al., 2002; Butler et al., 2005;
Pison et al., 2009; Hooghiemstra et al., 2011), over local air-
craft measurements (Palmer et al., 2003; Heald et al., 2004),
to global satellite observations (Pétron et al., 2004; Arellano
et al., 2004; Fortems-Cheiney et al., 2009; Hooghiemstra
et al., 2012a) or even combinations of multiple such datasets
(Hooghiemstra et al., 2012b; Krol et al., 2013; Jiang et al.,
2017; Nechita-Banda et al., 2018; Naus et al., 2022).

Previous studies with the TM5-4DVAR model employed
satellite observations from the Measurements of Pollution in
the Troposphere (MOPITT) instrument (Hooghiemstra et al.,
2012a, b), the Infrared Atmospheric Sounding Interferometer
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(IASI) instrument (Krol et al., 2013) or both (Nechita-Banda
et al., 2018; Naus et al., 2022). In this study, we introduce
a new satellite dataset into the TM5-4DVAR inverse model
using combined data from (a) the high-resolution TROPO-
spheric Monitoring Instrument (TROPOMI) on board the
Sentinel-5 Precursor (S5P) satellite and (b) the NOAA sur-
face CO flasks from the ESRL Global Monitoring Laboratory
and proposing an iterative process to more rigorously weight
both datasets against each other in the inversion. TROPOMI
features several differences to and advantages over MOPITT
and IASI. Most notably, the TROPOMI CO retrievals are
performed solely in the short-wavelength infrared (SWIR,
around 2.3 µm; Veefkind et al., 2012) range as opposed to
IASI’s mid-wavelength infrared (MWIR, around 4.76 µm;
De Wachter et al., 2012) range. MOPITT uses mostly the
thermal MWIR bands around 4.6 µm, assisted by the solar
SWIR band around 2.3 µm (Drummond et al., 2010). Using
shorter wavelengths, the TROPOMI retrievals exhibit less
interference from Earth radiation and are, therefore, more
sensitive to CO that resides close to the surface compared
to MOPITT and IASI. Overall, TROPOMI has high sensi-
tivity throughout the atmosphere, whereas IASI’s and MO-
PITT’s MWIR channels are most sensitive to the middle
and upper troposphere. However, the combination with the
SWIR band increases MOPITT’s surface-level sensitivity un-
der specific conditions (e.g., Worden et al., 2010). Further-
more, TROPOMI procures CO observations at a high spa-
tial resolution of up to 7× 7 km2 (Veefkind et al., 2012),
which is roughly 10 times higher than the resolution of MO-
PITT (up to about 22×22 km2; Drummond et al., 2010) and
the spatial sampling of IASI (up to about 25× 25 km2 with
12 km diameter footprints; Clerbaux et al., 2009). Addition-
ally, TROPOMI takes 1 d to reach global coverage, which is
comparable to IASI, whereas the MOPITT instrument takes
about 5 d to achieve the same.

However, the TROPOMI observations correspond to a
large data volume due to their high resolution and high cov-
erage, which implies a large computational cost when us-
ing these data in the TM5-4DVAR inversion suit. One es-
tablished way to reduce the computational cost of global in-
versions is through zooming, where only a limited region is
simulated at a fine resolution, while the rest of the globe is
simulated at a coarser resolution. Zooming allows us to par-
tially mitigate the trade-off between improved precision and
rising computational cost when increasing the model reso-
lution. This method has been proven to yield very similar
results within the limited fine-resolution region compared to
simulations with fine resolution globally, while significantly
reducing run times. Therefore, the coarser global simulation
is still sufficient to provide meaningful boundary conditions
to the finer region of interest. Intermediate regions may be
used to provide more fluent transitions between the coarse
and the fine region. Such nested grids can be found, for ex-
ample, in TM5-4DVAR (Berkvens et al., 1999; Krol et al.,

2005), and GEOS-Chem (Wang et al., 2004; Chen et al.,
2009).

Similarly, the resolution of satellite observations can be
reduced by defining a grid and aggregating all observations
within each cell of this grid into a single so-called super-
observation with a reduced uncertainty (Eskes et al., 2003;
Miyazaki et al., 2012; Boersma et al., 2016). Here, we use
a modified version of this super-observation approach to re-
duce the number of observations in the dataset, which in turn
reduces the computational cost they introduce in the inver-
sion.

In this study, we investigate the added value of the new
TROPOMI data for constraining global CO emissions in the
TM5-4DVAR inverse modeling suit. Previous studies have
already investigated the efficacy of TROPOMI observations
for constraining the global atmospheric CO abundance (In-
ness et al., 2022) or CO emissions at regional to sub-city
scales (Borsdorff et al., 2019, 2020; Sun, 2022; Tian et al.,
2022; Shahrokhi et al., 2023). Our study provides global
CO emission estimates with a focus on the Northern Hemi-
sphere in the second half of 2018. In addition to introduc-
ing TROPOMI observations into TM5-4DVAR, we have up-
dated several input datasets, including the a priori emissions,
and improved the methodology for handling satellite obser-
vations, most notably the weighting of multiple observational
datasets in inversions compared to previous studies using
TM5-4DVAR (e.g., Krol et al., 2013; Nechita-Banda et al.,
2018; Naus et al., 2022). We have divided the investigation of
all of these changes into a series of experiments, in which we
run the same inversion multiple times, each time with slightly
different settings. Firstly, we optimize CO emissions simul-
taneously towards TROPOMI satellite observation gridded
to 0.5°× 0.5° and NOAA surface flask measurements. This
inversion is used as a reference case against which all other
inversions are compared. For this reference inversion, we an-
alyze the increments to the a priori emissions at the global
scale to identify shortcomings in either the model or the
bottom-up inventories that serve as a priori emissions. In the
second step, we compare the reference inversion to two inver-
sions where we vary the inventory used as biomass-burning
a priori emissions to investigate the influence of the a pri-
ori emissions. We focus on biomass-burning emissions since
those have the largest uncertainty. Thirdly, we repeat the in-
version with the same a priori emissions as in the reference
case two more times, once with only the TROPOMI satel-
lite observations (and no flask data) and once with only the
NOAA flasks (and no satellite observations). Comparing the
results of those inversions with the reference inversion gives
an insight into the impact of the TROPOMI observation on
the inversion results by highlighting areas where satellite ob-
servations and station measurements carry unique, redun-
dant, or even conflicting information. Finally, we also run the
inversion with the full-resolution satellite observations (up to
7× 7 km2) in combination with the NOAA surface flasks to
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analyze the influence of gridded satellite observations on the
model at its relatively coarse resolution of 3°× 2°.

2 Materials and methods

2.1 Model description

The Cycle 3 TM5-4DVAR model as of revision c71f31 from
the official code repository of the model (https://sourceforge.
net/p/tm5/cy3_4dvar/, last access: 12 May 2025) is used. In
the scope of this study, the existing code is extended to han-
dle the high-resolution TROPOMI observations. Addition-
ally, support for anthropogenic emissions based on CMIP6
is implemented, the capabilities to use the output from the
full-chemistry model TM5-MP as initial conditions and as
a priori for the secondary sources of CO are extended, and
some minor compatibility issues are resolved. The specific
code version used here is available in Nüß et al. (2024a).

In the offline model TM5-4DVAR, atmospheric transport
and chemistry are driven by preprocessed meteorological
fields from the European Centre for Medium-Range Weather
Forecasts (ECMWF) Re-Analysis project (ERA-Interim me-
teorology; Dee et al., 2011) coarsened to the lateral model
resolution and 34 altitude layers (from surface pressure to
the top of the atmosphere (fixed to 47.8 Pa in the top layer),
with the highest resolution in the upper troposphere–lower
stratosphere, UTLS). Advection is calculated using the slope
scheme developed by Russell and Lerner (1981). In that
scheme, for each model box, not only the tracer mass, but
also three slope values are stored to capture the gradients
in north–south, east–west, and up–down directions. These
slopes increase when- and wherever tracer mass enters or
leaves a cell and level out over time otherwise.

By employing the zooming technique described in
Berkvens et al. (1999), the TM5-4DVAR model is capable of
simulating only the region of interest at a high resolution (up
to 1°× 1°; longitude× latitude), while the rest of the globe is
simulated at a reduced resolution (6°× 4°). In this study, the
region of interest is simulated only at a medium resolution of
3◦× 2◦ but covers a very large area. The region of interest
is placed over the Northern Hemisphere, spanning 2–74° N
and 174° W–174° E, and captures all major land masses, as
shown in Fig. 1. This zooming setup is used for all inver-
sion experiments presented in this study. The region of in-
terest and the global region are two-way nested; i.e., at the
beginning of each time step, the finer region takes its bound-
ary conditions from the coarser global region, and at the end
of each time step, it also updates the coarser region with its
more precise results.

In our inversions, we use the simplified CO-only chemistry
version of TM5-4DVAR described in Hooghiemstra et al.
(2011), which only explicitly considers the reaction of CO
with OH. The OH is prescribed by the widely used monthly
climatological fields from the TransCom-CH4 project de-

scribed in Patra et al. (2011), in which tropospheric OH is
based on the OH fields from Spivakovsky et al. (2000) scaled
by 0.92, as suggested in Huijnen et al. (2010). Jiang et al.
(2017) show that OH is well buffered in the atmosphere on
a global scale over the past few decades, as indicated by the
methyl chloroform loss rate varying by only 0.2 % between
2001 and 2015. Thus, the TransCom OH climatology is still
considered appropriate for studies investigating recent years.
For example, Naus et al. (2022) use it in the context of inverse
modeling of CO emissions up to and including the year 2018.
In addition to the chemical loss due to OH, CO also experi-
ences loss due to dry deposition, which is simulated using
the parameterization from Ganzeveld et al. (1998), adapted
for TM5 and ERA-Interim meteorology.

2.2 4DVAR approach

The 4DVAR approach, which was first described and applied
to meteorological assimilations by Talagrand and Courtier
(1987), has been extended to assimilate atmospheric chem-
istry by Fisher and Lary (1995) and satellite data by Eskes
et al. (1999). While the first applications were strongly lim-
ited by computational power, the field flourished recently
with rising computational capabilities and more extensive
datasets. In the following, a quick rundown on the mathe-
matical basis of the 4DVAR approach is provided based on
the more extensive description by Brasseur and Jacob (2017).

The aim of every inversion is to find the state x (here
the CO emissions) that fits best the observations y (here the
CO columns from TROPOMI and surface flask observations
from NOAA). To connect the state x with the observations y,
the observational operator F is needed, which includes both
the forward model and the spatial and temporal sampling of
the observations:

y = F(x,p)+ εO, (1)

where p is the model parameter vector, which is every input
to F that is not part of the state x (for example meteorol-
ogy, a priori mixing ratios, or the used chemistry scheme),
and εO is the observational error, i.e., the combined error of
measurements, model, and parameters.

Because εO is generally non-zero, there is no single triv-
ial solution for x, that minimizes the difference between the
right-hand and left-hand side of Eq. (1). Instead, the state x

has to be changed iteratively in a process called optimization.
For each state x, a cost J (x) can be defined, which provides
information on how well that state fits the observations in a
least-squares sense. Additionally, an a priori state xA is re-
quired to regularize the otherwise ill-conditioned problem,
preventing non-physical behavior. This “initial guess” can be
used to constrain the inversion to reasonable states, for ex-
ample, by not permitting biomass burning over the oceans.
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Figure 1. Used zooming setup, with a 6°× 4° grid globally (blue) and nested 3°× 2° grid over the Northern Hemisphere (red). The locations
of the background stations where the NOAA CO flask measurements are collected are shown as black dots and labeled with their respective
station IDs. The color map shows the used global TROPOMI satellite observations for one day (9 November 2018) as an example of the daily
coverage and resolution they provide. Due to strict quality filtering during the retrieval process (Schneising et al., 2023), many places have
no valid TROPOMI observations despite every location on Earth being visible to the instrument at least once per day. A more comprehensive
overview of the TROPOMI CO data coverage for all of 2018 can be found in Figs. S1 and S2 in the Supplement.

