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Abstract. The Arctic sea ice suffers dramatic retreat in sum-
mer and fall, which has far-reaching consequences for the
global climate and commercial activities. Accurate seasonal
sea ice predictions significantly infer climate change and are
crucial for planning commercial activities. However, sea-
sonal prediction of the summer sea ice encounters a sig-
nificant obstacle known as the spring predictability barrier
(SPB): predictions made later than the date of melt onset
(roughly May) demonstrate good skill in predicting sum-
mer sea ice, while predictions made during or earlier than
May exhibit considerably lower skill. This study develops a
transformer-based deep learning model, SICNetseason (V1.0),
to predict the Arctic sea ice concentration on a seasonal scale.
Including spring sea ice thickness (SIT) data in the model
significantly improves the prediction skill at the SPB point.
A 20-year (2000–2019) test demonstrates that the detrended
anomaly correlation coefficient (ACC) of September sea ice
extent (sea ice concentration > 15 %) predicted by our model
during May and April is improved by 7.7 % and 10.61 %,
respectively, compared to the ACC predicted by the state-
of-the-art dynamic model SEAS5 from the European Cen-
tre for Medium-Range Weather Forecasts (ECMWF). Com-
pared with the anomaly persistence benchmark, the men-
tioned improvement is 41.02 % and 36.33 %. Our deep learn-
ing model significantly reduces prediction errors in terms of
September’s sea ice concentration on seasonal scales com-
pared to SEAS5 and the anomaly persistence model (Persis-
tence). The spring SIT data are key in optimizing the pre-

dictions around the SPB, contributing to an enhancement in
ACC of more than 20 % in September’s sea ice extent (SIE)
for 4- to 5-month-lead predictions. Our model achieves good
generalizability in predicting the September SIE of 2020–
2023.

1 Introduction

Arctic sea ice plays a significant role in the global climate
because it modulates the thermal and dynamic exchanges be-
tween the ocean and the atmosphere (Ding et al., 2017; Kap-
sch et al., 2013; Liu et al., 2021a; Olonscheck et al., 2019).
In recent decades, global warming has resulted in a dramatic
retreat in Arctic sea ice during the summer and fall (Cao et
al., 2017; Shu et al., 2022). This decline triggers a system-
positive feedback mechanism that causes the Arctic’s surface
air temperature to increase 2–4 times faster than the global
mean state, known as the Arctic amplification (AA) (Eng-
land et al., 2021; Pithan and Mauritsen, 2014; Screen et al.,
2013; Screen and Simmonds, 2010). AA accelerates sea ice
decline, strengthening positive feedback (Jenkins and Dai,
2021; Kumar et al., 2010). If the situation is unchanged, cli-
mate models project that the Arctic will become ice-free dur-
ing summer by the 2050s (Jahn et al., 2024; Kim et al., 2023).
The dramatic Arctic sea ice loss has consequences for global
climate (Francis and Vavrus, 2012) and commercial activities
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(Min et al., 2022). For example, it may weaken the strato-
spheric polar vortex in the winter, increasing extreme cold
events in the Northern Hemisphere (Blackport et al., 2019;
Cohen et al., 2014). Furthermore, the lower sea ice area dur-
ing summer extends the navigability of the Arctic Passage to
seasonal scales (Cao et al., 2022).

Sea ice predictions are helpful in better understanding
global climate change and in supporting human activities
in the Arctic (Lindsay et al., 2008; Merryfield et al., 2013).
Therefore, sea ice prediction, commonly represented by pa-
rameters such as sea ice concentration (SIC) or sea ice ex-
tent (SIE, defined as the sum of a grid cell area where
SIC > 15 %), has always attracted substantial efforts (Gue-
mas et al., 2016; Stroeve and Notz, 2015). Various predic-
tion systems are proposed, such as numerical (Chevallier et
al., 2013; Liang et al., 2020; Mu et al., 2020; Wang et al.,
2013; Yang et al., 2019; Zhang et al., 2008, 2022), statistical
(Gregory et al., 2020; Wang et al., 2016, 2022; Yuan et al.,
2016) and deep learning models (Jun Kim et al., 2020; Ren
et al., 2022; Ren and Li, 2023). However, accurate sea ice
prediction for Arctic summer remains challenging, particu-
larly at seasonal or even longer scales (Zampieri et al., 2018;
Blanchard-Wrigglesworth et al., 2015, 2023). One of the
biggest challenges is the spring predictability barrier (SPB):
predictions for summer sea ice made before or during the
timing of melt onset show significantly lower skill than pre-
dictions made after the timing of melt onset (Bonan et al.,
2019; Bushuk et al., 2020; Day et al., 2014; Zeng et al.,
2023). Studies show that SPB is evident in nearly all of the
fully coupled global climate models (GCMs) in Phase 5 of
the Coupled Model Intercomparison Project (CMIP5), a cru-
cial initiative providing climate projections to support essen-
tial climate research worldwide (Blanchard-Wrigglesworth
et al., 2011; Tietsche et al., 2014). Thus, optimizing the pre-
dictions around the SPB is an urgent task for accurate sum-
mer sea ice predictions.

