
Geosci. Model Dev., 18, 2679–2700, 2025
https://doi.org/10.5194/gmd-18-2679-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.

M
odeldescription

paperPorting the Meso-NH atmospheric model on different GPU
architectures for the next generation of supercomputers
(version MESONH-v55-OpenACC)
Juan Escobar, Philippe Wautelet, Joris Pianezze, Florian Pantillon, Thibaut Dauhut, Christelle Barthe, and
Jean-Pierre Chaboureau
LAERO, Université de Toulouse, CNRS, IRD, Toulouse, France

Correspondence: Jean-Pierre Chaboureau (jean-pierre.chaboureau@univ-tlse3.fr)

Received: 18 September 2024 – Discussion started: 9 October 2024
Revised: 14 February 2025 – Accepted: 4 March 2025 – Published: 14 May 2025

Abstract. The advent of heterogeneous supercomputers
with multi-core central processing units (CPUs) and graph-
ics processing units (GPUs) requires geoscientific codes
to be adapted to these new architectures. Here, we de-
scribe the porting of Meso-NH version 5.5 community
weather research code to GPUs named MESONH-v55-
OpenACC with guaranteed bit reproducibility thanks to its
own MPPDB_CHECK library. This porting includes the use
of OpenACC directives, specific memory management, com-
munications optimization, development of a geometric multi-
grid (MG) solver and creation of an in-house preprocessor.
Performance on the AMD MI250X GPU Adastra platform
shows up to 6.0× speedup (4.6× on the NVIDIA A100
Leonardo platform), and achieves a gain of a factor of 2.3
in energy efficiency compared to AMD Genoa CPU Adas-
tra platform using the same configuration with 64 nodes. The
code is even 17.8× faster by halving the precision and qua-
drupling the nodes with a gain in energy efficiency of a fac-
tor of 1.3. First scientific simulations of three representative
storms using 128 GPUs nodes of Adastra show successful
cascade of scales for horizontal grid spacing down to 100 m
and grid size up to 2.1 billion points. For one of these storms,
Meso-NH is also successfully coupled to the WAVEWATCH
III wave model via the OASIS3-MCT coupler without any
extra computational cost. This GPU porting paves the way
for Meso-NH to be used on future European exascale ma-
chines.

1 Introduction

Numerical simulation of the atmosphere plays a crucial role
in understanding and anticipating extreme weather phenom-
ena. The skill of numerical weather prediction (NWP) has
continuously improved over the last few decades thanks to
a steady accumulation of scientific knowledge and techno-
logical advances (Bauer et al., 2015). Increased computing
power has enabled numerical simulation to represent even
greater complexity on a wider range of scales. Current oper-
ational NWP codes typically achieve horizontal resolutions
of O(10 km) on a global scale and O(1 km) on a regional
scale, which represent deep convection in parameterized and
explicit ways, respectively. Global storm-resolving models
used in research can simulate the atmosphere globally with
convection-permitting resolutions of O(1 km) to seamlessly
represent scales from local storms to planetary waves (e.g.,
Tomita et al., 2005; Fuhrer et al., 2018; Stevens et al., 2019;
Giorgetta et al., 2022; Donahue et al., 2024).

The Meso-NH community weather research code (Lac
et al., 2018) takes advantage of an efficient parallelization
and from increases in computing power to run large-eddy
simulations (LESs; horizontal resolution of O(10–100 m))
on very large computational grids of the order of a billion
grid points. These so-called giga-LESs (Khairoutdinov et al.,
2009) resolve most of the turbulent kinetic energy over the
full extent of weather systems (O(100 km)). Such giga-LES
runs with Meso-NH make it possible to show, for example,
the effect of small-scale surface heterogeneities and build-
ings on the radiation fog over an airport (Bergot et al., 2015),
turbulent mixing leading to stratospheric hydration by over-

Published by Copernicus Publications on behalf of the European Geosciences Union.

2680 J. Escobar et al.: Meso-NH version MESONH-v55-OpenACC on GPU

shooting convection (Dauhut et al., 2018), the multiscale
modeling of coupled radiative and heat transfer in complex
urban geometry (Villefranque et al., 2022), and the down-
ward transport of strong winds by roll vortices in a Mediter-
ranean windstorm (Lfarh et al., 2023). Designed for studies
of scale interactions between processes, these giga-LESs pro-
vide a unique research base for statistical or climate studies
in a scientific community beyond that of Meso-NH.

To benefit from technological advances, numerical codes
of the atmosphere need to be adapted to current and fu-
ture supercomputers based on hybrid architectures with
both central processing units (CPUs) and graphical pro-
cessing units (GPUs). For instance, the most powerful sys-
tem today is Frontier in the USA, a nearly 2 exaFLOPS
machine (i.e., exceeding 2× 1018 floating-point operations
per second) based on AMD MI250X GPUs. In Europe,
while the most powerful systems are below the exascale
level (i.e., below 1 exaFLOPS), they are also built with
GPUs, such as Leonardo in Italy with NVIDIA A100 GPUs
(0.3 exaFLOPS) and Adastra in France with AMD MI250X
GPUs (0.06 exaFLOPS). Running a model like Meso-NH on
these new supercomputers is a big challenge because the
code must be ported to GPU. An abundant literature docu-
ments the efforts made by the various modeling communi-
ties. For example, Fuhrer et al. (2018) completely rewrote
the dynamical core of the COSMO model using a domain-
specific language. Giorgetta et al. (2022) ported the ICON
atmosphere model to GPUs by introducing OpenACC direc-
tives. After 5 years of model development, Donahue et al.
(2024) have fully rewritten the Energy Exascale Earth Sys-
tem Model atmosphere model in C++ using the Kokkos li-
brary.

Here, we describe the porting of Meso-NH version 5.5
to GPU named MESONH-v55-OpenACC and illustrate ap-
plications with giga-LES runs in the framework of a grand
challenge pilot project on the Adastra supercomputer, ranked
10th in the June 2022 TOP500 (TOP500.org, 2022b) and 3rd
in the November 2022 GREEN500 (TOP500.org, 2022a).
We choose the directive-based method using OpenACC for
the porting. First, this method of manually adding GPU di-
rectives has less of an impact on the code structure, thus lim-
iting the human effort involved in porting the code. Second,
it preserves the readability of the original code. This point is
of particular importance for a research code developed and
used by many different people and for many different appli-
cations in the fields of meteorology, air quality and surface
coupling. Third, this method allows the same source code
to run on either CPU or GPU. This is another crucial point
for Meso-NH, which runs on different computing architec-
tures from personal computers to supercomputers in regional,
national and international facilities. Fourth, this method en-
ables step-by-step verification of the addition of GPU modi-
fications and thus allows for the detection of any mistake in
implementation or compiler bug. This is of increased impor-
tance for the quality of Meso-NH, which is bit-reproducible

on CPU. Indeed, Meso-NH provides the same results what-
ever the number of CPUs, which is verified using our own
MPPDB_CHECK library. This bit reproducibility of Meso-
NH has been extended here to the OpenACC GPU version,
providing bit reproducibility from CPU execution to GPU
execution and even more so to multi-GPU execution. To our
knowledge, Meso-NH is the only atmospheric (or oceanic)
model offering bit-level reproducibility. This outstanding ca-
pability guarantees that Meso-NH is parallelization bug-free,
i.e., there are no bugs in its implementation for parallel exe-
cutions on CPUs and GPUs.

The remainder of the paper is organized as follows.
Section 2 details the methodology with a brief overview
of Meso-NH (Sect. 2.1), inclusion of OpenACC direc-
tives (Sect. 2.2), checking bit reproducibility between CPU
and GPU (Sect. 2.3), memory management replacing the
use of automatic or allocatable arrays to reduce over-
head (Sect. 2.4), optimization of communications with
a GPU-aware MPI (message passing interface) library
(Sect. 2.5), development of a geometric multigrid (MG)
solver (Sect. 2.6), and the creation of an in-house preproces-
sor to facilitate the support and optimization of Meso-NH on
different architectures (Sect. 2.7). Section 3 presents perfor-
mance achieved on a single node and the scaling up to multi-
ple nodes across multiple platforms. Section 4 describes sev-
eral large-grid weather applications running on the Adastra
supercomputer. Section 5 concludes the paper.

2 Methodology

2.1 The Meso-NH community weather research code

Meso-NH is a community weather research code (Lac
et al., 2018), initially developed by the Centre National de
Recherches Météorologiques (CNRS and Météo-France) and
the Laboratoire d’Aérologie (LAERO; UT3 and CNRS). It is
a grid-point limited-area model based on a non-hydrostatic
system of equations to handle a wide range of atmospheric
phenomena, from synoptic to turbulent scales. The code
includes fourth-order centered and odd-order WENO ad-
vection schemes for momentum and monotonic advection
schemes for scalar transport (Lunet et al., 2017). It has a
complete set of physical parameterizations, including clouds,
turbulence and radiation. Meso-NH is coupled with the SUR-
FEX surface model (Masson et al., 2013) and can be coupled
with any ocean or wave model that includes OASIS code in-
structions (Voldoire et al., 2017). Since Meso-NH is based
on an anelastic continuity equation (Lafore et al., 1998), an
elliptic equation must be solved with great precision to deter-
mine the pressure perturbation. The current pressure solver
is an iterative method consisting of a conjugate residual al-
gorithm (Skamarock et al., 1997) accelerated by a flat fast
Fourier transform (FFT) preconditioner (Bernardet, 1995).
The horizontal part of the operator to invert in the ellip-

Geosci. Model Dev., 18, 2679–2700, 2025 https://doi.org/10.5194/gmd-18-2679-2025

J. Escobar et al.: Meso-NH version MESONH-v55-OpenACC on GPU 2681

tic pressure problem is processed with FFT, while its ver-
tical part leads to the classical tridiagonal matrix. For a de-
tailed description, the reader is referred to Chap. 9, Part I of
the scientific documentation available on the Meso-NH web-
site (http://mesonh.aero.obs-mip.fr, last access: 16 Decem-
ber 2024).

Meso-NH is written mainly in Fortran 95 with the use
of some more recent functionalities from Fortran 2003 and
2008. It is fully vectorized; i.e., it uses array syntax with
almost no loops. Since 1999, most of the code is parallel
(Jabouille et al., 1999). The 3-dimensional domain is split
into horizontal subdomains in the x and y directions. Each
subdomain is then assigned to one process on the paral-
lel computer, and an interface package based on the stan-
dard MPI library ensures communications between the pro-
cesses. The initial parallel implementation of the FFT pres-
sure solver takes into account two other types of partition-
ing on each horizontal direction called x slice and y slice.
Communication routines have been implemented to move a
field between these different decompositions. It is then pos-
sible to perform the FFT for each horizontal direction (Gi-
raud et al., 1999). In 2011, parallel capability was extended
to petaFLOPS computers (i.e., exceeding 1015 floating-point
operations per second) by allowing the grid to be sliced dur-
ing input/output (I/O) into horizontal planes and parallelizing
the FFT preconditioner vertically and horizontally (Pantillon
et al., 2011). In the case of FFT, moving data from a verti-
cal pencil decomposition to x and y slices limit the number
of processes to the smallest horizontal dimension. For ex-
ample, a model on a 512× 512× 128 grid can only be run
with 512 processes. Instead, a 3-dimensional decomposition
of the pencil was implemented and optimized. For a run using
px ×py processes, the global domain of size Nx ×Ny ×Nz
is divided into z pencils of size (Nx/px)× (Ny/py)×Nz.
The FFT is first performed on each x pencil of size Nx ×
(Ny/py)×(Nz/px) in the x direction and then on each y pen-
cil of size (Nx/py)×Ny× (Nz/px) in the y direction. Next,
the tridiagonal system is solved in the Fourier space for each
z pencil. Finally, inverse FFTs are calculated on each y pen-
cil and then on each x pencil. As a result, the above example
can now be run with up to 512× 128= 65 536 processes.