This leads to the cost function

J (x)= (x− xA)
TS−1

A (x− xA)

+ (y−F(x))TS−1
O (y−F(x)), (2)

where SA and SO are the a priori and observational error co-
variance matrices, respectively.

During the optimization process, the model repeatedly
runs forward and backward in time. During the forward run,
the mixing ratios at times and places of the observations are
stored. Based on the stored model mixing ratios and the ob-
servations, the cost that corresponds to the current state x

can be calculated. During a backward run, the adjoint model,
i.e., the adjoint of the tangent linear model, is used. In the
case of a linear problem, the tangent linear model is identi-
cal to the forward model. This adjoint integration is fed by
the mismatches between the forward model and observations
(rather than tracer masses) and leads to the gradient of the
cost function with respect to state vector element x. Based
on that gradient, the state (e.g., the emission fields) for the
next iteration cycle is adjusted, which then starts again with
a forward run. This cycle is repeated until the gradient of the
cost function is sufficiently reduced, i.e., the cost is close to
its global minimum.

Overall, in 4DVAR, the model is sampled temporally and
spatially for each individual data point, and each point pro-
vides its own contribution to the cost function. As such, this
approach is well suited to simultaneously assimilate multiple
datasets with different spatial and temporal resolutions. One
caveat is that the observations of different datasets need to be
weighted properly against each other. On the one hand, this
implies proper measurement error estimation. On the other
hand, some form of error inflation (Sect. 3.2.2) might be re-
quired if datasets with vastly different numbers of observa-

tions are used or if some datasets have a much higher resolu-
tion than the model.

In this study, the inversions are carried out using the
non-linear M1QN3 optimizer described in Gilbert and
Lemaréchal (1989). This optimizer is capable of handling a
semi-exponential description of the probability density func-
tion for the a priori emissions, which in turn avoids nega-
tive emissions (Bergamaschi et al., 2009). As a convergence
criterion, a reduction of the gradient norm of the cost func-
tion of 103 is chosen; i.e., the iterations are stopped once the
cost function is 1000 times less steep. This criterion was sug-
gested in Meirink et al. (2008b) to be sufficient to converge
the emissions. With this criterion, it takes the model around
35 iterations to converge, whereas the budget terms are near-
constant for the last few iterations.

2.3 Model setup

The TM5-4DVAR model, as described in Sect. 2.1, is used to
perform multiple inversions of the CO emissions in the year
2018, with a specific focus on the Northern Hemisphere. An
overview of settings common across all experiments can be
found in Table S1 in the Supplement. All settings are detailed
in the following.

2.3.1 Inventories and emission categories

CO production from three distinct source categories – an-
thropogenic, biomass burning, and secondary CO production
through chemistry – is considered. Since the contributions
of oceanic and biogenic CO to the overall source are small
compared to the aforementioned categories, they have been
neglected in this study. Additionally, no daily cycles in emis-
sions or chemistry were considered, mostly due to limitations
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of the OH climatology (see Sect. 2.1) and the secondary CO
production a priori (introduced further down in this section).

As biomass-burning a priori emissions, we use the Fire
INventory from NCAR version 2.5 (FINN2.5), which is de-
scribed in Wiedinmyer et al. (2023) and available at Wied-
inmyer and Emmons (2022). FINN is based on three data
products from the Moderate-Resolution Imaging Spectrora-
diometer (MODIS), namely those for active fires, land cover
type, and vegetation continuous fields, which are used to in-
fer burned area and fire emissions. Compared to the original
FINN version 1 (Wiedinmyer et al., 2011), the FINN ver-
sion 2 used in this study features an improved representation
of large fires by merging overlapping fire pixel areas. Addi-
tionally, rather than using a single static vegetation map for
all years, the respective MODIS land cover type and vege-
tation continuous field data from the previous year are used.
Also, the fuel loadings and emission factors have been up-
dated. Specifically, we use FINN2.5+VIIRS, which includes
additional small-fire detection via satellite observations from
the Visible Infrared Imaging Radiometer Suite (VIIRS) and
NMVOCs speciated to the Model for OZone And Related
chemical Tracers (MOZART-T1) chemical mechanism (Em-
mons et al., 2020). Naus et al. (2022) found FINN2.5 to
be significantly closer to their top-down emission estimates
compared to the older FINN1.5.

As a sensitivity study, we conduct additional inversions
where we replace FINN2.5+VIIRS as the biomass-burning
a priori with (1) FINN2.5 (without VIIRS) and (2) emissions
from the Global Fire Emissions Database version 4, includ-
ing a small-fire boost (GFED4.1s; Randerson et al., 2017).
The inversion experiments are introduced in more detail in
Sect. 2.3.4.

GFED4.1s is based on satellite observations of burned area
from MODIS and fire activity from both the Visible and In-
frared Scanner (VIRS) and the Along-Track Scanning Ra-
diometer (ATSR; Giglio et al., 2013). These observations are
combined with datasets on vegetation characteristics and me-
teorology to infer burned area and fire emissions on monthly
scales along with scaling factors to receive higher (daily or
3-hourly) temporal resolutions (van der Werf et al., 2017).
The small fire boost includes estimates for biomass-burning
emissions from fires that are below the detection limit of the
burned area product (MODIS) but are still visible as thermal
anomalies (Randerson et al., 2012). While these estimates
have fairly large errors on a local scale (Zhang et al., 2018),
including them leads to more realistic total biomass-burning
emissions on the regional to global scale of the model used
in this study.

Both GFED and FINN are coarsened to the resolutions of
the zooming regions and aggregated into daily bins to serve
as global priors for the biomass-burning emissions. After ap-
plying the emission factors, all fire types are lumped together
into a single biomass-burning fire type. Since both invento-
ries only provide two-dimensional surface level emissions,
they are used in conjunction with injection heights from the

IS4FIRES integrated monitoring and modeling system for
wildland fires developed at FMI (Sofiev et al., 2012, 2013).

For calculating the contribution to the cost function, a grid-
scale a priori error of 100 % is assumed globally for the
biomass-burning emissions. This error is constructed from
the error of at least 50 % provided in van der Werf et al.
(2017) for the regional carbon emissions in GFED4.1s, com-
bined with the error of the emission factors that are used to
convert the total (carbon) emissions of each fire type into dis-
tinct species (e.g., CO). These are fixed per fire type and are
reported with an estimate of their natural variability in the
order of one-third of the reported value (Akagi et al., 2011).
Since GFED4.1s and FINN2.5(+VIIRS) are fairly similar in
terms of spatial distribution and amplitude of wildfire emis-
sions (see Fig. S3; note the logarithmic scale) and to keep
the inversion results comparable, we assume an a priori er-
ror of 100 % for FINN2.5(+VIIRS) as well. Additionally, to
prevent erroneous biomass-burning emissions in the inver-
sion result, the a priori error is set to zero over the oceans.
While this implies fixed biomass-burning emissions for rel-
atively small islands, for example, Hawai’i, emissions from
large islands, for example Indonesia, are still optimized.

TM5-4DVAR allows for spatial and temporal correlations
for each emission category to be set. These reduce the effec-
tive number of degrees of freedom of the inversion, which
can help to prevent overfitting of the observations and lead to
more realistic results while also reducing the number of iter-
ations needed to reach convergence (Meirink et al., 2008b).
The numeric values for the spatial correlation lengths and
temporal correlation times stated in the following are em-
pirical and follow the values provided in Krol et al. (2013),
Nechita-Banda et al. (2018), and Naus et al. (2022), who used
similar setups and the same model. Biomass-burning events
are usually fairly temporary, so a short exponentially decreas-
ing correlation time of 0.1 months for emissions at differ-
ent times in the same grid cell is used. To account for the
usually small spatial extent of biomass-burning events (com-
pared to the coarse resolution of the model grid), we use an
exponentially decreasing correlation length of only 200 km
for emissions at the same time in neighboring grid cells. The
biomass-burning emissions are optimized at a daily resolu-
tion in the state (i.e., the optimizer can change the biomass-
burning emissions for each day separately, but it cannot
change any potential diurnal patterns) to best capture the high
temporal frequency of the burning events and therefore maxi-
mize the distinction between the biomass-burning emissions
and the other categories. Previous studies (e.g., Krol et al.,
2013; Nechita-Banda et al., 2018; Naus et al., 2022) used a
3 d resolution in the state (i.e., the optimizer could change
the emissions in 3 d chunks but not the relative emission dis-
tribution from day to day within each chunk), and in Krol
et al. (2013), a sensitivity study with daily resolution was
conducted with mixed results.

Secondary CO production from the oxidation of CH4 and
other VOCs is based on three-dimensional production fields
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from a simulation of the full chemistry model TM5-MP with
the extended MOGUNTIA chemical scheme described in
Myriokefalitakis et al. (2020) for the year 2018. This source
is optimized with a fairly conservative a priori error of only
20 %. We expect fairly gradual changes for this source in
time. Therefore, we use an exponentially decreasing corre-
lation time of 9.5 months for the secondary CO production
at different times from the same cell. Note that this rather
restrictive correlation time does not limit the model’s abil-
ity to capture the seasonality of short-lived VOCs like iso-
prene since that seasonality is already included in the prior
production fields. Instead, it only limits how much the devia-
tions from those prior fields may vary from month to month.
Similarly, spatial emission changes are also expected to be
gradual for secondary production, due to the well-mixed CH4
background, leading to an exponentially decreasing correla-
tion length of 1000 km. A monthly resolution in the state is
chosen for the secondary CO production; i.e., the optimizer
can change it only once per month, and the production is
constant over the course of that month. Choosing this much
coarser of a state resolution compared to the daily resolu-
tion for biomass-burning emissions, makes it cheaper, with
respect to the cost function, for the optimizer to capture the
usually short-timescale biomass-burning events with the in-
tended emission category. With all of this combined, the low
a priori error, low state resolution, and large temporal and
spatial correlation, we hope to reduce aliasing between the
smooth fields of this category and the more patchy biomass-
burning emissions. Conversely, since NMVOC oxidation can
be quite local occasionally, this approach bears the risk of
capturing part of the secondary production in the biomass-
burning emissions, specifically when the NMVOCs are emit-
ted by fire activity.

Anthropogenic CO emissions are taken from the Climate
Model Intercomparison Project 6 (CMIP6) inventory (Eyring
et al., 2016), specifically the SSP370 (Fujimori et al., 2017;
Riahi et al., 2017; Gidden et al., 2019) projection dataset
(Gidden et al., 2018). Due to the low interannual variabil-
ity of anthropogenic emissions compared to secondary CO
production or biomass-burning emissions and the fairly up-
to-date inventory (with historical data up to 2014 and pro-
jected data from 2015 onwards), a conservative a priori error
of 10 % is assumed, with the same monthly state resolution
as for the secondary production. Following the same argu-
ment as for secondary CO production, we use an exponen-
tially decreasing correlation time of 9.5 months. Similarly,
spatial changes in anthropogenic emissions are expected to
occur on the level of countries or economic zones, leading to
an exponentially decreasing correlation length of 2000 km.
As for the biomass-burning emissions, changes to these an-
thropogenic emissions are restricted to land. Thus, shipping
emissions are included in the inventory but not optimized.

2.3.2 Simultaneous inversion of multiple emission
categories

As mentioned in the previous section, anthropogenic emis-
sions, biomass-burning emissions, and secondary CO pro-
duction are optimized simultaneously; i.e., they are all part of
the state vector x (Sect. 2.2), and the optimizer could adjust
any of them to minimize the cost function. This approach will
inadvertently lead to some aliasing between the categories
despite the rigid choices for the a priori error, correlation
length and time, and state resolution for the secondary pro-
duction category. However, optimizing the biomass-burning
emissions on their own is not an option either since this will
force the model to represent any mismatches by adjusting
the biomass-burning emissions even if these mismatches ac-
tually stemmed from flaws in the chemical production or an-
thropogenic a priori. This extreme form of aliasing leads to
very poor convergence at the background stations even when
extremely high a priori errors are assumed. Using not only
sparse flask data, but also the high-coverage, high-resolution
TROPOMI observations, we might be able to better distin-
guish between the emission categories.

