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Abstract. The formation of aerosol particles in the atmo-
sphere impacts air quality and climate change, but many of
the organic molecules involved remain unknown. Machine
learning could aid in identifying these compounds through
accelerated analysis of molecular properties and detection
characteristics. However, such progress is hindered by the
current lack of curated datasets for atmospheric molecules
and their associated properties. To tackle this challenge, we
propose a similarity analysis that connects atmospheric com-
pounds to existing large molecular datasets used for machine
learning development. We find a small overlap between at-
mospheric and non-atmospheric molecules using standard
molecular representations in machine learning applications.
The identified out-of-domain character of atmospheric com-
pounds is related to their distinct functional groups and
atomic composition. Our investigation underscores the need
for collaborative efforts to gather and share more molecular-
level atmospheric chemistry data. The presented similarity-
based analysis can be used for future dataset curation for ma-
chine learning development in the atmospheric sciences.

1 Introduction

Aerosol particles influence our climate by sunlight reflec-
tion and absorption, as well as by serving as nuclei for cloud
condensation (Pörtner et al., 2023). Beyond climate impact,
aerosol particles affect air quality, causing adverse effects on
human health (Pozzer et al., 2023; Khomenko et al., 2021;
Lelieveld et al., 2020). However, the underlying molecular-

level processes involving organic molecules remain poorly
understood, due to the vast number of organic compounds
participating in atmospheric chemistry. Many of these par-
ticles are formed through the oxidation of volatile organic
compounds, which leads to the formation of so-called sec-
ondary organic aerosols in the atmosphere (Bianchi et al.,
2019). This existing gap in knowledge hampers a compre-
hensive understanding of particle formation and growth in
different environments (Masson-Delmotte et al., 2023; Elm
et al., 2020). In this paper, we take an initial step to evalu-
ate the potential of filling this void using machine learning.
We propose a molecular similarity-based analysis to measure
the overlap between atmospheric compounds and common
molecular datasets used in machine learning development.
By doing so, we can provide a tool to tailor machine learn-
ing models for studies of aerosol particle formation and the
effects human-based activities, such as industry and agricul-
ture, on the formation process. Ultimately, such insights can
lead to more informed decisions regarding air quality and cli-
mate change mitigation.

Secondary organic aerosol particle formation is affected
by atmospheric composition and molecular emissions into
the atmosphere. Emitted molecules can transform in re-
actions initiated by sunlight to a diverse array of com-
pounds with numerous functional groups (Bianchi et al.,
2019). These reactions are estimated to produce between
hundreds of thousands to millions of atmospherically rel-
evant molecules (Goldstein and Galbally, 2007; Nozière
et al., 2015). Out of this plethora, an unknown number can
form or grow aerosol particles by interacting with inorganic
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emissions (Schobesberger et al., 2013; Riccobono et al.,
2014; Ehn et al., 2014), or by themselves (Kirkby et al.,
2016). Details of aerosol particle formation can be uncov-
ered through identification of relevant atmospheric reactions
(e.g., Peräkylä et al., 2020; Iyer et al., 2023), aerosol-forming
compounds (e.g., Franklin et al., 2022; Worton et al., 2017;
Hamilton et al., 2004; Thoma et al., 2022), and cluster for-
mation steps (Elm et al., 2020).

Mapping aerosol particle formation experimentally is
challenging due to the sheer number of potentially relevant
compounds. Moreover, spectrometry-based compound iden-
tification with, for example, mass spectrometers is hindered
by the absence of curated reference spectra for atmospheric
molecules (Franklin et al., 2022; Worton et al., 2017; Hamil-
ton et al., 2004). The study of particle growth is another ex-
perimental challenge due to the wide range of size scales in-
volved. Neither aerosol mass spectrometry nor atmospheric
pressure chemical ionization mass spectrometry alone can be
used to study the entire particle growth process (Elm et al.,
2020). Thus, with a few exceptions (e.g., Franklin et al.,
2022; Worton et al., 2017; Hamilton et al., 2004; Sander,
2015), curated structure-annotated molecular datasets from
experiments are lacking.

In adjacent chemical disciplines such as metabolomics,
these curated molecular datasets play a crucial role for chem-
ical analysis. For example, they assist in compound identi-
fication either directly (Kind et al., 2013; Sud et al., 2007;
HighChem LLC, 2023; Sawada et al., 2012; Wissenbach
et al., 2011b, a; Montenegro-Burke et al., 2020; Taguchi
and Ishikawa, 2010; Oberacher, 2012; Hummel et al., 2013;
Watanabe et al., 2000; McLafferty and Wiley, 2020; Wang
et al., 2016; Wishart et al., 2022; Wallace and Moorthy, 2023;
Weber et al., 2012; MassBank consortium, 2024; MassBank
of North America, 2024) or through the development of
machine-learning-based identification tools (Heinonen et al.,
2012; Dührkop et al., 2015; Brouard et al., 2016; Nguyen
et al., 2018, 2019). These datasets also form the foundation
of data-driven analysis platforms, e.g., Nothias et al. (2020).
Moreover, curated datasets contribute to the construction of
machine learning models for quantitative structure–activity
relationships, facilitating large-scale screening of molecular
properties for specific reactions or applications (Kulik et al.,
2022). Thus, in order to reach the full potential of data-driven
methods, we need such datasets. Currently, in atmospheric
science, computational techniques are bridging the gap to
what can be experimentally observed for atmospheric com-
pounds.

Computational simulations and predictive modeling of-
fer an alternative approach to studying molecular-level at-
mospheric chemistry (Fig. 1). Reaction models, such as
Gecko-A (Aumont et al., 2005) or the Master Chemical
Mechanism (MCM, http://mcm.leeds.ac.uk/MCM, last ac-
cess: 22 April 2025) (Jenkin et al., 1997; Saunders et al.,
2003), can be used to propose likely atmospheric reaction
products based on a set of precursor molecules, reactions,

and conditions. With such model simulations, atmospheric
molecular datasets such as Gecko (Isaacman-Vanwertz and
Aumont, 2021) and Wang (Wang et al., 2017) have been gen-
erated. The Wang dataset (Wang et al., 2017) was constructed
using MCM (Jenkin et al., 1997; Saunders et al., 2003) to
simulate the atmospheric degradation of 143 atmospheric
compounds (methane and 142 non-methane volatile organic
compounds) by photolysis and reactions with OH, NO3,
and O3. Similarly, the Gecko dataset (Isaacman-Vanwertz
and Aumont, 2021) was generated by simulating the gas-
phase oxidation of three important atmospheric compounds
– toluene, α-pinene, and decane – using the Gecko-A code
(Aumont et al., 2005; Lannuque et al., 2018). Both the Wang
and Gecko datasets have been used to predict physicochem-
ical properties such as saturation vapor pressures and parti-
tion coefficients (Wang et al., 2017; Lumiaro et al., 2021;
Besel et al., 2023, 2024). In addition, computational sim-
ulations of particle formation have resulted in the Clus-
teromics datasets containing common acid–base clusters and
their associated thermodynamic and kinetic properties (Elm,
2019, 2021a, b, 2022; Knattrup and Elm, 2022). Thus, sim-
ulations and property prediction can be used to propose im-
portant candidate compounds in organic aerosol formation
processes (Fig. 1).

In recent years, machine learning methods have shown
promise for accelerating traditional computational and ex-
perimental atmospheric chemistry research (Sandström et al.,
2024; Franklin et al., 2022; Besel et al., 2023, 2024; Berke-
meier et al., 2023; Kubečka et al., 2023; Knattrup et al., 2023;
Krüger et al., 2022; Hyttinen et al., 2022; Lumiaro et al.,
2021). Yet, practical applications of data-driven methods in
atmospheric chemistry are still hindered by the aforemen-
tioned scarcity of curated experimental datasets. This raises
questions about how machine learning advancements in at-
mospheric chemistry can leverage molecular datasets and
models from computational simulations or other chemical
disciplines. While this approach is currently especially im-
portant in atmospheric chemistry, it also mirrors similar ef-
forts of data augmentation in other fields.

Here, our goal is to assess how closely atmospheric molec-
ular data align with comprehensive curated datasets from
other chemical domains. We assess the impact of the cur-
rent data gap in atmospheric chemistry on the progress of
data-driven methods in the field. We also address the poten-
tial for using datasets and models developed in other tangen-
tial chemical domains (e.g., metabolomics, drug design or
environmental chemistry) for transfer learning or data aug-
mentation in atmospheric chemistry.

In our analysis, we represent atmospheric compounds by
the abovementioned Wang and Gecko datasets. In addi-
tion, we include a third atmospheric dataset composed of
quinones, organic molecules that result from oxidation of
aromatic compounds (Tabor et al., 2019; Krüger et al., 2022).
Example molecular precursors to Wang and Gecko, as well
as an example quinone compound, are shown in Fig. 2.
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Figure 1. Molecular emissions react in the atmosphere to form a diverse array of compounds, contributing to aerosol particle formation.
However, identifying these compounds remains challenging. Although experiments and field studies can detect certain compounds in the
atmosphere and within the aerosols, they lack the ability to resolve the identity of a majority of these compounds. Computational techniques,
like reaction mechanistic simulations and property predictions, aid in describing atmospheric reaction products and their impact on particulate
matter. Enhancing our understanding of these molecular processes will illuminate the effects of human emissions on cloud formation, air
quality, and climate. Data-driven methods could help advance and accelerate the displayed experimental and computational workflows.