The standard Meso-NH benchmark is Hector The Con-
vector, a case of very deep convection that occurs over
the Tiwi Islands, north of Darwin, Australia (Dauhut et al.,
2015). This test case is easy to run on any supercom-
puter because it is initialized in temperature, humidity and
wind with a single sounding and applies open boundary
conditions. In this paper, the weather applications use ini-
tial and lateral boundary conditions provided by either the
operational analyses of the European Centre for Medium-
Range Weather Forecasts (ECMWF) Integrated Forecast-
ing System (IFS) or the Météo-France Applications de la
Recherche à l’Opérationnel à Méso-Echelle (AROME) code.
The benchmark and weather application runs on Adastra
AMD MI250X GPUs nodes include the most commonly

used transport schemes and physical parameterizations in
Meso-NH. Momentum variables are advected with a cen-
tered fourth-order scheme, while scalar variables are ad-
vected with the piecewise parabolic method (PPM) advection
scheme (Colella and Woodward, 1984). The physical param-
eterizations are a 1.5-order closure scheme for turbulence
(Cuxart et al., 2000) and a one-moment bulk microphysics
scheme named ICE3 (Pinty and Jabouille, 1998) which in-
cludes five water species (cloud droplets, raindrops, pristine
ice crystals, snow/aggregates and graupel). The simulations
also involve a radiation scheme (Gregory et al., 2000), usu-
ally called every 30 or 60 time steps. The latter coming from
the ECMWF, no attempt of porting to GPU has been done.

Porting the complete code to GPU is a huge task as Meso-
NH contains several thousand source files totaling about a
million lines of code. However, the Pareto principle holds
for Meso-NH, so 90 % of the computation time comes from
10 % of the code. Thus, the porting work mainly concerns
the most computationally intensive parts of Meso-NH, that
is, the advection, turbulence, cloud microphysics and pres-
sure solver. This porting work is the result of a develop-
ment initiated in the early 2010s on an NVIDIA GPU us-
ing OpenACC directives with the PGI compiler (since then
acquired by NVIDIA). More recently, from late 2021, it
has continued with the start of implementation on AMD
GPUs using the Cray compiler. In the following, the changes
made to port Meso-NH to NVIDIA and AMD GPUs are de-
tailed. The overall impact that leads to the MESONH-v55-
OpenACC version is summarized in Table 1. The left col-
umn shows the changes made in Meso-NH before the port
to AMD GPUs (i.e., for the initial port to NVIDIA GPUs)
and the right column the state after it (i.e., for the port to
both GPU types). This results in the inclusion of thousands
of OpenACC directives. Memory management routines are
frequently used, among other things, to reduce the perfor-
mance impact of allocations and deallocations. Calls to bit-
reproducible mathematical functions appear wherever they
are necessary. Moreover, loops in array syntax are replaced,
in some cases, by do concurrent constructs. For AMD
GPUs, an in-house preprocessor was developed, leading to
its use in more than 1 000 occurrences and a reduction in the
number of do concurrent loops.

2.2 Inclusion of OpenACC directives

The OpenACC paradigm offers a promising approach for
Meso-NH. The developer only has to add directives (seen as
comments) in the code to port it to GPUs. Moreover, since the
Meso-NH code is mostly written in array syntax, supported
by OpenACC, this syntax, free of loops, is well suited to
auto-parallelization and auto-vectorization. To limit the im-
pact on the source code and facilitate the porting work, the
use of the auto-parallelization kernels directives is pre-
ferred. The code largely resembles the one shown in List-
ing 1.

https://doi.org/10.5194/gmd-18-2679-2025 Geosci. Model Dev., 18, 2679–2700, 2025

http://mesonh.aero.obs-mip.fr

2682 J. Escobar et al.: Meso-NH version MESONH-v55-OpenACC on GPU

Table 1. Number of modified Meso-NH lines for the initial GPU porting on NVIDIA GPUs and after the porting on AMD GPUs. Other
changes – multigrid solver, memory manager (except calls to it), algorithmic modifications, code transformations and optimizations – are not
accounted for.

OpenACC compute directives NVIDIA GPU AMD GPU

!$acc kernels 1917 1980
!$acc loop (collapse) independent 533 151
!$acc ... async 220 256
!$acc ... wait 78 79
!$acc loop seq 18 43
!$acc atomic 13 13

OpenACC data directives Number of lines

!$acc ... data 463 544
!$acc host_data use_device 16 80

Fortran Number of lines

Memory management routine calls 637 1776
Bit reproducibility function calls 619 665
do concurrent 293 13

In-house preprocessor directives Number of lines

!$mnh_do_concurrent 502
!$mnh_expand_array 111
!$mnh_expand_where 19
!$acc ... present_cr 694
!$mnh_define / !$mnh_undef 45

Listing 1. OpenACC kernels directives with array syntax.

The drawback of the OpenACC paradigm is the data lo-
cation. Since the memory of the CPU and the GPU is usu-
ally separate, the developer must carefully manage data loca-
tion and transfers between them by adding appropriate Ope-
nACC directives. It is easy to make mistakes and to introduce
bugs or have poor performance if unnecessary transfers are
coded. Adding OpenACC directives is not always sufficient
because for optimization or to work around compiler bugs,
some loops need to be explicitly written, which results in los-
ing the compact array syntax. Array-returning functions are
not parallelized on GPU (at least in our early developments).
They are replaced by subroutines and the use of temporary
arrays to store intermediate results (Listing 2).

2.3 Verification of bit reproducibility between CPUs
and GPUs

The original CPU-only Meso-NH code, running in paral-
lel on CPU clusters using the MPI library, is already bit-
reproducible when the number of MPI tasks varies. This

Listing 2. Example of replacing an array-returning function by
a subroutine using temporary arrays to store intermediate results.
Note that the original version is preserved and compiled if the pre-
processor key MNH_OPENACC is not set.

guarantees that no parallelization bugs have been intro-
duced in the CPU coding. This is achieved using our own
MPPDB_CHECK library (Fig. 1). The principle is to run two
similar simulations concurrently. The primary simulation
launches the replica one with a call to mpi_comm_spawn.
At certain points, the MPPDB_CHECK library checks on the
fly that array values are exactly the same down to the bit.

Geosci. Model Dev., 18, 2679–2700, 2025 https://doi.org/10.5194/gmd-18-2679-2025

J. Escobar et al.: Meso-NH version MESONH-v55-OpenACC on GPU 2683

Figure 1. Schematic of bit-reproducible verification between pri-
mary and replica simulations using the MPPDB_CHECK library. On
the left, the primary simulation is a computation performed on the
entire domain, i.e., without any domain decomposition on CPU. On
the right, the replica simulation is a parallel computation performed
on CPU or GPU on the domain broken down into 4× 4 pencils.

These two executions can have any number of MPI pro-
cesses.

The internal MPPDB_CHECK library has been ported to
GPU, with the ability to compare values stored in CPU
or GPU memory. For NVIDIA GPUs, the Meso-NH code
is compiled with the NVIDIA compiler by setting the
-acc=host,gpu flag. In this way, the same executable
can run on both CPUs and GPUs. The primary simulation
runs on CPUs with ACC_DEVICE_TYPE=HOST, while the
replica runs on GPUs with ACC_DEVICE_TYPE=NVIDIA.
Validation of code changes in Meso-NH for GPU porting is a
step-by-step process. To validate the port, the results must be
exactly the same on both sides. For AMD GPUs, it is not pos-
sible to compile a single executable that can run indifferently
on CPU or GPU with the Cray compiler. Therefore, two dif-
ferent executables are generated, one for CPU only and one
that supports GPU offloading. To ensure bit reproducibility,
options "-Kieee -Mnofma -gpu=nofm" are passed to
the NVIDIA compiler to enforce compliance with the IEEE
754 standard (IEEE, 2019) and to disable FMA (fused
multiply–add) instructions. For the Cray compiler, options
"-Ofp0 -hnofma" are provided.

Some operations are optional (recommended but not re-
quired) in the IEEE 754 standard, such as sqrt, exp and
log. Several rounding modes are also possible. The sqrt
standard implementation is available with NVIDIA and Cray
compilers and architectures (if certain compiler options men-
tioned above are enabled) and gives exactly the same result
on both CPU and GPU. This is not true for other mathemat-
ical operations provided by the compiler-linked mathemati-
cal libraries that are not bit-reproducible between CPU and
GPU. It is therefore necessary to replace the intrinsic func-
tions log, pow, sin, cos, atan and atan2. They have
all been replaced with equivalent operations based on repro-
ducible standard operations. This is achieved using the bitrep
library (Spiros, 2014) written in C++. The performance of
these functions tends to be lower, but in practice, the impact
on runtime is very limited (less than a few percent). As they

Listing 3. Extract of the porting of the log function of the bitrep
library. OpenMP and OpenACC directives are used.

are only used to check the correct implementation of the port,
their use could be disabled to restore performance. However,
the bit-reproducible version is kept even for the run tests pre-
sented in this paper.

The bitrep C++ functions have been ported to GPU (List-
ing 3). This is done by adding OpenACC directives for the
NVIDIA compiler. Since the Cray C++ compiler does not
support OpenACC directives natively, OpenMP directives
are used as an alternative. This implementation seamlessly
integrates the OpenACC and OpenMP paradigms, allow-
ing for efficient execution on either NVIDIA or Cray envi-
ronments. This hybrid approach enables us to leverage the
strengths of each programming model while ensuring com-
patibility with the targeted hardware.

To call these C/C++ functions from Meso-NH, a C–
Fortran interface has been written (Listing 4). All the new
bit-reproducible math functions are prefixed by BR_. An ex-
ample of using the logarithm function is shown in Listing 5.

2.4 Memory management

In Meso-NH, memory management for arrays consists
mainly of automatic or allocatable arrays. Due to various
compiler bugs and the very poor performance of memory
allocation on GPUs, this management has been redesigned
for use on the GPU. A relatively simple approach is adopted.
In the initialization phase, a large 1-dimensional array is al-
located once in both CPU and GPU memory spaces. This
operation is done for each main intrinsic data type (real, inte-
ger and logical). These arrays are used as a memory pool in
which the different variable arrays are stored. Therefore, no

https://doi.org/10.5194/gmd-18-2679-2025 Geosci. Model Dev., 18, 2679–2700, 2025

2684 J. Escobar et al.: Meso-NH version MESONH-v55-OpenACC on GPU

Listing 4. Extract of the C–Fortran interface for the br_log function.

Listing 5. An example of using the logarithm function. The
MNH_BITREP preprocessor key is used to choose between the orig-
inal and bit-reproducible versions.

more array allocation is needed during calculations. The size
of these arrays must be carefully chosen to be large enough
to contain all the required data but not so large as to waste
memory. Their dimensions can be selected using a parame-
ter read from a standard Meso-NH namelist at the simulation
start without the need to recompile the model.

When necessary, usually at the beginning of a subrou-
tine (Listing 6), and instead of relying on automatic or
dynamic allocation, allocations are replaced by calls that
provide pointers to unique portions of the memory pool
with MNH_MEM_GET. To keep memory management as
simple as possible, before a series of allocations, the po-
sitions of the pointers within the pools are stored us-
ing MNH_MEM_POSITION_PIN. When the memory is no
longer needed (usually at the end of the subroutine), the
pointers are reset to these values with MNH_MEM_RELEASE.
This is a LIFO (last in–first out) approach, which is ensured
by providing the same dummy argument before the block of
allocations and the release of the corresponding data. In this
way, no deallocation or clean-up is required and no memory
fragmentation is possible.

To reduce the number of memory pools to just one per in-
trinsic data type, pointer bounds remapping (a Fortran 2003
functionality) is used to map multidimensional arrays onto
1-dimensional pools. A possible optimization is to align the
memory addresses of the beginning of each returned pointer

to GPU memory segments, but tests on NVIDIA and AMD
GPUs show no performance improvement. The use of point-
ers instead of automatic or allocated arrays may prevent the
compiler from doing some optimizations because it must
assume that aliasing is possible between different pointers.
This behavior has a significant impact on the performance
with the Cray compiler used for the porting to AMD GPUs.
To restore good performance, it is necessary to pass the
"-halias=none" option to this compiler.

