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Abstract. The global annual mean contrail climate forcing
may exceed that of aviation’s cumulative CO2 emissions. As
only 2 %–3 % of all flights are likely responsible for 80 %
of the global annual contrail energy forcing (EFcontrail), re-
routing these flights could reduce the occurrence of strongly
warming contrails. Here, we develop a contrail forecasting
tool that produces global maps of persistent contrail for-
mation and their EFcontrail formatted to align with standard
weather and turbulence forecasts for integration into existing
flight planning and air traffic management workflows. This
is achieved by extending the existing trajectory-based con-
trail cirrus prediction model (CoCiP), which simulates con-
trails formed along flight paths, to a grid-based approach that
initializes an infinitesimal contrail segment at each point in
a 4D spatiotemporal grid and tracks them until their end of
life. Outputs are provided for N aircraft-engine groups, with
groupings based on similarities in aircraft mass and engine
particle number emissions:N = 7 results in a 3 % mean error
between the trajectory- and grid-based CoCiP, while N = 3
facilitates operational simplicity but increases the mean error
to 13 %. We use the grid-based CoCiP to simulate contrails
globally using 2019 meteorology and compare its forecast
patterns with those from previous studies. Two approaches
are proposed to apply these forecasts for contrail mitigation:
(i) monetizing EFcontrail and including it as an additional cost
parameter within a flight trajectory optimizer or (ii) con-
structing polygons to avoid airspace volumes with strongly
warming contrails. We also demonstrate a probabilistic for-
mulation of the grid-based CoCiP by running it with ensem-
ble meteorology and excluding grid cells with significant un-

certainties in the simulated EFcontrail. This study establishes
a working standard for incorporating contrail mitigation into
flight management protocols and demonstrates how forecast-
ing uncertainty can be incorporated to minimize unintended
consequences associated with increased CO2 emissions from
re-routes.

1 Introduction

Global aviation activity produces significant socio-economic
benefits, but also emits CO2 and non-CO2 pollutants that
impact the environment in the form of climate change and
air quality degradation. Lee et al. (2021) estimated that avi-
ation accounted for 3.5 % of the global anthropogenic cli-
mate forcing in 2018, where the collective effective radia-
tive forcing (ERF) from non-CO2 components such as con-
trail cirrus (57.4 [17, 98] mW m−2 at a 95 % confidence in-
terval) and nitrogen oxides (17.5 [0.6, 29] mW m−2) could
be 2 times larger than its cumulative CO2 emitted since the
1940s (34.3 [28, 40] mW m−2). Given the significant impact
from aviation non-CO2 emissions, the European Union (EU)
Emissions Trading System (ETS) monitoring, reporting, and
verification (MRV) framework has recently been amended to
require flights travelling within Europe to measure their non-
CO2 impacts, including the effects from contrail cirrus, from
2025 onwards (European Commission, 2023).

Contrails form behind an aircraft when conditions in the
rapidly cooling exhaust plume become supersaturated with
respect to water, enabling water vapour to condense on the
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surface of particles to form droplets that subsequently freeze
to form ice particles (Kärcher and Yu, 2009; Schumann,
1996). Previous studies have estimated that up to 85 % of
contrails are short-lived and sublimate within 5 min (Teoh
et al., 2024a; Wolf et al., 2023a). The remaining contrails
typically persist in ice-supersaturated regions (ISSR), where
they can evolve into contrail cirrus clusters that become in-
distinguishable from natural cirrus (Haywood et al., 2009).
These persistent contrails exhibit lifetimes that generally fol-
low an exponential distribution with a mean duration of
1–3 h (Caiazzo et al., 2017; Teoh et al., 2024a; Vázquez-
Navarro et al., 2015). During daylight hours, persistent con-
trails can cause a cooling effect by reflecting incoming short-
wave (SW) solar radiation back to space. However, they al-
ways induce a warming effect by absorbing and re-emitting
outgoing longwave (LW) infrared radiation (Meerkötter et
al., 1999). Contrail LW and SW instantaneous radiative forc-
ing (RF) varies regionally and is influenced by air traffic den-
sity, aircraft-engine particle number emissions, background
radiation fields, ambient meteorology, and diurnal and sea-
sonal factors (Kärcher, 2018; Schumann and Heymsfield,
2017; Teoh et al., 2022a, 2024a).

While observational tools such as satellite imagery and
ground-based cameras have been used for observing con-
trail formation and evolution (Duda et al., 2019; Low et al.,
2025; Mannstein et al., 2010; Rosenow et al., 2023; Schu-
mann et al., 2013a; Vázquez-Navarro et al., 2015), estimates
of the cumulative contrail climate forcing over their entire
life cycle are currently only available through simulation-
based models. Various physics-based modelling approaches
have been employed for this purpose, including (i) large-
eddy simulations (LESs) (Lewellen, 2014; Lewellen et al.,
2014; Unterstrasser, 2016) and (ii) parameterized Lagrangian
models, such as the Contrail Cirrus Prediction Model (Co-
CiP) (Schumann, 2012); Contrail Evolution and Radiation
Model (CERM) (Caiazzo et al., 2017); and Aircraft Plume
Chemistry, Emissions, and Microphysics Model (APCEMM)
(Fritz et al., 2020). A third approach is (iii) general circula-
tion models (GCMs), which simulate the interaction between
contrails and atmospheric processes, including the rapid at-
mospheric adjustments directly caused by the contrail, such
as changes in water vapour concentration, temperature lapse
rate, and natural cirrus properties (Bickel et al., 2019; Bier
and Burkhardt, 2022; Chen and Gettelman, 2013; Grewe et
al., 2014; Ponater et al., 2021). Specifically, approaches (ii)
and (iii) have been applied to investigate the spatiotemporal
variations in contrail climate effects and used for flight tra-
jectory optimization purposes (Frömming et al., 2021; Grewe
et al., 2017; Schumann et al., 2011; Teoh et al., 2020a).

Recently, Teoh et al. (2024a) used CoCiP to simulate con-
trails globally for 2019, estimating that around 20 % of all
flights produced persistent contrails. Among these persistent
contrail-forming flights, 70 % of them (17 % of all flights)
had a net warming effect and 10 % of them (2.7 % of all
flights) were responsible for 80 % of the global annual con-

trail energy forcing (EFcontrail). EFcontrail represents the cu-
mulative contrail climate forcing over its lifetime, with a
positive value indicating more energy entering the Earth sys-
tem than leaving it. We use the terms “warming/cooling ef-
fect” to describe this net energy balance at the top of the at-
mosphere while acknowledging that the actual surface tem-
perature change depends on the contrail efficacy and spa-
tiotemporal factors (Bickel et al., 2019; Ponater et al., 2005,
2021; Schumann and Mayer, 2017). These findings high-
light a potential pathway for aviation to reduce its overall
climate forcing by strategically re-routing a small subset of
flights to minimize the formation of strongly warming con-
trails (Teoh et al., 2020a, b; Wilhelm et al., 2021). While two
small-scale operational contrail-avoidance trials have been
conducted in recent years (Sonabend-W et al., 2024; Sausen
et al., 2023), several challenges must be addressed to imple-
ment a contrail-minimization strategy at a larger scale. These
challenges include (i) integrating a contrail forecast model
into flight planning and management software to account for
airspace and operational constraints; (ii) automating airspace
procedures to perform trajectory adjustments, which is nec-
essary to reduce air traffic controller workload (Molloy et al.,
2022; Sausen et al., 2023); (iii) incorporating meteorological
and contrail forecast uncertainties into the decision-making
framework for contrail mitigation actions (Agarwal et al.,
2022; Gierens et al., 2020; Molloy et al., 2022); and (iv) bal-
ancing trade-offs between reducing contrail climate forcing
and potential increases in fuel consumption. Challenges (i) to
(iii) could be addressed by providing contrail climate forcing
forecasts in a format similar to turbulence forecasts (Turbli,
2024), thereby facilitating their integration into the opera-
tional workflow of existing flight planning software (Martin
Frias et al., 2024).

This study aims to extend the existing trajectory-based
CoCiP to create a prototype contrail forecasting tool that
generates global maps of persistent contrail formation and
their associated climate forcing. We then compare the spa-
tial trends of contrail climate forcing predicted by this new
tool with those from the trajectory-based CoCiP and earlier
global contrail simulation studies. Additionally, we demon-
strate how the tool can be applied to flight trajectory opti-
mization and propose strategies to account for contrail fore-
cast uncertainties arising from weather forecasts and model
simplifications.

Our contrail forecasting tool uses a Lagrangian model in-
stead of LESs and GCMs for two key reasons: (i) it can
utilize reanalysis or forecast meteorological data provided
by numerical weather prediction (NWP) models rather than
relying on representative weather conditions from GCMs
(Grewe et al., 2014), and (ii) it can compute EFcontrail effi-
ciently within the time constraints required for flight plan-
ning and operational use. While we expect contrail forecasts
to evolve as modelling and observational capabilities im-
prove, we aim to use this prototype to enable stakeholders
(e.g. flight planners and air navigation service providers) to
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accommodate contrail forecasts in flight planning by estab-
lishing standards, data integration, and modifications to soft-
ware tools and operational processes.

2 Trajectory-based CoCiP

CoCiP simulates the contrail properties and climate forcing
for a single flight trajectory using inputs of (i) flight trajec-
tory waypoints; (ii) fuel properties, such as the water vapour
emission index (EIH2O) and lower calorific value (Qfuel);
(iii) aircraft properties and performance parameters, includ-
ing the true airspeed (VTAS), fuel mass flow rate (ṁf), overall
efficiency (η), aircraft mass (M), and wingspan; (iv) aircraft-
engine specific non-volatile particulate matter (nvPM) num-
ber emission index (EIn); and (v) historical or forecast mete-
orology provided by NWP models (Schumann, 2012).

Briefly, CoCiP utilizes the Schmidt–Appleman criterion
(SAC) to estimate the threshold temperature for contrail for-
mation (TSAC), where TSAC is influenced by η, EIH2O, and
Qfuel (Schumann, 1996). For waypoints that satisfy the SAC,
i.e. with ambient temperature (Tamb) falling below TSAC, Co-
CiP simulates the wake-vortex downwash using a probabilis-
tic two-phase wake-vortex decay model which parametri-
cally estimates the mean downward displacement and ini-
tial contrail width and depth as a function of aircraft mass,
wingspan, and VTAS (Holzapfel, 2003). Persistent contrail
segments are defined when the post-wake-vortex contrail ice
water content (IWC) in two consecutive waypoints is greater
than 10−12 kg kg−1. For each contrail segment, the contrail
ice crystal number per flight distance flown (nice,initial) is ini-
tialized by estimating the nvPM particle number emissions
per flight distance flown, fraction of nvPM particles that ac-
tivates to form contrail ice crystals (factivation), and fraction
of contrail ice crystals that survive the wake-vortex phase
(fsurv):

nice,initial = nvPMEIn× ṁf,dist× factivation× fsurv, (1)

where

factivation =−0.661e(Tamb−TSAC)+ 1 (2)

and

fsurv =
IWCinitial−1IWCad

IWCinitial
. (3)

The nvPM number emissions per unit distance is calculated
by multiplying the aircraft-engine specific nvPM EIn with the
fuel consumption per distance flown (ṁf,dist), factivation is de-
termined by the difference between Tamb and TSAC (Bräuer
et al., 2021; Teoh et al., 2022a), and fsurv is assumed to be
proportional to the change in contrail IWC due to adiabatic
heating from the wake-vortex downwash (1IWCad) (Schu-
mann, 2012).