Figure 2. The three atmospheric datasets used in the comparison of this paper are Wang (Wang et al., 2017), Gecko (Isaacman-Vanwertz and
Aumont, 2021), and Quinones (Tabor et al., 2019; Krüger et al., 2022). The Gecko and Wang datasets contain simulated reaction products
starting from a set of precursors (exemplified in the figure), and the Quinone dataset contains compounds from a class of oxidation products
derived from aromatics called quinones.

We explore the similarity of our atmospheric compound
domain to four molecular datasets used either for molecu-
lar property prediction (QM9 and nablaDFT) or compound
identification by mass spectrometry (MassBank Europe and
MassBank of North America, MONA). Both application ar-
eas are relevant to machine learning in molecular atmo-
spheric research (Sandström et al., 2024; Franklin et al.,
2022; Worton et al., 2017; Hamilton et al., 2004; Besel et al.,
2023; Lumiaro et al., 2021; Wang et al., 2017). QM9 (Ra-
makrishnan et al., 2014) is a standard benchmark dataset
for machine learning in molecular sciences. The dataset
was constructed by selecting molecules with up to nine
non-hydrogen atoms (limited to OCNF) from the GDB-17
database (Ruddigkeit et al., 2012). GDB-17 is a database

consisting of 166 billion enumerated molecules consisting of
up to 17 CNOS and halogen atoms. QM9 includes harmonic
frequencies, dipole moments, polarizabilities, and electronic
and thermal energies for the molecular minimum energy
conformation. The nablaDFT dataset, instead, was curated
from the Molecular Sets (MOSES) dataset (Polykovskiy
et al., 2020) for the purpose of training models for quan-
tum chemical property prediction (conformational energy
and Hamiltonian). On the other hand, the MassBank datasets
provide data pairs of molecular structures and their corre-
sponding mass spectra, and they have been used to train
and test machine learning models for compound identifica-
tion based on mass spectra (Heinonen et al., 2012; Dührkop
et al., 2015, 2019). The MassBank datasets primarily contain
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molecules with relevance to metabolomics or environmen-
tal studies. While MassBank Europe contains purely experi-
mental data, MONA also provides computationally predicted
mass spectra. Table 1 summarizes the seven atmospheric and
non-atmospheric molecular datasets we use in our analysis.

The paper is organized as follows. We present our molec-
ular similarity analysis method in Sect. 2. Section 3 presents
the outcomes of our similarity-based comparison. In Sect. 4
we discuss our findings, and in Sect. 5 we provide an out-
look on how our similarity-based analysis can be used to
guide data curation for model development in atmospheric
research.

2 Methods

2.1 Molecular similarity

In our similarity-based analysis, we measure the overlap be-
tween atmospheric compounds and other sets of molecules
using the two similarity metrics: t-distributed stochastic
neighbor embedding (t-SNE, Maaten and Hinton, 2008), as
implemented in Scikit-learn v. 1.2 (Pedregosa et al., 2011)
and the Tanimoto similarity index (Tanimoto, 1958), as im-
plemented in RDKit version 2022.09.3 (Landrum, 2022).
These metrics utilize a molecular representation in the form
of a binary vector (see “Molecular descriptors” section be-
low). Both t-SNE and the Tanimoto similarity index are stan-
dard tools to measure chemical diversity (see Soleimany
et al., 2021; Nakamura et al., 2022) for out-of-domain ap-
plications and uncertainty quantification (Moret et al., 2023;
Hirschfeld et al., 2020; Scalia et al., 2020; Janet et al., 2019;
Liu et al., 2018; Sheridan et al., 2004). The t-SNE metric
is an unsupervised machine learning method that embeds
high-dimensional data into lower dimensions while preserv-
ing distances from the higher-dimensional space. The low-
dimensional embedding can be used to draw qualitative con-
clusions about data structure and similarity. The t-SNE clus-
ters depend on a perplexity hyperparameter which in brief
balances the preservation of global and local aspects during
projection from high- to low-dimensional space. We tested
three different perplexity values of 5, 50, and 100. We pre-
process the molecular fingerprints by performing a princi-
pal component analysis and select the 50 first components.
Thereafter, we run the t-SNE clustering with random initial-
ization for a maximum of 5000 iterations.

In contrast, the Tanimoto index, SA,B , offers a quantita-
tive measure of similarity. SA,B is calculated as the fraction
of present features (represented by non-zero bits) that are
shared compared to the total number of present features in
molecules A and B, according to

SA,B =

∑
A∩B1∑
A∪B1

. (1)

If the two moleculesA and B share all features, then the Tan-
imoto index equals one; if they instead share no features, then
it equals zero. We note that both similarity metrics depend on
the choice of molecular representation. Here, we performed
the analysis with two types of molecular representations (see
“Molecular descriptors” section below).

We make a statistical analysis of the Tanimoto similarities
between pairs of molecules from different datasets, compar-
ing two sets at a time. Initially, we select either the Wang
dataset or the Gecko dataset as our reference dataset. Then,
we compute the Tanimoto similarity for each molecule in
the non-reference dataset against every molecule in the cho-
sen reference dataset. This process yields a distribution of
pairwise similarities, illustrating the degree of resemblance
between molecules in the non-reference dataset and those
in the reference dataset. Additionally, we calculate the self-
similarity within the reference dataset by determining the
Tanimoto similarity for all pairs of molecules within it. Ana-
lyzing the obtained similarity distributions allows us to as-
sess the relationship between the datasets and understand
both the inter-dataset similarities and internal similarity of
the reference dataset. We interpret our results by introducing
high- and low-similarity reference values. This choice is mo-
tivated by previous studies of Tanimoto similarity (Liu et al.,
2018; Moret et al., 2023). A similarity of 0.1 or less is consid-
ered to indicate no significant molecular similarity (Liu et al.,
2018). Moreover, a nearest neighbor similarity to the train-
ing set above 0.4 indicates enhanced prediction performance
and increased machine learning model confidence (Liu et al.,
2018; Moret et al., 2023).

2.2 Molecular descriptors

As mentioned above, we perform our similarity analysis with
two different molecular representations as implemented in
RDKit: the RDKit topological fingerprint (Landrum, 2022)
and the Molecular ACCess System (MACCS) fingerprint
(Accelrys, 2011). The MACCS fingerprint consists of 166
keys (RDKit’s version has 167 keys as key 0 is an unused
dummy key) which represent different molecular features
(e.g., number of rings or atoms of a certain element, Fig. 3b).
The topological fingerprint is based on enumeration of paths
in the 2D molecular structure (Fig. 3c). We used default hy-
perparameter values for the topological fingerprint (a maxi-
mum path length of seven, two bits per hash, and a finger-
print length of 2048 bits). A wide variety of fingerprints and
molecular representations have been developed in chemin-
formatics and more recently in chemistry, physics, and ma-
terials science (Himanen et al., 2020; Langer et al., 2022).
In this paper, we limit ourselves to the topological and the
MACCS fingerprints out of practicality and relevance. Both
fingerprints have been used in atmospheric chemistry ma-
chine learning applications (Lumiaro et al., 2021; Besel et al.,
2023, 2024) and are therefore pertinent for our comparison.
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Table 1. The molecular datasets used in our similarity analysis comparing atmospheric compounds to metabolite and drug compounds. The
datasets were downloaded 8 January 2024 in SMILES (Simplified Molecular Input Line Entry System) format (xyz in the case of QM9). The
reported dataset sizes were obtained after data preprocessing, which involved removing unparsable SMILES representations and eliminating
duplicate entries.

Name Data Type of compound Elements Exp. Comp. Ref.
instances data data

Gecko 166 434 Atmospheric C, O, H, N N Y Isaacman-Vanwertz
and Aumont (2021)

Wang 3414 Atmospheric C, O, N, H, Cl, S, Br N Y Wang et al. (2017)

Quinones 69 599 Atmospheric C, N, O, H, P N Y Tabor et al. (2019),
Krüger et al. (2022)

nablaDFT 1 004 918 Druglike Br, C, N, H, O, S, Cl, F N Y Polykovskiy et al.
(2020), Khrabrov et al.
(2022)

QM9 133 885 Druglike O, C, H, N, F N Y Ruddigkeit et al.
(2012), Ramakrishnan
et al. (2014)

MONA 681 692 Majority metabolites
and drug molecules

H, C, O, Cl, Si, I, S, N, Br,
F, Na, P, Co, B, K, Fe, Ge,
Sn, Cu, Mg, Pd, Al, Ni, Pt,
Cr, Au, Se, Zn, Hg, As

Y Y MassBank of North
America (2024)

MassBank Europe 21 772 Small molecules
relevant to
metabolomics,
exposomics, and
environmental samples

C, O, H, Cl, Si, I, S, N, B,
Br, F, P, As, Ge, Sn, Cu,
Na, Pd, Al, Co, Ni, Pt, Se,
Zn, Hg, K

Y N MassBank consortium
(2024)

Figure 3. Pictorial overview of the two molecular fingerprints
used in our analysis. (a) A ball-and-stick representation of o-
benzoquinone. (b) The MACCS fingerprint contains 166 keys
which correspond to answers to yes-or-no questions regarding the
presence of molecular features, such as whether there is a ring and
if it is a 6-membered ring (keys 163 and 165), or if there is more
than one oxygen or more than one double-bonded oxygen (keys 136
and 146). (c) The topological fingerprint encodes paths in the two-
dimensional molecular structure. The panel shows an example path
length traversing four atoms.