2.5 Communications with a GPU-aware MPI library

When run on a supercomputer with multiple CPUs and
GPUs, Meso-NH uses the MPI library and domain decompo-
sition with additional halo points at grid boundaries in hori-
zontal directions to maintain computational consistency. For
halo exchange communications on the GPU, the data are al-
ready in GPU memory as they are computed there. It is there-
fore more efficient to transfer data directly between GPUs or
within a given GPU if the processes run on the same GPU.
Otherwise, the data are copied to CPU memory, transferred
between CPUs and finally copied to the memory of the tar-
get GPU. On some architectures, such as Adastra, network
cards are physically connected to GPUs rather than CPUs,
and the available MPI library is GPU-aware, allowing di-
rect transfer between GPUs. On other architectures, even if
the network is not directly connected to the GPUs, direct
transfers between processes running on GPUs inside a ma-
chine node are possible if the MPI library supports them.
For OpenACC coding, this is implemented by the directive
!$acc host_data use_device. An extract from the
GET_HALO_START_D and GET_HALO_STOP_D subrou-
tines is shown in Listing 7. It details how this GPU-aware
capability is combined with MPI non-blocking communica-
tions and OpenACC asynchronous kernels.

In the GET_HALO_START_D routine, halo com-
munication is initiated. First, a non-blocking re-
ceive (MPI_IRECV) is posted in advance for the
output halo buffer (PZSOUTH_OUT), indicating
that the data are stored in GPU memory (!$acc

Geosci. Model Dev., 18, 2679–2700, 2025 https://doi.org/10.5194/gmd-18-2679-2025

J. Escobar et al.: Meso-NH version MESONH-v55-OpenACC on GPU 2685

Listing 6. Example of code structure for memory management.

host_data use_device(PZSOUTH_OUT) direc-
tive). Then, in an asynchronous OpenACC kernel (!$acc
kernels async(IS_NORTH)), the input halo buffer
(PZNORTH_IN) is filled from the boundary of the field
PSRC. The same operation (not shown) is done for the
south, east and west boundaries. To ensure completion
of the four kernels filling the north, south, east and
west buffers, an OpenACC synchronization is performed
with !$acc wait. At the end of the routine, the input
halo buffer PZNORTH_IN is sent with a non-blocking
MPI_ISEND call, encapsulated by the OpenACC directive
indicating again that the data are on the GPU with !$acc
host_data use_device(PZNORTH_IN). In the
GET_HALO_STOP_D routine, halo communication is
finalized. First, the completion of the previous non-blocking
MPI communication is ensured with a MPI_WAITALL
call. Next, the output halo buffer PZSOUTH_OUT is
copied to the southern boundary of the field PSRC in
an asynchronous OpenACC kernel (!$acc kernels
async(IS_SOUTH)). The same operation is repeated
for the three other boundaries in three other asynchronous
kernels (not shown). Finally, the subroutine ends by
waiting for the completion of these kernels (!$acc
wait). Between calls to the GET_HALO_START_D and
GET_HALO_STOP_D routines, operations not dependent on

the field involved in the halo exchange can be interspersed.
This allows calculations to overlap with communications.

2.6 Development of a multigrid pressure solver

A critical point for GPU porting is the pressure solver needed
for the elliptic equation inversion. In the original version of
Meso-NH, this solver consists of an FFT preconditioner as-
sociated with the conjugate residual algorithm. The FFT pre-
conditioner requires all-to-all communications between MPI
processes and therefore between GPUs when several GPUs
are used. These data transfers are very bandwidth-intensive,
and their cost increases rapidly with the number of GPUs.
As the local FFT calculations run faster on GPU than on
CPU, the fraction of time consumed by these communica-
tions is not negligible and can become very high, especially
when multiple GPUs distributed across multiple nodes are
used. Such a negative impact of all-to-all communications in
the FFT preconditioner has been seen with Meso-NH run-
ning on MIRA, a Blue Gene/Q system at Argonne National
Laboratory by showing sub-optimal scalability when using
2 billion threads (Lac et al., 2018, see their Fig. 1). Verma
et al. (2023) performed a scaling analysis of their GPU-FFT
library for grid sizes of 10243, 20483 and 40963, utilizing
up to 512 A100 GPUs. They reported a ratio of communica-
tion time to total time of 50 % when using 8 GPUs and over

https://doi.org/10.5194/gmd-18-2679-2025 Geosci. Model Dev., 18, 2679–2700, 2025

2686 J. Escobar et al.: Meso-NH version MESONH-v55-OpenACC on GPU

Listing 7. Extract of MPI GPU-aware usage for north–south halo exchange (west–east removed) with MPI non-blocking communications
and OpenACC asynchronous kernels.

90 % when using more than 128 GPUs. Ibeid et al. (2020)
showed in exascale projections for grid size of 65 5363 that
the FFT total time is solely due to the FFT communication
time, which is dominated by the network access cost.

As the FFT solver tends to be inefficient as the number of
GPUs increases, a more efficient algorithm is required. The
most promising alternative for solving this type of elliptic
equation is the use of a geometric multigrid solver for regu-
lar structured grids (Fig. 2). In particular, Müller et al. (2015)
ported a C CUDA version of a geometric multigrid algo-
rithm that scaled up to 16 384 GPUs. To our knowledge, there
is no Fortran numerical library ported with OpenACC that
provides such a tool. Consequently, the Fortran version of
the TensorProductMultigrid solver developed by Müller and
Scheichl (2014) was selected. This multigrid (MG) solver de-
veloped for the UK Met Office is well suited for NWP mod-
els with a highly vertically stretched grid. The original code
is a standalone benchmark version (Müller, 2014), and many
modifications have been made to integrate it into Meso-NH.

The MG code was first adapted for the CPU version of
Meso-NH. On the Meso-NH part, interface routines were in-
troduced. On the MG part, the tensor-product coefficients

Figure 2. Schematic of the V cycle of the geometric multigrid pres-
sure solver on the horizontal grid. Starting from the finest grid at
level k with 2k cells in the x and y directions, the restriction phase
is performed on the coarse grid at level k− 1, which is obtained by
halving the number of cells in each direction. The process proceeds
from top to bottom until the grid contains only one cell. Then, in the
prolongation phase, the grids are refined in the reverse process up-
ward, multiplying the grid cells in each direction by 2 (blue points
figuring edges added/removed in this process).

Geosci. Model Dev., 18, 2679–2700, 2025 https://doi.org/10.5194/gmd-18-2679-2025

J. Escobar et al.: Meso-NH version MESONH-v55-OpenACC on GPU 2687

were fitted to meet the needs of Meso-NH; new Neumann
boundary conditions specific to Meso-NH were added. For
debugging and bit reproducibility purposes, calls to our
MPPDB_CHECK library were incorporated into the MG code.
This revealed a bug in the original parallel code (a miss-
ing MPI halo exchange). After fixing, a version of Meso-NH
fully bit-reproducible on multiple CPUs with this new solver
was obtained. Extensive performance and scalability tests
were performed to set optimal parameters for the solver, such
as the iterative method, the convergence rate, the smoother,
the number of grid levels, the restriction and prolongation
phases, and the coarsest-grid solver.

Due to the characteristics and the original implementation
of the MG solver, its use imposes some constraints. First, the
grid size must be of the form 2N for both horizontal axes,
as shown in Fig. 2. At each level of coarsening, from k to
k− 1, the number of cells is halved in each direction until
the last level, which contains only one cell. Second, the grid
size on the vertical axis is free since no downsizing is done
in this direction due to strong stretching that makes it unfit.
In this direction, since the matrix to be inverted has a tridiag-
onal form, a Thomas algorithm (simplified form of Gaussian
elimination) is used instead. Finally, as the original solver
does not allow for load imbalance, the number of MPI pro-
cesses must be 2(2×P) because the size of the solver grids
must be halved in each direction at each coarsening. This
limitation has been relaxed somewhat. The number of MPI
processes can be of the form 2P , but the MG must use one
fewer grid level. In that case, the last coarse level can have
2×2 or 2× 1 cells, and two iterations are needed in this last
level.

To port this multigrid pressure solver on GPUs, the MG
code has been refactored to change the original layout of the
arrays from KJI to IJK indexing (as in Meso-NH) to opti-
mize memory accesses on GPUs, and OpenACC kernels
directives have been added. The same recipes as for Meso-
NH have been applied: memory management with a pre-
allocated memory pool, replacement of array syntax with
do concurrent constructs where necessary, and MPI
communications with GPU-aware OpenACC directives to
avoid unnecessary data transfers between CPUs and GPUs. A
new optimization is also introduced specifically for the MG
solver for hybrid executions on CPUs and GPUs: a new pa-
rameter, configurable at runtime, is added to select the coarse
grid level at which the MG solver switches calculations from
GPUs to CPUs. This parameter is useful when the local sub-
grid is too small to provide performance gains on GPUs. Bit
reproducibility is again ensured between CPU and GPU exe-
cutions.

Despite the limitations of the FFT solver, it is also ported
on GPUs for comparison with the new MG solver. The FFT
solver also has the advantage of fewer restrictions on grid
dimensions and the number of MPI processes. Test results
(Sect. 3) show that it remains a good choice for simulations
with a limited number of GPUs. It should be noted that the

comparison between FFT and MG pressure solvers is pre-
sented only in terms of computational performance. No re-
producibility of pressure between solvers is expected. Sim-
ilar accuracy, i.e., the same threshold in the residual diver-
gence of the pressure value, is, however, demanded by both
solvers.

2.7 Creation of an in-house preprocessor

Loop performance optimizations for AMD or NVIDIA
GPUs are often incompatible and cannot be mixed. To avoid
having two different versions of the Meso-NH code and
to avoid degrading readability by multiplying preprocessing
keys (i.e., #ifdef keywords), a small preprocessor named
mnh_expand has been developed. It uses filepp (Miller,
2008), an enhanced programmable preprocessor, compati-
ble and similar to cpp, with powerful user-defined macros,
all written in Perl. With this tool, different transformations
can be applied on different architectures, allowing for cus-
tomized optimizations on different CPUs, GPUs and compil-
ers.

For NVIDIA GPUs, it is necessary to rewrite some
loops originally in array syntax as nested loops or with
do concurrent constructs. This approach works very
well and generates parallel and collapsed loops that are opti-
mal for the GPU. For AMD GPUs, the do concurrent
syntax is not managed efficiently by the Cray compiler,
which generates poor parallel uncollapsed loops. In addi-
tion, inclusion of the OpenACC directives, which collapses
and parallelizes loops (!$acc loop collapse(X)
independent directive) generates compiler errors or se-
rializes kernels. However, this directive leads to good paral-
lelization if used in conjunction with nested loops instead of a
do concurrent construct. The exception is when our bit-
reproducible mathematical functions are present in the loop.
In the latter case, it is necessary to inhibit the transforma-
tion of array syntax into nested loops and not to supply the
collapse OpenACC directive (Listing 8).

Optimization choices are made via preprocessor keys.
For example, the MNH_EXPAND_OPENACC key generates
loop collapse and independent OpenACC directives and the
MNH_EXPAND_LOOP transforms the code into nested loops.
If the latter is omitted, the do concurrent instructions
are added instead. To manage all these different and con-
tradictory situations, three different macros are introduced
(Listing 9). At the preprocessing stage, they generate the
most efficient form of expression according to the architec-
ture and compiler targeted.

Loops in Fortran array syntax requiring transforma-
tion are enclosed by the !$mnh_expand_array and
!$mnh_end_expand_array directives (Listing 10).
They allow for automatic rewriting of the loop index in ar-
ray expressions and generate the appropriate nested loops
or do concurrent constructs depending on the acti-
vated keys (Listings 11 and 12). For expressions already

https://doi.org/10.5194/gmd-18-2679-2025 Geosci. Model Dev., 18, 2679–2700, 2025

2688 J. Escobar et al.: Meso-NH version MESONH-v55-OpenACC on GPU

Listing 8. Example of using the !$mnh_expand_array macro for the not-bit-reproducible math functions exp and power. For the Cray
compiler, expansion to nested loops and the addition of OpenACC directives are first inhibited around bit-reproducible procedures and then
reactivated for the remaining of the code with the mnh_undef and mnh_define macros.

Listing 9. Synthetic example of the three main in-house preprocessing directives.

transformed into the do concurrent form, the macro
!$mnh_do_concurrent is used. For where constructs
in array syntax, the !$mnh_expand_where directive is
implemented.