For persistent contrail segments, a first-order Euler method
simulates the evolution of their locations, dimensions, and

properties, with model time steps (dt , < 3600 s; 300 s in this
study), until their end of life, defined as when the contrail
segment age exceeds a maximum lifetime of 12 h, ice parti-
cle number per volume of air drops below 103 m−3, or optical
depth (τcontrail) falls below 10−6 (Schumann, 2012; Teoh et
al., 2024a). A parametric RF model, which is fitted to the
libRadtran radiative transfer package (Mayer and Kylling,
2005), estimates the local contrail SW and LW RF (RF′, the
change in radiative flux over the contrail coverage area) at
each time step (Schumann et al., 2012b). These RF′ estimates
indirectly account for the presence of various cloud types
(e.g. ice, liquid, and mixed-phase clouds) above and below
the contrail through input meteorological parameters such as
the reflected solar radiation (RSR), outgoing longwave radi-
ation (OLR), effective albedo (i.e. the fraction of incoming
solar radiation reflected by the surface and/or clouds), and
optical depth of overlying cirrus clouds (τcirrus) (Schumann
et al., 2012b). Additionally, recent CoCiP studies have also
formulated an approach to approximate the change in con-
trail RF′ due to contrail–contrail overlapping (Schumann et
al., 2021; Teoh et al., 2024a).

EFcontrail is estimated by integrating the contrail net RF′

over its contrail segment length (L), width (W ), and lifetime
(tmax) (Schumann et al., 2011):

EFcontrail [J ]=

tmax∫
0

RF′net (t)×L(t)×W (t)dt. (4)

We note that EFcontrail is sensitive to several factors, includ-
ing the (i) contrail RF′ estimates from the fitted parametric
RF model; (ii) humidity fields from the NWP model, which
affect the contrail tmax and coverage area (L and W ); and
(iii) contrail segment angle (α), which is the angle between
the contrail segment and the longitudinal axis. For (iii), α in-
fluences the magnitude of wind shear acting perpendicular to
the contrail segment ( dSn

dZ ) (Schumann, 2012):

dSn

dZ
=

dV
dZ

cos(α)−
dU
dZ

sin(α), (5)

where dU
dZ and dV

dZ represent the wind shear acting on the east-
ward and northward directions respectively. dSn

dZ , in turn, in-
fluences the contrail’s spreading rate, ice crystal loss rate, and
tmax. Consequently, contrails with a large EFcontrail are gener-
ally long-lived with a large coverage area, while short-lived
contrails with a large positive net RF′ may have a negligible
EFcontrail (Teoh et al., 2020b).

While previous studies have compared the distribution of
simulated contrail properties from CoCiP with in situ mea-
surements, remote sensing, and satellite observations over
their life cycle (Driver et al., 2024; Jeßberger et al., 2013;
Low et al., 2025; Schumann et al., 2017, 2021; Schumann
and Heymsfield, 2017; Teoh et al., 2024a), further compar-
isons with observations remain crucial for building greater
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confidence in and improving the accuracy of CoCiP predic-
tions. For further details on the versioning and evolution of
the trajectory-based CoCiP, readers can refer to Appendix A1
and the documentation of the open-source pycontrails repos-
itory (Shapiro et al., 2024).

3 Grid-based CoCiP

The existing implementation of CoCiP described in Sect. 2,
i.e. the trajectory-based CoCiP, simulates contrails formed
along a flight path. However, when used to optimize the tra-
jectory of multiple flights, the trajectory-based approach be-
comes computationally inefficient because of the need for re-
peated model re-runs across each flight and various trajectory
iterations to identify the solution with a minimum EFcontrail.
One way to address this limitation is to produce a 4D field of
the EFcontrail per flight distance flown, effectively identifying
regions forecast to form persistent and/or strongly warming
contrails. We achieve this by extending the trajectory-based
CoCiP to a grid-based approach, where an infinitesimal con-
trail segment (i) is initialized at each point in a 4D spatiotem-
poral domain; (ii) is simulated until its end of life with a dt of
300 s using the equations of the trajectory-based CoCiP; and
(iii) has its cumulative climate forcing attributed back to the
grid cell where it originally formed, with the model outputs
taking the same form as traditional 4D NWP data. For (ii),
Appendix A2 evaluates the sensitivity of dt on the simu-
lated EFcontrail and provides the rationale for selecting a dt
of 300 s for the grid-based CoCiP. Additionally, we note that
the grid-based CoCiP defines regions with strongly warming
contrails based on the 80th percentile (5×108 J m−1) and the
95th percentile (1.5× 109 J m−1) of EFcontrail per flight dis-
tance flown, both of which were derived from a 2019 global
contrail simulation using the trajectory-based CoCiP (Teoh
et al., 2024a).

Table 1 presents the differences between the trajectory and
grid-based CoCiP. The primary distinction lies in how the
contrail segment properties are initialized. Here, we describe
our methodology to initialize the contrail segment properties
in the grid-based CoCiP (Sect. 3.1) and the meteorological
datasets used in this study (Sect. 3.2) and outline key dif-
ferences in the grid-based CoCiP when it is configured to
run with a nominal (Sect. 3.3) and a Monte Carlo simulation
(Sect. 3.4).

3.1 Initial contrail properties

In the trajectory-based CoCiP, contrail segment properties
are initialized based on the flight segment (α and VTAS)
and aircraft-engine-specific properties (wingspan, M , ṁf, η,
and nvPM EIn). However, this approach cannot be directly
applied to the grid-based CoCiP because of the need to
(i) model aircraft performance (VTAS, ṁf, M , η, and nvPM
EIn) locally rather than based on entire flight trajectories and

(ii) determine an appropriate value for α, which influences
the wind shear acting on the contrail segment (see Eq. 5),
without prior information about the direction of travel.

Moreover, the grid-based CoCiP must account for varia-
tions in aircraft performance across different aircraft and en-
gine types that are known to influence EFcontrail (Teoh et al.,
2022a). In theory, this issue could be resolved by re-running
the grid-based CoCiP for each aircraft-engine combination.
However, this method would lead to increased computational
and data transfer requirements as well as increased opera-
tional complexity when used in the context of flight planning
and execution. Instead, we address this challenge by classify-
ing the most commonly used passenger aircraft-engine types
into N groups based on their similarities in aircraft mass and
nvPM EIn (Tables 2 and 3), thereby introducing a fifth dimen-
sion to the model outputs (longitude× latitude× altitude×
time×N aircraft-engine group).

The classification by aircraft mass and nvPM is informed
by the strong correlation between the nvPM emissions per
flight distance, which is estimated as a product of nvPM EIn
and ṁf,dist (where the aircraft mass is used as a proxy) and the
EFcontrail per flight distance (R = 0.71) (Teoh et al., 2022a).
While a higher N is expected to improve the agreement be-
tween the trajectory- and grid-based CoCiP, our goal is to
identify an acceptable minimum value for N to reduce the
computational demands and operational complexity in prac-
tice (Sect. 4). For each group, the waypoint-specific inputs
(α, VTAS, wingspan, aircraft mass, ṁf, η, and nvPM EIn) vary
depending on whether the grid-based CoCiP is configured to
run in a nominal mode (Sect. 3.3) or with a Monte Carlo sim-
ulation (Sect. 3.4).

3.2 Meteorology

In practice, the grid-based CoCiP would utilize forecast me-
teorological products (e.g. the European Centre for Medium-
Range Weather Forecasts (ECMWF) Atmospheric Model
high-resolution 10 d forecast (ECMWF, 2024) to provide
contrail climate forcing forecasts. For this paper, we use his-
torical meteorology, specifically the ECMWF ERA5 high-
resolution realization (HRES) reanalysis for the nominal
simulation and the ERA5 10-member ensembles for the
Monte Carlo simulation (Sect. 3.4) (Hersbach et al., 2020).

Both datasets share a vertical resolution of 26 model lev-
els, spanning from 6300 m (20 000 ft) to 15 000 m (49 000 ft),
but the ERA5 HRES Reanalysis offers a higher spatiotem-
poral resolution (0.25° longitude× 0.25° latitude at a 1 h
temporal resolution) than the ERA5 10-member ensembles
(0.5° longitude× 0.5° latitude at a 3 h temporal resolution).
The spatiotemporal resolution of the grid-based CoCiP is ad-
justable and set to align with the ERA5 HRES Reanalysis.
For both meteorological products, we apply a correction to
ensure that the ERA5 relative humidity with respect to ice
(RHi) distribution is consistent with in situ measurements
(refer to Appendix A3 for further details).
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Table 1. Summary of the key differences between the trajectory-based and grid-based CoCiP.

Trajectory-based CoCiP Grid-based CoCiP

Flight segments Flight segments are initialized based on the
flight trajectory, which is provided as a se-
quence of flight waypoints.

An infinitesimal flight segment is initialized at
each point in a 4D spatiotemporal grid (longi-
tude, latitude, altitude, and time).

Aircraft-engine performance
and emissions

– It requires the specification of aircraft and
engine type for each flight.

– The fuel mass flow rate and overall effi-
ciency at each waypoint are estimated us-
ing aircraft performance models based on
true airspeed and rate of climb and descent
derived from the sequence of flight way-
points.

– The nvPM EIn at each waypoint is es-
timated using the nvPM emissions pro-
file provided by the ICAO aircraft engine
emissions databank (EDB) and the T4/T2
methodology.

– Passenger aircraft-engine types are classi-
fied into N groups based on their similar-
ities in aircraft mass and nvPM EIn, and
the model is run for each aircraft-engine
group.

– When the model is configured to run in
nominal mode, key parameters such as the
wingspan, design-optimum Mach number
and overall efficiency, aerodynamic coef-
ficients, and nvPM emissions profile are
set to the values of the aircraft-engine
type with largest market share in each
group. The fuel mass flow rate and over-
all efficiency at each waypoint are then
estimated using a variant of the Poll–
Schumann (PS) model, adapted to run
at single points rather than across entire
flight trajectories. The nvPM EIn is es-
timated using the same methodology as
trajectory-based CoCiP.

– When the model is configured to run us-
ing a Monte Carlo approach, the fuel mass
flow rate, overall efficiency, and nvPM
EIn are sampled from an empirical mul-
tivariate distribution (see Fig. 1).

Contrail initialization The initial contrail properties (i.e. contrail di-
mensions, ice crystal number, and contrail seg-
ment angle) depend on the provided aircraft-
engine properties, performance, and emissions.