We performed a molecular structure analysis in RDKit,
and the functional group analysis using the APRL Substruc-
ture Search Program (Ruggeri and Takahama, 2016). For the
sake of clarity, we chose to not display the following cate-
gories returned by the program (Figs. 4 and 5 in the Results

section) due to redundant information (“ester, all”, “carbon
number”) or to a lack of correspondence to a functional group
(“zeroeth group”, “C=C–C=O in non-aromatic ring”, “aro-
matic CH”, “alkane CH”, “C=C (non-aromatic)”, “alkene
CH”, “nC-OHside-a” and “carbon number on the acid-side
of an amide (asa)”).

3 Results

In what follows, we describe our similarity analysis of at-
mospheric molecules and how they compare to other com-
pounds found in public molecular datasets. Our initial fo-
cus is on molecular structure and composition, followed by
a comparison of molecular fingerprint representations. Sub-
sequently, we illustrate the implications of our analysis in
two central applications for machine learning in atmospheric
chemistry: computational property prediction and the analy-
sis of mass spectra.

3.1 Molecular structure comparison

Figure 4 presents a selected number of molecular features
for the three atmospheric datasets included in our work.
In Fig. 4a, the molecular size, as measured by the num-
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ber of non-hydrogen atoms, varies across datasets, averaging
to approximately 10, 20, and 30 for the Wang, Gecko, and
Quinone datasets, respectively. The non-hydrogen atoms are
mainly oxygen and carbon atoms (see Table 1 and Fig. 4b).
The high average O : C ratio of the Gecko molecules suggests
that they are appreciably more oxidized than the Wang and
Quinone compounds. The Wang molecules are more satu-
rated, as indicated by their high H : C ratio. Functional group
analysis reveals common oxygen-carrying groups to be hy-
droxyl, carbonyl, ketone, and carboxylic acid groups in all
three sets (panel c). Furthermore, over half of the Gecko
molecules contain hydroperoxide and nitrate groups, unlike
the Wang (approx. less than a third) and Quinone (absent)
compounds.

We now turn our focus to the non-atmospheric molecules
which primarily comprise metabolites and druglike com-
pounds. Figure 5 compares QM9, nablaDFT, MassBank Eu-
rope, and MONA datasets (Table 1). The molecular size in
these datasets varies over a wider range than in the atmo-
spheric datasets. While QM9, nablaDFT, and MassBank Eu-
rope have a similar size (average 9, 21, and 22, respectively,
as measured by the non-hydrogen atom number) to the at-
mospheric compounds, the average MONA compounds are
larger (68 non-hydrogen atoms). In particular, the largest
MONA molecules reach up to 230 non-hydrogen atoms.
Such large compounds are not expected to be airborne, ex-
cept when volatilized for mass spectrometry analysis or the
like. Compared to the atmospheric molecules, these datasets
are markedly less oxidized and more saturated (low O : C and
high H : C, respectively, Fig. 4b). Oxygen-carrying groups
such as hydroxyls, carbonyls, esters, and ethers appear in
both atmospheric and non-atmospheric datasets (Fig. 4c).
Functional groups such as peroxides and nitrates are less
prevalent in non-atmospheric than in atmospheric com-
pounds. Finally, amides and amines, the most common nitro-
gen carrying groups in the non-atmospheric compounds, are
rare in our atmospheric datasets. We discuss possible causes
for these outlined differences in Sect. 4.

3.2 Molecular fingerprint similarity

The molecular structure comparison presented above can be
used to identify similarities between atmospheric molecules
and other compound classes. However, in machine learning
applications, the molecules are often represented in a differ-
ent way, e.g, using molecular fingerprints. Below, we make
a similarity comparison using two types of fingerprints – the
topological and MACCS fingerprints – to inspect molecular
similarities as they would appear to a machine learning algo-
rithm.

3.2.1 t-SNE clustering

In Fig. 6, we compare the atmospheric and non-atmospheric
molecules using t-SNE. In t-SNE plots, the degree of simi-

larity among different molecular datasets is discerned by the
presence of shared clusters. Figure 6a shows t-SNE cluster-
ing using the topological fingerprint as the molecular rep-
resentation. What stands out is the encompassing cluster
or halo of MONA molecules, which does not overlap with
molecules from the other datasets. Meanwhile, the nablaDFT
dataset forms a central cluster which overlaps with Mass-
Bank Europe as well as MONA molecules – an expected re-
sult due to the presence of druglike molecules in all three
datasets. On the left, a group of smaller but similar clusters
appears, which also include the QM9 and MONA datasets.
Barring a small subset of the Wang and Quinone compounds,
these non-atmospheric datasets share no appreciable clusters
with the atmospheric compounds which instead form their
own, separate clusters. We see both similarities and differ-
ences among the atmospheric datasets, as the Gecko and
Wang molecules cluster together, but the Quinones form their
own clusters.

In Fig. 6b, we have clustered the molecules using the
MACCS fingerprint representation. We observe a similar be-
havior as for the topological fingerprint. However, the outer
ring of MONA molecules now also encompasses portions of
the Quinones and Gecko datasets, suggesting that MONA is
in part atmospheric-like when viewed through the MACCS
representation. In contrast, the topological fingerprint pro-
duced more distinct clusters with little overlap between at-
mospheric and non-atmospheric molecules.

We tested the robustness of our t-SNE analysis with re-
spect to different perplexity hyperparameter values (Ap-
pendix A; see Figs. A1 and A2, and refer to the Methods
section for a brief explanation). For perplexities of 50 and
100, we find consistent outcomes. However, for both finger-
prints, one central cluster forms at a lower perplexity of 5, en-
compassing molecules from all datasets. Moreover, an outer
cluster emerges of mainly MONA and Gecko molecules for
the topological fingerprint (see Fig. A1) and of MONA,
Gecko, and Quinone molecules for the MACCS fingerprint
(see Fig. A2). In summary, the qualitative t-SNE analysis
separates atmospheric and non-atmospheric molecules al-
beit more so with the topological than the MACCS finger-
print. This finding suggests low similarity across the different
chemical domains.

3.2.2 Tanimoto similarity distributions

Next, we conducted a quantitative comparison of molecu-
lar fingerprint similarity using the Tanimoto similarity index
which ranges from one for perfect to zero for no similarity
(see Sect. 2). We utilized either Gecko or Wang as our refer-
ence atmospheric dataset for two separate comparisons. The
compounds in the reference dataset were used to compute
pairwise Tanimoto similarities with molecules from other
datasets. This analysis was repeated using both the topologi-
cal and MACCS fingerprints. For facilitating the assessment,
we use a high-similarity reference value of 0.4 and a low sim-
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Figure 4. Molecular structure analysis of the atmospheric molecules in terms of molecular size as represented by non-hydrogen atom count
(a, histogram normalized so bar heights sum to one), mean and standard deviation of atomic ratios (b), and functional groups (c, present in
≥ 1 % of dataset).

Figure 5. Molecular structure analysis of the non-atmospheric molecules in terms of molecular size as represented by non-hydrogen atom
count (a, histogram normalized so bar heights sum to one), mean and standard deviation of atomic ratios (b), and functional groups (c,
present in ≥ 1 % of dataset).
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Figure 6. Results of t-distributed stochastic neighbor embedding (t-SNE) analysis of different atmospheric and non-atmospheric molecular
datasets using a perplexity of 50 and 5000 as the maximum number of iterations. (a) Similarity of topological fingerprints. (b) Similarity of
MACCS fingerprints.

ilarity reference value of 0.1, as detailed in Sect. 2. Figure B1
in Appendix B shows examples of molecules with similari-
ties at these reference values.

In Fig. 7a–d, we analyzed molecular similarity based on
the topological fingerprint. The figures depict normalized
similarity density distributions, providing insight into the fre-
quency of different similarity values between compounds in
the compared datasets. We will utilize the locations of the
similarity density distribution peaks to discuss trends.

We begin by establishing a similarity relationship among
compounds in our atmospheric datasets. In Fig. 7a, the dis-
tribution peaks are all below 0.1, indicating that the Wang
compounds hold, as a rule, little resemblance to other at-
mospheric compounds. This is also true amongst the Wang
molecules themselves, suggesting that this dataset is diverse.
In Fig. 7b, we observe that the Gecko dataset is of intermedi-
ate similarity (peak between 0.1 and 0.4) to the Quinones set.
Moreover, the Gecko molecules have intermediate similarity
to each other and are thus less diverse than in the Wang set.

Next, we compare the atmospheric and non-atmospheric
dataset similarities based on the topological fingerprint in
Fig. 7c and d. Overall, the Wang compounds have mostly
low similarities to nablaDFT, QM9, and MassBank Europe,
albeit with visible fractions of intermediate similarities. In-
terestingly, MONA is the only dataset with a similarity dis-
tribution peak in the region we define as intermediate when
compared to the Wang dataset. Meanwhile, both MONA and
nablaDFT have their similarity distribution peaks at interme-
diate values when compared to Gecko. On the other hand,
MassBank Europe and QM9 are on the boundary between
low and intermediate similarity values compared to Gecko.
Notably, when compared to Gecko, the Wang compounds’
similarity distribution peak is at lower values than those of
the non-atmospheric datasets (though the Wang distribution
is more right-skewed to intermediate values). In summary, no
appreciable degree of similarities of topological fingerprints
was in our high-similarity region, not when comparing atmo-

spheric compounds to non-atmospheric molecules or among
different atmospheric datasets themselves.