Another preprocessor directive is necessary to circumvent
the frequent erroneous detection of recurrences between loop
iterations by the Cray compiler. These recurrences prevent
the parallelization of these loops and lead to the generation
of serial code. The bypass found is to add extra OpenACC
present clauses with loop or kernels directives for
certain variables even if they are already in a block where
they have been declared as present. Since, in some cases,
the NVIDIA compiler reports errors if a variable is declared
as present twice, different behaviors are necessary for these
two compilers. The present_cr macro (Listing 10) gen-
erates the OpenACC present clause only by activating the
MNH_COMPILER_CCE preprocessor key (set for the Cray
compiler).

3 Computational performance

The computational performance is estimated for the Hector
The Convector test case, the standard Meso-NH benchmark.
The test case uses advection, turbulence, cloud microphysics,
pressure solver (see Sect. 2.1 for more details) and other
components. These other components include elements not
covered by the abovementioned processes, such as gravity
and Coriolis terms (executed on GPUs), radiation (called ev-
ery 900 s only, executed on CPUs), time advancement of all
variables, and I/O operations (which are largely disabled in
our simulations). The vertical grid has 128 levels. The hor-
izontal grid covers a square with a 204.8 km side centered
over the Tiwi islands. Results are shown here for two grids,
256×256×128 with an horizontal grid spacing of 800 m and
4096× 4096× 128 with an horizontal grid spacing of 50 m.
It is run during 100 time steps using a time step of 10 s for
the small grid and 4 s for the large one. For this benchmark,
I/O is disabled (except for reading the initial state). Execu-
tions start from a situation in which convection has already
been initiated and clouds cover a significant portion of the

Geosci. Model Dev., 18, 2679–2700, 2025 https://doi.org/10.5194/gmd-18-2679-2025

J. Escobar et al.: Meso-NH version MESONH-v55-OpenACC on GPU 2689

Listing 10. Example of the use of the !$mnh_expand_array and present_cr macros.

Listing 11. Example of transformed sources after preprocessing the !$mnh_expand_array and present_cr macros for the NVIDIA
compiler. Note that the present_cr clause has vanished; otherwise, the NVIDIA compiler issues an error for the double present declaration
of ZWORK arrays.

domain. Running times are given without the initialization
phase, unless otherwise stated, and are per model time step.

3.1 Computer systems

The software versions of essential packages for building and
running the Meso-NH executable are listed in Table 2. Com-
puter systems on which the computational performance is
measured are detailed in Table 3.

3.2 Performance on a single node

All results for a single node are for the 256× 256× 128
grid. The domain decomposition is performed by dividing
the domain into blocks of the closest possible dimensions in
both horizontal directions and distributing the subdomains
on the different MPI processes (one subdomain per process).
Then, each MPI process is associated (bound) with a GPU on
which it will offload part of its calculations (those that have
been ported to GPU). It is then possible to associate several
MPI processes with the same GPU, which will then share
its resources (in a way quite similar to sharing cores on a
CPU). Binding on CPU cores and GPUs is carefully chosen
to take into account the fact that Meso-NH is memory-bound
(i.e., its runtime is dominated by memory access rather than

computation), the interconnection between cores on different
NUMA (non-uniform memory access) zones, between cores,
between CPUs and GPUs, and between GPUs and also the
way the domain is distributed onto the MPI processes. If sev-
eral binding configurations have been tested, only the one
giving the fastest results is kept. For example, the best run
on an Adastra node with 16 MPI processes uses a 4× 4 sub-
domain grid. To optimize MPI communications, processes
with neighboring subdomains are mapped to nearby GPUs,
prioritizing proximity and direct network links. To optimize
memory bandwidth, each process is pinned to a separate CPU
core, evenly distributed across the eight L3 caches (two pro-
cesses per cache) and four NUMA nodes. Finally, MPI pro-
cesses are paired with their closest GPU for optimal host–
device memory transfers. On NVIDIA GPUs, if several MPI
processes are started on each one, the NVIDIA Multi-Process
Service (MPS) is launched. If this is not the case, perfor-
mance is severely impacted.

The performance is first detailed on a routine-by-routine
basis for a single Adastra node (see its characteristics in Ta-
ble 3). The best performance obtained for the 256×256×128
configuration using the FFT solver is shown, that is, using 64
MPI processes for the CPU-only version of Meso-NH and

https://doi.org/10.5194/gmd-18-2679-2025 Geosci. Model Dev., 18, 2679–2700, 2025

2690 J. Escobar et al.: Meso-NH version MESONH-v55-OpenACC on GPU

Listing 12. Example of transformed sources after preprocessing the !$mnh_expand_array and present_cr macros for the Cray
compiler. In this case, the second present clause is needed for parallelization and to avoid false recurrence detection by the Cray compiler.

Table 2. Software used for compiling Meso-NH.

Software Jean-Zay Adastra Leonardo

Compiler nvidia-compilers/23.11 cce/17.0.0 nvhpc/23.1
MPI communication openmpi/4.1.5-cuda cray-mpich/8.1.28 openmpi/4.1.4
CUDA toolkit or rocm cuda/12.2 rocm/5.7.1 cuda/11.8

Figure 3. Sankey diagram showing the mean runtime per time step
achieved on a single Adastra node for the code running on CPU on
the left and running on GPU on the right. Results are shown for the
256× 256× 128 configuration using the FFT pressure solver.

eight GPUs multiplied by two MPI processes for the GPU
version (Fig. 3).

Overall, Meso-NH is ∼ 12× faster on GPUs than when
using only the CPUs of the same node on Adastra. This re-
duces the mean time per time step from 8988 to 761 ms. This
speedup is mainly due to the advection running∼ 23× faster
on GPUs. The result is a time reduction from 5494 to 241 ms.
The second- and third-biggest time reductions concern cloud
microphysics (from 1358 to 105 ms, ∼ 13× faster) and tur-

bulence (from 1329 to 119 ms,∼ 11× faster). Time is also re-
duced from 643 to 142 ms for the pressure solver. This∼ 4×
acceleration is, however, lower than for the previous subrou-
tines. This could be due to the numerous MPI inter-process
communications required for global pressure solving. No re-
duction is achieved for the other subroutines. These mainly
consist of subroutines not ported to GPU. As the number
of processes is 16 for the fastest GPU run versus 64 for
the fastest CPU one, and a small fraction of subroutines are
ported to GPU, two opposing effects compete and no gain is
expected on this side.

Results on Jean-Zay (see its characteristics in Table 3)
show similar performance for the GPU run (553 ms instead of
761 ms per time step; Sankey diagram not shown). As Meso-
NH is a memory-bound code, and the memory bandwidths
on the NVIDIA A100 and AMD MI250X are relatively sim-
ilar, this result is expected. The GPU speedup on Jean-Zay
compared to the fastest results on the CPUs of the same node
is only a factor of 6.2. This difference with an Adastra node
(speedup of 11.8) can be attributed to the fact that the mem-
ory bandwidth available to the CPU is higher on Jean-Zay
nodes compared to Adastra nodes, leading to a performance
increase of around 2 between the two different node types.

GPU performance depends on the number of MPI pro-
cesses per GPU. Overload performance results are shown us-
ing one, two, four and eight GPUs of a single node of Adas-
tra and Jean-Zay (Fig. 4). Runtimes for the 256× 256× 128
configuration using the FFT pressure solver are presented for

Geosci. Model Dev., 18, 2679–2700, 2025 https://doi.org/10.5194/gmd-18-2679-2025

J. Escobar et al.: Meso-NH version MESONH-v55-OpenACC on GPU 2691

Table 3. Main characteristics of the supercomputer nodes used for the porting and performance tests. Note that each AMD MI250X contains
two GCDs (graphics compute dice), seen as two GPUs by the system.

Machine Jean-Zay GPU A100 Adastra GPU MI250X Leonardo GPU A100 Adastra CPU Genoa

CPU 2×AMD Milan EPYC 1×AMD Trento EPYC 1× Intel Ice Lake 2×AMD Genoa EPYC
7543 32 cores 2.8 GHz 7A53 64 cores 2.0 GHz 8358 32 cores 2.6 GHz 9654 96 cores 2.4 GHz

Memory capacity 512 GiB DDR4-3200 256 GiB DDR4-3200 512 GiB DDR4-3200 768 GiB of DDR5-4800
Memory bandwidth 409.6 GB s−1 204.8 GB s−1 204.8 GB s−1 900 GB s−1

GPU 8×NVIDIA A100 4×AMD MI250X 4×NVIDIA/A100
Memory capacity 8× 80 GiB 8× 64 GiB 4× 64 GiB
Memory bandwidth 8× 1.52 TB s−1 8× 1.6 TB s−1 4× 1.52 TB s−1

TFLOPS (64 bit) 8× 9.7 8× 23.9 4× 9.7

Bandwidth CPU/GPU 8× 64 GB s−1 4× 72 GB s−1 4× 64 GB s−1

Bandwidth GPU/GPU 600 GB s−1 (with switch) 100 to 400 GB s−1 200 GB s−1

Inter-node bandwidth 4× 25 GB s−1 4× 50 GB s−1 2× 25 GB s−1 1× 50 GB s−1

up to 4 processes per GPU for Adastra and 16 for Jean-Zay.
Overloading the Adastra GPU with more than four processes
leads to very deteriorated performance and is therefore not
shown. On Jean-Zay, due to constraints imposed by the su-
percomputing center, it is not possible to run jobs with more
than 32 processes per node.

The more GPUs, the faster the code. An exception is the
similar elapsed time obtained for four and eight GPUs on
Jean-Zay, particularly as the number of MPI processes per
GPU increases. Two possible explanations should be inves-
tigated: the interconnection between GPUs and/or between
CPUs and GPUs is saturated, or the workload by process be-
comes too low due to the decreasing size of the MPI subdo-
mains. Increasing the number of MPI processes while main-
taining the same number of GPUs generally reduces the total
elapsed time. The greatest time reduction is achieved by dou-
bling the number of processes from one to two for one, two
and four GPUs. This reduction is most dramatic for the other
components, i.e., those parts of the code that are very par-
tially ported to GPU. By increasing the number of processes,
the workload of the other components can be distributed over
a greater number of CPU cores, reducing the total elapsed
time. This reduction with MPI overloading is also found for
the pressure solver, and only on Jean-Zay for cloud and tur-
bulence. Advection is also accelerated when using two pro-
cesses per GPU instead of one on Jean-Zay for one, two or
four GPUs and only for one GPU on Adastra. Otherwise, the
cost is higher. Using four or more processes per GPU does
not significantly reduce elapsed time. It even increases it by
doubling their number on Jean-Zay from 8 to 16 for 1 and
2 GPUs, from 4 to 8 for 4 GPUs and from 2 to 4 for 8 GPUs.
On Adastra (not shown in Fig. 4), using eight processes per
GPU multiplies running time several times. In summary, this
result suggests recommending an overload of two MPI pro-
cesses per GPU when running on a full node.

GPUs of Adastra have 2.5 times the peak computing power
of those of Jean-Zay, but their memory bandwidth is very
close (see Table 3). As Meso-NH is memory-bound, similar
results are expected. For a relatively low number of GPUs,
performance without the other components (and therefore
with only the GPU part of the code) shows runs on Adastra
2 times slower than on Jean-Zay. But as the number of pro-
cesses and GPUs increases, elapsed times on the two systems
come closer together. These differences likely come from the
different architectures, GPUs and software environments.

The dependence of GPU performance on the number of
MPI processes per GPU is examined in more details for the
results of the FFT and MG pressure solvers (Fig. 5). As ex-
pected, the results for the FFT pressure solver are similar to
those obtained above: (i) the more GPUs, the faster the FFT
pressure solver (with the exception of four and eight GPUs
on Jean-Zay); (ii) doubling the number of processes from
one to two for one, two and four GPUs significantly reduces
elapsed time (with the exception of one GPU on Adastra). In
other words, overloading GPUs with at least two MPI pro-
cesses makes the FFT pressure solver faster.