The initial contrail dimensions and ice crystal
number are initialized using the equations from
the trajectory-based CoCiP. However, the con-
trail segment angle is undefined in the grid-
based CoCiP and is either

i. treated as a calibrated parameter that
maximizes the agreement between the
trajectory-based and the grid-based Co-
CiP (nominal simulation) or

ii. assumed to be uniformly distributed be-
tween 0 and 360° (Monte Carlo simula-
tion).

Model outputs Cumulative EFcontrail over the contrail segment
lifetime, attributed back to the flight segment
where the contrails were first formed.

4D EFcontrail per flight distance, cumulated
over the contrail segment lifetime and attributed
back to the original grid cell.

Relevant applications – Estimating EFcontrail from the provided
flight trajectories,

– calculating historical estimates of the
global/regional annual mean contrail net
RF,

– performing flight trajectory optimization
for single/multiple flights to minimize
persistent contrail formation/EFcontrail.

– Generating maps to identify regions fore-
cast to form persistent warming and cool-
ing contrails,

– improving computational efficiency in
flight trajectory optimization for a fleet of
aircraft compared to the trajectory-based
CoCiP.
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Table 2. Classification of commonly used passenger aircraft-engine types into 12 unique groups based on their similarities in aircraft mass
and nvPM EIn. The aircraft types listed here are labelled based on their ICAO aircraft type designator.

Aircraft-engine classification nvPM EIn

Low Nominal High

Aircraft mass Light – A19N (LEAP-1A)

– A20N (LEAP-1A)*

– A21N (LEAP-1A)

– B38M (LEAP-1B)

– A319 (CFM56)

– A320 (CFM56)

– A321 (CFM56)

– B737 (CFM56)

– B738 (CFM56)*

– B739 (CFM56)

– A19N (Pratt & Whitney)

– A20N (Pratt & Whitney)

– A21N (Pratt & Whitney)

– A319 (IAE V2500)

– A320 (IAE V2500)*

– A321 (IAE V2500)

Intermediate n/a – B752 (RB211)

– B753 (RB211)

– B762 (CF6-80E)

– B763 (CF6-80E)*

n/a

Medium – B788 (GEnx)

– B789 (GEnx)*

– B78X (GEnx)

– A342 (CFM56/Trent500)

– A343 (CFM56/Trent500)

– A345 (CFM56/Trent500)

– A346 (CFM56/Trent500)

– B788 (Trent 1000)

– B789 (Trent 1000)*

– B78X (Trent 1000)

– A332 (Trent
700/CF6-80E)

– A333 (Trent
700/CF6-80E)*

Heavy – B772 (GE90)

– B773 (GE90)

– B77L (GE90)

– B77W (GE90)*

– A359 (Trent XWB)*

– A35K (Trent XWB)

n/a

Super heavy – B748 (GEnx)* – A388 (Trent 900)* – B742 (CF6-80C)

– B743 (CF6-80C)

– B744 (CF6-80C)*

* The asterisk refers to the aircraft-engine type with the largest market share within the group based on the 2019 GAIA dataset (Teoh et al., 2024b). n/a: not applicable.

3.3 Nominal simulation

Each aircraft-engine type is characterized by a set of fixed
properties, including the wingspan, design-optimum Mach
number, aerodynamic coefficients, and nvPM emissions pro-
file, all of which are required as inputs to aircraft perfor-
mance and emission models. The Poll–Schumann (PS) air-
craft performance model (Poll and Schumann, 2020, 2021)
provides the wingspan, design-optimum Mach number, and
aerodynamic coefficients, while the International Civil Avi-
ation Organization (ICAO) Aircraft Engine Emissions Data-
bank (EASA, 2021) supplies the nvPM EIn at the four ICAO
certification test points representing the engine power set-
tings (i.e. 7 %, 30 %, 85 %, and 100 % of the maximum rated
engine thrust) used in the landing-and-take-off (LTO) cycle.

For each aircraft-engine group, which encompasses multiple
aircraft-engine types (Table 2), we set these fixed properties
to values of the aircraft-engine type with the largest market
share within the group (Teoh et al., 2024b).

The nominal grid-based CoCiP derives the waypoint-
specific parameters (e.g. VTAS, M , ṁf, η, and nvPM EIn) us-
ing two key assumptions and two established models. Firstly,
it assumes that the Mach number at each grid cell is equal to
the design-optimum Mach number with 0.04 added (Teoh et
al., 2024b), reflecting the common practice of airlines of fly-
ing faster to minimize time-dependent costs and/or address
delays (Edwards et al., 2016; Lovegren and Hansman, 2011).
Secondly, it assumes that the aircraft mass at each altitude is
equal to the value that maximizes η, which is based on the
rationale that a lower aircraft mass is required to fly at higher
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Table 3. Summary of the aircraft properties (wingspan, service ceiling altitude, and maximum Mach number) and range of aircraft perfor-
mance and emissions parameters (aircraft mass, η, and nvPM EIn) for the 12 aircraft-engine groups. Details of the aircraft-engine types that
are included in each group can be found in Table 2. Differences in aircraft mass and nvPM EIn among the 12 aircraft-engine groups are
visualized in Fig. A5.

Aircraft-engine properties and
performance parameters

nvPM EIn

Low Nominal High

Aircraft mass Light – Mass: 55 000–80 000 kg

– nvPM EIn: 1× 1011 kg−1

– η: 0.20–0.26

– Wingspan: 34–36 m

– Max altitude: 41 000 ft (12 497 m)

– Max Mach: 0.82

– 2019 global market share

◦ No. of flights: 1.8 %

◦ Dist. flown: 1.8 %

– Mass: 55 000–80 000 kg

– nvPM EIn: (0.8–1.0)×1015 kg−1

– η: 0.20–0.26

– Wingspan: 34.1–34.3 m

– Max altitude: 41 000 ft (12 497 m)

– Max Mach: 0.82

– 2019 global market share

◦ No. of flights: 37.1 %

◦ Dist. flown: 35.2 %

– Mass: 55 000–80 000 kg

– nvPM EIn: (2–4)×1015 kg−1

– η: 0.20–0.26

– Wingspan: 34–36 m

– Max altitude: 41 000 ft (12 497 m)

– Max Mach: 0.82

– 2019 global market share

◦ No. of flights: 12.6 %

◦ Dist. flown: 12.5 %

Intermediate n/a – Mass: 85 000–160 000 kg

– nvPM EIn: (0.6–1.2)×1015 kg−1

– η: 0.21–0.26

– Wingspan: 38.0–47.6 m

– Max altitude: 43 100 ft (13 137 m)

– Max Mach: 0.86

– 2019 global market share

◦ No. of flights: 2.4 %

◦ Dist. flown: 4.1 %

n/a

Medium – Mass: 165 000–240 000 kg

– nvPM EIn: 1× 1011 kg−1

– η: 0.30–0.34

– Wingspan: 60.1 m

– Max altitude: 43 100 ft (13 137 m)

– Max Mach: 0.90

– 2019 global market share

◦ No. of flights: 1.0 %

◦ Dist. flown: 3.6 %

– Mass: 165 000–250 000 kg

– nvPM EIn: (4–7)×1014 kg−1

– η: 0.29–0.33

– Wingspan: 60.1–60.3 m

– Max altitude: 43 100 ft (13 137 m)

– Max Mach: 0.86–0.90

– 2019 global market share

◦ No. of flights: 0.7 %

◦ Dist. flown: 2.8 %

– Mass: 160 000–210 000 kg

– nvPM EIn: (0.7–1)×1015 kg−1

– η: 0.25–0.28

– Wingspan: 60.3 m

– Max altitude: 41 000 ft (12 497 m)

– Max Mach: 0.86

– 2019 global market share

◦ No. of flights: 2.7 %

◦ Dist. flown: 6.9 %

Heavy – Mass: 200 000–320 000 kg

– nvPM EIn: (3–4)×1014 kg−1

– η: 0.28–0.30

– Wingspan: 64.8 m

– Max altitude: 43 100 ft (13 137 m)

– Max Mach: 0.89

– 2019 global market share

◦ No. of flights: 1.8 %

◦ Dist. flown: 7.2 %

– Mass: 205 000–250 000 kg

– nvPM EIn: (5–8)×1014 kg−1

– η: 0.33–0.35

– Wingspan: 64.7 m

– Max altitude: 43 100 ft (13 137 m)

– Max Mach: 0.89

– 019 global market share

– No. of flights: 0.5 %

– Dist. flown: 2.2 %

n/a

Super heavy – Mass: 275 000–400 000 kg

– nvPM EIn: 1× 1011 kg−1

– η: 0.32–0.34

– Wingspan: 68.4 m

– Max altitude: 42 100 ft (12 832 m)

– Max Mach: 0.90

– 2019 global market share

◦ No. of flights: 0.2 %

◦ Dist. flown: 0.8 %

– Mass: 385 000–512 000 kg

– nvPM EIn: (5–7)×1014 kg−1

– η: 0.33–0.35

– Wingspan: 79.8 m

– Max altitude: 43 100 ft (13 137 m)

– Max Mach: 0.89

– 2019 global market share

◦ No. of flights: 0.3 %

◦ Dist. flown: 1.6 %

– Mass: 250 000–360 000 kg

– nvPM EIn: (6–8)×1014 kg−1

– η: 0.27–0.29

– Wingspan: 64.4 m

– Max altitude: 45 000 ft (13 716 m)

– Max Mach: 0.92

– 2019 global market share

◦ No. of flights: 0.5 %

◦ Dist. flown: 1.7 %

n/a: not applicable
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Figure 1. Multivariate distribution of aircraft mass and nvPM
EIn for one aircraft-engine group (light aircraft mass and nominal
nvPM EIn, see Table 2) at 32 000 ft (9754 m, in blue) and 40 000 ft
(12 192 m, in orange). The underlying data are provided by the
2019 Global Aviation emissions Inventory based on the Automatic
Dependent Surveillance–Broadcast (ADS-B) (GAIA) (Teoh et al.,
2024b). The multi-modal distribution of the aircraft mass and nvPM
EIn is due to the inclusion of two comparable aircraft engine fam-
ilies (Boeing 737 and Airbus A320 families) in the same group,
each exhibiting distinct operating characteristics. The variations in
nvPM EIn with altitude results from changes in aircraft mass and
air density, both of which influence the engine thrust settings and
subsequently nvPM emissions (EASA, 2021).

altitudes (Fig. 1). The PS model is used to estimate the ṁf
(Poll and Schumann, 2020, 2021), while the T4/T2 method-
ology estimates the nvPM EIn at the cruise phase of flight by
interpolating the LTO-based nvPM emissions profile relative
to the non-dimensional engine thrust settings (EASA, 2021;
Teoh et al., 2024b).

As α cannot be defined for an infinitesimal flight segment,
the nominal grid-based CoCiP adopts a workaround by cali-
brating Eq. (5) as follows:

dSn

dZ
= fshear×

dS
dZ
, (6)

where

dS
dZ
=

√(
dU
dZ

)2

+

(
dV
dZ

)2

. (7)

dS
dZ is the magnitude of the wind shear, and fshear is a free
parameter and has physical limits of 0 (i.e. contrail segment
aligned with the wind shear) and 1 (i.e. contrail segment per-

pendicular to shear). We calibrate fshear = 0.665 by minimiz-
ing each of the error metrics when evaluating EFcontrail from
the trajectory- and grid-based CoCiP (described in Sect. 4).