Experiments based on ensemble simulations reveal that the
predictability of summer SIE is limited before spring due to
the ice motion and growth in winter (Bushuk et al., 2020).
However, the predictability increases rapidly after the melt-
ing processes in the spring (Bushuk et al., 2020). The satel-
lite observations show that the spring sea ice thickness (SIT)
correlates more with the summer SIE than the spring SIE
(Landy et al., 2022). These findings indicate that the spring
SIT may be a key factor in optimizing the predictions around
the SPB (Bushuk et al., 2020). Recently, researchers assimi-
lated the CryoSat-2 observed SIT data, the first summer SIT
observations, into the Geophysical Fluid Dynamics Labora-
tory (GFDL) ocean–sea ice model and found that the predic-
tion skill of September’s SIC is improved significantly when
the model is initialized with SIT anomalies in July and Au-
gust (Zhang et al., 2023). This study further proves that the
summer SIT data contribute to September’s sea ice predic-
tions. However, as the SPB flag is May for most studies,

whether the predictions around the SPB could be optimized
by including SIT data remains largely unknown.

Currently, numerical models are widely used in opera-
tional sea ice prediction, but they are inflexible and have been
limited by the SPB (Msadek et al., 2014; Sigmond et al.,
2013). Statistical models are good at long-term prediction but
cannot model complex nonlinear relationships and face SPB
challenges. Deep learning models are more flexible than nu-
merical models and more potent than traditional statistical
ones, and they have been successfully used in Earth predic-
tion problems (Li et al., 2021; Reichstein et al., 2019). Re-
searchers have successfully developed deep learning models
to predict polar sea ice states from synoptic to sub-seasonal
scales (Andersson et al., 2021; Dong et al., 2024; Li et al.,
2024; Mu et al., 2023; Palerme et al., 2024; Ren et al., 2022;
Ren and Li, 2023; Song et al., 2024; Wu et al., 2022; Yang
et al., 2024.; Zhu et al., 2023), bringing about new potential
to solve the SPB problem to improve the seasonal prediction
skill from a data-driven perspective.

This work develops a seasonal sea ice prediction model
named SICNetseason (V1.0) to optimize the predictions
around the SPB. SICNetseason is a transformer-based deep
learning model with a physically constrained loss function
based on SIC morphology. It takes historical SIC and SIT
data as predictors and predicts the SIC of the following 6
months. The SIC data are the satellite-observed data from
the National Snow and Ice Data Center (NSIDC) (DiGiro-
lamo et al., 2022). The SICNetseason model is trained on
data from the period 1979–2019 and is tested with data
from the period 2000–2019 by means of a leave-1-year-out
strategy. Data from the 4 most recent years, 2020–2023,
are employed to verify the model’s generalizability. Exper-
iments demonstrate that our model significantly optimizes
the SPB, with a higher detrended anomaly correlation coef-
ficient (ACC) compared with the anomaly persistence model
(Persistence) and the state-of-the-art dynamic model SEAS5
from the European Centre for Medium-Range Weather Fore-
casts (ECMWF) (Johnson et al., 2019). Our model signifi-
cantly reduces the errors of September’s SIC and SIE in 4-
to 5-month-lead predictions. The spring SIT data are key in
optimizing the predictions around the SPB. Our model gen-
eralized well in predicting the September SIE of 2020–2023.
Finally, we compare our SICNetseason model with an IceNet-
inspired U-Net model (Andersson et al., 2021). IceNet is a
probability prediction model for Arctic SIE based on convo-
lutional neural network (CNN) units and the U-Net architec-
ture. The IceNet model achieved state-of-the-art performance
in predicting the probability of SIE for 6 months (Andersson
et al., 2021). Therefore, we construct an IceNet-inspired U-
Net model as a comparison model.
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2 Data

2.1 Sea ice concentration data

The SIC data of 1979–2023 are experiment data. The SIC
is made up of the satellite-observed data obtained from the
NSIDC. It is a daily observation derived from the Nimbus-
7 Scanning Multichannel Microwave Radiometer (SMMR)
and the Defense Meteorological Satellite Program (DMSP)
Special Sensor Microwave Imager (SSM/I and SSMIS) (Di-
Girolamo et al., 2022). The projection of the SIC data is the
North Polar Stereographic with a 25 km spatial resolution.