An analogous comparison for the MACCS fingerprint
(Fig. 8) revealed similar trends as those for the topologi-
cal fingerprint. Overall, the similarity distributions are less
skewed than those of the topological fingerprint. Moreover,
molecules also appear more similar for the MACCS finger-
print. For instance, the Gecko self-similarities now peak in
the high-similarity region (> 0.4). Moreover, similarity dis-
tributions comparing the Quinone and Wang datasets with
Gecko compounds peak at intermediate similarity, with vis-
ible fractions of the distributions at high similarity values.
Also, the Wang compounds have appreciably higher similari-
ties to parts of the Quinone compounds. All non-atmospheric
similarity distributions peak at intermediate values when
compared to both Wang and Gecko (Fig. 8c–d). In addi-
tion, MONA and MassBank Europe have a visible frac-
tion of high-similarity to the Gecko and Wang compounds.
We also note that the similarity distributions between atmo-
spheric datasets are broader than between atmospheric and
non-atmospheric compounds.

In Appendix D, we investigate a subset of the Tanimoto
similarities that belong to the nearest neighbors (i.e., com-
pounds with highest similarity). Such a comparison could
reveal if the large datasets have local subsets in the high-
similarity region. In Fig. D1, the nearest-neighbor similar-
ity for the topological fingerprint is shown. All atmospheric
compounds have nearest neighbors in the high-similarity re-
gion within the reference datasets. In contrast, the majority
of non-atmospheric datasets have nearest neighbors in the
intermediate similarity region. Figure D2, which depicts the
nearest-neighbor similarity for the MACCS fingerprints, re-
veals a similar trend: most datasets show nearest neighbors in
the high-similarity region, with the exception of nablaDFT.

Figures D3 and D4 provide additional context. In Fig. D3,
which considers the topological fingerprint, most Wang com-
pounds have nearest neighbors in the high-similarity region,
whereas nablaDFT and Quinones are exceptions. Nearest
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Figure 7. The distribution of pairwise Tanimoto similarities between topological fingerprints. The Tanimoto similarity distribution between
atmospheric molecules with the Wang (a) and Gecko (b) molecules. The Tanimoto similarity between the non-atmospheric molecules with
the Wang (c) and Gecko (d) datasets, respectively. Vertical lines mark our high and low similarities of 0.1 and 0.4. The histograms were
normalized so that the area under their respective curves integrate to 1.

Figure 8. The distribution of pairwise Tanimoto similarities between MACCS fingerprints. The Tanimoto similarity distribution between
atmospheric molecules with the Wang (a) and Gecko (b) molecules. The Tanimoto similarity between the non-atmospheric molecules with
the Wang (c) and Gecko (d) datasets, respectively. Vertical lines mark our high and low similarities of 0.1 and 0.4. The histograms were
normalized so that the area under their respective curves integrate to 1.

neighbors of Gecko compounds predominantly fall in the
intermediate similarity region, with the exception of Wang
compounds. For the MACCS fingerprints in Fig. D4, Wang
and Gecko compounds both generally have nearest neigh-
bors in the high-similarity region. However, nablaDFT and
Quinones are notable exceptions, with Quinones being the
only dataset where the majority of nearest neighbors fall be-
low the high-similarity threshold. This result could be ex-
plained by the homogeneity of the Quinones dataset, which
consists of a single compound class, limiting the structural
diversity of potential nearest neighbors.

From these comparisons (Figs. D1–D4), we observe
that while some Wang and Gecko compounds have high-
similarity nearest neighbors in non-atmospheric datasets, the
overall suitability of existing datasets for atmospheric sci-
ence remains limited.

4 Discussion

In Figs. 4 and 5, we observe a number of features in the
molecular structure of atmospheric molecules which set them
apart from the other compound classes in terms of functional
groups, elemental composition, and size (only compared to
MONA). These differences indicate what type of extrapola-
tion a machine learning model would have to do if transferred
from one domain to the other. In particular, atmospheric ox-
idation results in a set of organic compounds with distinct
atomic ratios and functional groups that are rarely found in
other domains. These compounds are primarily made up of
carbon, hydrogen, oxygen, and some nitrogen atoms. They
stem from volatile emissions, primarily composed of hydro-
gen and carbon, with nitrogen and oxygen introduced dur-
ing oxidation. Autoxidation, in particular, increases the oxy-
gen content, resulting in elevated O : C ratios in atmospheric
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datasets. Oxygen predominantly incorporates into functional
groups such as peroxide, nitrate, hydroxyl, carbonyl, and ke-
tones.

Our comparison of nitrogen-containing functional groups
instead revealed a lack of amine and amide content in our
atmospheric compound datasets compared to the other com-
pound classes. We note that the atmosphere is known to con-
tain numerous reduced nitrogen compounds (estimated to be
at least hundreds; Ge et al., 2011). Yet, these compounds are
typically presumed to quickly combine with acidic molecules
or clusters to form aerosol particles in the atmosphere. Con-
sequently, they are generally excluded from gas-phase oxida-
tion reactions in simulation models such as MCM or Gecko-
A, which explains their absence in our study. These artifi-
cial biases in the computational generation of atmospheric
compounds necessitate scrutiny and awareness when curat-
ing atmospheric datasets and developing models based on
such datasets depending on application area.

Furthermore, the similarity between molecular representa-
tions such as fingerprints can unveil whether compounds bear
similarity to a machine learning model that utilizes such rep-
resentations for molecular predictions. Here, the t-SNE and
Tanimoto fingerprint similarity metrics revealed low similar-
ities across molecular datasets and compound classes. The
t-SNE analysis showed that the atmospheric compounds, be-
sides a certain similarity to MONA and nablaDFT, are dis-
tinct as seen through the molecular descriptors (topological
and MACCS fingerprint). Moreover, the Tanimoto similar-
ity between atmospheric and non-atmospheric molecules is
low and, as a rule, below our high-similarity reference value
(Figs. 7 and 8). These results reinforce the conclusion that at-
mospheric compounds should be considered out-of-domain
compounds for models which have been trained on drug- or
metabolite-like compounds.

Our similarity analysis also revealed that our three atmo-
spheric datasets, albeit sharing molecular features such as
common functional groups and relative atomic ratios, con-
tain a diverse array of compounds. Relative to the compari-
son of atmospheric and non-atmospheric compounds, we ob-
served that the three atmospheric datasets had a larger frac-
tion of compounds of intermediate similarity. However, we
observed few to no high Tanimoto similarity pairs between
the three atmospheric datasets for the topological fingerprint,
while a larger fraction of high-similarity pairs emerged for
the MACCS fingerprint. These results could be used in fu-
ture work to curate a diverse set of atmospheric molecules
for model training or to assess current blind spots in existing
sets.

Moreover, the Tanimoto similarity analysis of compounds
from the same atmospheric datasets (Gecko or Wang) re-
vealed a difference in the degree of self-similarity which
can be traced back to how these datasets were generated.
In Figs. 7 and 8, we observed that Gecko molecules exhibit
greater similarity to each other, while the Wang compounds
are more diverse. This difference in dataset homogeneity

can be attributed to the distinct generation processes of the
two datasets: Wang was constructed from over 100 precur-
sor compounds, while Gecko was constructed from only 3.
Moreover, in Gecko, the much higher average O : C ratio (and
lower H : C ratio) is due to inclusion of more oxidation steps
during dataset generation compared to that of Wang.

The analyses conducted using the t-SNE and Tanimoto
metrics reveal varying perspectives on dataset similarity.
In the Tanimoto similarity analysis of the atmospheric
datasets, the Gecko molecules have a greater similarity to
the Quinone molecules, whereas in the t-SNE analysis the
Wang molecules appear more adjacent. These disparities in
perceived similarity arise from the fundamental differences
in the algorithms employed by Tanimoto and t-SNE.

Tanimoto analysis only compares molecular features that
are present (represented by ones in the fingerprint) in either
molecule, while t-SNE considers both the absence and pres-
ence of features (both ones and zeroes) when determining
adjacency or similarity in high-dimensional space. Conse-
quently, t-SNE may group molecules based on a common
lack of features which the Tanimoto analysis does not. The
absence of shared features does not necessarily imply true
similarity unless the molecular descriptor captures all molec-
ular structure features, highlighting a limitation of t-SNE
for similarity analysis with molecular fingerprints. This dis-
tinction in methodology can elucidate why the Gecko and
Quinone datasets appear relatively more similar in the Tan-
imoto analysis compared to the t-SNE analysis or why the
similarity between the Wang and Gecko datasets is relatively
high in t-SNE but lower in Tanimoto analysis.

Finally, our comparisons in Figs. 7 and 8 highlight the
varying degree of atmospheric dataset similarity depending
on the molecular descriptor utilized for representing their
structures. As alluded to above, a comprehensive molecular
similarity measure should be based on an encoding of the
entire molecular structure into the descriptor. In this study,
we assessed similarity using both topological and MACCS
molecular fingerprints. The generally low levels of similarity
observed across atmospheric datasets could suggest a poten-
tial to develop molecular fingerprints tailored to atmospheric
compounds to better capture their unique molecular structure
features. Such explorations could be the topic of future work.