3.4 Monte Carlo simulation

The grid-based CoCiP can perform Monte Carlo simulations
to produce a range of EFcontrail estimates for each grid cell.
Here, we utilize this capability to demonstrate how uncer-
tainties in contrail forecasts can be integrated into flight plan-
ning (Sect. 5.3). We note that the uncertainties in the simu-
lated EFcontrail can arise from multiple independent sources,
including meteorological inputs provided by NWP models,
aircraft performance and emission estimates, contrail model
simplifications, parametric RF model fitted to the libRadtran
radiative transfer package, and potentially other unidentified
factors (Low et al., 2025; Platt et al., 2024; Schumann et al.,
2021; Teoh et al., 2020a, 2024a). While Platt et al. (2024)
evaluate various uncertainty sources affecting EFcontrail in an
earlier implementation of the grid-based CoCiP, the Monte
Carlo simulations in this study focus only on uncertainties
related to meteorological inputs and the grid-based model
simplifications (i.e. aircraft-engine groups and treatment of
α) as a proof of concept. Future updates to the grid-based
CoCiP will incorporate additional uncertainty sources to im-
prove the model’s robustness.

We account for multi-collinearity among different aircraft
performance parameters (i.e. VTAS, M , ṁf, η, and nvPM
EIn) by constructing a 5D empirical multivariate distribu-
tion for each aircraft-engine group. Figure 1 illustrates an
example of the relationship between two (M and nvPM EIn)
of these five variables. These distributions are derived using
flight waypoints during the cruise phase of flight (i.e. above
25 000 ft, equivalent to 7620 m, and zero vertical climb rate)
from the 2019 Global Aviation emissions Inventory based on
the Automatic Dependent Surveillance–Broadcast (ADS-B)
(GAIA) (Teoh et al., 2024b). Our Monte Carlo approach con-
sists of 100 global simulations, with each of the ERA5 10-
member ensembles fixed for 10 consecutive simulation runs.
Within each set of 10 simulation runs using the same ensem-
ble member, the aircraft performance parameters (i.e. VTAS,
M , ṁf, η, and nvPM EIn) at different altitudes are sampled
from the 5D empirical multivariate distribution, and α is sam-
pled from a uniform distribution that ranges between 0 and
360°. This setup allows the 10 ensemble members to account
for meteorological uncertainties, while the 10 independent
simulations within each ensemble capture variabilities in air-
craft performance and α, resulting in a total of 100 simula-
tions. We use these outputs to quantify the probabilities of
forming persistent warming and cooling contrails for each
grid cell.
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4 Comparing trajectory vs. grid-based CoCiP

Here, we use both the trajectory-based and the nominal grid-
based CoCiP to simulate EFcontrail from historical flight tra-
jectories provided by GAIA (Teoh et al., 2024b). We evaluate
the agreement between both models and explore the trade-
off between the model agreement and model simplification,
i.e. formulating the grid-based CoCiP with a smaller num-
ber of aircraft-engine groups (N ) as discussed in Sect. 3.1.
To achieve this, we classify the most commonly used pas-
senger aircraft-engine types into groups of between 1 (no
differentiation between aircraft-engine types) and 12 based
on their aircraft mass and nvPM EIn (see Tables 2 and 3,
and Appendix A4). We then filter the GAIA dataset to only
include the 43 aircraft-engine types covered in Table 2 and
randomly sample 1 d per week throughout the entire year of
2019. We extract flight waypoint data within each day and
simulate EFcontrail using both the trajectory-based (EFtraj

contrail)
and the grid-based CoCiP (EFgrid

contrail).
Our goal in this analysis is not to validate grid-based Co-

CiP in an absolute sense but to demonstrate that the grid-
based CoCiP can provide sufficiently accurate representa-
tions of the trajectory-based CoCiP. We recognize the crit-
ical importance of validating both CoCiP variants against in-
dependent observations, which is an active area of ongoing
research.

4.1 Metrics

The agreement between EFtraj
contrail and EFgrid

contrail is assessed
using five distinct approaches. Together, these approaches
are aimed at quantifying both the pointwise errors and the
fleet-aggregated errors. We note that these metrics are pre-
dominantly biased towards evaluating the model’s ability to
correctly predict strongly warming contrails rather than all
contrails, which is consistent with existing proposals that aim
to target the 2 %–3 % of flights that are responsible for 80 %
of the global annual EFcontrail (Teoh et al., 2020a, b, 2024a;
Wilhelm et al., 2021).

Pointwise errors are quantified using three met-
rics including the false negative rate, that is,
P
[(

EFgrid
contrail < EFthreshold

)
|

(
EFtraj

contrail > EFthreshold

)]
;

the false alarm rate
P
[(

EFtraj
contrail < EFthreshold

)
|

(
EFgrid

contrail > EFthreshold

)]
; and

the modified mean absolute log error (modified MALE).
The false negative and false alarm rates serve to evaluate the
accuracy of the grid-based CoCiP in identifying the location
of moderately and strongly warming contrails, which are
assumed to be those with an EFthreshold of 1× 107 J m−1

(around the 50th percentile) and 5× 108 J m−1 (80th
percentile) respectively (Teoh et al., 2024a). In addition,
the modified MALE measures the average relative error
between EFtraj

contrail and EFgrid
contrail at each flight segment while

Figure 2. Performance curves for the trajectory-based CoCiP (black
line) and the grid-based CoCiP when it is configured using the
exact/original aircraft-engine types (i.e. the same as the trajectory-
based CoCiP; blue line) and withN = 7 (orange line),N = 3 (green
line), and N = 1 (red line) aircraft-engine groups respectively. Fur-
ther methodological information used to construct these perfor-
mance curves can be found in Appendix A5.

minimizing the impact of prediction errors in segments with
a weak contrail climate forcing (i.e. EFcontrail < 107 J m−1).

Fleet-aggregated errors are evaluated using the weighted
Kendall rank correlation coefficient (τw), which assesses the
grid-based CoCiP’s capability to correctly rank flight seg-
ments by their magnitude of EFtraj

contrail. We additionally use
two custom performance curve metrics that evaluate the de-
terioration in contrail mitigation potential when interventions
are informed by imperfect predictions (EFgrid

contrail) (Platt et al.,
2024). The performance curves are constructed by first sort-
ing the flight segments based on an estimate of their EFcontrail

(EFgrid
contrail) and then plotting their cumulative EFcontrail as a

function of the cumulative flight distance flown (L), shown
in Fig. 2. This is equivalent to a curve showing the reduc-
tion in EFcontrail as a function of L, with interventions being
prioritized based on an estimate of EFcontrail and assuming
that the contrail mitigation at the flight segment is successful
(EFcontrail = 0). The cumulative EFcontrail increases the most
quickly with the cumulative L if EFcontrail is based on per-
fect information (i.e. EFtraj

contrail) and less quickly if EFcontrail

estimates (i.e. EFgrid
contrail) contain errors. We use these perfor-

mance curves to quantify the (i) change in initial mitigation
rate (i.e. the reduced effectiveness in mitigating flight seg-
ments with the most strongly warming contrails), which is
estimated from the gradient of a secant line over the first 5 %
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Figure 3. Pointwise errors between EFtraj
contrail and EFgrid

contrail when the grid-based CoCiP is configured (a) using the exact/original aircraft-
engine types (i.e. the same as the trajectory-based CoCiP) and with (b) N = 7, (c) N = 3, and (d) N = 1 aircraft-engine groups respectively.
Each panel contains 107 randomly sampled flight waypoints. The axes use a logarithmic scale for |EFcontrail|> 107 J m−1 and a linear scale
between 10−7 and 107 J m−1. For both axes, the box-like structures observed around 10−7 and 107 J m−1 arise from the transition between
the linear and the logarithmic scale.

of the cumulative EFcontrail (m5) and expressed as a ratio,
m

grid
5

m
traj
5
(< 1), and (ii) change in flight segment ratio, L

grid
80

L
traj
80
(> 1),

which quantifies the additional flight distance where inter-
ventions have to be applied to mitigate 80 % of the total
EFcontrail. A detailed description of each metric can be found
in Appendix A5.

4.2 Model comparison

Table 4 summarizes the performance metrics when compar-
ing the model agreement between the trajectory-based Co-
CiP and various configurations of the grid-based CoCiP, i.e.
using the original aircraft-engine type for each flight as in
the trajectory-based CoCiP and with different aircraft-engine
groupings (1≤N ≤ 12).
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Table 4. Summary of the different performance metrics used to evaluate the agreement between the grid-based CoCiP with different config-
urations of aircraft-engine groups (N ) relative to the trajectory-based CoCiP. Further information on these metrics can be found in Sect. 4.1
and Appendix A5.

Number of aircraft- EFthreshold = 107 J m−1 EFthreshold = 5× 108 J m−1 Modified MALEa τb
w Performance curves Mean error

engine groups (N ) False False False False Initial mitigation Flight segment across
negative alarm negative alarm rate ratios all metricsc

Original 3.2 % 10.4 % 6.0 % 17.7 % 0.166 0.821 0.816 1.156 –
12 3.2 % 10.6 % 5.7 % 18.3 % 0.169 0.819 0.811 1.158 0.6 %
7 3.6 % 10.7 % 5.7 % 18.6 % 0.173 0.814 0.809 1.160 2.8 %
6 3.7 % 10.4 % 8.0 % 18.1 % 0.178 0.802 0.808 1.177 7.8 %
5 3.8 % 11.0 % 9.5 % 18.0 % 0.183 0.790 0.787 1.202 11.7 %
4 4.1 % 11.2 % 13.2 % 17.3 % 0.194 0.766 0.586 1.236 18.0 %
3 4.7 % 12.2 % 5.6 % 22.0 % 0.201 0.784 0.791 1.191 13.1 %
2 5.0 % 12.4 % 9.5 % 21.6 % 0.213 0.755 0.588 1.242 19.7 %
1 5.1 % 16.0 % 9.5 % 29.4 % 0.286 0.670 0.526 1.378 34.5 %

a This indicates the modified mean absolute log error (modified MALE), where a value of zero indicates perfect agreement in the magnitude of EFcontrail between the trajectory-based and grid-based CoCiP, while
larger values are indicative of larger relative errors. The modified MALE can be converted to a percentage relative error using the following formula: percentage relative error= 100× (10modified MALE

− 1). A
value of 1 implies that, on average, EFgrid

contrail is off by 1 order of magnitude.
b The weighted Kendall rank correlation coefficient, (τw), where τw = 1 indicates a perfect agreement between the rankings of EFtraj

contrail and EFgrid
contrail, τw = 0 indicates a completely random relationship, and

τw =−1 indicates a perfect disagreement.
c The mean percentage error across all performance metrics when compared with the grid-based CoCiP without any aircraft-engine configuration, visualized in Fig. A8.