2.3.3 Initial conditions, spin-up, and main inversions

The initial tracer distribution is an important part of an in-
version. Close to the starting date of the inversion period,
the initial tracer distribution must fit the total columns and
horizontal distribution of the observational datasets reason-
ably well. If there are significant over- or underestimations,
the emission increments will be dominated by the model’s
efforts to correct for the offset in the mixing ratios. These
additional emissions will mask the true signal of the obser-
vations, i.e., by how much the a priori emissions differ from
the true emissions. In addition, the initial vertical CO distri-
bution must be realistic since the CO depletion and transport
vary with altitude. Therefore, assuming too high of an initial
mixing ratio in a layer with low transport and low loss will
affect the model for a long time. To minimize this type of
error, the period of interest (the year 2018) is split into two
separate periods, each with separate inversions, and only the
second period is considered for the scientific analysis.

During the first period, a spin-up inversion is performed
to harmonize the global distribution of CO mixing ratios in
the model with the observational datasets (see Sect. 3). This
spin-up inversion is started with tracer fields taken from the
TM5-MP chemistry transport model, which employed the
MOGUNTIA chemistry scheme. See Myriokefalitakis et al.
(2020) and references therein for a detailed description of the
model, setup, and chemistry scheme, alongside extensive val-
idation against observational data. In addition to the simula-
tion analyzed and described in Myriokefalitakis et al. (2020),
the TM5-MP model has been run with the same settings for
a longer period, including 2018. Here, we use the instanta-
neous concentrations from this longer simulation as initial
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conditions for the spin-up inversion and monthly chemical
budget terms for the secondary source of CO from VOC oxi-
dation. The validations in Myriokefalitakis et al. (2020) have
shown that the TM5-MP model generally produces reason-
ably realistic tracer fields in terms of both vertical and hor-
izontal distributions. However, some offsets to the observa-
tions still remain. For CO specifically, Myriokefalitakis et al.
(2020) found mixing ratios that were too low in the Northern
Hemisphere and too high in the Southern Hemisphere. The
spin-up inversion in this study is necessary to confidently
remove these offsets. In addition, the spin-up inversion fa-
cilitates a smooth transition between the different emission
datasets used by Myriokefalitakis et al. (2020) in TM5-MP
and those used in this study in TM5-4DVAR. The simula-
tions in TM5-MP and in TM5-4DVAR both use CMIP6 for
anthropogenic CO and the same meteorology; Myriokefal-
itakis et al. (2020) also use CMIP6 for biomass burning,
while we use FINN2.5 or GFED4.1s. We use different priors
for biomass burning because both inventories (FINN2.5 and
GFED4.1s) provide historical data rather than projections for
2018, and inversions benefit greatly from realistic lateral a
priori distributions that cannot be obtained from projection
data as in CMIP6. Another important difference is the treat-
ment of OH. While their OH is calculated online, we use
prescribed OH as described in Sect. 2.1. Overall, harmoniz-
ing the mixing ratios modeled in TM5-4DVAR and the ob-
servations requires that the model is run over a longer period
of time. Such a long spin-up period is particularly relevant
for high-altitude layers, to which transport through vertical
mixing is slow, or regions at large distances from primary
sources, to which transport takes a long time. Therefore, the
spin-up inversion is run over several months, from 1 January
to 1 July 2018.

The second period is the main inversion period, which uses
the harmonized mixing ratios from the spin-up inversion as
initial conditions. The main inversion period spans 7 months,
from 1 June 2018 to 1 January 2019, and leads to the sci-
entifically interesting results presented in Sect. 4. Note that
June is part of both the spin-up and the main inversion pe-
riods. This overlap is necessary because emissions near the
end of each inversion period are verified by very few obser-
vations. Therefore, the final month of the spin-up inversion is
considered as its spin-down period, during which confidence
in the optimized emissions and the resulting mixing ratios
is reduced. Similarly, the final month of the main inversions,
December 2018, should be considered as their spin-down pe-
riod. The duration of this spin-down period was chosen based
on the lifetime of CO of about 2 months (Raub and Mc-
Mullen, 1991; Holloway et al., 2000). Hence, a snapshot of
the mixing ratios from the final iteration of the spin-up inver-
sion of 1 June 2018 is used as initial conditions for the main
inversion. If using these mixing ratios from the spin-up in-
version, which are already harmonized to the observations as
initial conditions, no further spin-up is required for the main
inversions, and their June results can already be trusted.

2.3.4 Experiments

Table 1 gives an overview of the experimental setups for the
inversions analyzed in this study. The main inversion period
(1 June 2018 to 1 January 2019) is chosen based on the avail-
ability of the used input data and computational constraints.
Regarding the input data, TROPOMI was in its commission-
ing phase until March 2018, and the ERA-Interim meteorol-
ogy dataset ends in August 2019. The latter constraint will be
lifted for future studies by switching to ERA5 meteorology
(Hersbach et al., 2020). Still, the large zooming region over
most of the Northern Hemisphere, which is chosen to gain a
deeper insight into the general anthropogenic emission pat-
terns, combined with the long inversion period comes at a
high computational cost. Each inversion takes about 5 real-
world days to run (even longer with the full-resolution satel-
lite observations). Therefore, the inversion period does not
extend into 2019. Emissions for this period are optimized a
total of six times with different settings, split into two sets.

In the first set, we vary the biomass-burning a priori emis-
sions while using the same observations (global gridded
TROPOMI observations in conjunction with flask measure-
ments from the NOAA background stations) to constrain the
emissions. More details on the a priori emission inventories
and the observations used, including the gridding process,
can be found in Sects. 2.3.1 and 3, respectively. With these
inversions, we intend to investigate the sensitivity of the op-
timized emissions to the a priori since we introduce a new
and updated version of FINN into the model and apply a
significantly lower-grid-scale biomass-burning a priori error
compared to previous studies. The first set includes (1) the
reference inversion with FINN2.5+VIIRS, (2) the noVIIRS
inversion with regular FINN2.5, and (3) the GFED inversion
with GFED4.1s.

In the second set, the biomass-burning emissions are kept
fixed to the reference case (FINN2.5+VIIRS) and the ob-
servational datasets are varied. This way, we can assess the
information content in the different datasets and the loss
of information through gridding. The second set includes
(4) the full satellite inversion using the full-resolution satel-
lite data in conjunction with the NOAA surface flasks; (5) the
satellite-only inversion using only the gridded satellite obser-
vations but no surface flasks; and (6) the station-only inver-
sion using no satellite observations at all, where the inversion
is driven solely by the surface flasks.

For the spin-up inversion (1 January to 1 July 2018),
we use the same setup as for the reference inversion, i.e.,
FINN2.5+VIIRS as biomass-burning a priori and gridded
satellite observations in conjunction with NOAA surface
flasks. All of the main inversions are started from this one
spin-up to ensure comparability of the results.
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Table 1. A priori emissions and observational setup for the conducted experiments. The inflation column lists the error inflation factors as
introduced in Sect. 3.2.2.

Inversion A priori emissions Observations

Biomass-burning Anthropogenic Secondary Satellite Flasks Inflation

Spin-up FINN2.5+VIIRS

C
M

IP
6

T
M

5-
M

P

gridded yes 42

M
ai

n
in

ve
rs

io
ns

Se
t1

Reference FINN2.5+VIIRS gridded yes 64
noVIIRS FINN2.5 gridded yes 63
GFED GFED4.1s gridded yes 62

Se
t2

Satellite-only FINN2.5+VIIRS gridded no 64∗

Station-only FINN2.5+VIIRS none yes –
Full-satellite FINN2.5+VIIRS full yes 164

∗ The inflation factor for the satellite-only inversion cannot be derived as described in Sect. 3.2.2 since the flask measurements do not contribute
to the observational cost in this experiment. Instead, the same inflation factor as for the reference inversion is used to ensure consistent weighting
against the prior.

3 Observations

3.1 In situ measurements

The in situ observations used here are the NOAA surface
flask CO measurements from various stations assembled by
the Carbon Cycle Greenhouse Gases (CCGG) group (Pétron
et al., 2020). For filtering out non-background stations, the
algorithm described in Hooghiemstra et al. (2012a) is ap-
plied to the 54 stations active between January and Decem-
ber 2018. Following this, only the 44 stations shown in Fig. 1
are classified as background and subsequently used. This fil-
tering is necessary to avoid the large representation error in-
troduced by non-background stations. On the one hand, the
model has a fairly low-resolution and is not able to cap-
ture local sources that might affect the stations. On the other
hand, it also has a relatively short time step compared to the
weekly or even bi-weekly station measurements, which is
why a daily cycle may be caught by the model but not by
the stations. Therefore, any station where the model shows a
large diurnal cycle is excluded. The criterion is a mean daily
standard deviation of more than 3.5 ppb, following the ex-
ample of Hooghiemstra et al. (2012a). However, background
stations and those affected by seasonal biomass-burning sig-
nals are kept; in other words, large annual standard deviations
are allowed. Using only background stations comes with the
implied assumption that air masses reaching them are well
mixed, and, therefore, even the coarse resolution of the model
(6°× 4°) is sufficient to capture the remaining spatial and
temporal variability, allowing for a proper direct compari-
son of the model to the point observations. To account for
any discrepancies from this assumption, the model estimates
a representation error for each station based on the slopes
(slope scheme introduced in Sect. 2.1) in the box that con-
tains the station.

For the station data, in addition to the representation error
of the model, a sampling error of 2 ppb is assumed. This er-

ror is composed of the instrument precision of 1.5 ppb given
in Gerbig et al. (1999) for the fast-response vacuum UV res-
onance fluorescence (VURF) CO instrument used at all sta-
tions in 2018 and the reproducibility of the measurements
of 0.5 ppb provided in the readme file of the dataset (Pétron
et al., 2020).

3.2 Satellite observations

The second assimilated dataset consists of the CO total
columns from the TROPOspheric Monitoring Instrument
(TROPOMI) on board Sentinel-5 Precursor (S5P) satellite
launched in October 2017 (Veefkind et al., 2012). TROPOMI
provides daily global coverage with a local overpass time at
13:30. The retrieved CO columns also feature a high spatial
resolution of up to 7× 7 km2 at a swath width of 2600 km.
Compared to that resolution, even the finest resolution of
the model of 1°× 1° might seem very coarse. However, us-
ing high-resolution observations not only implies a reduced
aggregated observational error if multiple observations are
available in a single model grid box, but also gives a chance
of at least some cloud-free pixels, i.e., some information, in
cloudy model grid boxes.

For this study, we use the TROPOMI/WFMD version 1.8
product from the Carbon and Greenhouse Gas Group at the
Institute of Environmental Physics (IUP) of the University of
Bremen, retrieved with the weighting function modified dif-
ferential optical absorption spectroscopy (WFM-DOAS) al-
gorithm, which is described and validated in Schneising et al.
(2019, 2023). This retrieval makes use of the TROPOMI ob-
servations in the shortwave infrared (SWIR) 2.3 µm spectral
range to provide column-averaged dry-air mole fractions of
methane and CO. The resulting total columns feature nearly
constant sensitivity with respect to altitude. Notably, this
includes the troposphere and boundary layer, which is es-
pecially useful when investigating biomass-burning events
and tropospheric air quality. In addition, observations in the
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SWIR spectral range, unlike those based on visible light, are
capable of seeing through smoke plumes to some degree,
making them critically valuable for investigating biomass-
burning events. The latter works for smoke but not clouds due
to vastly different particle sizes, as demonstrated in Schneis-
ing et al. (2020).