2.2 Sea ice thickness data

The SIT data are the reanalysis SIT from the Pan-Arctic Ice
Ocean Modeling and Assimilation System (PIOMAS). PI-
OMAS is a numerical model with sea ice and ocean com-
ponents, and it assimilates SIC and sea surface temperature
(Zhang and Rothrock, 2003). PIOMAS SIT agrees well with
in situ, airborne and satellite measurements (Schweiger et al.,
2011). It is made up of daily data with an 18 km spatial reso-
lution. Although PIOMAS generally overestimates thin ice
and underestimates thick ice regions, it is widely adopted
by Arctic studies (Collow et al., 2015; Kwok et al., 2020;
Nakanowatari et al., 2022). The SIC and PIOMAS SIT data
are converted to a Northern Polar Stereographic grid with
80 km resolution. The temporal resolution is 1 month.

3 Method

3.1 Framework of SICNetseason

The SICNetseason model is derived from a transformation-
based U-Net deep learning model, Swin-UNet (Cao et al.,
2023). It accepts a three-dimensional sea ice data sequence
and predicts a three-dimensional SIC sequence for the future
(Fig. 1). The inputs of the model are monthly mean fields.
The predicted target is the SIC of the next 6 months. For
example, if we make predictions in May, the 6-month pre-
dictions will cover the months from June to November.

The input for SICNetseason is a 96× 96× 18 SIC and SIT
sequence, composed of SIT of the last 3 months, SIC of the
last si6 months, SIC anomaly of the last 3 months and SIC
climatology of the 6 target months (Fig. 1a). We determine
the length of the input factors by combining domain knowl-
edge and manual-tuning experiments. The primary domain
of knowledge we considered is the spring–fall re-emergence
mechanism. This occurs between pairs of months where the
ice edge is in the same position, such as in May and Decem-
ber (Blanchard-Wrigglesworth et al., 2011; Day et al., 2014).
The spring sea ice anomaly is positively correlated with fall
sea ice anomalies, and there is also a weaker re-emergence
between fall sea ice anomalies and anomalies of the follow-
ing spring (Bushuk et al., 2015). Therefore, we set the ini-

tial input length of the SIC–SIT–SIC anomaly as 6 months.
We change the input length manually (from 6 to 1 in step
one) to fine-tune the deep learning model to find the best-
matched length for each factor. The SIC climatology of the
target months provides an essential mean state of the predic-
tion SIC. It represents the monthly cycle signal that IceNet
has considered (Andersson et al., 2021).

The input is fed into the encoder to capture spatiotem-
poral correlations among SIC–SIT data sequences at differ-
ent levels to form multi-scale correlation maps. The encoder
comprises four Swin Transformer (Liu et al., 2021b) blocks
and three patch-merging operators (Fig. 1b). A Swin Trans-
former block is a transformer unit integrated with shifted
windows (Liu et al., 2021b). A transformer operator captures
global dependencies through an attention mechanism. The
shifted windows help the transformer operator capture local
dependencies like the convolution operator. Therefore, local
and global spatiotemporal dependencies among sea ice se-
quences can be captured. The patch-merging operator down-
scales the captured feature maps like the pooling layer in
CNN models. The decoder upscales the feature maps through
the patch-expanding operator and Swin Transformer blocks
(Fig. 1c). The extracted correlation maps of the encoder
and decoder are stacked to form fused spatiotemporal maps
(Fig. 1d). A CNN layer transforms the decoded feature maps
into the same shape as the target SIC sequence. Here, it is a
96× 96× 6 array (Fig. 1e). As the range of SIC is 0–1, we
employ the sigmoid function to activate the last feature map
to transform the predicted values to 0–1.

During the training procedure, the loss is calculated be-
tween the predicted and ground values. Then, the model’s pa-
rameters are trained by minimizing the loss value literately.
We will explain the loss function in the following section.

3.2 Integrated ice-edge-constrained loss function

For a deep learning model, the loss function is crucial dur-
ing the training procedure as it guides the optimization of the
model’s parameters. Here, the loss is the difference between
the predicted values and the ground ones from NSIDC. Gen-
erally, the mean square error (MSE) is a fundamental loss
function for prediction tasks. The MSE measures the mean
state for all predicted values and cannot reflect the spatial dif-
ferences between two-dimensional SIC patterns. To address
the issue, we proposed a normalized integrated ice edge error
(NIIEE) loss function that considers the spatial distribution
of SIC to constrain the model’s optimization (Fig. 1g).