For the original aircraft-engine group, the false nega-
tive and false alarm rates are 3.2 % and 10.4 % respec-
tively when evaluated against moderately warming contrails
(EFthreshold = 1× 107 J m−1) and 6.0 % and 17.7 % respec-
tively when assessed against strongly warming contrails
(EFthreshold = 5× 108 J m−1). The modified MALE of 0.166
corresponds to a 47 % relative error between EFtraj

contrail and
EFgrid

contrail. These pointwise errors (shown in Fig. 3a) are in-
dependent of the aircraft-engine grouping and primarily arise
from (i) the assumption of an infinitesimal contrail segment
in the grid-based CoCiP compared to a finite segment in the
trajectory-based CoCiP, where the EFtraj

contrail can be zero if
the next flight waypoint does not form a persistent contrail;
(ii) the use of nominal VTAS and aircraft mass in the grid-
based CoCiP, which causes differences in the downward dis-
placement and survivability of the contrail during the wake-
vortex phase; and (iii) the calibrated fshear (see Eq. 6), which
affects the dSn

dZ , contrail diffusivity, coverage area, lifetime,
and EFcontrail. For the fleet-aggregated errors, the τw of 0.821
demonstrates a strong correlation between the rankings of
EFtraj

contrail and EFgrid
contrail. The change in initial mitigation rate

of 0.816 suggests an 18 % reduction in the effectiveness of
mitigating the most strongly warming contrails with the grid-
based CoCiP, and a change in the flight segment ratio of
1.156 indicates that interventions must be applied to an addi-
tional 16 % of the total flight distance flown to mitigate 80 %
of EFcontrail.

Using different aircraft-engine groupings (1≤N ≤ 12)
rather than the original aircraft-engine type introduces addi-
tional sources of error between the trajectory-based and grid-
based CoCiP (Table 4 and Figs. 2, 3, and A8). The mean error
across different performance metrics for N = 12 and N = 7
are around 0.6 % and 2.8 % relative to the configuration with-
out any aircraft-engine grouping, but the degradation rate

generally starts to increase when N < 7 (Fig. A8). Specifi-
cally, the mean error for N = 1 (34.5 %) is around an order
of magnitude larger than that of N = 7 (2.8 %), with these
errors primarily arising from overestimates in EFcontrail from
aircraft-engine types with low nvPM EIn (see top-right quad-
rant in Fig. 3d). Notably, a reduction from N = 4 to N = 3
results in an improvement in mean error across the perfor-
mance metrics from 18.0 % to 13.1 %. This improvement can
be attributed to the fact that N = 3 categorizes the aircraft-
engine types solely based on their nvPM EIn, whereas N = 4
categorized the aircraft-engine types into two nvPM and two
aircraft mass categories, thereby suggesting that the nvPM
EIn is a stronger predictor of EFcontrail than aircraft mass.

Based on these results, we draw three key insights to in-
form the selection of an optimal N : (i) the model agreement
between the trajectory-based and grid-based CoCiP is com-
parable for N = 12 and N = 7, which suggests that there
may not be a significant advantage to running the grid-based
CoCiP with N = 12 rather than N = 7; (ii) N = 3, which
categorizes the aircraft-engine types solely based on nvPM
EIn, offers a reasonable trade-off between model accuracy
and operational complexity; and (iii) N = 1 significantly de-
grades the accuracy of the grid-based CoCiP and is not rec-
ommended for operational use.

5 Application of grid-based CoCiP

Here, we run a 2019 full-year grid-based global contrail sim-
ulation with N = 3 and reanalysis meteorology to quantify
the annual statistics and spatial trends of strongly warming
and cooling contrails (Sect. 5.1). We then introduce two dif-
ferent approaches for integrating the grid-based CoCiP into
flight trajectory optimization (Sect. 5.2), followed by propos-
ing two strategies to account for uncertainties within the
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decision-making process of contrail mitigation to increase
the probability of achieving a net climate benefit (Sect. 5.3).

5.1 Global contrail simulation

The grid-based CoCiP produces a global map of the EFcontrail
per flight distance for each of the three aircraft-engine group
that were categorized based on their nvPM EIn (Fig. 4 and
Sect. 4.2). A comparison between the nominal and high-
nvPM aircraft-engine group (Fig. 4b) showed notable dif-
ferences in the magnitude of EFcontrail, where the global
mean EFcontrail per flight distance for the high-nvPM aircraft-
engine group (10× 108 J m−1) is around 2 times larger than
the nominal nvPM group (5.5× 108 J m−1). These groups
also show differences in the sign of EFcontrail, especially at
around 25–60° S and 60–150° E, where the number of grid
cells with cooling contrails (EFcontrail < 0) in the high-nvPM
group is 18 % higher than in the nominal nvPM group. These
trends can be linked to the relationship between the nvPM
EIn and contrail lifetime, where a larger nvPM EIn generally
leads to a higher initial contrail ice crystal number, which, in
turn, lowers the ice crystal sizes and their sedimentation rate,
thereby prolonging the contrail lifetime, and increase the
magnitude and variability in EFcontrail (Teoh et al., 2022a).
Although the global mean EFcontrail for the low-nvPM group
(0.15× 108 J m−1) is around 1 order of magnitude smaller
than the nominal nvPM group (5.5×108 J m−1) (Fig. 4c), we
note that EFcontrail estimates from the low-nvPM group are
likely underestimated because CoCiP does not currently ac-
count for the potential activation of volatile particulate mat-
ter and ambient aerosols to form contrail ice crystals in the
“soot-poor” regime (nvPM EIn < 1013 kg−1) (Kärcher and
Yu, 2009; Yu et al., 2024).

Unlike a map of the ISSR coverage area, which identifies
regions likely to form persistent contrails, the 4D EFcontrail
per flight distance accounts for the intensity of contrail-
induced warming and allows for more targeted mitigation.
For example, in 2019, the global annual mean percentage of
airspace volumes forecasted with strongly warming contrails
was 0.44 % for EFcontrail > 95th percentile (1.5×109 J m−1),
and 1.6 % for EFcontrail > 80th percentile (5.0× 108 J m−1).
These values are up to 91 % smaller than the airspace vol-
umes with net warming contrails (4.8 % for EFcontrail > 0)
and up to 93 % smaller than the ISSR coverage area (6.6 %
for EFcontrail 6= 0) (Fig. 5a). Thus, using this approach to nav-
igational contrail avoidance could minimize potential disrup-
tions to air traffic management and airspace capacity as it fo-
cuses only on the most warming contrails rather than avoid-
ing all persistent contrails.

We also use the 2019 grid-based global contrail simula-
tion to quantify the global annual mean EFcontrail per flight
distance (Fig. 6) and annual occurrence of strongly warm-
ing (EFcontrail > 1.5× 109 J m−1, 95th percentile) and cool-
ing contrails (EFcontrail <−2.4× 108 J m−1, 5th percentile)
at different altitudes (Fig. 7). The grid-based CoCiP’s pre-

Figure 4. The (a) absolute EFcontrail per flight distance for the
aircraft-engine group with nominal nvPM and the absolute dif-
ference in EFcontrail per flight distance between the (b) nominal
and high-nvPM aircraft-engine group and (c) nominal and low-
nvPM aircraft-engine group. The global contrail climate forcings
shown here are simulated at FL360 (10 973 m) on 7 January 2019 at
03:00:00 UTC. The basemap was plotted using Cartopy 0.22.0 and
sourced from Natural Earth; it is licensed under public domain.

dictions of persistent contrail occurrence and spatial trends in
EFcontrail are generally consistent with earlier global contrail
simulation studies (Bier and Burkhardt, 2022; Gettelman et
al., 2021; Teoh et al., 2024a). For example, the absence of
persistent contrails below 35 000 ft (10 668 m) in the tropics
(Fig. 6a and b) is due to its higher relative ambient temper-
atures and tropopause height (Santer et al., 2003), while the
lower relative EFcontrail per flight distance in the subtropics
(i.e. China, India, Middle East, and Australia, as shown in
Fig. 6c) is associated with a lower persistent contrail forma-
tion due to the Hadley circulation (Teoh et al., 2024a). Di-
urnal and seasonal effects contribute to a higher prevalence
of both strongly warming and cooling contrails at higher
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Figure 5. Daily means of the percentage of airspace volume (a) globally and (b) over the North Atlantic region (between 40 and 63° N and
70 and 5° W) in 2019, where the EFcontrail per flight distance is (i) greater than 1.54× 109 J m−1 (95th percentile; blue lines), (ii) greater
than 5.0× 108 J m−1 (80th percentile; orange lines), (iii) negative (i.e. cooling contrails; green lines), (iv) positive (i.e. warming contrails;
red lines), and (v) non-zero (i.e. all contrails; black lines).

latitudes due to the significant seasonal variations in day-
light hours (Fig. 7a to d). Background radiation fields, such
as the solar direct radiation (SDR), RSR, OLR, and albedo
(RSR/SDR), are mainly influenced by latitude, natural cirrus
occurrence, and surface temperature and reflectance. In gen-
eral, strongly warming contrails are more likely in regions
with (i) high albedo (e.g. poles, Siberia, and areas with high
natural cirrus coverage), (ii) high OLR (e.g. tropics and the
Sahara Desert), and (iii) low SDR (e.g. wintertime) (Figs. 6
and 7). Condition (i) limits the contrail SW RF because a
higher proportion of incoming solar radiation is already re-
flected without contrails, while condition (ii) drives the con-
trail LW RF, especially in cloud-free conditions. In contrast,
regions and times with a larger relative SDR-to-OLR ratio
(e.g. southeast Asia, springtime at high latitudes) are asso-
ciated with strongly cooling contrails (Fig. 7b, d, and f). Fi-
nally, global atmospheric circulation patterns can also influ-
ence the humidity transport underlying ISSR occurrence (i.e.
Hadley circulation and the North Atlantic warm conveyor
belt) and preferential advection of persistent contrails to spe-
cific regions (Teoh et al., 2024a; Voigt et al., 2017; Wolf et
al., 2024).

5.2 Flight trajectory optimization

The contrail climate forcing estimates from the grid-based
CoCiP can be applied within the context of flight trajec-

tory optimization. We demonstrate two possible optimization
strategies using an in-house flight trajectory optimizer (de-
scribed in Appendix A6) to optimize the trajectory of an ac-
tual transatlantic flight that was flown by a B77W from New
York to Cairo on 7 January 2019.