As detailed in Schneising et al. (2023), the retrieval em-
ploys a fairly strict quality filter, especially with regard to
cloudiness, surface brightness, and solar zenith angle (<
75°). This selection implies a clear-sky bias in the observa-
tions, resulting in an overestimation of photochemical condi-
tions as well as very sparse data over the oceans due to their
low albedo. The latter can be seen in Fig. 1, where over the
oceans, observations are only possible due to sun glint, which
occurs almost exclusively in the center of the orbits (i.e., in
a nadir viewing geometry), while the sun is at the zenith.
This implies that the sparse observations over the oceans are
mostly clustered together.

3.2.1 Gridding

Above, inversions with gridded satellite observations were
referenced. To create these so-called super-observations, we
follow the approach outlined in Miyazaki et al. (2012). As
shown in Fig. 2, for each orbit, we calculate the intersec-
tion areas wi of the footprint of each observation ŷo

i with the
cells of a regular 0.5°× 0.5° grid. We chose this grid resolu-
tion based on sensitivity studies conducted in our group (un-
published data), which have shown that at the coarse model
resolutions used in this study, inversions based on observa-
tions gridded to 0.5°× 0.5° lead to almost the same opti-
mized emissions as those based on the full satellite data, but
with a significantly reduced computational cost (using full
satellite data entails roughly 25 % longer computation times
per iteration). According to Miyazaki et al. (2012), a repre-
sentative super-observation for each orbit and grid cell can
be calculated as an area-weighted average:

ŷo =

∑m
i=1wi ŷ

o
i∑m

i=1wi
, (3)

where m observations contribute to this super-observation.
Notably, this average is not weighted by the retrieval error,

which stems from the nature of the retrieval, where larger
values have larger (absolute) errors, and, therefore, an error-
weighted average would be skewed towards low values, as
explained in Boersma et al. (2016). The same process of cal-
culating area-weighted averages is also applied to the mea-
surement time, the a priori profile, the pressure levels of the
retrieval, and the averaging kernel, level-wise for the latter
three.

Unlike Miyazaki et al. (2012), before calculating the
super-observation error as an area-weighted average, we first
inflate the error corresponding to each individual intersection
wi so that its weight in the cost function (Eq. 2) does not de-
pend on the number of grid cells the corresponding footprint

Figure 2. Schematic representation of several satellite footprints
(outlined with dashed lines) intersecting with cells of a regular grid
(thick, solid lines). The dotted areas show the portion wi of each
footprint that contributes to the center grid cell with area Acell. For
footprints that intersect with more than one grid cell (two exam-
ples highlighted in grey), their contributions are further deweighted
based on the ratio between their respective intersecting areawi (i.e.,
the part that is both dotted and grey) and their total area Ai (the en-
tire grey area). For the striped area, no observations are available;
hence, the coverage α for the center cell is < 1.

intersects with. This independence can be achieved with a

factor
√
Ai
wi

, where Ai is the total area of the satellite pixel’s
footprint, which contains the ith intersection. The area Ai is
equal to wi if the footprint intersects exactly one grid box.
Otherwise, it will be larger, as exemplified in Fig. 2, where
the areas Ai , highlighted in grey, are larger than the areas wi
that are simultaneously grey and dotted for the two example
footprints. The root stems from the least-squares nature of
the cost function, while the rest is simply the inverse of the
fraction of the footprint that intersects with the current grid
cell. Taken together this yields an area-weighted error:

σ =

∑m
i=1

√
Ai
wi
wiσ

o
i∑m

i=1wi
=

∑m
i=1
√
Aiwiσ

o
i∑m

i=1wi
. (4)

Further following Miyazaki et al. (2012), this σ is then de-
flated by the number n of observations that contribute to the
super-observation in that grid cell. However, this deflation is
limited by the correlation c between errors of the individual
observations (i.e., systematical errors from, e.g., the albedo
assumed in the retrieval are correlated in space and do not
average out), as suggested in Eskes et al. (2003), and there-
fore, the super-observation error can be estimated as

σo = σ

√
1− c
n
+ c. (5)

Exact values for c are difficult to obtain; however, an up-
per bound may be found by considering the ratio of the sys-
tematic error of the TROPOMI observations versus its ran-
dom error. From the validations against other observational
datasets in Schneising et al. (2023), this ratio can be esti-
mated to be roughly 30 %. As not all systematic error sources
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from observations within each 0.5°× 0.5° grid box are cor-
related, c = 15 % is assumed here. It should be noted that the
exact value of c has nearly no influence on the final inver-
sion results because a larger (smaller) c leads to overall larger
(smaller) errors, which, for the most part, are later canceled
out by a larger (smaller) error inflation (Sect. 3.2.2).

However, this σo does not yet include the representative-
ness error, which accounts for potential differences between
the true average tracer concentration (which includes the
parts of the cell that are not covered by observations) and the
ŷo calculated above. For example, if the satellite observes
a pristine background in one part of the grid cell, but there
is also a plume with high tracer concentrations obscured by
clouds in the remaining area, ŷo is too low. The more of the
grid cell area is covered, the smaller this representativeness
error becomes.

Miyazaki et al. (2012) suggest a method to estimate this
effect. First, the initial mean observation in a cell and the
coverage α =

∑m
i=1wi
Acell

,0≤ α ≤ 1, whereAcell is the total area
of the grid cell, are calculated. In Fig. 2,

∑m
i=1wi is the to-

tal dotted area, whereas Acell is the total cell area enclosed
by the thick, solid lines. Next, for well-covered grid cells
(α > 90 % in Miyazaki et al., 2012), the coverage α is ar-
tificially reduced by randomly removing observations. For
each observation removed, the mean and coverage of the re-
maining observations are recalculated. The new mean is then
compared to the original value to yield a relative deviation.
By repeating this process for many grid cells, a mean relative
deviation frep(α) can be calculated. Multiplying this relative
deviation with the super-observation value ŷo gives the rep-
resentativeness error for that cell. In Miyazaki et al. (2012),
the mean observations are calculated as a simple arithmetic
mean, whereas we use the area-weighted average introduced
above:

frep(αk)=

∣∣∣∣∣∣∣
ŷo−

∑m−k
l=1 wl ŷ

o
l∑m−k

l=1 wl

ŷo

∣∣∣∣∣∣∣ ,0< k < m, (6)

where k are the removed observations. For the sake of this
analysis, we treat the initial observations in each grid cell,
i.e., before removing any of them, as if they fully covered

the cell. Therefore, αk =
∑m−k
l=1 wl∑m
i=1wi

is the coverage compared
to the initially covered area rather than the full grid cell area.

In this study, to estimate the representativeness error, we
analyze 31 d of data, evenly spread over the available ob-
servations for 2018. Additionally, we relax the coverage re-
quirement to 50 % to have a larger set of eligible observa-
tions, especially when considering coarser grids (not shown
in this study). As αk is a continuous variable, we decided to
aggregate it into 1 % bins for the sake of calculating the mean
frep(α) over the entire analyzed dataset. The resulting global
mean representativeness error is shown as the dashed black
line in Fig. 3.

Figure 3. The dashed black line shows the global mean representa-
tiveness error factors over the satellite coverage in a given grid cell.
This factor is zero for full coverage (α = 1) and sharply increases
at low coverage values. The colored lines show the mean represen-
tativeness error factors over 12° bands. As these are quite noisy,
we instead use them to obtain a single scaling factor for each band.
These factors are then multiplied onto the global mean represen-
tativeness error factors, which leads to the much smoother dotted
colored lines.

Figure 4. The black crosses are the 12◦ band-wise scaling factors
for the global mean (black line) representativeness error factors, as
shown in Fig. 3. Clearly, representativeness errors rise towards the
poles, especially in the Southern Hemisphere, where there is less
land cover. Additionally, the band-wise scaling factors for each 1 %
coverage bin, normalized over the respective global mean for that
bin, are shown as colored dots.

We noticed a weak intra-annual variation in the represen-
tativeness error factor, with generally slightly larger error
values in the Northern Hemispheric summer. However, its
magnitude was smaller than the temporal variation on a daily
basis. Therefore, we decided to keep the representativeness
error fixed in time.

In the latitudinal direction, we disregard the very few ob-
servations with a center point beyond 89.93° north/south as
these might touch and reach beyond the poles, which is prob-
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lematic for area calculations in the latitude–longitude projec-
tion we employ. Additionally, as can be seen exemplified by
the colored lines in Fig. 3, there seems to be a strong latitu-
dinal dependence of the representativeness error, with larger
values towards the poles and in the Southern Hemisphere.
This latitude dependence is likely caused by the poorer mea-
surement quality over the oceans and in high latitudes and
smaller grid cell sizes towards the poles. Notably, while the
magnitude of the representativeness error increases, the gen-
eral dependence on the coverage α does not change. To cap-
ture this behavior, we additionally average the representative-
ness error factor over α for each latitudinal 12° band to ob-
tain another scaling factor f rep(φ), with φ as the latitude.
In Fig. 4, these band-wise factors are plotted before (colored
dots) and after (black crosses) averaging over α, all normal-
ized over the global mean. With this, our total representative-
ness error factor is

frep(α,φ)= f rep(φ) · frep(α). (7)

The resulting latitude-wise representativeness error factors
are shown as colored dotted lines in Fig. 3. The represen-
tativeness error can now be obtained for a given mean obser-
vation ŷo, coverage α, and latitude φ as

σr = frep(α,φ) · ŷo. (8)

This leads to the total error of the super-observations

σs =

√
σ 2

o + σ
2
r . (9)

The super-observations are always assumed to be located at
the center of their corresponding cells. This might lead to a
spatial bias because observation within an arbitrary grid cell
cannot generally be assumed to be evenly distributed.

3.2.2 Error inflation

The uncertainties provided for the individual satellite obser-
vations (for the full satellite inversion) and the total error of
each of the super-observations (for the inversions that use
gridded satellite observations) are inflated with a global fac-
tor that depends on the specific inversion setup. For each
inversion, this inflation factor is chosen so that the satellite
and station observations each make up roughly half of the
total observational cost, as suggested in Hooghiemstra et al.
(2012a). The intent of this inflation factor is to capture the
spatial correlation between the individual satellite footprints
and to prevent them from suppressing the signal of the sur-
face stations by their sheer number.

In previous studies, this inflation factor has only been
roughly estimated. For example, an empirically chosen vari-
ance inflation of 2 was used in Chevallier (2007) for Orbit-
ing Carbon Observatory (OCO) CO2 observations gridded to
3.75°× 2.5°; an inflation of 50 was used in Hooghiemstra
et al. (2012a) and Naus et al. (2022) for MOPITT V4 (grid-
ded to 1°× 1°) and V8 CO observations, respectively; and an

inflation of again 50 was used in both Krol et al. (2013) and
Nechita-Banda et al. (2018) for IASI CO observations at their
native sampling resolution of up to about 25× 25 km2, with
footprints of at least 12 km in diameter. Here, we suggest a
more rigorous approach to finding the inflation that fulfills
the condition of having each dataset make up an equal part
of the observational cost.

Finding the inflation factor at which this condition is ful-
filled is in itself an iterative process, where each iteration is a
complete inversion. A close look at the cost function (Eq. 2)
reveals that for an attempted inflation I , the inflation I ′ for
the next iteration can be calculated as

I ′ =

√
Jobs,sat

Jobs− Jobs,sat
· I 2, (10)

where Jobs is the total observational cost of the attempt,
Jobs,sat is the part of Jobs contributed by the satellite obser-
vations, and inflation factors I and I ′ are a factor applied to
the observational errors (standard deviations). It should be
noted, however, that Eq. (10) will always underestimate the
change in inflation needed. For example, if the initial infla-
tion is too large, the formula suggests an improved but still
slightly too large of an inflation for the next iteration. This
happens because reducing the inflation increases the cost at-
tributed to the satellite observations, which in turn causes the
inversion to improve their fit. However, a closer fit to the
satellite observations usually implies degradation of the fit to
the flask observations, which will increase their contribution
to the cost function. That way, the total cost increases and a
slightly smaller inflation is needed so that the contribution of
the satellite observations makes up half of that cost. In the
opposite case, if the inflation is too small, the next guess will
be better but still slightly too small.