5 Outlook

Atmospheric compounds constitute a vast and diverse chem-
ical space. Their unique characteristics, coupled with the
sheer number of atmospheric compounds, make collecting
experimental or high-accuracy computational data both time-
consuming and challenging. Thus, one major challenge to ad-
vancing data-driven methods in atmospheric chemistry is the
current absence of curated datasets. Therefore, this paper in-
vestigated how similar atmospheric molecules are compared
to large and openly available datasets that have been utilized
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in machine learning. The current challenges and data gaps
elucidated by our similarity analysis and discussion above
can be addressed in future work in a number of ways.

One primary application of our similarity analysis is to
serve as a foundation for dataset assembly and to fill data
gaps for atmospheric chemistry research. This endeavor will
be based on identifying relatively similar datasets from other
chemical domains. Once identified, such molecular datasets
can be used to mend data gaps and to improve machine learn-
ing development in atmospheric research. However, since
compounds’ similarity is dependent on molecular represen-
tation and application area, data augmentation needs to be
judged on a case-by-case basis. As more atmospheric re-
search data, whether computational or experimental, become
available, these models can be further refined. Below, we list
additional considerations when supplementing atmospheric
datasets with larger curated ones from different chemical do-
mains.

Currently, the limited number of atmospheric datasets lack
comprehensive coverage of multiple relevant molecular tar-
get properties. For example, a dataset may include vapor
pressures but not electronic properties or mass spectra. This
incomplete coverage leads to data gaps, even when combin-
ing multiple datasets, as seen in our investigations.

As already mentioned, to address these cases of missing
properties, incorporating existing datasets or models from
other disciplines is an alternative to gain larger datasets and
potentially improve model training. However, in addition to
structural dissimilarity issues, such data augmentation can
be challenging due to potential mismatches in target prop-
erty coverage. For instance, atmospheric particle formation
involves compounds with low volatility, which can be char-
acterized by properties such as extremely low vapor pres-
sures. These properties often deviate from typical chemistry
contexts. In Fig. 9, we have compared vapor pressure dis-
tributions between oxidized atmospheric compounds from a
subset of the Gecko dataset and tabulated values from the
Handbook of Chemistry and Physics. This comparison illus-
trates the underrepresentation of low-pressure target values
in generic reference datasets.

Moreover, not only assessing the overlap of target values,
but also carefully examining the target data type is crucial.
Each property must be evaluated in the context of its rele-
vance to atmospheric chemistry and its potential impact on
the overall dataset integration process. Such considerations
become particularly relevant in mass spectrometry applica-
tions. In this study, we compared atmospheric compounds
to those found in large mass spectrometric data banks. This
choice was based on the central role of mass spectrometry
in atmospheric chemistry for studying molecular-level pro-
cesses (Nozière et al., 2015).

In this study, we have found certain overlaps in terms of
molecular fingerprint similarity between atmospheric com-
pounds and molecules in the MassBank datasets (MONA in
particular). However, the fragmentation mass spectrometric

Figure 9. Computationally predicted saturation vapor pressure of
atmospheric compounds in a subset of the Gecko dataset studied
here called GeckoQ (Besel et al., 2023), at 298 K (blue), and vapor
pressures listed in the CRC Handbook of Chemistry and Physics
(Rumble, 2023) in a table entitled “Vapor Pressure for Inorganic and
Organic Substances at Various Temperatures”, computed at 298 K
using the Clausius–Clapeyron equation. The volatility regions are
assigned according to those defined by Donahue et al. (2012):
ELVOC (extremely low volatility organic compound), LVOC (low
volatility organic compound), SVOC (semivolatile organic com-
pound), IVOC (intermediate volatility organic compound), and
VOC (volatile organic compound). We assumed the ideal gas law
and a molecular weight of an average molecule in organic aerosols
(200 g mol−1; Donahue et al., 2011).

techniques commonly employed when generating MassBank
data diverge from the prevailing methods utilized in field
campaigns, which predominantly rely on chemical ionization
(Nozière et al., 2015; Sandström et al., 2024). Thus, future
development of machine learning tools could be directed to-
wards analysis of the mass spectra primarily collected in at-
mospheric field studies.

A second application of our similarity analysis is for cu-
rating new atmospheric molecular datasets. The persistent
challenges to collecting experimental data for atmospheric
molecules suggest that this function primarily fits as a tool
for computational studies. Here, the similarity analysis could
be used to characterize atmospheric compounds into differ-
ent types based on their location in chemical space (as de-
fined either by the molecular features or fingerprint, or both).
As mentioned in Sect. 4, such characterization can be used
to create tailored datasets for analysis or to construct data-
driven analysis tools based on either diverse or niche groups
of compounds.

Finally, our study underscores that focus should be given
to initiatives aimed at sharing atmospheric molecular data in
openly accessible repositories. Examples of such initiatives
have recently been developed, such as the Clusteromics I–V
and Clusterome datasets (Elm, 2021a, b, 2022; Knattrup and
Elm, 2022; Knattrup et al., 2023; Ayoubi et al., 2023), the
Aerosolomics project (Thoma et al., 2022), and repositories
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at University of California, Berkeley (Goldstein, 2024). Still,
improving unambiguous identification of atmospheric com-
pounds requires collection of more relevant reference data.
Given the diverse techniques and instruments employed in
atmospheric science, standardizing data will likely remain
challenging. Thus, effective data sharing should include in-
formation on data quality and comprehensive metadata, in-
cluding instrument versions. This information could be con-
sidered during development of general predictive models, by,
for example, mitigating the impact of instrument versions on
data collection and quality.

6 Conclusions

In this study, we compared atmospheric molecules to com-
pounds commonly used to train machine learning models for
molecular applications. Assessing molecular structure simi-
larity provides a straightforward means to determine whether
atmospheric compounds fall within the scope of existing ma-
chine learning methods. This assessment aids in directing
the development of machine learning techniques within this
relatively unexplored chemical domain. Here, we focused
on comparing molecules with two molecular descriptors –
the MACCS and topological fingerprints. Analysis of both
representations revealed low similarity between progres-
sively oxygenated atmospheric reaction products and non-
atmospheric molecules made up of primarily metabolites and
druglike compounds. Notably, the MONA mass spectral li-
brary exhibited the highest similarity to atmospheric com-
pounds. Yet, upon scrutiny of molecular size, atomic ra-
tios, and common functional groups, we observed dispari-
ties between MONA molecules (and other non-atmospheric
datasets) and atmospheric compounds. These discrepancies
highlight the need for careful testing and validation be-
fore using models trained on MassBank-like datasets in at-
mospheric chemistry. The differences we observe between
chemical domains and between the atmospheric datasets can
be used to guide future dataset curation for atmospheric
molecular research. Such datasets have laid the foundation
for data-driven method development in other chemical do-
mains. Thus, we hope this study will motivate the broader at-
mospheric chemistry community to establish and contribute
to infrastructure for public data sharing. Closing the current
data gap regarding atmospheric compounds will expedite the
shift towards a data-driven era in molecular atmospheric re-
search. This advancement will facilitate the development of
high-accuracy and high-throughput analysis tools, offering
essential insights into the molecular-level atmospheric pro-
cesses that influence both climate and air quality.
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Appendix A: t-SNE analysis at different perplexity
values

Figure A1. The t-SNE analysis of the datasets’ topological fingerprints at perplexity values of 5 (a), 50 (b), and 100 (c).
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Figure A2. The t-SNE analysis of the datasets’ MACCS fingerprints at perplexity values 5 (a), 50 (b), and 100 (c).

Figure A3. The t-SNE analysis of the datasets read in reverse order with respect to Fig. 6 in the main text. (a) Topological fingerprint clusters
and (b) MACCS fingerprint clusters.
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Figure A4. The t-SNE analysis of the datasets without MONA with perplexity of 50. (a) Topological fingerprint clusters and (b) MACCS
fingerprint clusters.

Appendix B: Example molecule pairs at different
similarity values

Figure B1. Examples of molecules with similarities close to the lower (0.1) and upper (0.4) similarity thresholds applied in this paper when
discussing high and low similarity.
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Appendix C: Percentage of molecule pairs in high- and
low-similarity regions

Table C1. The number similarity values in low, high, or intermediate similarity regions when datasets are compared with the MACCS
fingerprints and to the Wang dataset.

Dataset Low (≤ 0.1) % Intermediate (0.1 to < 0.4) % High (≥ 0.4) %

Wang 5.7 65.4 28.9
Gecko 4.8 59.2 35.9
Quinones 6 88.1 5.9
MONA 3.1 69 27.9
MassBank Europe 16.7 75.4 7.8
QM9 24.3 73.1 2.6
nablaDFT 21.3 78.5 0.2

Table C2. The number similarity values in low, high, or intermediate similarity regions when datasets are compared with the MACCS
fingerprints and to the Gecko dataset.

Dataset Low (≤ 0.1) % Intermediate (0.1 to < 0.4) % High (≥ 0.4) %

Gecko 0 20.8 79.2
Wang 4.8 59.2 35.9
Quinones 0 81.5 18.5
MONA 0.5 80 19.4
MassBank Europe 14.3 79.1 6.5
QM9 16.8 82 1.3
nablaDFT 8.2 91.4 0.4

Table C3. The number similarity values in low, high, or intermediate similarity regions when datasets are compared with the topological
fingerprints and to the Wang dataset.