Alternatively, overloading GPUs with two MPI processes
does not greatly affect the speed of the MG pressure solver.
Elapsed time increases slightly using up to 4 MPI processes
per GPU (with the exception of 8 GPUs on Jean-Zay) and
becomes much longer with 8 or 16 MPI processes per GPU
(not shown but also true and much worse with 8 GPUs on
Adastra). It is therefore not recommended to overload GPUs
with MPI processes for the MG pressure solver, especially
as the number of GPUs increases. The MG pressure solver
is faster than the FFT solver when the number of MPI pro-
cesses is low. The scalability of the MG solver seems lower.
As the number of MPI processes increases, the performance
of the FFT solver improves faster than the MG one until
it overtakes it. Note that this conclusion is different for the
4096× 4096× 128 configuration run over a large number of

https://doi.org/10.5194/gmd-18-2679-2025 Geosci. Model Dev., 18, 2679–2700, 2025

2692 J. Escobar et al.: Meso-NH version MESONH-v55-OpenACC on GPU

Figure 4. Mean runtime per model time step of Meso-NH as function of the number of GPUs for (a) Adastra and (b) Jean-Zay. The
abbreviation prc stands for MPI process. Results are shown for the 256× 256× 128 configuration using the FFT pressure solver.

Figure 5. Mean runtime per time step of the FFT and MG pressure solvers as a function of the number of GPUs for (a) Adastra and (b)
Jean-Zay. Numbers indicate the numbers of MPI processes per GPU, and the star symbol represents 16 MPI processes per GPU. Results are
shown for the 256× 256× 128 configuration.

nodes (see Sect. 3.3). Finally, the performance on eight GPUs
of Jean-Zay is, as seen for the model as a whole, not better
than on four GPUs.

The energy efficiency of the GPU port is also examined
(Fig. 6). The results are shown for the 256× 256× 128 con-
figuration using the FFT solver on one Adastra node. The
energy consumption measurement is returned by the job
scheduling software, here, the Simple Linux Utility for Re-
source Management (SLURM), and corresponds to the ag-
gregated node consumption. It does not include network and
storage energy consumption. These can be neglected here as
the runs are done on a single computer node, and I/O is lim-
ited to reading data in the initialization phase. The results
compare the CPU and GPU versions of Meso-NH. They are
detailed according to the number of MPI processes. The re-
sults for the GPU version use all the eight GPUs available
on the node. Results for the GPU version running with 64
MPI processes are not shown, as overloading AMD MI250X
GPUs with 8 MPI processes reduces performance by signif-

icantly increasing execution time, nor are they shown for the
CPU version run with 16 MPI processes (or even less), as
this configuration partially loads the computing node, lead-
ing to almost equivalent power use for double the run time
compared with the CPU version running with 32 MPI pro-
cesses. To obtain a fair comparison between CPU and GPU
energy use, all running on the same node configurations, the
CPU measurements have to be corrected to remove GPU en-
ergy use in idle mode. This is estimated by taking the power
usage reported by the rocm-smi command when the GPUs
are idle. An average power usage of 90 W is found for each
graphics compute die (GCD; a GCD contains two GPUs).
Note that, unlike the results presented elsewhere, the initial-
ization phase is included in the measurements.

Overall, the GPU version is 3 times more energy-efficient
than the CPU-only version. Although GPUs need more
power than CPUs and significantly increase the energy re-
quirements of compute nodes, running on GPUs leads to very
important gains in terms of energy use. Here, the instanta-

Geosci. Model Dev., 18, 2679–2700, 2025 https://doi.org/10.5194/gmd-18-2679-2025

J. Escobar et al.: Meso-NH version MESONH-v55-OpenACC on GPU 2693

Figure 6. Energy use of Meso-NH on a single Adastra node for the
CPU and GPU versions. Results are shown for the 256×256×128
configuration using the FFT pressure solver.

neous power is around 4 times higher with GPUs, but run-
ning time is 12 times shorter. This perfectly illustrates the
benefits of using GPUs: shorter running times combined with
greater energy efficiency. The number of MPI processes per
GPU has an impact on energy consumption. As it increases,
so does power draw (power is energy divided by the run-
ning time). However, as seen before, the optimum situation
in terms of running time is to put two MPI processes per GPU
for this test case on Adastra. Here, the fastest GPU run is also
the most energy-efficient. If the MG pressure solver is used
instead of the FFT solver, the fastest run also corresponds
to two MPI processes per GPU, but the run with a single
process per GPU is slightly more energy-efficient (needing
110 kJ instead of 116 kJ). For CPU-only runs, using all node
cores (64 cores per node) is the fastest but not necessarily the
most energy-efficient. For runs with the FFT pressure solver,
energy use increases by 9 % compared to a depopulated run
with just 32 processes. However, the opposite is found when
the MG pressure solver is used (reduction of 11 % in energy
need).

3.3 Scaling

The results of the scaling study on Adastra and Leonardo
(see their characteristics in Table 3) are shown for the 4096×
4096× 128 configuration (Fig. 7). The x axis corresponds
to the number of nodes used by the model. Four curves are
shown for the two computer systems: one using the FFT
pressure solver (OpenACC R8I4 FFT) and three using the
MG pressure solver. The managed memory version (Man-
aged R8I4 MG) enables the system to implicitly manage data
transfers between CPUs and GPUs. The OpenACC R4I4 MG
version is compiled with single precision for floating-point
numbers. The OpenACC R8I4 MG version corresponds to
double precision floating-point numbers. In addition, per-

Figure 7. Results for the 4096× 4096× 128 configuration run on
Adastra GPU AMD MI250X, Leonardo GPU NVIDIA A100 and
Adastra CPU AMD Genoa. The dashed black line is the reference
for the perfect scaling. The speedup is calculated with respect to the
elapsed time for the Adastra CPU AMD Genoa partition using 64
nodes.

Table 4. Data, in speedup, corresponding to the OpenACC R8I4
MG curve in Fig. 7.

Machine Nodes Model Adv. Turb. Cloud Solver

Adastra 64 5.6 9.9 6.2 6.3 4.6
128 8.9 16.8 10.3 11.3 6.3
256 12.6 23.8 16.5 17.3 7.0

Leonardo 32 2.4 4.8 2.1 2.5 3.7
64 4.4 8.7 4.2 4.9 5.3

128 7.4 14.0 8.0 9.3 6.1
256 12.0 23.6 15.0 17.7 7.1

formance on the CPU AMD Genoa partition of Adastra is
shown, and its run time with 64 nodes is used as a refer-
ence for speedup calculation. Tables 4 and 5 list the data cor-
responding to the OpenACC R8I4 MG and Managed R8I4
MG curves, respectively, and detail the speedup routine by
routine.

The speedup of GPUs compared to CPUs using 64 nodes
is between 2.1 and 19.0, depending on the number of nodes
and compiled versions of Meso-NH. This demonstrates the
benefits of porting. With the same OpenACC R8I4 MG ver-
sion, the code is 5.6× faster on Adastra using 64 nodes,
with 9.9× faster advection. Performance is a little lower on
Leonardo, with a speedup of 4.4 for the model and 8.7 for
advection. This is not completely unexpected, as Leonardo
nodes have four GPUs instead of eight for Adastra. The
Managed R8I4 MG version mainly shows a higher speedup
than the OpenACC R8I4 MG version, with the exception
of Leonardo with 128 and 256 nodes. Although transfers
are better optimized by manual management and have less

https://doi.org/10.5194/gmd-18-2679-2025 Geosci. Model Dev., 18, 2679–2700, 2025

2694 J. Escobar et al.: Meso-NH version MESONH-v55-OpenACC on GPU

Table 5. Data, in speedup, corresponding to the Managed R8I4 MG
curve in Fig. 7.

Machine Nodes Model Adv. Turb. Cloud Solver

Adastra 64 6.0 12.1 6.7 6.9 4.9
128 9.5 18.4 11.7 12.6 5.9
256 12.9 26.1 19.4 18.6 6.4

Leonardo 32 2.6 5.4 2.9 14.0 2.6
64 4.6 8.9 5.3 25.0 4.0

128 7.1 14.1 9.6 27.0 4.7
256 10.0 21.7 15.1 65.1 4.9

overhead than managed memory, current developments still
incorporate some unnecessary transfers. This explains why
Managed R8I4 MG tends to be better. The Meso-NH Ope-
nACC R8I4 FFT version is slower than the OpenACC R8I4
MG version. The difference in speedup is greatest for 256
nodes, where it increases by 50 % on Leonardo (12.0 versus
8.3). The speedup in the pressure solver is indeed 7.0 for MG
and 3.2 for FFT. This clearly shows the benefit of introducing
a MG pressure solver for GPU porting when the number of
GPUs is high.

The OpenACC R4I4 MG version offers greater accelera-
tion than other versions for a given number of nodes. This re-
sults in the highest speedup with 256 nodes, 17.8 and 19.0 for
Leonardo and Adastra, respectively. This is expected because
Meso-NH is memory bound. Reducing the size of floating-
point numbers by a factor of 2 also reduces the amount of
data that have to be read from or written to memory by almost
2. This also has the benefit of reducing the memory footprint.
The benefit of a reduced precision is higher on Leonardo
probably because NVIDIA A100s have twice the computing
performance with 32-bit floats than with 64-bit floats unlike
AMD MI250Xs, which have the same computing power for
32 and 64-bit floats. This reduction in precision does not sig-
nificantly reduce the convergence time of the pressure solver
for this test case.

Scaling is almost perfect with CPUs: doubling the num-
ber of nodes doubles the speed. The same applies to GPUs
up to 64 nodes only. Using more nodes, the code still runs
faster but at a lower rate than expected, i.e., 13.4 against 16
expected with 128 nodes and 19.0 against 32 expected with
256 nodes with the OpenACC R4I4 MG version on Adastra.

The energy gain factor of Meso-NH on Adastra using the
GPU AMD MI250X and CPU AMD Genoa partitions is
shown for the 4096× 4096× 128 configuration run (Fig. 8).
Four curves are shown for the GPU partition: one using the
FFT pressure solver (OpenACC R8I4 FFT) and three using
the MG pressure solver, compiled with managed memory
(Managed R8I4 MG) or using OpenACC directives with sin-
gle or double precision (OpenACC R4I4 MG and OpenACC
R8I4 MG, respectively). The value for the CPU AMD Genoa
partition using 64 nodes is taken as reference.

Figure 8. Energy gain factor of Meso-NH on Adastra, using the
GPU AMD MI250X and CPU AMD Genoa partitions, for the
4096×4096×128 configuration run. The energy gain factor is cal-
culated with respect to the value for the CPU AMD Genoa partition
using 64 nodes.

When using the CPU partition, the energy gain is around
1 regardless of the number of nodes used. In other words,
energy cost with CPUs remains the same. This illustrates
the perfect scaling of Meso-NH on CPUs seen above. This
contrasts with energy gain obtained using GPUs by a fac-
tor of 1.3 to 3.6 compared with the CPU reference whatever
the Meso-NH version and number of nodes (up to the limit
of 256 here). With the OpenACC R8I4 MG version, using
GPUs gains energy use to a factor of 2.3, 2.0 and 1.5 for
64, 128 and 256 nodes, respectively. As expected, the use of
single precision instead of double precision offers an even
greater reduction, with gain factor of 3.6, 3.1 and 2.1 for 64,
128 and 256 nodes, respectively. Gain in energy consump-
tion is increased by up to 0.1 with automatic managed mem-
ory from the standard version values. Finally, using the FFT
pressure solver results in higher energy use compared to the
version with the MG pressure solver. This results in the low-
est gain factor with respect to the CPU reference, that is, 1.8
and 1.3 for 128 and 256 nodes, respectively.

4 Weather applications

As part of a grand challenge pilot project on the GPU par-
tition of Adastra, simulations at hectometric resolution are
carried out for recent storms leading to extreme wind gusts.
Wind gusts are responsible for major damage but remain
poorly understood due to their local and intermittent na-
ture (∼ 1 s), which is inaccessible to standard atmospheric
simulations. The numerical efficiency of the Meso-NH code
ported to GPU allows for explicit representation of the broad
range of mechanisms involved in the formation of small-
scale wind gusts in storms. Specifically, the hectometric

Geosci. Model Dev., 18, 2679–2700, 2025 https://doi.org/10.5194/gmd-18-2679-2025

J. Escobar et al.: Meso-NH version MESONH-v55-OpenACC on GPU 2695

Table 6. Summary of the simulations undertaken for the grand challenge Adastra. Gpts: 109 grid points.