It may seem that the inflation is solely a parameter of
the observational datasets involved and, therefore, fixed for
a given set of observations. However, we observed that the
inflation also depends on the time of year, the error and tem-
poral resolution of the a priori emissions, and the a priori
datasets used. Both a larger a priori error and a higher tem-
poral resolution of the emissions, especially for the biomass-
burning emissions, enable the model to fit the satellite obser-
vations more easily (lower cost) without degrading the sta-
tion fit, leading to lower required inflation factors to fulfill
the criterion.

With the setup outlined above, we obtained different in-
flation factors for the individual inversions. Inflation fac-
tors are generally larger for the main inversions compared
to the spin-up inversion (42). Among the main inversions,
we found slight differences based on which of the biomass-
burning priors was used. The inflation factors are the largest
for the reference inversion (64), followed by the noVIIRS in-
version (63), and smallest for the GFED inversion (62), pos-
sibly due to smaller a priori mismatches at the stations, as
elaborated later. Due to using the same emission setup, the
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station-only and satellite-only inversions use the same infla-
tion factor as the reference inversion to maintain a similar
weight of their background costs to their observational costs
and for any analysis steps that require this value to be de-
fined. These (standard deviation) inflation values are larger
than the aforementioned variance inflation factors used in
Hooghiemstra et al. (2012a) and Naus et al. (2022) for grid-
ded and full-resolution MOPITT observations, respectively,
and in Krol et al. (2013) and Nechita-Banda et al. (2018) for
full-resolution IASI observations. The larger values are ex-
pected because of the higher grid resolution when compared
to MOPITT, and the better coverage of TROPOMI when
compared to IASI. Due to the much larger number of obser-
vations, the largest inflation is required for the full satellite
inversion (164). This number is an indication of the higher
spatial correlation within the individual observations com-
pared to within the gridded observations since the latter are,
by definition, further apart.

The concentrations at the locations of the surface stations
depend only relatively weakly on the exact value of the in-
flation factor because the well-mixed background concentra-
tions show much broader patterns, which are captured by
either dataset to some extent. However, very small infla-
tion factors will still cause the station fits to degrade heav-
ily because the satellite data will drown out the flasks. Con-
versely, for very large inflation factors the model approaches
the station-only inversion. This emphasizes the need for the
inflation factor to properly weigh both datasets against one
another.

However, we concede that there are some issues with the
condition of having the observational cost equally distributed
between the stations and the satellite observations. This con-
dition implies that satellite observations with higher cover-
age or lower errors are assigned higher inflation values, i.e.,
higher-quality data get a lower weight in the cost function.
Inadvertently, this leads to overfitting of the surface flasks
with increasing quality of the satellite instruments used. Ad-
ditionally, while we do expect a somewhat larger inflation
at higher coverage due to increased correlation between the
individual pixels, the current blanket approach of assigning
a constant inflation factor to all footprints ignores the actual
density and correlation of the observations. This implies that
dense observations over the Sahara are inflated just as much
as the sparse observations over the oceans. For future studies,
this weighting strategy may need to be revised.

4 Results

4.1 Mixing ratio mismatch at the surface stations

4.1.1 Set 1: inversions using different biomass-burning
priors

In Fig. 5, the modeled mixing ratios at 6 out of the 44 total
ground-level stations are shown before and after the inver-
sions from the first set of experiments (reference, noVIIRS,
and GFED), where the biomass-burning inventories were
varied. Additionally, the corresponding flask measurement
values as well as their assigned uncertainties are indicated.
During the spin-up inversion (not pictured), many stations
initially exhibit considerable under- or overestimations. The
model corrects most of these within the first 1 or 2 months
and the mixing ratios at the stations’ start to closely follow
the observations. This way, during the main inversions (e.g.,
as shown in Fig. 5), the modeled mixing ratios at all stations
are initially close to the observations. At most stations, the
mixing ratios simulated based on the optimized emissions
remain close to the observations over the whole period of the
main inversion. This can be seen, for example, at Mauna Loa
(Fig. 5d) and Rapa Nui (Fig. 5f) in the northern and southern
Pacific, respectively, and also at stations close to the South
Pole, such as Palmer Station in Fig. 5e, despite their very
remote nature.

However, at a few stations, the posterior mixing ratios di-
verge from the measurements to some degree. This effect is
mostly limited to high (> 55° N) northern latitudes. For ex-
ample, at Alert, as shown in Fig. 5a, mixing ratios in July
and August do not drop far enough, while towards the end of
the year, they do not rise high enough. Another problematic
station is Assekrem, plotted in Fig. 5b, where the flask obser-
vations are systematically underestimated by the model.

Generally, the a priori mixing ratios feature a global accu-
mulation of ground-level CO over time not supported by the
observations. This indicates an unbalanced budget, with ei-
ther sources that are too large (overestimations in the a priori)
or a sink that is too small (underestimations in the OH clima-
tology). Given the setup of the inversions, the model resolves
this by reducing the emissions in either case. However, there
are stations where this does not hold and the a priori underes-
timates the observations. For example, at Hohenpeissenberg
in Fig. 5c, the model finds a fairly strong diurnal cycle and
a priori mixing ratios that are generally too low. The former
is likely a result of the station being located at the top of a
mountain, where upslope conditions cause surface CO to be
transported up to the station during the daytime and away
during the night. Even though not clearly visible in Fig. 5c,
where the full time series is shown, the model is only sam-
pled at the time of the measurement, which would alleviate
this issue to some degree. The a priori mixing ratios that are
too low, however, could point to the relative proximity of the
station to emission sources in central Europe and possibly in-
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Figure 5. Modeled a priori (dotted lines) and a posteriori (solid lines) mixing ratios sampled at the locations of the stations as well as the
flask observations (blue crosses) for six example stations and the three different biomass-burning a priori inventories. For each observation,
the corresponding measurement error is indicated as well. Lines are color-coded based on the a priori used: FINN2.5+VIIRS (reference) in
orange, FINN2.5 (noVIIRS) in green, and GFED4.1s (GFED) in pink. Unlike the first four, the bottom two stations (e representing PSA and
f representing EIC) are in the Southern Hemisphere and, therefore, in the low-resolution global region.

dicate that the lateral model resolution is not fine enough to
properly capture this station.

In the first eight rows of Table 2, we calculate the mean
error-weighted mismatch J flask between flasks and model for
all main inversions, as

J flask(x)=

∑Nflask
i=1

[
(yflask,i−F(x)i)

2

ε2
O,i

]
Nflask

, (11)

where Nflask is the total number of flask measurements yflask
with observational error εO,i and F(x)i is the model sam-

pled at that measurement. The observational errors include
the representation error of the model and the sampling error
of the flasks. If the model is capable of capturing the vari-
ability of the observations, the unitless quantity J flask should
be close to 1. Larger values could point to an underestimated
observational error, systematic errors in the model itself, or
a model with too few degrees of freedom to capture the vari-
ability in the observations, i.e., an underestimated model rep-
resentation error. When comparing two inversions, lower val-
ues represent a better fit. As can be seen for all three experi-
ments of the first set (reference, noVIIRS, and GFED), the fit
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Table 2. Error-weighted mismatches between observations and model for all main inversions. The first eight rows give the mean mismatches
to different subsets of the flask measurements. There, even in the satellite-only inversion, where the flasks did not constrain the emissions, the
overall fit at the stations improves, although less compared to the other experiments. The mismatch for the satellite-only inversion decreases
significantly if only stations south of 55° N are considered (i.e., excluding ALT, BRW, CBA, ICE, PAL, SUM, TIK, and ZEP), while it
stays roughly the same for all other experiments. A considerable portion of the remaining mismatch stems from the stations ASK, HPB,
and OXK, where the model generally has problems capturing the observed variability. The last two rows contain the total mismatch to the
satellite observations, scaled down by 103 for readability. Similarly to the satellite-only inversion above, even in the station-only inversion,
the overall fit to TROPOMI improves, despite those observations not constraining the inversion.

Observations Reference noVIIRS GFED
Satellite- Station- Full-

only only satellite

St
at

io
ns

All
prior 20.58 18.18 15.87 20.58 20.58 20.58
posterior 3.69 3.92 3.99 9.29 3.31 3.57

< 55° N
prior 22.93 20.11 16.52 22.93 22.93 22.93
posterior 3.66 3.86 3.97 7.87 3.41 3.57

Excl. prior 20.75 17.90 15.63 20.75 20.75 20.75
ASK, HPB, OXK posterior 3.45 3.67 3.68 7.87 3.19 3.35

< 55° N and excl. prior 23.35 19.92 16.26 23.35 23.35 23.35
ASK, HPB, OXK posterior 3.35 3.54 3.56 5.93 3.25 3.29

Satellite
prior 89.85 75.34 64.50 89.85 89.85 71.85
posterior 8.14 8.51 8.66 7.07 20.80 7.79

after the inversion is vastly improved compared to the prior
fit. Considering how well the model captures the variability
at most stations (e.g., Fig. 5), the a posteriori J flask values
of 3 to 4 most likely indicate underestimated errors rather
than systematic model errors. Table S2 provides the individ-
ual mean error-weighted a priori and a posteriori mismatches
for all 44 stations across all six main inversions. The same
information is also plotted in Fig. S4, ordered by the latitude
of the station.

For most stations, the choice of the biomass-burning a pri-
ori has very little influence on the final fit, as evident from
the orange, green, and pink lines in Fig. 5 coinciding almost
everywhere. Moreover, the a priori mixing ratios from the
different inventories themselves are fairly similar. In general,
a priori mixing ratios are the lowest before the GFED inver-
sion and the highest before the reference inversion based on
FINN2.5+VIIRS, though this does not allow for any conclu-
sions regarding the quality of the inventories. With all three,
the a priori mixing ratios are clearly overestimated. While
GFED4.1s generates the lowest a priori mixing ratios, which
are, therefore, closest to the observations (J flask = 15.88 is
the smallest prior mismatch out of all experiments), this
could be coincidental.

4.1.2 Set 2: inversions based on different observational
datasets

For the same stations as in Fig. 5, the modeled mixing ra-
tios for the second set of experiments (satellite-only, station-
only, and full satellite) based on different observational input
datasets are shown in Fig. 6. At the resolution of the model

employed in this study, even within the zooming region (up
to 3°× 2°), only minor differences in a posteriori mixing
ratios are found between the full satellite inversion (green
lines) versus the reference inversion (orange lines); i.e., for
the sake of this study, those datasets are equivalent. This
equivalence is also emphasized by very similar mismatch
values in Table 2. In the station-only inversion, where the
satellite observations are excluded altogether (brown lines),
the fit to the flask measurements gets slightly better (lowest
J flask in Table 2), though changes are mostly minimal. Larger
changes are found when comparing the former three inver-
sions to the satellite-only inversion (pink lines), in which the
model is not driven by the flasks at all. In Table 2, this leads
to a significantly larger J flask compared to all the other ex-
periments, yet the mismatch is still lower than for the a pri-
ori. This shows that the error inflation factors introduced in
Sect. 3.2.2 have been chosen to have meaningful values be-
cause the station fits do not significantly degrade due to the
satellite observations in the combined inversions.