Dataset Low (≤ 0.1) % Intermediate (0.1 to < 0.4) % High (≥ 0.4) %

Wang 45.9 52 2.1
Gecko 41.5 56.9 1.7
Quinones 66.7 32.3 1
MONA 43.1 56.9 0
MassBank Europe 66.6 33.1 0.4
QM9 64.7 35.2 0.1
nablaDFT 69.7 30.2 0.2
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Table C4. The number similarity values in low, high, or intermediate similarity regions when datasets are compared with the topological
fingerprints and to the Gecko dataset.

Dataset Low (≤ 0.1) % Intermediate (0.1 to < 0.4) % High (≥ 0.4) %

Gecko 3.1 80.5 16.4
Wang 41.5 56.9 1.7
Quinones 7.9 88.8 3.4
MONA 3.3 96.6 0.1
MassBank Europe 35.1 64.1 0.8
QM9 50.2 49.8 0
nablaDFT 10.4 89.4 0.2

Appendix D: Maximum Tanimoto similarity per
compound

D1 Maximum similarity for each non-reference
compound

Figure D1. The distributions of maximum Tanimoto similarity are shown for non-reference compounds in different comparisons based
on topological fingerprints. Panels (a) and (b) depict the distributions of maximum Tanimoto similarity between atmospheric molecules
and Wang molecules (a) and Gecko molecules (b), respectively. Panels (c) and (d) present the distributions for comparisons between non-
atmospheric molecules and Wang molecules (c) and Gecko molecules (d). Vertical lines at similarity values of 0.1 and 0.4 indicate reference
values for low and high similarity, respectively. The histograms have been normalized such that the area under each curve equals 1.
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Figure D2. The distributions of maximum Tanimoto similarity are shown for non-reference compounds in different comparisons based on
MACCS fingerprints. Panels (a) and (b) depict the distributions of maximum Tanimoto similarity between atmospheric molecules and Wang
molecules (a) and Gecko molecules (b), respectively. Panels (c) and (d) present the distributions for comparisons between non-atmospheric
molecules and Wang molecules (c) and Gecko molecules (d). Vertical lines at similarity values of 0.1 and 0.4 indicate reference values for
low and high similarity, respectively. The histograms have been normalized such that the area under each curve equals 1.

D2 Maximum similarity for each reference compound

Figure D3. The distributions of maximum Tanimoto similarity are shown for reference compounds in different comparisons based on
topological fingerprints. Panels (a) and (b) depict the distributions of maximum Tanimoto similarity between Wang molecules (a) and
Gecko molecules (b) and atmospheric molecules, respectively. Panels (c) and (d) present the distributions for comparisons between Wang
molecules (c) and Gecko molecules (d) and non-atmospheric molecules. Vertical lines at similarity values of 0.1 and 0.4 indicate reference
values for low and high similarity, respectively. The histograms have been normalized such that the area under each curve equals 1.
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Figure D4. The distributions of maximum Tanimoto similarity are shown for reference compounds in different comparisons based on
MACCS fingerprints. Panels (a) and (b) depict the distributions of maximum Tanimoto similarity between Wang molecules (a) and
Gecko molecules (b) and atmospheric molecules, respectively. Panels (c) and (d) present the distributions for comparisons between Wang
molecules (c) and Gecko molecules (d) and non-atmospheric molecules. Vertical lines at similarity values of 0.1 and 0.4 indicate reference
values for low and high similarity, respectively. The histograms have been normalized such that the area under each curve equals 1.
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Besel, V., Todorović, M., Kurtén, T., Vehkamäki, H., and
Rinke, P.: The search for sparse data in molecular datasets:
Application of active learning to identify extremely low
volatile organic compounds, J. Aerosol Sci., 179, 106375,
https://doi.org/10.1016/J.JAEROSCI.2024.106375, 2024.

Bianchi, F., Kurtén, T., Riva, M., Mohr, C., Rissanen, M. P., Roldin,
P., Berndt, T., Crounse, J. D., Wennberg, P. O., Mentel, T. F.,
Wildt, J., Junninen, H., Jokinen, T., Kulmala, M., Worsnop,
D. R., Thornton, J. A., Donahue, N., Kjaergaard, H. G., and
Ehn, M.: Highly Oxygenated Organic Molecules (HOM) from
Gas-Phase Autoxidation Involving Peroxy Radicals: A Key Con-
tributor to Atmospheric Aerosol, Chem. Rev., 119, 3472–3509,
https://doi.org/10.1021/acs.chemrev.8b00395, 2019.

Brouard, C., Shen, H., Dührkop, K., D’Alché-Buc, F., Böcker,
S., and Rousu, J.: Fast metabolite identification with In-
put Output Kernel Regression, Bioinformatics, 32, i28–i36,
https://doi.org/10.1093/BIOINFORMATICS/BTW246, 2016.

Donahue, N. M., Epstein, S. A., Pandis, S. N., and Robinson, A.
L.: A two-dimensional volatility basis set: 1. organic-aerosol
mixing thermodynamics, Atmos. Chem. Phys., 11, 3303–3318,
https://doi.org/10.5194/acp-11-3303-2011, 2011.

Donahue, N. M., Kroll, J. H., Pandis, S. N., and Robinson, A. L.:
Atmospheric Chemistry and Physics A two-dimensional volatil-
ity basis set-Part 2: Diagnostics of organic-aerosol evolution, At-
mos. Chem. Phys, 12, 615–634, https://doi.org/10.5194/acp-12-
615-2012, 2012.

Dührkop, K., Shen, H., Meusel, M., Rousu, J., and Böcker, S.:
Searching molecular structure databases with tandem mass spec-
tra using CSI:FingerID, P. Natl. Acad. Sci. USA, 112, 12580–
12585, https://doi.org/10.1073/pnas.1509788112, 2015.

Dührkop, K., Fleischauer, M., Ludwig, M., Aksenov, A. A., Mel-
nik, A. V., Meusel, M., Dorrestein, P. C., Rousu, J., and Böcker,
S.: SIRIUS 4: a rapid tool for turning tandem mass spectra into
metabolite structure information, Nat. Methods, 16, 299–302,
https://doi.org/10.1038/S41592-019-0344-8, 2019.

Ehn, M., Thornton, J. A., Kleist, E., Sipilä, M., Junninen, H.,
Pullinen, I., Springer, M., Rubach, F., Tillmann, R., Lee, B.,
Lopez-Hilfiker, F., Andres, S., Acir, I. H., Rissanen, M., Joki-
nen, T., Schobesberger, S., Kangasluoma, J., Kontkanen, J.,
Nieminen, T., Kurtén, T., Nielsen, L. B., Jørgensen, S., Kjaer-
gaard, H. G., Canagaratna, M., Maso, M. D., Berndt, T., Petäjä,
T., Wahner, A., Kerminen, V. M., Kulmala, M., Worsnop,
D. R., Wildt, J., and Mentel, T. F.: A large source of low-
volatility secondary organic aerosol, Nature, 506, 476–479,
https://doi.org/10.1038/nature13032, 2014.

Elm, J.: An atmospheric cluster database consisting of sulfuric
acid, bases, organics, and water, ACS Omega, 4, 10965–10974,
https://doi.org/10.1021/acsomega.9b00860, 2019.

Elm, J.: Clusteromics II: Methanesulfonic Acid-Base
Cluster Formation, ACS Omega, 6, 17035–17044,
https://doi.org/10.1021/acsomega.1c02115, 2021a.

Elm, J.: Clusteromics I: Principles, Protocols, and Applications to
Sulfuric Acid-Base Cluster Formation, ACS Omega, 6, 7804–
7814, https://doi.org/10.1021/acsomega.1c00306, 2021b.

Elm, J.: Clusteromics III: Acid Synergy in Sulfuric Acid-
Methanesulfonic Acid-Base Cluster Formation, ACS Omega, 7,
15206–15214, https://doi.org/10.1021/acsomega.2c01396, 2022.
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ton, J. F., Hoffmann, T., Iinuma, Y., Jaoui, M., Kahnt, A.,
Kampf, C. J., Kourtchev, I., Maenhaut, W., Marsden, N.,
Saarikoski, S., Schnelle-Kreis, J., Surratt, J. D., Szidat, S.,
Szmigielski, R., and Wisthaler, A.: The Molecular Identi-
fication of Organic Compounds in the Atmosphere: State
of the Art and Challenges, Chem. Rev., 115, 3919–3983,
https://doi.org/10.1021/cr5003485, 2015.

Oberacher, H.: Wiley Registry of Tandem Mass Spectral Data: MS
for ID, Wiley, ISBN 978-1-118-03744-7, 2012.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion,
B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg,
V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Per-
rot, M., and Duchesnay, E.: Scikit-learn: Machine Learning in
Python, J. Mach. Learn. Res., 12, 2825–2830, 2011.

Peräkylä, O., Riva, M., Heikkinen, L., Quéléver, L., Roldin, P., and
Ehn, M.: Experimental investigation into the volatilities of highly
oxygenated organic molecules (HOMs) , Atmos. Chem. Phys.,
20, 649–669, https://doi.org/10.5194/acp-20-649-2020, 2020.