The NIIEE loss is based on the integrated ice edge error
(IIEE), a professional metric for sea ice predictions. The IIEE
represents the error regions the prediction model overesti-
mated and underestimated (Goessling et al., 2016). It mea-
sures the spatial similarity between two two-dimensional SIC
patterns. Initially, the IIEE binaries the SIC by 15 % to de-
scribe the SIE. For the SIC prediction here, we do not per-
form binarization. Let PSIC and GSIC represent the predicted
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Figure 1. Framework of the model SICNetseason. (a) Input consists of SIT of the last 3 months, SIC of the last 6 months, SIC anomaly of
the last 3 months and SIC climatology of 6 target months (96×96×18). (b) The encoder comprises four Swin Transformer blocks and three
patch-merging operators. (c) The decoder contains three Swin Transformer blocks and four patch-expanding operators. (d) Concatenations
connect the feature maps from the encoder and the decoder module. (e) A CNN layer with a sigmoid activation transforms the feature map
to the predicted SIC of 6-month leads. (f) Model training procedure. The loss function combines the normalized integrated ice edge error
(NIIEE) and the mean square error (MSE).

and ground SIC; the IIEE is calculated with Eq. (1). We nor-
malize IIEE to the range of 0–1 to form the NIIEE loss with
Eq. (2). If the NIIEE loss is 0 then the predicted SIC and the
ground SIC will match spatially and numerically. The funda-
mental MSE loss has been demonstrated to be adequate for
prediction tasks. If the number of all predicted values is N ,
the MSE is calculated with Eq. (3). We combine the NIIEE
with MSE to be the loss function of SICNetseason. A constant
scale factor, 0.01, is multiplied by NIIEE to balance its range
with that of MSE; see Eq. (4).

IIEE= (PSIC ∪GSIC)− (PSIC ∩GSIC) (1)

NIIEE=
IIEE

PSIC ∪GSIC
= 1−

PSIC ∩GSIC

PSIC ∪GSIC
(2)

MSE=
∑

(PSIC−GSIC)2

N
(3)

Loss= 0.01×NIIEE+MSE (4)

4 Experiments

4.1 Model training

The model is trained on a computer station with an NVIDIA
Tesla V100 32-GB card. The training and test samples are
constructed by step-by-step sliding. The testing period is
2000–2019. The leave-1-year-out strategy is adopted to train
and/or evaluate our SICNetseason model. For example, if the
testing year is 2000, the training set is from 1979 to 1999 and
from 2001 to 2019. The leave-1-year-out strategy is widely
adopted by statistical models to maximize the sample volume
while obtaining a multi-year evaluation (Wang et al., 2022;
Yuan et al., 2016). The validation set is split by 20 % from the

training set. We set the batch size to be 8 and the initial learn-
ing rate to be 0.0001. We employ the early-stopping strategy
to break the training procedure when the validation loss does
not decrease. The model is trained three times to eliminate
random errors. The testing set is run on three trained mod-
els, and the mean values are adopted as the final predictions.
Data from the 4 most recent years, 2020–2023, are employed
to verify the model’s generalizability. Data from these 4 years
do not participate in the training stage. They are fed into the
trained models obtained by the leave-1-year-out strategy to
obtain the predictions. The predictions are the mean values
of the 20 trained models.

4.2 Evaluation metrics

The mean absolute error (MAE), binary accuracy (BACC)
and detrended ACC are evaluation metrics. The MAE is for
SIC, and the other two metrics are for SIE. To accurately cal-
culate the metrics, we use the maximum observed monthly
SIE since 1979 to mask the predictions. Assuming that the
predicted and truth values of the ith grid are pi and gi , the
number of validation grids is N . The MAE values are calcu-
lated with Eq. (5). The BACC of time t is obtained by us-
ing a value of 1 and subtracting from this the ratio of IIEE
to the area of the activated grid cell region (the maximum
observed SIE during 1979–2019) of t with Eq. (6). The de-
trended ACC of SIE is the anomaly correlation coefficient of
two detrended SIE series. Each SIE series has 20 elements
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from 2000 to 2019.

MAE=

N∑
1
|pi − gi |

N
(5)

BACC=(
1−

IIEE
area of the activatedgrid cell region

)
× 100% (6)

4.3 Model skill in seasonal predictions

We compare SICNetseason with Persistence and SEAS5 to
validate our model’s ability to optimize the predictions
around the SPB. The persistence is the anomaly persistence
model. It assumes that the anomaly is constant in time and es-
timates the target SIC values by adding the current anomaly
to the climate mean state at the target time, widely adopted as
a benchmark for sea ice prediction (Wang et al., 2016). The
SEAS5 is a new seasonal forecast system from the ECMWF
that shows excellent sea ice prediction skills (Johnson et
al., 2019). A BACC value of 100 % indicates that the pre-
dicted SIE matches the observed SIE by 100 % spatially. The
metrics are calculated for 20 testing years, 2000–2019, in
a leave-1-year-out training–testing strategy. As the SPB oc-
curred in the target summer month, we focus on the 4 sum-
mer months of June to September.