Stations at high (> 55°) northern latitudes, like Alert in
Fig. 6a, exhibit a poor fit quality for the satellite-only inver-
sion. During Northern Hemispheric summer, mixing ratios
stay close to the a priori and much higher than the flasks,
while in Northern Hemispheric winter, they fall too low, di-
verging from the a priori and the flasks. This implies that
these stations systematically have large mismatches. To illus-
trate that the fit at other stations is better, we calculated J flask
only for stations south of 55° N in the third and fourth row of
Table 2. While J flask is significantly reduced for the satellite-
only inversion, it stays almost constant for all other experi-
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Figure 6. Modeled a priori (dotted line) and a posteriori (solid lines) mixing ratios sampled at the locations of the stations as well as the
flask observations (blue crosses) for six example stations and four inversions with different observational datasets. For each observation, the
corresponding measurement error is indicated as well. Lines are color-coded based on the observations used: the orange lines represent the
reference inversion and are identical to the orange lines from Fig. 5. The full satellite inversion, which also uses a combination of satellite
and flask observations, is shown in green. The pink and brown lines represent the satellite-only and station-only inversions, respectively.
Note that because all inversions are based on the same a priori emissions, the single dotted black line holds for all four inversions.

ments. This implies that the satellite observations specifically
are insufficient to constrain these stations at high northern
latitudes, while the model itself is well capable of capturing
them. In the satellite-only inversion, during Northern Hemi-
spheric wintertime, there are very few observations in this
region due to little light and high cloud coverage. Therefore,
the divergence from the a priori is likely driven by an unbal-
anced budget in the northern tropical and subtropical regions,
where emissions all year round are heavily reduced as shown
in Sect. 4.3 below. It is cheaper for the model, in terms of

the cost function, to diffuse the decrements over a larger area
and shift a part of them to higher northern latitudes than to
have even deeper localized decrements in the tropics.

Aside from the northern stations, there are a few other
stations that are problematic for the model to capture. The
most extreme example of these issues is the station in the
Assekrem (ASK) shown in Fig. 6b, where the satellite drives
the model to much lower mixing ratios than the flasks. This
underestimation can be clearly seen by the very low a poste-
riori mixing ratios for the satellite-only inversion (pink line)
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and by the reference inversion (orange line) ending up con-
sistently lower than the station-only inversion (brown line),
which is seldom the case for other stations. For this spe-
cific station, this effect is likely amplified by its position-
ing within the Sahara desert, where satellite observations are
plentiful due to high albedo and little cloud cover but might
also be adversely affected by dust. This oversampling causes
the satellite observations to gain a relatively large weight in
the cost function compared to the flasks at that location, caus-
ing the reference inversion to slightly diverge from the flask
observations. Assekrem is also a high-altitude site, which
could potentially be problematic with the limited represen-
tation of topography in the model. When considering the re-
sulting emission increments (Sect. 4.3), it appears that the
model is not capable of capturing this station properly. An-
other problematic station is Hohenpeissenberg (HPB), shown
in Fig. 6c, where the satellite-only inversion, again, suggests
much lower mixing ratios. Note the larger range on the ver-
tical axis. Similar, albeit less pronounced results are found
for Ochsenkopf station (OXK), which is relatively close to
Hohenpeissenberg station geographically. Both are located
on mountains at high altitudes. Therefore, as mentioned ear-
lier, the coarse resolution of the model and its limited rep-
resentation of topography might adversely affect the results
there. This misrepresentation will also be further discussed
in Sect. 4.3 below, where these specific stations are found
to lead to unrealistically high-emission increments, similarly
to at Assekrem station. As for the stations at high northern
latitudes, these three stations (ASK, HPB, and OXK) de-
grade the global mean error-weighted mismatch exception-
ally strongly. To illustrate this, in the fifth and sixth row of
Table 2, we calculate J flask for all but these stations. Again,
J flask for the satellite-only inversion is reduced strongly.
However, there are also slight decreases for the other exper-
iments, suggesting that the model overall has an issue with
properly representing these stations.

Nonetheless, most other stations, regardless of geograph-
ical location, show good fits for all four investigated com-
binations of observational input. As examples for northern
tropics, high southern latitudes, and southern tropics, Mauna
Loa, Palmer Station, and Rapa Nui, respectively, are shown
in Fig. 6d–f. Most notably, the satellite-only inversion man-
ages to closely follow the flask measurements despite them
being not assimilated. This can be seen in the seventh and
eighth row of Table 2, where both the stations north of 55° N
and the problematic stations (ASK, HPB, and OXK) are ex-
cluded from the calculation and J flask for the satellite-only
inversion gets much closer to the other experiments. These
good fits suggest that inversions of current events driven
solely by TROPOMI observations are feasible as long as the
region of interest is well south of around 55° N.

4.2 Mixing ratio mismatch to the satellite observations

In the final two rows of Table 2, we calculated the total error-
weighted mismatch Jsat between satellite observations and
model for all main inversions as follows:

Jsat(x)=
∑
i

[(
ysat,i −F(x)i

)2
ε2

O,i

]
, (12)

where ysat,i is the satellite observations with observational er-
ror εO,i and F(x)i is the model sampled at that measurement,
with the averaging kernel applied. Figure S5 shows the tem-
poral (monthly) and spatial (12°× 12° grid) distribution of
the total error-weighted mismatches for all main inversions.
Unlike for the mean error-weighted mismatch J flask between
the flasks and the model introduced in the previous section,
we do not divide by the number of observations here; hence,
we calculate the total instead of the mean mismatch. Con-
sidering the total mismatch is necessary because the num-
ber of observations in the full satellite inversion is much
larger than in all other inversions that use the gridded super-
observations. Therefore, the mean error-weighted mismatch
for the non-gridded observations is much smaller; i.e., each
single observation bears a smaller weight in the inversion.
By design, the super-observations have a smaller error than
each single observation they are made up of (Sect. 3.2.1), and
the error of satellite observations in the full satellite inver-
sion is inflated the strongest (Sect. 3.2.2). Overall, the total
mismatch leads to comparable numbers, in this case, while
the mean mismatch would not. Again, as for the stations in
the previous sections, more detailed data can be found in the
Supplement, where Figs. S6 and S7 show the latitudinal dis-
tribution of the mean a priori and a posteriori mismatch be-
tween the model and the satellite observation in 12° bands
for all six main inversions.

Generally, the results are similar to the ones for the sta-
tions above. When considering the first set of inversions (ref-
erence, noVIIRS, and GFED), the a priori mismatch is again
the smallest for GFED and the largest for reference, and for
the a posteriori mismatch, this is inverted again. For the sec-
ond set, the satellite-only inversion results in the best fit to
the satellite observations, while the station-only inversion re-
sults in the worst. This is akin to the results from the previous
section, where the station-only inversion had the best fit to
the station data and the satellite-only inversion had the worst
fit. As outlined above, the mismatch for the full satellite in-
version is special because it is calculated with respect to the
non-gridded dataset. Regardless, the mismatch reduction is
comparable to the reference inversion.

The mismatches mainly originate from regions known for
biomass burning, such as central and southern Africa, north-
ern South America, eastern North America, Indonesia, and
Siberia. Even the 0.5°× 0.5° grid of the super-observations is
fine compared to the model resolution of 3°× 2° or 6°× 4°.
Therefore, any biomass-burning event that leads to steep gra-
dients in the observations cannot be resolved in the model
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and will lead to mismatches between the modeled and ob-
served mixing ratios.

The global a posteriori mismatches also vary in time and
are the largest in August during the height of the burning
season. More details on this can be found in Figs. S8 and S9,
which show the global total prior and posterior mismatch be-
tween the satellite observations and the model for each month
of each of the main inversions. This spike in August is es-
pecially pronounced in the station-only inversion, where the
mismatches already rise in July and slowly taper off over the
following months. For this inversion, in addition to the coarse
model resolution, the station measurements are too sparse
in time and space to properly capture individual biomass-
burning events and only constrain the increases in the result-
ing well-mixed background mixing ratios. Similarly as for
the stations, the a priori mismatches are initially low in June
and steeply rise over the following 3 months. The good ini-
tial fit shows that the spin-up inversion manages to properly
harmonize the modeled mixing ratio with the observations
as intended. The following rise in mismatches also illustrates
the suspected unbalanced budget that causes CO to accumu-
late in the model.

Figure S10 provides a closer look at the monthly lateral
distribution of the total a posteriori mismatch between the
satellite observations and the model for each inversion com-
pared to the reference inversion, i.e., when and where each
inversion preformed better or worse than the reference inver-
sion. For the first set of inversions, it becomes apparent that,
while the GFED inversion leads to worse mismatches overall,
the mismatches in Indonesia are slightly smaller compared
to the reference inversion. Additionally, noVIIRS and GFED
perform slightly better than reference in central Africa in the
beginning of the burning season in August to October, but
the reference inversion performs better there for the rest of
the year.

Further analysis of the second set shows that for the
satellite-only inversion the lower mismatch originates mostly
from the Northern Hemisphere. Curiously, the mismatch to-
wards the satellite observations around Rapa Nui in the
southern Pacific is significantly increased (by roughly 50 %)
in the satellite-only inversion for the period from October to
December compared to the reference inversion; i.e., in that
region, the additional use of flask measurements in the refer-
ence inversion leads to a better fit to the satellite observations
than using the latter on their own. This apparent contradic-
tion can be resolved by considering that the mixing ratios at
such remote locations are, on the one hand, only weakly con-
strained by the sparse satellite observations over the oceans
and, on the other hand, are strongly influenced by transport
from distant, land-bound source regions (Daskalakis et al.,
2022), which are much more strongly constrained by the
satellite observations. The addition of the high-confidence
flask measurements from the Rapa Nui station causes the
model to diverge from the a priori towards higher emissions

around that station, which also better fit the (sparse) satellite
observations in that region.

For the station-only inversion, especially large mismatches
are observed over northern Africa during the full inversion
period. This is most likely related to the issues with the sta-
tion in the Assekrem outlined in the previous section. Dur-
ing the burning season (July–September), the mismatches
in the station-only inversion are the most pronounced over
continental Asia, northern and central Africa, northern South
America, eastern North America, and the oceans in between
those regions. Towards the end of the year, large mismatches
are also found around Indonesia. Notably, the station-only in-
version shows a degrading fit to the satellite observations in
high northern latitudes (> 55° N); i.e., the a posteriori mis-
match there is worse than the a priori mismatch (see also
Fig. S6). This is the only place and time where a degrading
fit occurs. As mentioned, all of this behavior is to be expected
from the station-only inversion since the sparse station net-
work cannot capture the full spatial and temporal variability
of all biomass-burning events globally.

While the mismatches for the full satellite inversion are
problematic to compare directly to the other inversions due
to the much larger number of observations and the error infla-
tion, the mismatches appear to be smaller in remote regions
and larger in active biomass-burning regions compared to the
reference inversion. This mismatch distribution is expected
because the higher resolution of the full satellite observations
implies finer and more pronounced structures from the indi-
vidual biomass-burning events, which the model can resolve
even less effectively than the ones found in the 0.5°× 0.5°
super-observations.

Interestingly, the mismatches from all main inversions
converge in the Southern Hemisphere; i.e., even the station-
only inversion fits the satellite observation just as well as the
reference or even the satellite-only inversion. This shows that
not only is each dataset on its own sufficient to constrain
the (remote) Southern Hemisphere, but they also end up at
roughly the same result there.

4.3 Optimized global emission fields

4.3.1 Secondary production

Figure 7 provides a global overview of the optimized
secondary CO production from VOCs including CH4 for
September 2018 and a comparison to the a priori emissions
for the reference inversion. In panels (c) and (d), the absolute
and relative differences between the a priori (panel a) and a
posteriori (panel b) are shown. For comparison, the relative
emission increments for the noVIIRS and GFED inversions
can be found in panels (e) and (f), respectively. September
was arbitrarily chosen because it is in the center of the in-
version period and the results found for the other months
are fairly similar. The differences that occur over time are
small and limited to variations in amplitude but not in space.
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This is to be expected, considering the strict temporal cor-
relation times and spatial correlation lengths introduced in
Sect. 2.3.1. Figures S11–S13 provide a brief overview of the
relative secondary CO increments resulting from the refer-
ence inversion for the remaining 6 months of the main inver-
sion period and comparisons of those increments to the ones
shown in Fig. 7.

All main inversions result in large decrements in a band
roughly between the Equator and 40° N. These decrements
are especially deep over China and India, as can be seen in
the relative increments in Fig. 7d–f. In the later months of
the inversion period, this region of large decrements shifts
eastwards towards China for all experiments. This northern
tropical decrement is analyzed in more detail later on, in
Sect. 4.3.2, in the context of anthropogenic emission incre-
ments.