Simulation 1x Grid size No. of Initial time Duration No. of
grid points GPU nodes

Atlantic storm Alex 100 m 4096× 4096× 90 1.5 Gpts 18:00 UTC 1 October 2020 6 h 128
Mediterranean storm 250 m 2048× 2048× 90 0.4 Gpts 04:00 UTC 18 August 2022 6 h 16
Amazon storm 200 m 4096× 4096× 128 2.1 Gpts 00:00 UTC 18 January 2023 24 h 128
Wave coupled Alex 200 m 2048× 2048× 90 0.4 Gpts 18:00 UTC 1 October 2020 6 h 16

resolution combined with large grid size makes it possible
to describe the scale cascade from the core of the storms
(> 100 km) to the deep and shallow convective circulations
at the origin of the gusts (< 1 km). Table 6 summarizes the
setup of the simulations, which all use the same transport
schemes and physical parameterizations as those used in the
benchmark.

Two weather events representative of the major types of
storms that hit Europe are first simulated (Fig. 9): a North
Atlantic storm associated with the midlatitude cyclone Alex,
more typical of the winter season (windstorm; a–b), and a
Mediterranean storm associated with intense convection and
characterized as a derecho, which is more typical of the sum-
mer season (thunderstorm; c–d). In both cases, the weather
event extends over several hundred kilometers and quickly
propagates eastward at a pace of nearly 100 km h−1, which
requires a large simulation domain to capture the life cycle
of several hours (a, c). However, the formation of gusts oc-
curs at scales of a few kilometers at most, which requires
high resolution to be accurately represented (b, d). The wind
acceleration involves both deep and shallow convection but
contrasts between the two storms, as exemplified by the clear
spatial separation between strong winds and rain in the At-
lantic cyclonic storm (panel b) and their close proximity in
the Mediterranean convective storm (panel d).

To complement the study of midlatitude storms, a third
event representative of tropical weather is also simulated: a
convective storm that spreads over the Amazon forest during
the recent field campaign CAFE-Brazil (Fig. 9e–f). In this
case, the event extends again over several hundred kilome-
ters (the domain is 800 km large) but propagates much more
slowly and westward due to the weak easterly ambient wind
in the tropics compared to the strong westerlies in the midlat-
itudes. Also, the surface wind is much weaker and does not
lead to severe gusts or related damages. However, the mod-
erate gusts play a crucial role in continuously triggering new
convective cells and ensuring the organization and mainte-
nance of the convective storm as a whole. This upscale effect
starts at scales of a few kilometers at most – contrarily to
the downscale effect of gust formation in midlatitude storms
described above – but also requires high resolution to be ac-
curately represented.

In order to better represent ocean–atmosphere exchanges,
which can be crucial for the formation of wind gusts, Meso-

NH can be coupled to a wave and/or an oceanic model thanks
to the OASIS3-MCT coupler (Craig et al., 2017; Voldoire
et al., 2017; Pianezze et al., 2018). This kind of coupled sys-
tem has been widely used on the CPU partitions of various
supercomputers. For the first time and thanks to the grand
challenge, coupled simulations between Meso-NH and ver-
sion 7.02 of the WAVEWATCH III (WW3) spectral wave
model (WW3DG, 2019) have been successfully performed
on the Adastra GPU partition for the example of the Atlantic
storm Alex (Table 6). Since WW3 runs faster than Meso-
NH for the same horizontal resolution, parallel exchanges
between models via OASIS are very efficient, and WW3 uses
CPUs not used by Meso-NH, the computational cost of the
coupled simulation is equal to the computational cost of the
Meso-NH simulation. No additional cost is found for the cou-
pling component.

While the detailed processes involved are investigated in
separate studies, the results illustrate how the simulation of
different types of storms may benefit from the combination
of large domain and high resolution. Focusing on the At-
lantic storm Alex prior to landfall over Brittany (Fig. 9b),
Fig. 10 shows the scale cascade as spectrum of kinetic energy
in the middle of the boundary layer. The Meso-NH simula-
tion (blue curve) exhibits three distinct ranges: the mesoscale
for λ > 10 km, the inertial subrange approaching the the-
oretical slope of the Kolmogorov spectrum (grey line) for
λ < 1 km, and an energy accumulation range in between for
10> λ > 1 km. Specifically, the energy accumulation range
includes the fine-scale wind structures at the origin of gusts
illustrated in Fig. 9b. At smaller scales, the drop in energy for
λ < 400 m in Fig. 10 indicates that the effective resolution of
the simulation reaches 41x. In contrast, the AROME opera-
tional analysis that provides the initial and lateral boundary
conditions for the simulation (orange curve) diverges from
Meso-NH for λ < 10 km: it captures only the mesoscale only
and misses the energy accumulation and inertial subrange.

5 Conclusions

Porting Meso-NH to GPUs is achieved by including Ope-
nACC directives to the most computationally expensive parts
of the code: advection, turbulence, cloud microphysics and
pressure solver. This approach allows for the same code to
be run on CPUs and on hybrid CPU-GPU architectures. Us-

https://doi.org/10.5194/gmd-18-2679-2025 Geosci. Model Dev., 18, 2679–2700, 2025

2696 J. Escobar et al.: Meso-NH version MESONH-v55-OpenACC on GPU

Figure 9. Illustrations of Meso-NH simulations for (a–b) the Atlantic storm Alex on 1 October 2020, (c–d) a Mediterranean storm on
18 August 2022 and (e–f) the Amazon storms on 18 January 2023. Light shadings show the integrated content of hydrometeors, blue
shadings show the precipitation rate above 20 mm h−1, and red shadings show the 10 m wind speed. Panels (a, c, e) illustrate composites of
different times (in UTC) on the whole domain, while panels (b, d, f) illustrate zooms at specific times in the red boxes.

ing our own MPPDB_CHECK library, the bit reproducibility
of Meso-NH has already been ensured on CPUs. This prop-
erty is extended to GPUs, thus guaranteeing accuracy of the
porting and the absence of bugs. A critical point lies in the
atmospheric pressure solver, which requires the inversion of
an elliptic equation. A multigrid pressure solver is integrated

because the fast Fourier transform approach used in the orig-
inal version of the code becomes expensive with a high num-
ber of GPUs. Currently, the code runs on different NVIDIA
GPU and AMD GPU platforms and scales efficiently up to at
least 1024 GPUs (256 nodes on Adastra and Leonardo). Us-
ing the same configuration with 64 nodes on Adastra, Meso-

Geosci. Model Dev., 18, 2679–2700, 2025 https://doi.org/10.5194/gmd-18-2679-2025

J. Escobar et al.: Meso-NH version MESONH-v55-OpenACC on GPU 2697

Figure 10. Energy spectrum for the Atlantic storm Alex at
515 m a.g.l. in the Meso-NH simulation (blue curve) and the
AROME operational analysis (orange curve). The grey line shows
the theoretical slope of the inertial range, while the vertical lines
indicate the approximate wavelengths of the lower limit of the
mesoscale (λ≈ 10 km) and the upper limit of the inertial subrange
(λ≈ 1 km), as well as the effective resolution of the simulation
(λ≈ 400 m).

NH is 5.6× faster on GPUs, with 9.9× faster advection, and
achieves a 2.3× energy efficiency gain compared to CPUs
only.

Porting of other functionalities of the code to GPU is
in progress. This includes grid nesting capabilities, ability
to use other grid configurations than those imposed by the
multigrid pressure solver and other components such as the
two-moment cloud microphysics scheme. Moreover, the cur-
rent porting concerns version 5.5, while the latest version
of Meso-NH is version 5.7. An update of the latest ver-
sion with MESONH-V55-OpenACC is therefore necessary.
In particular, in version 5.7, the physical parameterizations
have been externalized to create PHYEX (PHYsique EXter-
nalisée). This library shared with the operational NWP code
AROME of Météo-France aims to provide greater modular-
ity, enable coherent management of developments in physics
and facilitate adaptation to different computing architectures.
This also opens up possibilities for use in other models. Thus,
the next version of PHYEX will include the GPU modifi-
cations from MESONH-V55-OpenACC as well as domain-
specific language development in order to integrate the oper-
ational constraints inherent to AROME. A physical param-
eterization not included in PHYEX is the ECMWF radia-
tion scheme (neither the version by Gregory et al., 2000,
nor ecRad by Hogan and Bozzo, 2018). The most recent
scheme, ecRad, is a method for efficiently handling the 3-
dimensional radiative effects associated with clouds, a prop-

erty essential for fine resolution. It is currently being ported
to GPUs at ECMWF and will be included, when available,
in a future version of Meso-NH. Finally, it is expected that
the MESONH-V55-OpenACC version will work as such on
the new machines equipped with an accelerated processing
unit (APU), with the advantages of automatic data transfer
for memory and I/O (Tandon et al., 2024; Fusco et al., 2024).

First scientific applications focus on the simulation of
extreme weather events across scales as part of a grand
challenge pilot project on the GPU-based Adastra super-
computer, ranked third in the November 2022 GREEN500
(TOP500.org, 2022a). Three representative storms are simu-
lated: a North Atlantic windstorm associated with a midlat-
itude cyclone, a Mediterranean convective storm character-
ized as a derecho and a mesoscale convective system over
the Amazon rainforest. Representation of the North Atlantic
storm requires downscaling from the synoptic cyclone scale
(> 100 km) down to local wind gust formation (< 1 km). In-
versely, the representation of the Amazon storm requires up-
scaling from the local triggering of convective cells (< 1 km),
which organize and maintain the system at the mesoscale
(> 100 km). Finally, the Mediterranean storm involves both
up- and downscaling. We show that Meso-NH successfully
represents the cascade of scales for the three representative
storms for horizontal grid spacing down to 100 m and grid
size up to 4096×4096×128 points (2.1 Gpts). On the Adas-
tra GPU partition and for one of the three storms, coupled
simulations between Meso-NH and the WW3 spectral wave
model are successfully carried out using the OASIS3-MCT
coupler. It should be noted that the additional cost of the cou-
pling is negligible compared with the cost of Meso-NH since
WW3 and OASIS use the free CPUs of the GPU nodes.

Porting Meso-NH to GPUs opens up new opportunities
for simulating extreme weather events across scales. These
opportunities are all the greater in a context where artifi-
cial intelligence (AI) is experiencing rapid development in
meteorology. Meso-NH simulations, on a fine scale, over
very large domains and integrating various couplings, con-
stitute a unique source of data for the development of AI
emulators. A strong need for giga-LESs (large-eddy simu-
lations on a billion grid points) already exists for variables
that are very rarely measured, such as the vertical speed of
the cloud envelope or in storms that the C3IEL (Cluster for
Cloud Evolution, ClImatE and Lightning) and C2OMODO
(Convective Core Observations trOugh Microwave Deriva-
tives in the trOpics) satellite projects aim to retrieve (Auguste
and Chaboureau, 2022; Brogniez et al., 2022; Dandini et al.,
2022). This need is also expressed for near-real-time simula-
tions of natural hazards for urgent decision-making (Flatken
et al., 2023). Finally, this GPU porting paves the way for fu-
ture European exascale supercomputers. The upcoming ar-
rival of such machines will enable the creation of tera-LES
(over a trillion grid points) and a better understanding of the
upscaling and downscaling processes occurring during ex-
treme weather events.

https://doi.org/10.5194/gmd-18-2679-2025 Geosci. Model Dev., 18, 2679–2700, 2025

2698 J. Escobar et al.: Meso-NH version MESONH-v55-OpenACC on GPU

Code and data availability. Since version 5.1 was released in
2014, Meso-NH has been freely available under the CeCILL-C
license agreement. CeCILL is a free software license, explicitly
compatible with GNU GPL. The CeCILL-C license agree-
ment grants users the right to modify and re-use the covered
software. The Meso-NH version MESONH-v55-OpenACC
is available at https://src.koda.cnrs.fr/mesonh/mesonh-code/
-/tree/6945dbddd4641e1d26d59343b1d44cc089238fb1
(last access: 14 February 2025) as well as at
https://doi.org/10.5281/zenodo.14872313 (Escobar et al.,
2025). This repository also contains namelists to run the test
cases and Python scripts to reproduce the figures of this pa-
per. The MNH_Expand_Array preprocessor is available at
https://github.com/JuanEscobarMunoz/MNH_Expand_Array (last
access: 14 February 2025).