Figure 2 shows the detrended ACC and BACC of the tar-
get months, June–September, based on 6-month-lead predic-
tions. As shown in Fig. 2a and b, the predictions of Per-
sistence and SEAS5 show an apparent SPB: the detrended
ACC drops sharply when the predictions are made earlier
than May, with a maximum ACC gap between 2 adjacent
lead months marked by black lines. Taking September, for
example, the detrend ACC is 56.39 % for Persistence when
the prediction is made in June (3-month lead). Then, it de-
creases to 26.59 % in May’s prediction (4-month lead); see
Fig. 2a. For SEAS5, the ACC of June’s prediction is 83.94 %,
which then drops to 59.91 % for May’s prediction, forming a
24.03 % ACC gap; see Fig. 2b. Although the SICNetseason
prediction also shows an SPB feature (see the black line
in Fig. 2c), the ACC of May’s prediction is improved to
67.61 %, and the ACC gap is reduced to 15.6 %. Further-
more, the ACC difference is calculated between SICNetseason
and Persistence and SEAS5. Compared with Persistence,
SICNetseason improves the ACC in most predictions; see
Fig. 2d. The ACC improvements along the SPB flag are
more than 30 % on average (the lead months right on the
black line in Fig. 2d). Compared with SEAS5, SICNetseason
also improves the prediction skill of the SPB. When the tar-
get months are June and July, SICNetseason shows a much
higher prediction skill than SEAS5 in 4- to 6-month-lead
predictions; see Fig. 2e. For the target month of Septem-
ber, SICNetseason improves the ACC by 7.70 % or 10.61 %
compared to SEAS5 when the prediction is made in May or
April (4- or 5-month-lead in Fig 2e). For the target month of

August or September, SICNetseason shows lower ACCs than
SEAS5 when prediction is made during or before March (5-
or 6-month-lead for August or September). However, for the
predictions made adjacent to the SPB flag line, SICNetseason
achieves larger ACCs than SEAS5 (values right along the
black line in Fig. 2e). Therefore, SICNetseason optimizes the
SPBs significantly compared to the well-known numerical
model.

The BACC of SEAS5 also shows a similar SPB charac-
teristic to the ACC. A sharp BACC drop occurred when the
prediction was made during and before May; see the black
line in Fig. 2g. The maximum BACC gaps of Persistence and
SICNetseason occurred in the second lead month. However,
the maximum BACC gap of SICNetseason is about 2 %, much
lower than the 10 % gap of Persistence and SEAS5. Com-
pared with Persistence and SEAS5, SICNetseason improves
the BACC by more than 10 % in predicting the SIE of Au-
gust and September (3 to 6-month-lead; see Fig. 2i and j).

4.4 Performance in predicting SIC of September

As September’s sea ice draws wider attention than other
months, we calculate the MAE of the SIC of September pre-
dicted by three models. Figure 3 shows the spatial MAE
of Persistence, SEAS5 and SICNetseason based on 6 lead
months. The MAE in the three models is not very different
for the first 2 lead months. When the lead month duration is 1,
the MAE of SEAS5 is slightly better than that of Persistence
and SICNetseason, indicating that the SEAS5 model performs
well in monthly predictions. This result may be due to the
good atmospheric initialization in SEAS5, which beat many
machine learning and dynamical models in sub-seasonal-
scale SIC prediction (Bushuk et al., 2024). However, when
the lead month duration is longer than 3, the SEAS5 MAEs
are much more than 45 % in the Pacific sector, mainly con-
taining the Beaufort Sea, the Chukchi Sea, the East Siberian
Sea and the Laptev Sea; see Fig. 3j–l. SICNetseason reduces
the MAEs to 20 %–30 % for most regions in the Pacific Arc-
tic; see Fig. 3q–r. Compared with Persistence, SICNetseason
also reduces MAEs by 5 %–10 % in the four mentioned lo-
cal seas; see Fig. 3d–f. Therefore, SICNetseason significantly
reduces the SIC errors of September in seasonal-scale pre-
dictions (3- to 6-month lead).

4.5 SIT contributions to seasonal predictions

We further conduct a comparison experiment to validate
the role of SIT data in seasonal predictions based on
SICNetseason. The model without SIT as an input is named
SICNetseason_nosit. The other settings for SICNetseason_nosit
are the same as those for SICNetseason. The detrended ACC
and BACC are shown in Fig. 4.