5.2.1 Cost-based optimization

The 4D EFcontrail per flight distance fields (shown in Fig. 4a)
takes the form of a standard weather forecast field and can
be incorporated into the flight trajectory optimizer as an ad-
ditional cost factor alongside existing cost parameters, such
as fuel consumption and overflight charges (Martin Frias et
al., 2024). To do so, flight planners can convert EFcontrail to a
CO2 mass equivalent (mCO2 eq, contrails) (Teoh et al., 2024a):

mCO2 eq,contrails
[
kg
]
=

EFcontrail×
(ERF

RF

)
AGWPCO2,TH× SEarth

, (8)

where the global mean ERF /RF ratio of 0.42 is used as a
best estimate to convert the RF to an ERF estimate (Lee et
al., 2021). Given the significant uncertainties in the global
mean ERF /RF ratio (ranging from 0.21 to 0.59 based on
four global climate model studies) (Bickel, 2023; Bickel et
al., 2019; Ponater et al., 2005; Rap et al., 2010) and its spa-
tiotemporal variabilities, flight planners can choose the lower
bound to conservatively incorporate the contrail climate ef-
fects. AGWPCO2,TH is the CO2 absolute global warming po-
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Figure 6. The 2019 global annual mean EFcontrail per flight distance
from the grid-based CoCiP at an altitude of (a) 30 000 ft (9144 m);
(b) 35 000 ft (10 668 m); and (c) 40 000 ft (12 192 m) for the nom-
inal nvPM aircraft-engine group. The basemap was plotted using
Cartopy 0.22.0 and sourced from Natural Earth; it is licensed under
public domain.

tential over a selected time horizon (TH) (7.54×10−7 J m−2

per kg CO2 for 20 years or 2.78× 10−6 J m−2 per kg CO2
for 100 years) (Gaillot et al., 2023), and SEarth is the Earth
surface area (5.101× 1014 m2). If necessary, mCO2,eq can be
further converted to a monetary value by multiplying it with
the social cost of carbon (SCCO2 ), which we assume to be
USD 185 (USD 44–413, 5 %–95 % range per tonne of CO2
(Rennert et al., 2022). Here, we apply Eq. (8) in the tra-
jectory optimizer to minimize the total CO2 mass-equivalent
emissions (mCO2 eq,total =mCO2,fuel+mCO2 eq, contrails), where
mCO2 eq, contrails is estimated using AGWPCO2,100 (= 7.54×
10−7 J m−2 per kg CO2) and rounding the results to the near-
est tonne to align with the precision of the input parameters.
We note that this is only one example of deriving the cost
function and that many other metrics are possible. The task
of defining an appropriate cost function to assess trade-offs
between contrail and CO2 climate forcing remains a critically
important topic for future research.

Using this cost-based approach, the flight trajectory op-
timizer successfully lowered the mCO2 eq,total by 64 %, from
597 t (203 t of CO2 emitted from the total fuel consumed with

an additional 394 t from contrails) in the original trajectory
to 213 t (213 t +0 t) in the optimized trajectory. In simpler
terms, more than 99.9 % of the total EFcontrail (1.3× 1015 J
in the original trajectory vs. 1.0× 108 J in the optimized tra-
jectory) is mitigated at the expense of a 5 % increase in total
fuel consumption. This is achieved by (i) lowering the cruise
altitude from 36 000 ft (10 973 m) to 30 000 ft (9144 m) be-
tween 02:45 and 05:00 UTC, followed by (ii) a further de-
scent to 28 000 ft (8534 m) between 05:00 and 06:30 UTC to
avoid regions forecasted with persistent warming contrails,
and then (iii) climbing to a final cruise altitude of 40 000 ft
(12 192 m) at around 06:30 UTC (Fig. 8a).

5.2.2 Polygon-based optimization

Alternatively, the 4D EFcontrail per flight distance can also
be used to construct contrail-avoidance polygons to identify
regions forecast with strongly warming contrails (Fig. 9a).
These regions can be defined by when the EFcontrail per flight
distance at a grid cell exceeds a user-defined threshold, e.g.
the 80th percentile (5.0× 108 J m−1) (Teoh et al., 2024a).
These polygons can then be integrated into existing flight
planning software (Martin Frias et al., 2024) akin to weather-
avoidance polygons which restrict flights from traversing in
airspace volumes that are forecast with turbulence and/or
thunderstorms (Rubnich and Delaura, 2010).

Using the 80th percentile contrail-avoidance polygons, the
optimizer recommends a trajectory that reducesmCO2,total by
60 %, from 597 t (203 t of CO2 emitted from the total fuel
consumed with an additional 394 t from contrails) in the orig-
inal trajectory to 236 t (207+28 t) in the optimized trajectory.
Put differently, 93 % of the total EFcontrail (1.3×1015 J in the
original trajectory vs. 9.6× 1013 J in the optimized trajec-
tory) is avoided with a fuel penalty of 2 %. This approach in-
volves lowering the cruise altitude from 36 000 ft (10 973 m)
to 30 000 ft (9144 m) between 03:00 and 05:00 UTC, fol-
lowed by a step climb to 40 000 ft (12 192 m) at 05:00 UTC
to exploit a gap in the contrail-avoidance polygon (Fig. 8b).

5.3 Decision-making under uncertainty

Here, we propose two strategies as a proof of concept to
incorporate contrail forecast uncertainties in the decision-
making process of contrail mitigation. Our goal of provid-
ing a range of EFcontrail estimates is to increase the proba-
bility of achieving a net climate benefit and minimize the
unintended consequences associated with increased fuel con-
sumption and long-lived CO2 emissions.

The first strategy involves applying an additional con-
straint to the cost-based or the polygon-based approach
(Sect. 5.2), excluding grid cells where their probability of
forming net warming contrails is below a user-defined thresh-
old (e.g. 90 %, as shown in Fig. 9b). This approach would
ensure that mitigation actions are more likely to be focused
on areas with a high probability of forming net warming
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Figure 7. The 2019 annual probability of the EFcontrail per flight distance at each grid cell being above the 95th percentile (1.54×109 J m−1)
and below the 5th percentile (−2.39×108 J m−1) at 30 000 ft (9144 m) (a, b), 35 000 ft (10 668 m) (c, d), and 40 000 ft (12 192 m) (e, f). The
basemap was plotted using Cartopy 0.22.0 and sourced from Natural Earth; it is licensed under public domain.

contrails. A visual examination of the uncertainties in the
simulated EFcontrail at a specific point in time reveals three
key features: (i) EFcontrail uncertainties are generally larger
at the edges and localized pockets of ISSRs, (ii) the sign
of EFcontrail tends to be more stable on a synoptic scale
(i.e. ISSRs with horizontal coverages of ∼ 1000 km), and
(iii) persistent contrails formed at night and in winter are
more likely to have a lower relative uncertainty compared to
those formed during daytime and in the summer (i.e. North-
ern vs. Southern Hemisphere, as shown in Fig. 9b). These
results suggest that contrail interventions may be more ef-
fective when implemented at a regional level rather than tar-
geting individual flights as contrail uncertainties in specific
locations and time may be lower than in other areas.

Secondly, flight planners and policymakers could imple-
ment additional constraints to ensure that diversions are per-
formed only under specific circumstances, such as (i) when
there are no fuel penalties, which may be possible if the
original cruise altitude and/or VTAS were suboptimal, or if
the alternative trajectory offers more favourable wind condi-
tions (Poll, 2017), or (ii) when the selected CO2-equivalence
metric from the alternative trajectory exceeds a predefined
reduction threshold compared to the original route, thereby

providing some margin of error to account for contrail un-
certainties (Borella et al., 2024). Notably, the transition of
airspace surveillance towards satellite-based systems, such
as the Automatic Dependent Surveillance–Broadcast (ADS-
B) standard, can improve airspace capacity and flexibility,
thus increasing the likelihood of fulfilling these constraints
(Molloy et al., 2022).

6 Conclusions

The global annual mean contrail climate forcing, which rep-
resents the largest component of aviation’s overall climate
forcing (Lee et al., 2021), underscores the need for height-
ened attention and priority from stakeholders in formulating
effective mitigation solutions. As only around 2 %–3 % of all
flights are responsible for 80 % of the global annual EFcontrail,
one proposed solution is to re-route affected flights to avoid
regions forecast with strongly warming contrails.

To implement this mitigation strategy in the real world, we
developed a tool that uses reanalysis or forecast meteorology
to generate global maps of persistent contrail climate forc-
ing within the time frame necessary for flight planning and
operational deployment. This is achieved by extending the
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Figure 8. Application of the grid-based CoCiP in flight trajectory optimization, where the (a) 4D EFcontrail per flight distance flown is
integrated as an additional cost component (see Eq. 8) or (b) airspace volumes that are expected to form strongly warming contrails, i.e.
EFcontrail > 80th percentile (5×108 J m−1) highlighted in red, are avoided. For both optimization methods, the original and optimized flight
trajectories are depicted by the black and green lines respectively, and the optimized trajectories are not checked for real-world air traffic
management constraints.

existing trajectory-based CoCiP, which simulates contrails
formed along flight trajectories, to a grid-based approach,
which initializes an infinitesimal contrail segment at every
point in a spatiotemporal grid and simulates the contrail cli-
mate forcing over its life cycle. The model outputs of the
grid-based CoCiP (i.e. the 5D EFcontrail per flight distance
with dimensions, longitude× latitude× altitude× time×N
aircraft-engine groups) are similar to the concept of cli-
mate change functions (CCFs) introduced in previous studies
(Frömming et al., 2021; Grewe et al., 2014) and provided in
a format that is consistent with standard weather and turbu-
lence forecasts so it can be readily integrated into existing
flight planning software.

Our comparison of EFcontrail estimates between the grid-
based and the trajectory-based CoCiP demonstrates a good
agreement for use as a prototype contrail forecasting tool (Ta-
ble 4). When the grid-based CoCiP is configured withN ≥ 7,
the mean error across all performance metrics is up to 3 %
when compared with the configuration without any aircraft-

engine grouping. Alternatively, a configuration of N = 3 for
the grid-based CoCiP provides operational simplicity for end
users, but this comes at an expense of increasing the mean
error across all metrics to 13 %. While the model simplifi-
cations required for the grid-based CoCiP inevitably lead to
additional uncertainties in the absolute EFcontrail values, we
consider their relative spatiotemporal variabilities to be more
relevant for the study’s objective of identifying regions with
strongly warming contrails (i.e. EFcontrail > 80th or 95th per-
centile) for flight trajectory optimization (Grewe et al., 2014).

Several strategies are proposed to utilize the grid-based
CoCiP for contrail mitigation while accounting for uncer-
tainties in the decision-making framework. Contrail forecasts
can be integrated into flight planning software in two differ-
ent ways: (i) using a cost-based approach, where EFcontrail
is monetized and included as an additional cost component
within their flight trajectory optimizer, or (ii) adopting a
polygon-based approach, where weather-avoidance polygons
are defined to avoid traversing in airspace expected to pro-
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Figure 9. Application of the simulated EFcontrail per flight distance for contrail mitigation, where flight planners can (a) construct polygons
and avoid flying in regions forecast with strongly warming contrails (i.e. grid cells where the EFcontrail per flight distance is greater than the
80th percentile; 5.0× 108 J m−1) and/or (b) account for uncertainties in the simulated contrail climate forcing by masking and disregarding
grid cells (shown in white) when their probability of forming net warming (or cooling) contrails is less than 90 %. The global contrail
climate forcings shown here are from the nominal nvPM aircraft-engine group and simulated at FL360 (10 973 m) on 7 January 2019 at
03:00:00 UTC. For panel (a), the impact of dt on regions forecast with strongly warming contrails are evaluated in Appendix A2. The
basemap was plotted using Cartopy 0.22.0 and sourced from Natural Earth; it is licensed under public domain.

duce strongly warming contrails. The grid-based CoCiP can
also be set up in a Monte Carlo formulation to estimate the
probability of each grid cell forming net warming contrails
(EFcontrail > 0), which, in turn, enables mitigation efforts to
be focused on grid cells with a high probability of forming
net warming contrails (Fig. 9b). The probability of achieving
a net climate benefit can also be maximized when diversions
are only targeted to flights where their alternative trajectory
either avoids a fuel penalty or achieves a reduction in the
user-selected CO2-equivalence metric beyond a predefined
margin of safety.