Author contributions. JE and PW ported the Meso-NH code and
ran the performance tests. JP installed and tested the coupled code.
FP, JP, TD and CB designed the Meso-NH simulations on large-
scale grid and performed the simulations on Adastra. FP led the
grand challenge. JPC prepared the manuscript with contributions
from all co-authors.

Competing interests. The authors declare that they have no conflict
of interest.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affiliations, or any other geographical rep-
resentation in this paper. While Copernicus Publications makes ev-
ery effort to include appropriate place names, the final responsibility
lies with the authors.

Acknowledgements. Computer resources for running Meso-NH
were allocated by CALMIP through projects P0121 and P20024
and GENCI through projects GEN1605 and 0111437. The authors
thank Naima Alaoui (Eolen), Pascal Vezolle (HPE) and Pierre-Eric
Bernard (HPE) for their support with porting the code on Adastra
(contract for progress CINES and HPE). The authors also thank Di-
dier Gazen (CNRS) for his ever-present support on the local com-
puter cluster and Didier Ricard (Météo-France) for providing ini-
tialization data for the Meso-NH simulations. We thank the anony-
mous reviewers for their comments, which helped to improve the
overall quality of the paper.

Financial support. This research has been supported by the Agence
Nationale de la Recherche (grant no. ANR-21-CE01-0002).

Review statement. This paper was edited by Chiel van Heerwaar-
den and reviewed by Pedro Costa and one anonymous referee.

References

Auguste, F. and Chaboureau, J.-P.: Deep convection as in-
ferred from the C2OMODO concept of a tandem of
microwave radiometers, Front. Remote Sens., 3, 852610,
https://doi.org/10.3389/frsen.2022.852610, 2022.

Bauer, P., Thorpe, A., and Brunet, G.: The quiet revolu-
tion of numerical weather prediction, Nature, 525, 47–55,
https://doi.org/10.1038/nature14956, 2015.

Bergot, T., Escobar, J., and Masson, V.: Effect of small scale surface
heterogeneities and buildings on radiation fog : Large-Eddy Sim-
ulation study at Paris-Charles de Gaulle airport, Q. J. Roy. Me-
teor. Soc., 141, 285–298, https://doi.org/10.1002/qj.2358, 2015.

Bernardet, P.: The pressure term in the anelastic model: a symmetric
solver for an Arakawa C grid in generalized coordinates, Mon.
Weather Rev., 123, 2474–2490, https://doi.org/10.1175/1520-
0493(1995)123<2474:TPTITA>2.0.CO;2, 1995.

Brogniez, H., Roca, R., Auguste, F., Chaboureau, J.-P., Had-
dad, Z., Munchak, S. J., Li, X., Bouniol, D., Dépée,
A., Fiolleau, T., and Kollias, P.: Time-delayed tandem mi-
crowave observations of tropical deep convection: Overview
of the C2OMODO mission, Front. Remote Sens., 3, 854735,
https://doi.org/10.3389/frsen.2022.854735, 2022.

Colella, P. and Woodward, P. R.: The Piecewise Parabolic Method
(PPM) for gas-dynamical simulations, J. Comput. Phys., 54,
174–201, https://doi.org/10.1016/0021-9991(84)90143-8, 1984.

Craig, A., Valcke, S., and Coquart, L.: Development and
performance of a new version of the OASIS coupler,
OASIS3-MCT_3.0, Geosci. Model Dev., 10, 3297–3308,
https://doi.org/10.5194/gmd-10-3297-2017, 2017.

Cuxart, J., Bougeault, P., and Redelsperger, J.-L.: A tur-
bulence scheme allowing for mesoscale and large-
eddy simulations, Q. J. Roy. Meteor. Soc., 126, 1–30,
https://doi.org/10.1002/qj.49712656202, 2000.

Dandini, P., Cornet, C., Binet, R., Fenouil, L., Holodovsky, V., Y.
Schechner, Y., Ricard, D., and Rosenfeld, D.: 3D cloud enve-
lope and cloud development velocity from simulated CLOUD
(C3IEL) stereo images, Atmos. Meas. Tech., 15, 6221–6242,
https://doi.org/10.5194/amt-15-6221-2022, 2022.

Dauhut, T., Chaboureau, J.-P., Escobar, J., and Mascart, P.:
Large-eddy simulation of Hector the convector making
the stratosphere wetter, Atmos. Sci. Lett., 16, 135–140,
https://doi.org/10.1002/asl2.534, 2015.

Dauhut, T., Chaboureau, J.-P., Haynes, P. H., and Lane, T. P.:
The mechanisms leading to a stratospheric hydration by
overshooting convection, J. Atmos. Sci., 75, 4383–4398,
https://doi.org/10.1175/JAS-D-18-0176.1, 2018.

Donahue, A. S., Caldwell, P. M., Bertagna, L., Beydoun, H., Bo-
genschutz, P. A., Bradley, A. M., Clevenger, T. C., Foucar, J.,
Golaz, C., Guba, O., Hannah, W., Hillman, B. R., Johnson, J. N.,
Keen, N., Lin, W., Singh, B., Sreepathi, S., Taylor, M. A., Tian, J.,
Terai, C. R., Ullrich, P. A., Yuan, X., and Zhang, Y.: To Exascale
and Beyond – The Simple Cloud-Resolving E3SM Atmosphere
Model (SCREAM), a Performance Portable Global Atmosphere
Model for Cloud-Resolving Scales, J. Adv. Model Earth Sy.,
16, e2024MS004314, https://doi.org/10.1029/2024MS004314,
2024.

Escobar, J., Wautelet, P., Pianezze, J., Pantillon, F., Dauhut,
T., Barthe, C., and Chaboureau, J.-P.: Code and data for
Porting the Meso-NH Atmospheric Model on Different GPU

Geosci. Model Dev., 18, 2679–2700, 2025 https://doi.org/10.5194/gmd-18-2679-2025

https://src.koda.cnrs.fr/mesonh/mesonh-code/-/tree/6945dbddd4641e1d26d59343b1d44cc089238fb1
https://src.koda.cnrs.fr/mesonh/mesonh-code/-/tree/6945dbddd4641e1d26d59343b1d44cc089238fb1
https://doi.org/10.5281/zenodo.14872313
https://github.com/JuanEscobarMunoz/MNH_Expand_Array
https://doi.org/10.3389/frsen.2022.852610
https://doi.org/10.1038/nature14956
https://doi.org/10.1002/qj.2358
https://doi.org/10.1175/1520-0493(1995)123<2474:TPTITA>2.0.CO;2
https://doi.org/10.1175/1520-0493(1995)123<2474:TPTITA>2.0.CO;2
https://doi.org/10.3389/frsen.2022.854735
https://doi.org/10.1016/0021-9991(84)90143-8
https://doi.org/10.5194/gmd-10-3297-2017
https://doi.org/10.1002/qj.49712656202
https://doi.org/10.5194/amt-15-6221-2022
https://doi.org/10.1002/asl2.534
https://doi.org/10.1175/JAS-D-18-0176.1
https://doi.org/10.1029/2024MS004314

J. Escobar et al.: Meso-NH version MESONH-v55-OpenACC on GPU 2699

Architectures for the Next Generation of Supercomput-
ers (version MESONH-v55-OpenACC), Zenodo [data set],
https://doi.org/10.5281/zenodo.14872313, 2025.

Flatken, M., Podobas, A., Fellegara, R., Basermann, A., Holke,
J., Knapp, D., Kontak, M., Krullikowski, C., Nolde, M.,
Brown, N., Nash, R., Gibb, G., Belikov, E., Chien, S.
W. D., Markidis, S., Guillou, P., Tierny, J., Vidal, J., Gue-
unet, C., Günther, J., Pawlowski, M., Poletti, P., Guzzetta,
G., Manica, M., Zardini, A., Chaboureau, J.-P., Mendes,
M., Cardil, A., Monedero, S., Ramirez, J., and Gerndt, A.:
VESTEC: Visual Exploration and Sampling Toolkit for Ex-
treme Computing Urgent decision making meets HPC: Expe-
riences and future challenges, IEEE Access, 11, 87805–87834,
https://doi.org/10.1109/ACCESS.2023.3301177, 2023.

Fuhrer, O., Chadha, T., Hoefler, T., Kwasniewski, G., Lapil-
lonne, X., Leutwyler, D., Lüthi, D., Osuna, C., Schär, C.,
Schulthess, T. C., and Vogt, H.: Near-global climate simulation
at 1 km resolution: establishing a performance baseline on 4888
GPUs with COSMO 5.0, Geosci. Model Dev., 11, 1665–1681,
https://doi.org/10.5194/gmd-11-1665-2018, 2018.

Fusco, L., Khalilov, M., Chrapek, M., Chukkapalli, G.,
Schulthess, T., and Hoefler, T.: Understanding Data Move-
ment in Tightly Coupled Heterogeneous Systems: A Case
Study with the Grace Hopper Superchip, arXiv [preprint],
https://doi.org/10.48550/arXiv.2408.11556, 2024.

Giorgetta, M. A., Sawyer, W., Lapillonne, X., Adamidis, P., Alex-
eev, D., Clément, V., Dietlicher, R., Engels, J. F., Esch, M.,
Franke, H., Frauen, C., Hannah, W. M., Hillman, B. R., Ko-
rnblueh, L., Marti, P., Norman, M. R., Pincus, R., Rast, S.,
Reinert, D., Schnur, R., Schulzweida, U., and Stevens, B.: The
ICON-A model for direct QBO simulations on GPUs (ver-
sion icon-cscs:baf28a514), Geosci. Model Dev., 15, 6985–7016,
https://doi.org/10.5194/gmd-15-6985-2022, 2022.

Giraud, L., Guivarch, R., and Stein, J.: A Parallel distributed
Fast 3D Poisson Solver for MesoNH, in: Euro-Par’99 Paral-
lel Processing. Lecture Notes in Computer Science, vol. 1685,
Springer Berlin Heidelberg, Berlin, Heidelberg, 1431–1434,
https://doi.org/10.1007/3-540-48311-X_201, 1999.

Gregory, D., Morcrette, J.-J., Jakob, C., Beljaars, A. M., and Stock-
dale, T.: Revision of convection, radiation and cloud schemes in
the ECMWF model, Q. J. Roy. Meteor. Soc., 126, 1685–1710,
https://doi.org/10.1002/qj.49712656607, 2000.

Hogan, R. J. and Bozzo, A.: A flexible and efficient radiation
scheme for the ECMWF model, J. Adv. Model Earth Sy., 10,
1990–2008, https://doi.org/10.1029/2018MS001364, 2018.

Ibeid, H., Olson, L., and Gropp, W.: FFT, FMM, and multi-
grid on the road to exascale: Performance challenges and
opportunities, J. Parallel Distrib. Comput., 136, 63–74,
https://doi.org/10.1016/j.jpdc.2019.09.014, 2020.

IEEE: IEEE Standard for Floating-Point Arithmetic, IEEE
Std 754-2019 (Revision of IEEE 754-2008), 1–84,
https://doi.org/10.1109/IEEESTD.2019.8766229, 2019.

Jabouille, P., Guivarch, R., Kloos, P., Gazen, D., Gicquel, N., Gi-
raud, L., Asencio, N., Ducrocq, V., Escobar, J., Redelsperger, J.-
L., Stein, J., and Pinty, J.-P.: Parallelization of the French me-
teorological mesoscale model MesoNH, in: Euro-Par’99 Paral-
lel Processing. Lecture Notes in Computer Science, vol. 1685,
Springer Berlin Heidelberg, Berlin, Heidelberg, 1417–1422,
https://doi.org/10.1007/3-540-48311-X_199, 1999.

Khairoutdinov, M. F., Krueger, S. K., Moeng, C.-H., Bogenschutz,
P. A., and Randall, D. A.: Large-Eddy Simulation of Maritime
Deep Tropical Convection, J. Adv. Model Earth Sy., 1, 15,
https://doi.org/10.3894/JAMES.2009.1.15, 2009.