Polykovskiy, D., Zhebrak, A., Sanchez-Lengeling, B., Golo-
vanov, S., Tatanov, O., Belyaev, S., Kurbanov, R., Artamonov,
A., Aladinskiy, V., Veselov, M., Kadurin, A., Johansson, S.,
Chen, H., Nikolenko, S., Aspuru-Guzik, A., and Zhavoronkov,
A.: Molecular Sets (MOSES): A Benchmarking Platform for
Molecular Generation Models, Front. Pharmacol., 11, 1931,
https://doi.org/10.3389/fphar.2020.565644, 2020.

Pozzer, A., Anenberg, S. C., Dey, S., Haines, A., Lelieveld, J., and
Chowdhury, S.: Mortality Attributable to Ambient Air Pollution:
A Review of Global Estimates, GeoHealth, 7, e2022GH000711,
https://doi.org/10.1029/2022GH000711, 2023.

Pörtner, A. O., Roberts, D., Tignor, M., Poloczanska, E., Minten-
beck, K., Alegrìa, A., Craig, M., Langsdorf, S., Löschke, S.,
Möller, V., Okem, A., and Rama, B. (Eds.): IPCC, 2022: Climate
change 2022: Impacts, Adaptation and Vulnerability, Cambridge
University Press, https://doi.org/10.1017/9781009325844, 2023.

Ramakrishnan, R., Dral, P. O., Rupp, M., Lilienfeld, O. A. V.,
and Characteristic, S.: Quantum chemistry structures and
properties of 134 kilo molecules, Sci. Data, 1, 140022,
https://doi.org/10.1038/sdata.2014.22, 2014.

Riccobono, F., Schobesberger, S., Scott, C. E., Dommen, J., Ortega,
I. K., Rondo, L., Almeida, J., Amorim, A., Bianchi, F., Breiten-
lechner, M., David, A., Downard, A., Dunne, E. M., Duplissy,
J., Ehrhart, S., Flagan, R. C., Franchin, A., Hansel, A., Junni-
nen, H., Kajos, M., Keskinen, H., Kupc, A., Kürten, A., Kvashin,
A. N., Laaksonen, A., Lehtipalo, K., Makhmutov, V., Mathot,
S., Nieminen, T., Onnela, A., Petäjä, T., Praplan, A. P., San-
tos, F. D., Schallhart, S., Seinfeld, J. H., Sipilä, M., Spracklen,
D. V., Stozhkov, Y., Stratmann, F., Tomé, A., Tsagkogeorgas, G.,
Vaattovaara, P., Viisanen, Y., Vrtala, A., Wagner, P. E., Weingart-
ner, E., Wex, H., Wimmer, D., Carslaw, K. S., Curtius, J., Don-
ahue, N. M., Kirkby, J., Kulmala, M., Worsnop, D. R., and Bal-
tensperger, U.: Oxidation products of biogenic emissions con-
tribute to nucleation of atmospheric particles, Science, 344, 717–
721, https://doi.org/10.1126/science.1243527, 2014.

Ruddigkeit, L., Deursen, R. V., Blum, L. C., and Reymond, J. L.:
Enumeration of 166 billion organic small molecules in the chem-
ical universe database GDB-17, J. Chem. Inf. Model., 52, 2864–
2875, https://doi.org/10.1021/ci300415d, 2012.

Ruggeri, G. and Takahama, S.: Technical Note: Development
of chemoinformatic tools to enumerate functional groups
in molecules for organic aerosol characterization, Atmos.
Chem. Phys., 16, 4401–4422, https://doi.org/10.5194/acp-16-
4401-2016, 2016.

Rumble, J. R. (Ed.): Handbook of Chemistry and Physics,
CRC Press, Taylor & Francis Group, an Informa Group
company, 104th edn., https://hbcp.chemnetbase.com/
contents/ContentsSearch.xhtml?dswid=-1569 (last access:
25 April 2025), 2023.

Sander, R.: Compilation of Henry’s law constants (version 4.0)
for water as solvent, Atmos. Chem. Phys., 15, 4399–4981,
https://doi.org/10.5194/acp-15-4399-2015, 2015.

Sandström, H.: Similarity-Based Analysis of Atmo-
spheric Organic Compounds for Machine Learning

Geosci. Model Dev., 18, 2701–2724, 2025 https://doi.org/10.5194/gmd-18-2701-2025

https://doi.org/10.1007/978-1-0716-0239-3_9
https://doi.org/10.1038/s41467-022-35692-6
https://doi.org/10.1038/s41598-022-04967-9
https://doi.org/10.1093/BIOINFORMATICS/BTY252
https://doi.org/10.1093/BIB/BBY066
https://doi.org/10.1038/s41592-020-0933-6
https://doi.org/10.1021/cr5003485
https://doi.org/10.5194/acp-20-649-2020
https://doi.org/10.3389/fphar.2020.565644
https://doi.org/10.1029/2022GH000711
https://doi.org/10.1017/9781009325844
https://doi.org/10.1038/sdata.2014.22
https://doi.org/10.1126/science.1243527
https://doi.org/10.1021/ci300415d
https://doi.org/10.5194/acp-16-4401-2016
https://doi.org/10.5194/acp-16-4401-2016
https://hbcp.chemnetbase.com/contents/ContentsSearch.xhtml?dswid=-1569
https://hbcp.chemnetbase.com/contents/ContentsSearch.xhtml?dswid=-1569
https://doi.org/10.5194/acp-15-4399-2015


H. Sandström and P. Rinke: Similarity-based analysis of atmospheric organic compounds 2723

Applications (Version 1), Zenodo [data set, code],
https://doi.org/10.5281/zenodo.14671496, 2025.

Sandström, H., Rissanen, M., Rousu, J., and Rinke,
P.: Data-Driven Compound Identification in Atmo-
spheric Mass Spectrometry, Adv. Sci., 11, 2306235,
https://doi.org/10.1002/ADVS.202306235, 2024.

Saunders, S. M., Jenkin, M. E., Derwent, R. G., and Pilling, M.
J.: Protocol for the development of the Master Chemical Mech-
anism, MCM v3 (Part A): tropospheric degradation of non-
aromatic volatile organic compounds, Atmos. Chem. Phys., 3,
161–180, https://doi.org/10.5194/acp-3-161-2003, 2003.

Sawada, Y., Nakabayashi, R., Yamada, Y., Suzuki, M., Sato, M.,
Sakata, A., Akiyama, K., Sakurai, T., Matsuda, F., Aoki, T., Hi-
rai, M. Y., and Saito, K.: RIKEN tandem mass spectral database
(ReSpect) for phytochemicals: A plant-specific MS/MS-based
data resource and database, Phytochemistry, 82, 38–45,
https://doi.org/10.1016/J.PHYTOCHEM.2012.07.007, 2012.

Scalia, G., Grambow, C. A., Pernici, B., Li, Y. P., and
Green, W. H.: Evaluating Scalable Uncertainty Estima-
tion Methods for Deep Learning-Based Molecular Prop-
erty Prediction, J. Chem. Inf. Model., 60, 2697–2717,
https://doi.org/10.1021/acs.jcim.9b00975, 2020.

Schobesberger, S., Junninen, H., Bianchi, F., Lönn, G., Ehn, M.,
Lehtipalo, K., Dommen, J., Ehrhart, S., Ortega, I. K., Franchin,
A., Nieminen, T., Riccobono, F., Hutterli, M., Duplissy, J.,
Almeida, J., Amorim, A., Breitenlechner, M., Downard, A. J.,
Dunne, E. M., Flagan, R. C., Kajos, M., Keskinen, H., Kirkby,
J., Kupc, A., Kürten, A., Kurtén, T., Laaksonen, A., Mathot,
S., Onnela, A., Praplan, A. P., Rondo, L., Santos, F. D., Schall-
hart, S., Schnitzhofer, R., Sipilä, M., Tomé, A., Tsagkogeorgas,
G., Vehkamäki, H., Wimmer, D., Baltensperger, U., Carslaw,
K. S., Curtius, J., Hansel, A., Petäjä, T., Kulmala, M., Donahue,
N. M., and Worsnop, D. R.: Molecular understanding of atmo-
spheric particle formation from sulfuric acid and large oxidized
organic molecules, P. Natl. Acad. Sci. USA, 110, 17223–17228,
https://doi.org/10.1073/pnas.1306973110, 2013.

Sheridan, R. P., Feuston, B. P., Maiorov, V. N., and Kearsley, S. K.:
Similarity to molecules in the training set is a good discriminator
for prediction accuracy in QSAR, J. Chem. Inf. Comp. Sci., 44,
1912–1928, https://doi.org/10.1021/ci049782w, 2004.

Soleimany, A. P., Amini, A., Goldman, S., Rus, D., Bhatia, S. N.,
and Coley, C. W.: Evidential Deep Learning for Guided Molecu-
lar Property Prediction and Discovery, ACS Cent. Sci., 7, 1356–
1367, 2021.

Sud, M., Fahy, E., Cotter, D., Brown, A., Dennis, E. A., Glass,
C. K., Merrill, A. H., Murphy, R. C., Raetz, C. R., Rus-
sell, D. W., and Subramaniam, S.: LMSD: LIPID MAPS
structure database, Nucleic Acids Res., 35, D527–D532,
https://doi.org/10.1093/NAR/GKL838, 2007.