The band of decrements is accompanied by increased
emissions north of 40° N, especially over central Europe,
North America, and Siberia. Additional positive increments
can be found between the Equator and 40° S, over the oceans,
and in southern Africa. These appear to occur in biomass-
burning outflow regions and could point to a systematic er-
ror in the lifetime of CO in the model. Due to the band-like
structure of the positive and negative increments, this error is
possibly caused by inaccurate OH values. Further evidence
for such issues with OH values can be found in Myriokefal-
itakis et al. (2020), where they compare their online calcu-
lated OH to the climatological fields from Spivakovsky et al.
(2000) used here and find significant differences in those re-
gions. Notably, in the full chemistry simulation, higher OH
concentrations imply not only higher CO loss rates, but also
higher secondary CO production. Here, we use those produc-
tion rates paired with loss rates based on the climatological
OH, as pointed out in Sect. 2.3.3. Since in our inversions the
loss rates are fixed, the model can only compensate for this
mismatch by, in some places considerably, changing the sec-
ondary CO source.

Overall, the a posteriori secondary CO source is lower than
the a priori production flux in all experiments, as can be seen
in the global budgets provided in Table 3, where the poste-
rior masses at the end of the inversion period (final masses)
are consistently lower than the prior final masses. Naus et al.
(2022), who used a similar setup, also found too high of a
secondary CO production. All fluxes in Table 3 are provided
in Tg CO yr−1 despite neither inversion period spanning a
full year. While this unit allows for an easy comparison to
(annual) budget terms published elsewhere, such a compar-
ison must consider that the inversion period of the main in-
versions includes the biomass-burning season but excludes
the increased anthropogenic emissions due to heating during
part of the Northern Hemispheric winter. The biases of such
a comparison can be estimated by comparing the prior fluxes
from Table 3 for the reference inversion to the respective an-
nual budgets of the prior source estimates, which show an
overestimation of around 4 % for biomass burning (FINN2.5)

and secondary CO production (from TM5-MP) and underes-
timation by less than 2 % for the anthropogenic emissions
(CMIP6). With this caveat in mind, we compare our prior
and posterior budget terms with values from other inversion
studies with different setups, namely, to Jiang et al. (2017),
who assimilated MOPITT CO and methyl chloroform sur-
face measurements into the GEOS-Chem model, Müller et al.
(2018), who assimilated IASI CO in the IMAGES model,
and Zheng et al. (2019), who assimilated MOPITT CO in the
LMDz-SACS model. A detailed comparison of these three
studies can be found in Elguindi et al. (2020). Compared
to the results of either of those studies, our a priori budget
terms for secondary CO production and chemical loss of CO
to OH are far too large. However, our posterior chemical loss
falls between the values found in Müller et al. (2018) and
Zheng et al. (2019), and our posterior secondary CO produc-
tion, while still larger, is much closer to what those studies
found than our prior. This improved agreement implies that
our a posteriori terms are more realistic than the a priori ones.
Note that our secondary production implicitly includes ocean
and biogenic CO. While the total production and loss terms
show reasonably good agreement with the aforementioned
studies, the partitioning by source category of our emission
terms differs slightly. Our anthropogenic/fossil fuel a poste-
riori CO is close to that found by Müller et al. (2018) and
Jiang et al. (2017) but significantly lower than that reported
by Zheng et al. (2019). In contrast, our biomass-burning es-
timate is close to the multi-year mean of Zheng et al. (2019).
However, due to the high year-to-year variability in biomass-
burning emissions, as shown by both Müller et al. (2018) and
Zheng et al. (2019), this result is difficult to interpret, espe-
cially since neither study covers 2018.

As for the stations in Sect. 4.1, the differences in the emis-
sion increments between the inversions in the first set (dif-
ferent biomass-burning a priori) are rather small. The most
striking differences are the much larger increments (up to
60 % higher final emissions) over southern Africa in both
the GFED and noVIIRS inversions (Fig. 7e and f). These
are likely related to a known underestimation of African CO
emissions in GFED4.1s, as described in Nguyen and Wooster
(2020) and references therein. Due to its improved small-fire
handling, FINN2.5+VIIRS, as used in the reference inver-
sion, appears to be more capable of capturing those fires.
More subtle differences are found in South America, where
the GFED inversion only leads to minor corrections (relative
increments close to 1), while the reference and noVIIRS in-
versions show clear decrements (final emissions reduced by
up to 50 %). These decrements could be coincidental, con-
sidering the importance of OHchemistry and secondary CO
production in that region. In the Northern Hemisphere, noVI-
IRS (Fig. 7e) and GFED (Fig. 7f) feature slightly higher in-
crements over eastern Europe (noVIIRS < 10 %, GFED up
to 35 %), North America (noVIIRS < 10 %, GFED < 20 %),
and Siberia (noVIIRS < 15 %, GFED < 5 %) compared to
the reference inversion. These differences could point to
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Figure 7. Global secondary CO production for September 2018 for the first set of experiments. The first four panels belong to the reference
inversion (based on FINN2.5+VIIRS) and show (a) the a priori emissions, (b) the a posteriori emissions, (c) their absolute difference, and
(d) the factor by which the emissions increased. Panels (e) and (f) show this factor for the noVIIRS and GFED inversions, respectively. Note
the logarithmic color scales in the first three panels.

aliasing of the secondary production emission category to the
biomass-burning category. FINN2.5+VIIRS, which is used
as the biomass-burning a priori in the reference inversion,
has generally the highest emissions, mostly due to capturing
small fires, which are common in these regions. For the other
two, the model attempts to capture these missing sources, in
part, through increasing the emissions in the other categories.
Again, this misattribution can also be seen in the budgets in
Table 3, where the posterior total emitted mass is very simi-
lar for all experiments of the first set, but the distribution over
the three emission categories varies considerably.

In Fig. 8, 1 month of the relative increments for the CO
production from VOCs and CH4 is shown for the second
set of inversions. Figure 8a is from the reference inversion
based on a combination of gridded satellite observations and
surface flasks. As such, the content of Fig. 7d above is re-
peated there for ease of comparison. Very similar results
(Fig. 8b) are obtained with the full satellite inversion, as al-
ready shown at the surface stations in Sect. 4.1. Minor differ-
ences are visible over North America and Siberia, likely due
to less aliasing to the biomass-burning category. When the
higher-resolution observations are used, the short-term and
local biomass-burning events are more distinct, which makes

it easier for the model to capture them in the appropriate cat-
egory.

For the satellite-only inversion (Fig. 8c) many regional
features are much less pronounced. However, the broader dis-
tribution of emission increments remains the same: There are
still negative increments in a band between the Equator and
40° N and over South America and positive increments over
southern Africa and the adjacent oceans. The positive incre-
ments over North America, Europe, and Siberia are weaker
and appear to be spread out over the whole Northern Hemi-
sphere north of around 45° N, including over the oceans.
These weaker features are likely linked to the different spa-
tial distributions of observations in the two datasets; while
there are many maritime stations and stations in the remote
Northern Hemisphere, satellite observations there are more
sparse and mostly found in continental regions. Additionally,
towards the end of the year, i.e., the second half of the main
inversion period, there are no more satellite observations at
high northern latitudes, as exemplified in Fig. 1 for one day
in early November. All of this, in combination with the spa-
tial correlations given to the optimizer, causes the model to
prefer smooth, broad patterns to fill in any gaps.
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Table 3. Global prior and posterior budgets for all inversions, as a sum over the global and the zooming regions. The zooming column
combines masses going into and coming from the communication cells between the zooming regions. For the main inversions, the 3°× 2°
region perceives this as a net loss through advection into these cells, while the global region perceives it as a net gain through emissions
within the cells. Only the net effect is shown here. Note that the unit Tg CO yr−1 for the columns showing rates was chosen for ease of
comparison to other estimates and does not imply annual rates. The rates were obtained from the processed masses divided by the duration
of the respective inversion periods, January to June (6 months) for the spin-up inversion and June to December (7 months) for the main
inversions.

Experiment
Masses in Tg CO Losses in Tg CO yr−1 Zooming in Emitted in Tg CO yr−1

Initial Final Chemical Deposition Tg CO yr−1 Total Secondary Biomass Fossil fuel

Reference
prior

556
739 −2995 −216 113 3411 2179 613 618

posterior 584 −2487 −187 21 2701 1637 543 520

noVIIRS
prior

556
722 −2904 −206 102 3291 2179 493 618

posterior 584 −2486 −185 20 2699 1701 472 525

GFED
prior

556
699 −2816 −199 88 3172 2179 374 618

posterior 584 −2480 −185 20 2692 1766 366 560

Satellite-only
prior

556
739 −2995 −216 113 3411 2179 613 618

posterior 579 −2477 −184 16 2684 1627 545 513

Station-only
prior

556
739 −2995 −216 113 3411 2179 613 618

posterior 593 −2580 −192 23 2811 1704 599 508

Full satellite
prior

556
739 −2995 −216 113 3411 2179 613 618

posterior 587 −2501 −188 22 2719 1650 552 517

Spin-up
prior

646
670 −2925 −212 26 3159 1991 532 637

posterior 521 −2349 −181 −77 2355 1347 382 626

Figure 8. Global secondary CO relative emission increment for September 2018 for the second set of inversions, based on different obser-
vational datasets. The panels show the factor by which the emissions increased for (a) the reference inversion, (b) the full satellite inversion,
(c) the satellite-only inversion, and (d) the station-only inversion. The locations of the surface stations are indicated with dots for easier
orientation in the last panel additionally with their station code. Note that panel (a) of this figure is the same as Fig. 7d.
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These differences in information content between the two
observational datasets stress the importance of the error in-
flation (Sect. 3.2.2). If the error on the satellite observations
is not inflated, the optimized emissions end up very close to
the ones from the satellite-only inversion because the signal
from the sparse flask measurements is overshadowed. How-
ever, the current inflation may be too large, which causes the
optimizer to overfit certain stations that are not well captured
by the model. As can be seen in Fig. 8d for the station-only
inversion, some stations clearly drive the model away from
these broad patterns and towards strong positive regional in-
crements. This overestimation is especially apparent for As-
sekrem (ASK) and Izana (IZO) stations, which lead to large
increments over north-west Africa, and Hohenpeissenberg
(HPB) and Ochsenkopf (OXK) stations, which drive emis-
sions over central Europe up strongly. Neither of these incre-
ments are observed or supported by the satellite observations.
Notably, all of these stations are at high altitudes, potentially
pointing to shortcomings in the representation of topography
in the model. However, there are mountainous stations, like
Mauna Loa (MLO), that are captured well by the model.

Less pronounced examples of overfitted stations are Rapa
Nui (EIC) and Tutuila (SMO), which cause positive and
negative increments over the southern Pacific, respectively.
However, it should be noted that for the satellite, the num-
ber of observations over oceans to constrain those emissions
is very limited and, as shown for Rapa Nui in Fig. 6f, the
satellite-only inversion still manages to fit these stations rea-
sonably well.

Another factor that could play a role in the context of over-
fitted stations is the strength of the vertical transport in TM5,
which Krol et al. (2018) find to be somewhat faster than in
other models. This implies low vertical gradients in the tro-
posphere and that modeled tracer mass might be transported
upwards before the model can be sampled at the location of
the station for comparison to the real observations. This is es-
pecially problematic for remote stations with limited surface
sources in the vicinity, such as Rapa Nui (EIC) in the south-
eastern Pacific. There, the model is forced to introduce unre-
alistic increments to the secondary CO source in the middle
of the Pacific. Furthermore, due to the way those emissions
are handled within the model, this introduces additional CO
over the whole column (and not only at the surface), which
then hampers the comparison to the satellite observations.
Similarly, for the station in the Assekrem, in the inversions
that include station data, the low vertical gradients cause
the optimizer to introduce unrealistically high secondary CO
emissions over the Sahara. In contrast, those increments do
not occur in the satellite-only inversion because the satellite
observes the total column with a very limited vertical resolu-
tion and is, therefore, less affected by the vertical gradient in
the model.