Without the SIT data as input, the model’s prediction
skill drops noticeably in 3- to 6-month-lead predictions; see
Fig. 4a. For the target month of September, the detrend ACC
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Figure 2. Detrended ACC of SIE and detrended BACC of SIE, as well as the differences between Persistence, SEAS5 and SICNetseason
from June to September, averaged for 2000–2019. (a)–(c) Detrended ACC of three models. Two detrend SIE series (predicted and observed)
calculate each value. (d)–(e) Detrended ACC differences between SICNetseason and Persistence and SEAS5. (f)–(h) BACC of three models.
Each BACC is a mean value of 20 testing years. (i)–(j) BACC differences between SICNetseason and Persistence and SEAS5. The black line
indicates the SPB: a maximum decrease between 2 adjacent lead months. The red signifies a high or improvement in ACC and/or BACC,
and the blue signifies a decrease.

is 76.41 % when the prediction is made in June (3-month
lead). Then, the ACC drops to 26.43 % for May’s predic-
tion (4-month lead). By including SIT data as input, the ACC
of May’s prediction is improved by 41.18 % in the model
SICNetseason; Fig. 4c. For the target month of August, the
ACC improvement for May’s prediction (3-month lead) as a
result of including SIT data is 42.44 %. Therefore, the SIT
data are important to improve the model’s prediction skill
with regard to SPB.

For the target months of August and September, the
BACCs of SICNetseason_nosit show an apparent drop in 3-
to 6-month-lead predictions. By including SIT data as the
model’s input, the BACC improvement is 0.95 % and 2.02 %
for the target months of August and September for May’s
predictions; see Fig. 4f. Then, we calculate the MAE of
the target month of September; see Fig. 5. The MAEs of
the first 2 lead months are similar for the two models.
When the lead month duration is larger than 3, the MAEs
of SICNetseason_nosit in the Beaufort Sea, the East Siberian
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Figure 3. The MAEs of September’s predictions are based on three compared models: each value is averaged by 20 testing years. (a)–(g)
MAEs of Persistence. (h)–(m) MAEs of SEAS5. (n)–(s) MAEs of SICNetseason.

Sea and the Laptev Sea are 30 %–45 %, as shown by the
red circles in Fig. 5d–f. By including SIT data, the MAEs
in the three mentioned regions are reduced to 20 %–35 %
by SICNetseason, as shown with the red circles in Fig. 5j–l.
Therefore, including SIT data reduces the errors of Septem-
ber’s SIC by more than 10 % in seasonal-scale predictions.

4.6 Generalizability in predicting the SIEs of
2020–2023

To verify our model’s generalizability in predicting the SIEs
of recent years, we employed the 20 trained models to pre-
dict the SIE of the 4 most recent years of 2020–2023. The
20 models are trained for 2000–2019, as mentioned in the
earlier sections. The data from the period 2020–2023 are
“blind” for the models. The mean values of the 20 models’
predictions are the final predictions. As the temporal span of
4 years is too short for calculating ACC, we use the BACC as
the metric (Fig. 6). Compared with Persistence and SEAS5,
SICNetseason achieves higher BACCs in predicting the SIEs
of August and September. For the target month of Septem-
ber, the BACC of SICNetseaon is 10 % higher than those of
the other two models in 3- to 6-month-lead predictions.

We draw the observed and predicted September SIEs of
2020, 2022 and 2023 in Fig. 7. The September SIEs in 2020

and 2023 (4.0× 106 and 4.37× 106 km2) are the second and
sixth lowest recorded in the Arctic since 1979. The SIE in
September 2022 (4.90 mil km2) has been so large since 2015.
We focus on the seasonal-scale predictions with 4- to 6-
month leads. Our SICNetseason model shows obvious advan-
tages over SEAS5 and Persistence. For predictions made dur-
ing or before May, with lead months of 4 to 6, the BACCs of
SICNetseason are much higher than those of Persistence and
SEAS5; see Fig. 7. For May’s prediction, our model achieved
a BACC of 82.25 %, 90.39 % and 82.08 % in 2020, 2022 and
2023, more than 10 % higher compared to Persistence and
SEAS5; see Fig. 7a, d and g. Therefore, the SICNetseason
model achieves good generalizability in predicting the SIEs
of 2020–2023.