Tabor, D. P., Gómez-Bombarelli, R., Tong, L., Gordon, R. G.,
Aziz, M. J., and Aspuru-Guzik, A.: Mapping the frontiers of
quinone stability in aqueous media: implications for organic
aqueous redox flow batteries, J. Mater. Chem. A, 7, 12833–
12841, https://doi.org/10.1039/C9TA03219C, 2019.

Taguchi, R. and Ishikawa, M.: Precise and global identi-
fication of phospholipid molecular species by an Or-
bitrap mass spectrometer and automated search en-
gine Lipid Search, J. Chromatogr. A, 1217, 4229–4239,
https://doi.org/10.1016/J.CHROMA.2010.04.034, 2010.

Tanimoto, T. T.: An elementary mathematical theory of classifica-
tion and prediction, Tech. rep., IBM Internal Report, 1958.

Thoma, M., Bachmeier, F., Gottwald, F. L., Simon, M., and Vo-
gel, A. L.: Mass spectrometry-based Aerosolomics: a new ap-
proach to resolve sources, composition, and partitioning of sec-
ondary organic aerosol, Atmos. Meas. Tech., 15, 7137–7154,
https://doi.org/10.5194/amt-15-7137-2022, 2022.

Wallace, W. E. and Moorthy, A. S.: NIST Mass Spectrometry Data
Center standard reference libraries and software tools: Applica-
tion to seized drug analysis, J. Forensic Sci., 68, 1484–1493,
https://doi.org/10.1111/1556-4029.15284, 2023.

Wang, C., Yuan, T., Wood, S. A., Goss, K.-U., Li, J., Ying,
Q., and Wania, F.: Uncertain Henry’s law constants com-
promise equilibrium partitioning calculations of atmospheric
oxidation products, Atmos. Chem. Phys., 17, 7529–7540,
https://doi.org/10.5194/acp-17-7529-2017, 2017.

Wang, M., Carver, J. J., Phelan, V. V., Sanchez, L. M., Garg, N.,
Peng, Y., Nguyen, D. D., Watrous, J., Kapono, C. A., Luzzatto-
Knaan, T., Porto, C., Bouslimani, A., Melnik, A. V., Meehan,
M. J., Liu, W. T., Crüsemann, M., Boudreau, P. D., Esquenazi,
E., Sandoval-Calderón, M., Kersten, R. D., Pace, L. A., Quinn,
R. A., Duncan, K. R., Hsu, C. C., Floros, D. J., Gavilan, R. G.,
Kleigrewe, K., Northen, T., Dutton, R. J., Parrot, D., Carlson,
E. E., Aigle, B., Michelsen, C. F., Jelsbak, L., Sohlenkamp, C.,
Pevzner, P., Edlund, A., McLean, J., Piel, J., Murphy, B. T., Ger-
wick, L., Liaw, C. C., Yang, Y. L., Humpf, H. U., Maansson, M.,
Keyzers, R. A., Sims, A. C., Johnson, A. R., Sidebottom, A. M.,
Sedio, B. E., Klitgaard, A., Larson, C. B., Boya, C. A., Torres-
Mendoza, D., Gonzalez, D. J., Silva, D. B., Marques, L. M., De-
marque, D. P., Pociute, E., O’Neill, E. C., Briand, E., Helfrich,
E. J., Granatosky, E. A., Glukhov, E., Ryffel, F., Houson, H., Mo-
himani, H., Kharbush, J. J., Zeng, Y., Vorholt, J. A., Kurita, K. L.,
Charusanti, P., McPhail, K. L., Nielsen, K. F., Vuong, L., Elfeki,
M., Traxler, M. F., Engene, N., Koyama, N., Vining, O. B., Baric,
R., Silva, R. R., Mascuch, S. J., Tomasi, S., Jenkins, S., Macherla,
V., Hoffman, T., Agarwal, V., Williams, P. G., Dai, J., Neupane,
R., Gurr, J., Rodríguez, A. M., Lamsa, A., Zhang, C., Dorrestein,
K., Duggan, B. M., Almaliti, J., Allard, P. M., Phapale, P., Noth-
ias, L. F., Alexandrov, T., Litaudon, M., Wolfender, J. L., Kyle,
J. E., Metz, T. O., Peryea, T., Nguyen, D. T., VanLeer, D., Shinn,
P., Jadhav, A., Müller, R., Waters, K. M., Shi, W., Liu, X., Zhang,
L., Knight, R., Jensen, P. R., Palsson, B., Pogliano, K., Linington,
R. G., Gutiérrez, M., Lopes, N. P., Gerwick, W. H., Moore, B. S.,
Dorrestein, P. C., and Bandeira, N.: Sharing and community cu-
ration of mass spectrometry data with Global Natural Products
Social Molecular Networking, Nat. Biotechnol., 34, 828–837,
https://doi.org/10.1038/nbt.3597, 2016.

Watanabe, K., Yasugi, E., and Oshima, M.: How to Search the Gly-
colipid data in “LIPIDBANK for Web”, the Newly Developed
Lipid Database in Japan, Trends Glycosci. Glyc., 12, 175–184,
https://doi.org/10.4052/TIGG.12.175, 2000.

Weber, R. J., Li, E., Bruty, J., He, S., and Viant, M. R.:
MaConDa: a publicly accessible mass spectrometry
contaminants database, Bioinformatics, 28, 2856–2857,
https://doi.org/10.1093/BIOINFORMATICS/BTS527, 2012.

Wishart, D. S., Guo, A., Oler, E., Wang, F., Anjum, A., Peters,
H., Dizon, R., Sayeeda, Z., Tian, S., Lee, B. L., Berjanskii, M.,
Mah, R., Yamamoto, M., Jovel, J., Torres-Calzada, C., Hiebert-
Giesbrecht, M., Lui, V. W., Varshavi, D., Varshavi, D., Allen,

https://doi.org/10.5194/gmd-18-2701-2025 Geosci. Model Dev., 18, 2701–2724, 2025

https://doi.org/10.5281/zenodo.14671496
https://doi.org/10.1002/ADVS.202306235
https://doi.org/10.5194/acp-3-161-2003
https://doi.org/10.1016/J.PHYTOCHEM.2012.07.007
https://doi.org/10.1021/acs.jcim.9b00975
https://doi.org/10.1073/pnas.1306973110
https://doi.org/10.1021/ci049782w
https://doi.org/10.1093/NAR/GKL838
https://doi.org/10.1039/C9TA03219C
https://doi.org/10.1016/J.CHROMA.2010.04.034
https://doi.org/10.5194/amt-15-7137-2022
https://doi.org/10.1111/1556-4029.15284
https://doi.org/10.5194/acp-17-7529-2017
https://doi.org/10.1038/nbt.3597
https://doi.org/10.4052/TIGG.12.175
https://doi.org/10.1093/BIOINFORMATICS/BTS527


2724 H. Sandström and P. Rinke: Similarity-based analysis of atmospheric organic compounds

D., Arndt, D., Khetarpal, N., Sivakumaran, A., Harford, K., San-
ford, S., Yee, K., Cao, X., Budinski, Z., Liigand, J., Zhang,
L., Zheng, J., Mandal, R., Karu, N., Dambrova, M., Oth, H.
B. S., Greiner, R., and Gautam, V.: HMDB 5.0: the Human
Metabolome Database for 2022, Nucleic Acids Res., 50, D622–
D631, https://doi.org/10.1093/nar/gkab1062, 2022.

Wissenbach, D. K., Meyer, M. R., Remane, D., Philipp,
A. A., Weber, A. A., and Maurer, H. H.: Drugs of abuse
screening in urine as part of a metabolite-based LC-MS n

screening concept, Anal. Bioanal. Chem., 400, 3481–3489,
https://doi.org/10.1007/s00216-011-5032-1, 2011a.

Wissenbach, D. K., Meyer, M. R., Remane, D., Weber, A. A.,
and Maurer, H. H.: Development of the first metabolite-
based LC-MS n urine drug screening procedure-exemplified
for antidepressants, Anal. Bioanal. Chem., 400, 79–88,
https://doi.org/10.1007/S00216-010-4398-9, 2011b.

Worton, D. R., Decker, M., Isaacman-VanWertz, G., Chan, A. W.,
Wilson, K. R., and Goldstein, A. H.: Improved molecular
level identification of organic compounds using comprehensive
two-dimensional chromatography, dual ionization energies and
high resolution mass spectrometry, Analyst, 142, 2395–2403,
https://doi.org/10.1039/C7AN00625J, 2017.

Geosci. Model Dev., 18, 2701–2724, 2025 https://doi.org/10.5194/gmd-18-2701-2025

https://doi.org/10.1093/nar/gkab1062
https://doi.org/10.1007/s00216-011-5032-1
https://doi.org/10.1007/S00216-010-4398-9
https://doi.org/10.1039/C7AN00625J

	Abstract
	Introduction
	Methods
	Molecular similarity
	Molecular descriptors

	Results
	Molecular structure comparison
	Molecular fingerprint similarity
	t-SNE clustering
	Tanimoto similarity distributions


	Discussion
	Outlook
	Conclusions
	Appendix A: t-SNE analysis at different perplexity values
	Appendix B: Example molecule pairs at different similarity values
	Appendix C: Percentage of molecule pairs in high- and low-similarity regions
	Appendix D: Maximum Tanimoto similarity per compound
	Appendix D1: Maximum similarity for each non-reference compound
	Appendix D2: Maximum similarity for each reference compound

	Code and data availability
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