Lac, C., Chaboureau, J.-P., Masson, V., Pinty, J.-P., Tulet, P., Es-
cobar, J., Leriche, M., Barthe, C., Aouizerats, B., Augros, C.,
Aumond, P., Auguste, F., Bechtold, P., Berthet, S., Bielli, S.,
Bosseur, F., Caumont, O., Cohard, J.-M., Colin, J., Couvreux,
F., Cuxart, J., Delautier, G., Dauhut, T., Ducrocq, V., Filippi, J.-
B., Gazen, D., Geoffroy, O., Gheusi, F., Honnert, R., Lafore,
J.-P., Lebeaupin Brossier, C., Libois, Q., Lunet, T., Mari, C.,
Maric, T., Mascart, P., Mogé, M., Molinié, G., Nuissier, O., Pan-
tillon, F., Peyrillé, P., Pergaud, J., Perraud, E., Pianezze, J., Re-
delsperger, J.-L., Ricard, D., Richard, E., Riette, S., Rodier, Q.,
Schoetter, R., Seyfried, L., Stein, J., Suhre, K., Taufour, M.,
Thouron, O., Turner, S., Verrelle, A., Vié, B., Visentin, F., Vion-
net, V., and Wautelet, P.: Overview of the Meso-NH model ver-
sion 5.4 and its applications, Geosci. Model Dev., 11, 1929–
1969, https://doi.org/10.5194/gmd-11-1929-2018, 2018.

Lafore, J. P., Stein, J., Asencio, N., Bougeault, P., Ducrocq, V.,
Duron, J., Fischer, C., Héreil, P., Mascart, P., Masson, V., Pinty, J.
P., Redelsperger, J. L., Richard, E., and Vilà-Guerau de Arellano,
J.: The Meso-NH Atmospheric Simulation System. Part I: adi-
abatic formulation and control simulations, Ann. Geophys., 16,
90–109, https://doi.org/10.1007/s00585-997-0090-6, 1998.

Lfarh, W., Pantillon, F., and Chaboureau, J.-P.: The downward
transport of strong wind by convective rolls in a Mediter-
ranean windstorm, Mon. Weather Rev., 151, 2801–2817,
https://doi.org/10.1175/MWR-D-23-0099.1, 2023.

Lunet, T., Lac, C., Auguste, F., Visentin, F., Masson, V., and Es-
cobar, J.: Combination of WENO and Explicit Runge-Kutta
methods for wind transport in the Meso-NH model, Mon.
Weather Rev., 145, 3817–3838, https://doi.org/10.1175/MWR-
D-16-0343.1, 2017.

Masson, V., Le Moigne, P., Martin, E., Faroux, S., Alias, A.,
Alkama, R., Belamari, S., Barbu, A., Boone, A., Bouyssel, F.,
Brousseau, P., Brun, E., Calvet, J.-C., Carrer, D., Decharme, B.,
Delire, C., Donier, S., Essaouini, K., Gibelin, A.-L., Giordani, H.,
Habets, F., Jidane, M., Kerdraon, G., Kourzeneva, E., Lafaysse,
M., Lafont, S., Lebeaupin Brossier, C., Lemonsu, A., Mahfouf,
J.-F., Marguinaud, P., Mokhtari, M., Morin, S., Pigeon, G., Sal-
gado, R., Seity, Y., Taillefer, F., Tanguy, G., Tulet, P., Vincendon,
B., Vionnet, V., and Voldoire, A.: The SURFEXv7.2 land and
ocean surface platform for coupled or offline simulation of earth
surface variables and fluxes, Geosci. Model Dev., 6, 929–960,
https://doi.org/10.5194/gmd-6-929-2013, 2013.

Miller, D.: Filepp: The generic file preprocessor, https://www-users.
york.ac.uk/~dm26/filepp/ (last access: 16 September 2024),
2008.

Müller, E. H.: TensorProductMultigrid, https://bitbucket.org/
em459/tensorproductmultigrid/src/master/ (last access: 16 De-
cember 2024), 2014.

Müller, E. H. and Scheichl, R.: Massively parallel solvers for el-
liptic partial differential equations in numerical weather and
climate prediction, Q. J. Roy. Meteor. Soc., 140, 2608–2624,
https://doi.org/10.1002/qj.2327, 2014.

Müller, E. H., Scheichl, R., and Vainikko, E.: Petas-
cale solvers for anisotropic PDEs in atmospheric mod-

https://doi.org/10.5194/gmd-18-2679-2025 Geosci. Model Dev., 18, 2679–2700, 2025

https://doi.org/10.5281/zenodo.14872313
https://doi.org/10.1109/ACCESS.2023.3301177
https://doi.org/10.5194/gmd-11-1665-2018
https://doi.org/10.48550/arXiv.2408.11556
https://doi.org/10.5194/gmd-15-6985-2022
https://doi.org/10.1007/3-540-48311-X_201
https://doi.org/10.1002/qj.49712656607
https://doi.org/10.1029/2018MS001364
https://doi.org/10.1016/j.jpdc.2019.09.014
https://doi.org/10.1109/IEEESTD.2019.8766229
https://doi.org/10.1007/3-540-48311-X_199
https://doi.org/10.3894/JAMES.2009.1.15
https://doi.org/10.5194/gmd-11-1929-2018
https://doi.org/10.1007/s00585-997-0090-6
https://doi.org/10.1175/MWR-D-23-0099.1
https://doi.org/10.1175/MWR-D-16-0343.1
https://doi.org/10.1175/MWR-D-16-0343.1
https://doi.org/10.5194/gmd-6-929-2013
https://www-users.york.ac.uk/~dm26/filepp/
https://www-users.york.ac.uk/~dm26/filepp/
https://bitbucket.org/em459/tensorproductmultigrid/src/master/
https://bitbucket.org/em459/tensorproductmultigrid/src/master/
https://doi.org/10.1002/qj.2327

2700 J. Escobar et al.: Meso-NH version MESONH-v55-OpenACC on GPU

elling on GPU clusters, Parallel Comput., 50, 53–69,
https://doi.org/10.1016/j.parco.2015.10.007, 2015.

Pantillon, F., Mascart, P., Chaboureau, J.-P., Lac, C., Es-
cobar, J., and Duron, J.: Seamless MESO-NH modeling
over very large grids, C. R. Mecanique, 339, 136–140,
https://doi.org/10.1016/j.crme.2010.12.002, 2011.

Pianezze, J., Barthe, C., Bielli, S., Tulet, P., Jullien, S., Cambon,
G., Bousquet, O., Claeys, M., and Cordier, E.: A new cou-
pled ocean-waves-atmosphere model designed for tropical storm
studies: example of tropical cyclone Bejisa (2013–2014) in the
South-West Indian Ocean, J. Adv. Model Earth Sy., 10, 801–825,
https://doi.org/10.1002/2017MS001177, 2018.

Pinty, J.-P. and Jabouille, P.: A mixed-phase cloud parameterization
for use in a mesoscale non-hydrostatic model: simulations of a
squall line and of orographic precipitations, in: Conf. on cloud
physics, Everett, WA, Amer. Meteor. Soc., 217–220, 1998.

Skamarock, W. C., Smolarkiewicz, P. K., and Klemp,
J. B.: Preconditioned conjugate-residual solvers for
Helmholtz equations in nonhydrostatic models, Mon.
Weather Rev., 125, 587–599, https://doi.org/10.1175/1520-
0493(1997)125<0587:PCRSFH>2.0.CO;2, 1997.

Spiros, A.: bitrep, a toolset for bit-reproducible floating-point
computations, https://github.com/andyspiros/bitrep (last access:
16 September 2024), 2014.

Stevens, B., Satoh, M., Auger, L., Biercamp, J., Bretherton, C. S.,
Chen, X., Düben, P., Judt, F., Khairoutdinov, M., Klocke, D., Ko-
dama, C., Kornblueh, L., Lin, S.-J., Neumann, P., Putman, W. M.,
Röber, N., Shibuya, R., Vanniere, B., Vidale, P. L., Wedi, N.,
and Zhou, L.: DYAMOND: the DYnamics of the Atmospheric
general circulation Modeled On Non-hydrostatic Domains, Prog.
Earth Planet Sci., 6, 61, https://doi.org/10.1186/s40645-019-
0304-z, 2019.

Tandon, S., Grinberg, L., Bercea, G.-T., Bertolli, C., Ole-
sen, M., Bna, S., and Malaya, N.: Porting HPC Appli-
cations to AMD Instinct™ MI300A using Unified Mem-
ory and OpenMP®, in: ISC High Performance 2024 Re-
search Paper Proceedings (39th International Conference), 1–9,
https://doi.org/10.23919/ISC.2024.10528925, 2024.

Tomita, H., Miura, H., Iga, S., Nasuno, T., and Satoh, M.:
A global cloud-resolving simulation: Preliminary results from
an aqua planet experiment, Geophys. Res. Lett., 32, L08805,
https://doi.org/10.1029/2005GL022459, 2005.

TOP500.org: GREEN500 List November 2022, https://www.
top500.org/lists/green500/2022/11/ (last access: 16 Septem-
ber 2024), 2022a.

TOP500.org: TOP500 List June 2022, https://www.top500.org/lists/
top500/2022/06/ (last access: 16 September 2024), 2022b.

Verma, M., Chatterjee, S., Garg, G., Sharma, B., Arya, N., Ku-
mar, S., Saxena, A., K., M., and Verma, M. K.: Scalable multi-
node fast Fourier transform on GPUs, SN Comput. Sci., 4, 625,
https://doi.org/10.1007/s42979-023-02109-0, 2023.

Villefranque, N., Hourdin, F., d’Alençon, L., Blanco, S., Boucher,
O., Caliot, C., Coustet, C., Dauchet, J., El Hafi, M., Eymet,
V., Farges, O., Forest, V., Fournier, R., Gautrais, J., Mas-
son, V., Piaud, B., and Schoetter, R.: The “teapot in a city”:
A paradigm shift in urban climate modeling, Sci. Adv., 8,
eabp8934, https://doi.org/10.1126/sciadv.abp8934, 2022.

Voldoire, A., Decharme, B., Pianezze, J., Lebeaupin Brossier,
C., Sevault, F., Seyfried, L., Garnier, V., Bielli, S., Val-
cke, S., Alias, A., Accensi, M., Ardhuin, F., Bouin, M.-N.,
Ducrocq, V., Faroux, S., Giordani, H., Léger, F., Marsaleix, P.,
Rainaud, R., Redelsperger, J.-L., Richard, E., and Riette, S.:
SURFEX v8.0 interface with OASIS3-MCT to couple atmo-
sphere with hydrology, ocean, waves and sea-ice models, from
coastal to global scales, Geosci. Model Dev., 10, 4207–4227,
https://doi.org/10.5194/gmd-10-4207-2017, 2017.

WW3DG: User Manual and System Documentation of WAVE-
WATCH III version 6.07, The WAVEWATCH III Development
Group, Tech. Note 326 pp. + Appendices, NOAA/NWS/N-
CEP/MMAB, 2019.

Geosci. Model Dev., 18, 2679–2700, 2025 https://doi.org/10.5194/gmd-18-2679-2025

https://doi.org/10.1016/j.parco.2015.10.007
https://doi.org/10.1016/j.crme.2010.12.002
https://doi.org/10.1002/2017MS001177
https://doi.org/10.1175/1520-0493(1997)125<0587:PCRSFH>2.0.CO;2
https://doi.org/10.1175/1520-0493(1997)125<0587:PCRSFH>2.0.CO;2
https://github.com/andyspiros/bitrep
https://doi.org/10.1186/s40645-019-0304-z
https://doi.org/10.1186/s40645-019-0304-z
https://doi.org/10.23919/ISC.2024.10528925
https://doi.org/10.1029/2005GL022459
https://www.top500.org/lists/green500/2022/11/
https://www.top500.org/lists/green500/2022/11/
https://www.top500.org/lists/top500/2022/06/
https://www.top500.org/lists/top500/2022/06/
https://doi.org/10.1007/s42979-023-02109-0
https://doi.org/10.1126/sciadv.abp8934
https://doi.org/10.5194/gmd-10-4207-2017

	Abstract
	Introduction
	Methodology
	The Meso-NH community weather research code
	Inclusion of OpenACC directives
	Verification of bit reproducibility between CPUs and GPUs
	Memory management
	Communications with a GPU-aware MPI library
	Development of a multigrid pressure solver
	Creation of an in-house preprocessor

	Computational performance
	Computer systems
	Performance on a single node
	Scaling

	Weather applications
	Conclusions
	Code and data availability
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