We acknowledge that the widespread adoption of our con-
trail forecasting tool in real-world operations depends on a
successful validation of its predictions against independent
observations. The ongoing focus on observational validation
for both CoCiP variants underscores the active efforts in this
critical area. While multiplying EFcontrail by the ERF /RF ra-
tio (see Eq. 8) was used in this study to approximate and ac-
count for the rapid atmospheric adjustments directly caused

by the contrail (Bickel et al., 2019), our future work aims
to establish a stronger connection between this computation-
ally efficient EFcontrail calculation and the more rigorous CCF
calculations (Frömming et al., 2021). Future versions of the
grid-based CoCiP are also expected to be prioritized to bring
us towards (i) evaluating and accounting for different uncer-
tainty sources (e.g. global humidity correction, aircraft per-
formance estimates, engine particle emissions and ice nu-
cleation efficacy, CoCiP model parameters, and parametric
RF model) to produce a more comprehensive probabilistic
forecast of the grid-based CoCiP (Platt et al., 2024); (ii) in-
corporating contrail predictions from other models, such as
Google’s artificial-intelligence-based predictions (Elkin and
Sanekommu, 2023) and/or algorithmic climate change func-
tions (Dietmüller et al., 2023), and only performing flight di-
versions in regions where there are inter-model agreements;
(iii) improving the contrail forecast estimates for aircraft-
engine groups that operate in the soot-poor regime by ac-
counting for the potential activation of volatile particulate
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matter and ambient aerosols in forming contrail ice crystals
(Kärcher et al., 2015; Kärcher and Yu, 2009; Yu et al., 2024);
and (iv) utilizing real-time observations from ground-based
cameras and/or satellite images (Geraedts et al., 2024; Low
et al., 2025) to improve forecast accuracy and verify the out-
come of any contrail mitigation actions.

Appendix A

A1 Versioning of trajectory-based CoCiP

The original trajectory-based contrail cirrus prediction model
(CoCiP), versioned as CoCiP (2012), was developed by Ul-
rich Schumann at the German Aerospace Center (DLR) using
the Fortran programming language (Schumann, 2012; Schu-
mann et al., 2012b). Figure A1 summarizes the steps and in-
put parameters needed to run the trajectory-based CoCiP.

A1.1 CoCiP versioning and improvements

Since its first publication, CoCiP has undergone continu-
ous refinement in its contrail simulation workflow and treat-
ment of input parameters. Figure A2 provides an overview
of the different versions of CoCiP and its evolution. Subse-
quent versions that are used by its creator, Ulrich Schumann,
are versioned as CoCiP (DLR) and have been extensively
used in multiple studies (Jeßberger et al., 2013; Schumann et
al., 2011, 2013a, b, 2015, 2017, 2021; Schumann and Graf,
2013; Schumann and Heymsfield, 2017). CoCiP (DLR) in-
corporates additional features such as

– radiative heating effects on the contrail plume (Schu-
mann et al., 2010),

– humidity exchange between contrails and the back-
ground air (Schumann et al., 2015), and

– change in contrail radiative forcing due to contrail–
contrail overlapping (Schumann et al., 2021).

In 2018, a copy of CoCiP (2012) was provided for cooper-
ation to Imperial College by Ulrich Schumann and DLR. Co-
CiP (2012) was re-coded in MATLAB by Imperial College
with support from Ulrich Schumann. This version of CoCiP
is designated as CoCiP (2018). In 2022, CoCiP (2018) was
re-coded to Python by Breakthrough Energy and hosted on
GitHub via the pycontrails library repository (Shapiro et al.,
2023). This CoCiP implementation is referred to as pycon-
trails (v0.37.0) and was made open-source in March 2023.
The pycontrails library standardized input and output data
structures to expand access to the CoCiP model. The differ-
ent structures include flight trajectories (pycontrails.Flight),
meteorology (pycontrails.MetDataset), fuel properties (py-
contrails.Fuel), and aircraft performance and emission mod-
els (pycontrails.Model). The CoCiP model implemented in
pycontrails also features several improvements relative to
CoCiP (2018), including

– modelling the radiative heating effects on the contrail
plume, identical to the workflow that has already been
implemented in CoCiP (DLR) (Schumann et al., 2010;
Schumann and Graf, 2013), and

– modelling the nvPM activation rate to form contrail ice
crystals (factivation), which now depends on the differ-
ence between the ambient temperature and SAC thresh-
old temperature (Bräuer et al., 2021) and replaces the
simplifying assumption that factivation = 1 at each flight
waypoint.

The CoCiP model outputs from pycontrails (v0.37.0) were
evaluated against those from CoCiP (DLR), revealing consis-
tent results. The pycontrails repository is regularly updated,
with the version used in this study being v0.51.0 (Shapiro et
al., 2024). Detailed documentation on the specific changes
made between each version of pycontrails can be found in
the change log of Shapiro et al. (2024). Notably, several up-
dates have also been applied to the trajectory-based CoCiP,
including

– implementing a parameterized model of the ice crys-
tal survival fraction during the wake-vortex phase de-
veloped based on outputs from large-eddy simulations
(Unterstrasser, 2016) and

– incorporating the contrail–contrail overlapping effects
on the contrail radiative forcing (Teoh et al., 2024a) with
minor modifications relative to the approach of Schu-
mann et al. (2021).

A1.2 Publications using CoCiP

Initial results of the CoCiP (2012) include comparisons to
satellite and airborne lidar remote sensing observations as
well as comparisons to exhaust and contrail in situ mea-
surements (Schumann, 2010; Schumann and Wirth, 2009;
Voigt et al., 2010). The concept of contrail energy forcing
(EFcontrail), which represents the cumulative contrail climate
forcing over its lifetime, and its application to flight tra-
jectory optimization were first introduced in Schumann et
al. (2011). The first application of a gridded CoCiP approach
was demonstrated in Schumann et al. (2012a). Additionally,
CoCiP (2012) was applied alongside 8 years of METEOSAT
cirrus and outgoing longwave radiation observations to de-
rive the contrail longwave radiative forcing (RF) over the
North and South Atlantic (Schumann and Graf, 2013). These
results were then extrapolated through CoCiP simulations to
estimate the global contrail shortwave and longwave RF, the
results of which were used to inform the Intergovernmen-
tal Panel on Climate Change (IPCC) report (Boucher et al.,
2013).

CoCiP (2018) was used in two separate studies to simu-
late contrails over the Japanese airspace (Teoh et al., 2020a,
b), which included the following changes to the simulation
workflow relative to CoCiP (2012):
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Figure A1. Steps and input parameters required to run the trajectory-based CoCiP.

Figure A2. Overview of the different versions of the trajectory-based CoCiP and its evolution.

– the incorporation of the fractal aggregate (FA) model,
which estimates the non-volatile particulate matter
(nvPM) number emission index (EIn) at each flight
waypoint based on the engine thrust setting and pres-
sure ratio rather than assuming a constant nvPM EIn
(1015 kg−1), and

– the implementation of a Monte Carlo simulation to
propagate uncertainties in the nvPM EIn estimates and
meteorology to the simulated contrail properties and cli-
mate forcing.

The pycontrails repository has been used in multiple stud-
ies to simulate aircraft emissions and contrail climate forc-
ing (Martin Frias et al., 2024; Platt et al., 2024; Quante et
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al., 2024; Teoh et al., 2022a, b, 2024b, a), with the following
improvements to the simulation workflow:

– The T4/T2 methodology (Teoh et al., 2022a, 2024b),
which supersedes the FA model and estimates the
aircraft-engine specific nvPM EIn using the reported
nvPM emissions profile provided by the ICAO aircraft
engine emissions databank (EDB) was utilized (EASA,
2021),

– The change in contrail formation and properties result-
ing from the use of sustainable aviation fuel (SAF) was
simulated (Teoh et al., 2022b),

– Corrections were applied to the humidity fields pro-
vided by numerical weather predictions (NWP), which
ensures that the provided relative humidity with respect
to ice (RHi) is more consistent with in situ measure-
ments (Teoh et al., 2022a, 2024a; Wolf et al., 2023b)
(see Appendix A3).

– Additional interpolation methods across the vertical
level, such as the log–log and cubic spline interpolation,
are supported to account for the non-linear lapse rate of
the specific humidity.

– Additional features in various structures are incorpo-
rated in pycontrails (i.e. pycontrails.Flight and pycon-
trails.MetDataset), and the open-source Poll–Schumann
(PS) aircraft performance model is supported (Poll and
Schumann, 2020, 2021, 2024).

Since 2023, a revised CoCiP (DLR) has been in the pro-
cess of implementation into the Icosahedral Nonhydro-
static (ICON) weather model of the German Weather Ser-
vice (DWD) (Ulrich Schumann, personal communication,
31 May 2024). The pycontrails repository is also currently
in use at DLR with modifications to the interpolation scheme
(not versioned).

A2 Sensitivity of contrail climate forcing to CoCiP
model time step

Previous studies that simulated contrails with CoCiP have
used different model time steps (dt) ranging between 5 and
60 min depending on their specific application and available
computational resources:

– Schumann et al. (2015) used a 60 min dt due to (i) Co-
CiP’s coupling with the Community Atmosphere Model
(CAM), which operates on a 60 min time step, and
(ii) the extensive computational demands of the 20-year
global simulations.

– Regional studies over Japan, Europe, and the North At-
lantic used a 30 min dt as these simulations were con-
ducted locally on consumer-grade hardware (Schumann
et al., 2021; Teoh et al., 2020a, 2022a).

– Schumann and Graf (2013) used a 15 min dt to match
the time resolution of their air traffic and satellite
datasets.

– Teoh et al. (2024a) used a 5 min dt because the simu-
lation was conducted on the cloud where computational
resources were no longer constrained.