4.7 Comparison with the representative deep learning
model

We compare SICNetseason against the representative deep
learning sea ice prediction model, the U-Net (IceNet-
inspired) model. IceNet is a seasonal sea ice prediction model
that performs state-of-the-art SIE probability prediction (An-
dersson et al., 2021). It is a CNN-based U-Net model for clas-
sification tasks, and it outputs the probability of three classes:
open water (SIC≤ 15 %), marginal ice (15 % < SIC < 80 %)
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Figure 4. Detrended ACC of SICNetseason_nosit (a) and SICNetseason (b). (c) ACC difference obtained with SICNetseason minus
SICNetseason_nosit. BACC of SICNetseason_nosit (d) and SICNetseason (e). (f) BACC difference as in (c). The red signifies a high or im-
provement in ACC and/or BACC, and the blue signifies a decrease.

Figure 5. The MAEs of September’s SIC predicted by SICNetseason and SICNetseason_nosit. Each value is averaged by 20 testing years.
(a)–(g) MAE of SICNetseason_nosit. (h)–(m) MAE of SICNetseason. The red cycles mark the regions where the MAE is typically reduced as
a result of including SIT data.

and full ice (SIC≥ 80 %). Differently, our SICNetseason out-
puts the 0 %–100 % range SIC values. The IceNet inputs con-
sist of 50 monthly mean variables, including SIC, 11 climate
variables, statistical SIC forecasts and metadata. The origi-
nal IceNet model has some unique designs in terms of inputs
and training strategy. As we focus on the differences in model
structures, we construct a U-Net (IceNet-inspired) model for
comparison.

We set the inputs (including SIT data) of U-Net (IceNet-
inspired) to the same ones as SICNetseason. The loss function
is also set as the NIIEE together with the MSE. We set the
output layer of U-Net (IceNet-inspired) as a sigmoid activa-
tion function to output continuous values of 0 %–100 %. We

also change the number of CNN filters to make the num-
ber of training parameters in U-Net (IceNet-inspired) equal
to that in SICNetseason, about 140 million. The training and
testing settings of U-Net (IceNet-inspired) are the same as
those of SICNetseason. U-Net (IceNet-inspired) is trained us-
ing the same leave-1-year-out strategy as SICNetseason. For
example, if the testing year is 2019, the training set is made
up of data from the period 1979–2018, and the testing data
are from 2019. Then, the testing data are moved to 2018;
the remaining data (1979–2017, 2019) make up the training
set. For each training–testing pair, the model is trained three
times to eliminate randomness, and the final prediction for
the testing data is the mean value of the three models.
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Figure 6. BACC of 2020–2023. (a) Persistence, (b) SEAS5 and (c) SICNetseason. Each value is a mean value of the 4 testing years. The
horizontal axis represents the 6 lead months, and the vertical axis represents the target months of June to September. The red signifies a high
or improvement in ACC and/or BACC, and the blue signifies a decrease.

Figure 7. Predicted September SIEs and their BACCs of 2020,
2022 and 2023 for 4- to 6-month leads by Persistence, SEAS5 and
SICNetseason. (a)–(c) 2020, (d)–(f) 2022 and (g)–(i) 2023.

Figure 8 shows the detrend ACC and BACC, as well as
the differences between the two models. Compared with
the U-Net (IceNet-inspired) model, our SICNetseason model
significantly improves the ACC for most predictions; see
Fig. 8c. For the target months of August and September,
the SPB feature is obvious in U-Net (IceNet-inspired): the
maximum ACC gap is about 40 % and 30 %, respectively,
for predictions made in May and June; see Fig. 8a. Our
SICNetseason model optimizes the ACC gap with an improve-
ment of 31.8 % and 20.8 % for May’s predictions; Fig. 8c.
The ACC improvements are also larger than 15 % for predic-
tions made before May. Therefore, compared with the state-
of-the-art deep learning model U-Net (IceNet-inspired), our
model achieves more skillful seasonal predictions by opti-
mizing the predictions around the SPB.

Unlike the ACC values, the BACC values of U-
Net (IceNet-inspired) are more significant than those of
SICNetseason for most predictions; see Fig. 8f. This result
implies that U-Net (IceNet-inspired) depends more on SIE
trends than SICNetseason. This difference can be attributed
to the distinct fundamental units employed by the two mod-
els. The U-Net (IceNet-inspired) model is a CNN-based
model, and the weight-sharing mechanism of convolutional
kernels forces the model to capture the most “common” local
dependencies spatially. Though representative, these com-
mon local dependencies tend to yield smoother model out-
puts. SICNetseason is a transformer-based model. The atten-
tion mechanism of the transformer can capture global de-
pendencies without weight-sharing. As a result, “personal-
ized” global dependencies are extracted, and the output is
not smooth like the output of a CNN-based model. The com-
mon local dependencies have more apparent trend features
than the personalized global dependencies. Figure 9 shows
the September SIEs predicted by U-Net (IceNet-inspired)
and SICNetseason in the 6-month lead. The SIEs of U-Net
(IceNet-inspired) are smoother than those of SICNetseason.
For 2012 and 2017, the SIE locations of the two mod-
els are very similar. For the other 2 years, the SIEs of U-
Net (IceNet-inspired) match the observed SIEs better than
those of SICNetseason. However, the SIEs of U-Net (IceNet-
inspired) are over-smoothed and fail to characterize some ab-
normal characteristics, such as the SIE in September 2018;
see Fig. 9c.