Finally, even in the station-only inversion (Fig. 8d), some
station-driven features appear weaker compared to the ref-
erence inversion (Fig. 8a). For example, the positive incre-

ments over North America are much weaker, and the spikes
around the Assekrem and in central Europe are more spread
out. These weaker features are again caused by a combina-
tion of the prescribed spatial correlations and the distribu-
tion of the available observations. While in the station-only
inversion, the model prefers broader patterns to follow the
prescribed spatial correlation of the emissions, in the refer-
ence inversion, there are satellite observations all around the
landlocked stations, which drive the model towards lower in-
crements. Overall, the station-only inversion is driven to the
largest emitted mass of all experiments, as shown in the bud-
gets in Table 3. This is in line with the increased emissions
around surface stations postulated in the context of the (too)
fast (of a) vertical transport in TM5 above.

4.3.2 Anthropogenic emissions

To better identify the aliasing between the emission cate-
gories, Fig. 9 provides an overview of the relative increments
in the optimized anthropogenic emissions for all six inver-
sions. In Fig. 9a the relative emission increments are shown
for the reference inversion based on FINN2.5+VIIRS and
a combination of gridded satellite observations and surface
flasks. The largest changes are positive increments over Eu-
rope and negative increments over China and India. To inves-
tigate these increments further, we must first consider that the
anthropogenic a priori emissions taken from CMIP6 are pro-
jections for 2018 rather than historical data. For China, these
projections predict relatively constant emissions. However,
China managed to significantly reduce its CO emissions in
recent years (Kanaya et al., 2020) in the scope of air qual-
ity policies, like the coal-to-gas policy only implemented
in 2013 (Liu et al., 2020). Additionally, the effect of most
of these policies was somewhat offset by strong biomass-
burning years up until 2015 (Zhang et al., 2020), making
their effect harder to assess in advance. Regardless, reduced
CO concentrations have been now observed all over China,
both at surface stations (Liu et al., 2019; Zhai et al., 2019; Li
et al., 2020) and from satellites (Zhang et al., 2020). This ob-
served reduction has been linked to a decrease in emissions
as calculated using inverse modeling (Zheng et al., 2018).
The reduced emissions are most likely due to anthropogenic
rather than natural factors (Kang et al., 2019). By 2018, the
year of this study, all of this adds up to at least part of the
significant offset in CO emissions that we observed. Overall,
as shown by Elguindi et al. (2020), bottom-up inventories
tend to overestimate recent emissions from China, while the
top-down approach leads to more realistic values.

Unlike for China, there is no clear explanation for the neg-
ative increments over India. These might be an artifact due to
spatial correlation, where India’s proximity to China implies
that it is cheaper in terms of the cost function to reduce emis-
sions over a larger region rather than strongly reducing only
China’s emissions. This could be compounded by low obser-
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Figure 9. Relative global anthropogenic CO emission increments for September 2018 for all six inversion experiments. Panel (a) shows the
reference inversion with FINN2.5+VIIRS as the biomass-burning a priori and gridded satellite observations and surface flasks as observa-
tional input. The variations are (b) full satellite observations instead of gridded, (c) noVIIRS with FINN2.5 as the biomass-burning a priori,
(d) GFED with GEFED4.1s as the biomass-burning a priori, and (e) satellite-only and (f) station-only increments to drive the inversion.

vational coverage, especially with regard to surface stations,
and an OH climatology not appropriate for recent years.

When compared to the full satellite inversion shown in
Fig. 9b, again, the increments are almost the same, further
justifying the usage of gridded satellite observations on a
global scale to reduce the computational cost.

The noVIIRS (Fig. 9c) and GFED (Fig. 9d) inversions
are slightly worse at capturing the small fires in Europe and
North America compared to the reference inversion. The
missing small fires lead to apparent anthropogenic incre-
ments, especially for GFED, over Europe and western Russia
to close the CO budget. Further evidence for this aliasing is
provided in Table 3, where the total a posteriori emissions for
the inversions of the first set are almost identical, but the par-
titioning over the emission categories differs significantly. As
such, GFED has around 33 % lower biomass-burning emis-
sions compared to the reference but almost 8 % higher both
secondary production and anthropogenic emissions.

For the satellite-only inversion, the relative anthropogenic
emission increments are pictured in Fig. 9e. They stay rel-
atively close to, but below, 1 globally; i.e., the inversion
mostly agrees with the a priori. Over India and China, again,

a clear decrement is visible. Notably, there is no increment
over Europe in contrast to what we find when flask observa-
tions are included. In Sect. 4.1, this smaller increment caused
the station at Hohenpeissenberg (Fig. 6c) to be considerably
underestimated in the satellite-only inversion.

The station-only inversion shown in Fig. 9f leads to very
similar results in terms of anthropogenic increments com-
pared to the reference inversion. This shows how well the
NOAA station network on its own is capable of constraining
the global broad-scale background emission patterns. Differ-
ences include smaller increments over Europe and smaller
decrements over Africa and an apparent shift of the decre-
ment over India and China towards the East. The latter may
be explained by a lack of background stations and, therefore,
a lack of observations in that region, causing the decrement
to be smoothed out due to spatial correlation.

Overall, the anthropogenic increments shown in Fig. 9
compared to the ones for the secondary CO production in
Figs. 7 and 8 show similar general structures, with decre-
ments in China and India and increments in Europe. How-
ever, there are noticeable differences both in finer-scale spa-
tial details; for example, the anthropogenic increments over
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Europe are more spread out towards eastern Europe, and
large-scale patterns, with much smaller relative increments,
for North America. Generally, the ratios of a priori to a poste-
riori emissions, i.e., the relative emission increments, are not
the same for all three categories. In other words, while there
is some aliasing, the inversion setup is still capable of simul-
taneously optimizing multiple emission categories, which is
ensured in the following ways:

1. Firstly, because of the different a priori errors, even in
regions with similar spatial structures, the amplitudes of
the relative emission increments differ significantly.

2. Secondly, the different correlation lengths and times for
each emission category, as introduced in Sect. 2.3.1, en-
sure that only the biomass-burning category is capable
of capturing short and local events. Conversely, long-
lasting, large-scale mismatches could still lead to alias-
ing across all categories, as is the case, for example,
over China.

3. Thirdly, the a priori emissions of all three categories fea-
ture different spatial structures.

These a priori structures, combined with enforcing spatial
and temporal correlation, imply that it is the cheapest for the
model to change emissions following the “spatial signature”
of the correct source category rather than evenly distributing
the increments over all categories. An example for this can be
found over North America, where the anthropogenic emis-
sions are barely changed, while there are significant changes
in the secondary CO production.

4.3.3 Biomass burning

An in-depth analysis of the optimized biomass-burning emis-
sions is not included in this study because the low model
resolution is not sufficient to capture individual burning
events. This promotes aliasing between the emission cate-
gories, where the biomass-burning emissions are in- or de-
creased in large regions co-located with the patterns ob-
served in secondary CO production. As an example of this,
Fig. S3 shows the absolute biomass-burning increments for
15 September 2018, the day in the center of the period an-
alyzed above. Because the temporal variability in the sec-
ondary CO production is low, the biomass-burning emissions
also remain relatively constant in time.

5 Conclusions

We introduced TROPOMI satellite observations into the
TM5-4DVAR inverse modeling suit to optimize global CO
emissions from three distinct emission categories (biomass
burning, anthropogenic, and secondary production) in a set
of six inversion experiments. The model ran at a relatively
coarse resolution of up to 3°× 2°, which allowed for the

use of satellite super-observations gridded to 0.5°× 0.5°
to reduce the computational cost. Compared to the inver-
sion based on the full-resolution (up to 7× 7 km2) satel-
lite observations, differences in the final mixing ratios and
optimized emission fields were minimal. Yet, the compu-
tation time per iteration was around 25 % longer for the
full-resolution inversion. However, at 3°× 2° resolution, the
model could not properly resolve the spatial scale of individ-
ual biomass-burning events. This resulted in heavy aliasing
of the biomass-burning emissions to the other emission cate-
gories. In future studies, using additional observations to fur-
ther constrain emissions from specific sources or employing
a finer zooming region could improve model performance.
With the latter, such an inversion could make use of the full
potential of the TROPOMI observations.

The comparison between model results and observations is
vastly improved by the inversion, and the a posteriori mixing
ratios closely follow the observed values. Notably, this even
holds true in regions like China and the North Pacific, where
the a priori strongly overestimated the mixing ratio and very
large emission decrements are required to reach a good a pos-
teriori fit. The overestimated a priori mixing ratios in those
regions reveal inconsistencies between the OH climatology
used to simulate chemical loss, and the secondary CO pro-
duction terms taken from the TM5-MP model. This will be
further investigated in a study currently in preparation. For
the inversion based only on satellite observations, sizable
mismatches between model results and flask measurements
remain for stations at high northern latitudes. These mis-
matches can be explained by considering that mixing ratios
at high northern latitudes, on the one hand, are poorly con-
strained by the satellite observations, especially towards the
end of the year, and, on the other hand, are governed by trans-
port from the (well-constrained) mid-latitudes, which leaves
little leeway for the optimizer. Additionally, in the inver-
sions based on flask measurements, there are very large in-
crements around high-altitude stations. These increments are
most likely linked to the coarse model orography that comes
with the overall coarse model resolution. Despite good cov-
erage in those regions, the inversion based only on satellite
observations neither confirms nor reproduces those strong in-
crements. As such, for future inversions in this framework,
an increased model representation error should be applied to
those specific stations to avoid biasing results by overfitting.

In the Southern Hemisphere, we find very similar re-
sults across all inversions, regardless of the observational
dataset(s) (satellite, stations, or both) used. This indicates
that, in the Southern Hemisphere, either dataset is equally ca-
pable of and sufficient for constraining the background emis-
sions and leads to the same mixing ratios. Potentially, these
promising results could allow for inversions based solely on
TROPOMI observations, so long as the region of interest is
sufficiently far south of 55° N. There, as well as for valida-
tion, bias correction, and overall confidence in the optimized
emissions, the surface flasks still play a crucial role in the
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inversion. Using the TROPOMI observations on their own,
the long analysis cycle of the surface flasks could be cir-
cumvented, and specific events could be investigated using
this model in a more timely manner (within weeks rather
than months) and only be verified against and adjusted by
the flasks at a later stage.

Overall, the most reliable results are found from inversions
using both datasets because they complement each other in
multiple ways. Firstly, their spatial coverage differs slightly;
while the satellite observations are mostly valid over land
but sparse over the oceans, most background stations are lo-
cated on remote islands or in coastal settings. Secondly, both
datasets on their own have very limited information on the
vertical tracer distribution, where the flasks probe only the
surface layer and the satellite observations provide only to-
tal column mixing ratios. Combining those datasets can yield
better constraints on the vertical tracer distribution in places
where in situ and satellite observations are co-located. Fi-
nally, in a joint inversion, the satellite observations are im-
plicitly verified versus the flask measurements, and it be-
comes possible to identify potential biases in the satellite ob-
servations. However, when using both datasets at once, the
technical limitations of both apply, i.e., the high computa-
tional cost from using the satellite observations, and the long
analysis cycle of the flask measurements.

Code and data availability. A snapshot of the full TM5-4DVAR
model source code and the rc files (settings) used for all inversions
presented are available at https://doi.org/10.5281/zenodo.6884685
(Nüß et al., 2024a). Our implementation of the gridding approach
to obtain the 0.5°× 0.5° TROPOMI super-observation is available
at https://doi.org/10.5281/zenodo.6883805 (Nüß et al., 2024c). All
other analysis and plotting scripts used throughout this paper as well
as any relevant model in- and outputs are collected and available at
https://doi.org/10.5281/zenodo.11244729 (Nüß et al., 2024b).
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