Therefore, our transformer-based SICNetseason is more
skillful than the representative CNN-based model U-Net
(IceNet-inspired) in optimizing the predictions around the
SPB. SICNetseason exhibits a lower dependency on SIE trends
and fewer smooth results than the CNN-based model.

5 Conclusions

This study develops a deep learning model, SICNetseason, to
predict the Arctic SIC on a seasonal scale. The model is de-
rived from a Swin-UNet architecture. It inputs the historical
SIC, SIT and SIC climatology of target months and predicts
the SIC of the next 6 months. A spatially constrained loss
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Figure 8. Detrended ACC of U-Net (IceNet-inspired) (a) and SICNetseason (b). (c) ACC difference obtained by SICNetseason minus U-Net
(IceNet-inspired). BACC of U-Net (IceNet-inspired) (d) and SICNetseason (e). (f) BACC difference as in (c). The red signifies a high or
improvement in ACC and/or BACC, and the blue signifies a decrease.

Figure 9. The predicted September SIEs of U-Net (IceNet-inspired) and SICNetseason in for 6-month lead: (a) 2012, (b) 2017, (c) 2018 and
(d) 2019.

function NIIEE is employed to train the model by consid-
ering the sea ice distribution. We employ a 20-year (2000–
2019) testing set to validate the model’s performance. The
summer season, June to September, is the target period.
The detrend ACC, BACC and MAE are metrics. Compar-
ison experiments with Persistence and seasonal predictions
of SEAS5 are made to validate our model’s performance. In
particular, an ablation experiment is carried out to investigate
the role of SIT data in optimizing the predictions around the
SPB. A generalizability experiment with data from the last 4
years, 2020–2023, is carried out – the seasonal predictions of
September SIEs are analyzed. Finally, we discuss the advan-
tages and disadvantages of our model and the typical CNN-
based model, U-Net (IceNet-inspired). Given the mentioned
efforts, our study draws the following conclusions.

First, our deep learning model, SICNetseason, is skillful in
predicting the Arctic sea ice seasonally. Compared with the
dynamic model SEAS5, SICNetseason optimizes the SPB sig-
nificantly. The detrended ACC of September SIE predicted

by SICNetseason in May and April is improved by 7.7 % and
10.61 % over the ACC predicted by SEAS5. Compared with
the anomaly persistence benchmark, the mentioned improve-
ment is 41.02 % and 36.33 %, respectively. Our deep learning
model significantly reduces the prediction errors of Septem-
ber’s SIC on seasonal scales compared to SEAS5 and Persis-
tence, a 20 %–30 % reduction measured by MAE.

Second, the spring SIT data are key in optimizing the pre-
dictions around the SPB, contributing to a more than 20 %
ACC enhancement in September’s SIE at 4 to 5-month-lead
predictions. By including SIT data, the MAEs in the Beaufort
Sea, the East Siberian Sea and the Laptev Sea are reduced by
more than 10 % compared with those without SIT data.

Third, our model achieves good generalizability in predict-
ing the September SIEs of 2020–2023. When predicting the
September’s SIE in 2020 and 2023 (second and sixth lowest
record) in May, SICNetseason achieved a BACC of 82.25 %
and 82.08 %, about 12 % and 10 % higher than Persistence
and SEAS5.
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Fourth, our transformer-based SICNetseason is more skill-
ful than the CNN-based U-Net (IceNet-inspired) model in
seasonal sea ice predictions. Our SICNetseason model opti-
mizes the ACC gap with an improvement of 31.8 % and
20.8 % for May’s predictions compared to U-Net (IceNet-
inspired). SICNetseason exhibits a lower dependency on SIE
trends and fewer smooth results than the CNN-based model.
This is due to the attention mechanism of the transformer op-
erator extracting personalized global dependencies, while the
CNN operator captures the most common local dependencies
globally. The common local dependencies smooth the map
and depend more on the trend than personalized ones.

Code and data availability. The code, the exact input–
output data and the saved well-trained weights of
the developed model SICNetseason are available at
https://doi.org/10.5281/zenodo.14561423 (renyibin-iocas, 2024).
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