In this section, we perform a sensitivity analysis by run-
ning the grid-based CoCiP with different dt values of 1, 5,
10, 15, and 30 min and quantify their impact on the esti-
mated EFcontrail. We specifically simulated contrails on 7 Jan-
uary 2019 at 03:00:00 UTC to be consistent with the time pe-
riod used in the examples in Sect. 5. Figure A3 shows that the
magnitude and variance of EFcontrail tend to increase as dt de-
creases, with the mean EFcontrail per flight distance simulated
with a 1 min dt being approximately 24 % larger than those
simulated with a 30 min dt . Likewise, the global airspace
area forecast with strongly warming contrails (EFcontrail >

80th percentile) is 20 % larger at a 1 min dt compared to
a 30 min dt (1.60 % vs. 1.33 %, as shown in Fig. A4). The
smaller EFcontrail and coverage area at larger dt values, such
as 30 min, can be explained by the contrail lifetime ending
prematurely. For example, if ambient conditions at the next
model time step, (t + 30 min), are unfavourable for contrail
persistence, EFcontrail between t and (t + 30 min) becomes 0
because contrails are no longer present at (t + 30 min). In
contrast, under the same ambient conditions, a smaller dt of
1 min allows the simulated contrails to persist for a longer
time period within the same 30 min window, thereby in-
creasing the overall contrail lifetime and resulting in a larger
warming or cooling effect (|EFcontrail|, as shown in the larger
standard deviation in Fig. A3).

In this study, we chose a 5 min dt to align with Teoh et
al. (2024a) as their EFcontrail thresholds (i.e. > 80th and 95th
percentiles) were used to identify regions that are forecasted
to produce strongly warming contrails. While time step error
is one of the many sources of errors influencing EFcontrail,
our analysis in this section suggests that it is not the most
dominant one, especially when compared to the impact of
humidity corrections applied to the ERA5 HRES (Teoh et
al., 2024a). Since dt is a model parameter, we recommend
that users select a dt of 1 or 5 min to minimize its impact
as a source of error as smaller dt values are expected to re-
sult in convergence of the global airspace area forecast with
strongly warming contrails (1.60 % for a 1 min dt vs. 1.58 %
for a 5 min dt , as shown in Fig. A4).

A3 Humidity correction

Two approaches have been used in previous studies to en-
sure that the RHi distribution provided by the European Cen-
tre for Medium Range Weather Forecasts (ECMWF) ERA5
products are consistent with in situ RHi measurements.

Firstly, a global humidity correction developed by Teoh
et al. (2024a) attempts to improve the goodness of fit of
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Figure A3. Change in the global mean and standard deviation of
EFcontrail per flight distance across different CoCiP model time
steps (dt). Contrails are simulated globally at FL360 (10 973 m)
on 7 January 2019 at 03:00:00, with the nominal nvPM aircraft-
engine group. The y axis uses a logarithmic scale for |EFcontrail|>
107 J m−1 and a linear scale between 10−7 and 107 J m−1.

the ERA5-derived and in situ RHi distribution. It scales the
ERA5-derived RHi with the following parametric equations:

RHicorrected =


RHi
aopt

for
(

RHi
aopt

)
≤ 1

min
((

RHi
aopt

)bopt
,RHimax

)
for

(
RHi
aopt

)
> 1

, (A1)

where

aopt =
a0

1+ exp(a1× (|lat| − a2))
+ a3, (A2)

bopt =
b0

1+ exp(b1× (|lat| − b2))
+ b3, (A3)

and

RHimax =


pliq(Tamb)

pice(Tamb)

when Tamb > 235K

1.67+ (1.45−1.67)× (Tamb−190)
(235−190)

when Tamb ≤ 235K

. (A4)

pliq(Tamb) and pice(Tamb) are the saturation pressure of wa-
ter vapour over liquid water and ice respectively (Sonntag,
1994). aopt and bopt capture the change in tropopause height
between 20 and 50° N/S, which aims to account for the
latitude effects on the RHi distribution. The model coeffi-
cients are re-calibrated based on the specific ERA5 prod-
uct, with (i) a0 = 0.06262, a1 = 0.4589, a2 = 39.25, a3 =

0.9522, b0 = 1.471, b1 = 0.04431, b2 = 18.76, and b3 =

1.433 for the ERA5 HRES reanalysis on pressure lev-
els (Teoh et al., 2024a), or (ii) a0 = 0.02630, a1 = 2.2501,
a2 = 36.5494, a3 = 0.9651, b0 = 0.4891, b1 = 4.1827, b2 =

17.5338, and b3 = 2.2109 for the ERA5 HRES reanalysis on
model levels. The main factor contributing to differences be-
tween the two set of coefficients stems from the higher verti-
cal resolution of the ERA5 HRES on model levels relative to
those on pressure levels (26 vs. 10 levels between 6300 and
15 000 m).

Secondly, more recent studies corrected the ERA5-derived
RHi using a quantile mapping approach (Platt et al., 2024;
Wolf et al., 2023b). The quantile mapping approach repli-
cates the in situ RHi distribution by constructing two cumu-
lative density functions (CDFs) based on RHi distributions
from the ERA5 and in situ measurements, estimating the
quantile value of the ERA5-derived RHi (represented on the
y axis of the CDF), and using the quantile values to substitute
the ERA5-derived RHi with the in situ RHi values.

The ERA5-corrected RHi from both methodologies (i.e.
global humidity correction and quantile mapping) was com-
pared against in situ RHi measurements from the mid-
latitude region (30–70° N and 125° W–145° E) (Hofer et al.,
2024). These comparisons used the equitable threat score
(ETS) metric, where an ETS score of 1 represents perfect
agreement between the ERA5-corrected and in situ RHi mea-
surements, an ETS score of 0 suggests a random agreement,
and an ETS score below 0 signifies an inverse relationship.
The results show that the ETS from the quantile mapping
method (0.344) is 21 % higher than the global humidity cor-
rection method (0.284) and that the corrected RHi from both
methods represent a significant improvement relative to the
uncorrected ERA5-derived RHi (0.198). However, we note
that these findings are only valid for the mid-latitude re-
gion, and further work is required to evaluate both correc-
tion methodologies globally. We note that we do not advo-
cate for any specific humidity correction methodology, and a
final decision for the operational global contrail forecasting
tool will be determined through stakeholder consensus. For
the purposes of this paper, we employ the global humidity
correction methodology instead of the quantile mapping ap-
proach because it was calibrated to account for the latitude
effects (see Eqs. A2 and A3), which could be more suitable
for a global contrail simulation.

A4 Alternative aircraft type classifications

The grid-based CoCiP provides the simulated EFcontrail per
flight distance across five dimensions, longitude, latitude,
altitude, time, and N unique groups of passenger aircraft-
engine types. The fifth dimension is necessary to differen-
tiate between the contrails formed by passenger aircraft-
engine types with varying nvPM number emissions and air-
craft mass. Generally, a higher N improves the agreement
in the simulated EFcontrail between the trajectory-based and
the grid-based CoCiP, but this comes at the expense of an
increase in computational resources and data storage/trans-
fer requirements. Tables 2 and 3 in the main text classify the
most commonly used passenger aircraft-engine types into 12
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Figure A4. Regions forecasted with strongly warming contrails, i.e. EFcontrail per flight distance > 5.0× 108 J m−1 (80th percentile) when
simulated with different model time steps (dt) of (a) 1 min, (b) 5 min, (c) 15 min, and (d) 30 min. Contrails are simulated globally at FL360
(10 973 m) on 7 January 2019 at 03:00:00, with the nominal nvPM aircraft-engine group.The basemap was plotted using Cartopy 0.22.0 and
sourced from Natural Earth; it is licensed under public domain.

groups. Here, we propose several alternative aircraft-engine
classifications with N ranging between 3 and 7 (groups) to
assess the trade-offs between the model performance and
computational requirements (see Tables A1 to A5). Addi-
tionally, we visualize the range of aircraft mass and nvPM
EIn for each aircraft-engine group when they are clustered
into 12 groups (Fig. A5 and Table 2), 7 groups (Fig. A6 and
Table A1), and 3 groups (Fig. A7 and Table A5) respectively.

A5 Comparison metrics

Section 4 in the main text assesses the agreement in the sim-
ulated contrail climate forcing between the trajectory-based
(EFtraj

contrail) and the grid-based CoCiP (EFgrid
contrail) using four

different approaches: (i) the false negative and false alarm
rate, (ii) the modified mean absolute log error (modified
MALE), (iii) the weighted Kendall rank correlation coeffi-
cient (τw), and (iv) two custom performance curves (Platt et
al., 2024) which evaluate the effectiveness of contrail mitiga-
tion when interventions are based on an imperfect prediction
of EFcontrail. Approaches (i) and (ii) evaluate the pointwise
errors between EFtraj

contrail and EFgrid
contrail at each contrail seg-

ment, while approaches (iii) and (iv) assess the model agree-
ment at the fleet-aggregated level. Here, we provide a de-
tailed description of approaches (ii), (iii), and (iv) and discuss
the rationale behind their inclusion.

Firstly, the modified MALE describes the relative errors in
the magnitude of EFcontrail at each flight segment and is cal-
culated based on the actual (Ftrue) and predicted (Fpredicted)
EFcontrail:

MALE=

i=N∑
i=1
|Ltrue,i −Lpred,i |

N
, (A5)

where

Lx,i = sgn(Fx,i)×max

(
log

(
1+

∣∣Fx,i∣∣
|Fmin|

)
,0

)
. (A6)

N represents the total number of data points in the sam-
ple, the subscript x denotes the true or predicted EFcontrail,
sgn(Fx,i) is the sign of Fx,i (1 or −1), and Fmin is set to
107 J m−1. The modified MALE calculates the average er-
rors between EFtraj

contrail and EFgrid
contrail at the flight waypoint

level with a focus on accurately predicting moderately and
strongly warming and cooling contrail segments. It achieves
this by minimizing the impact of prediction errors in seg-
ments with a weak EFcontrail (< 107 J m−1). A value of 1 im-
plies that, on average, the EFgrid

contrail is off by 1 order of mag-
nitude relative to EFtraj

contrail.
Secondly, we calculate τw to assess the grid-based CoCiP’s

accuracy in ranking flight segments according to their mag-
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Figure A5. Range of aircraft mass and nvPM EIn for each aircraft-engine group when they are clustered into 12 groups. The error bars for
each data point represent 1 standard deviation of these values, which are provided by the 2019 Global Aviation emissions Inventory based
on ADS-B (GAIA) (Teoh et al., 2024b).

Figure A6. Range of aircraft mass and nvPM EIn for each aircraft-engine group when they are clustered into seven groups. The error bars
for each data point represent 1 standard deviation of these values, which are provided by the 2019 Global Aviation emissions Inventory based
on ADS-B (GAIA) (Teoh et al., 2024b).

nitude of EFcontrail:

τw =

∑
i<j

wij × sgn
(
Ftrue,i −Ftrue,j

)
× sgn(Fpred,i −Fpred,j )∑

i<j

wij
, (A7)

where

wij = Ftrue,i +Ftrue,j . (A8)

τw measures the correlation between the two rankings based
on the proportion of concordant and discordant pairs. A
τw value of 1 indicates a perfect match between the rank-

ings, a value of 0 indicates an absence of association be-
tween Ftrue and Fpred, and a value of −1 means that no
pairs share the same ordering. For the purposes of evaluat-
ing the grid-based CoCiP, we only include flight waypoints
if Ftrue > Fmin (= 107 J m−1), and the wij term is introduced
to assign larger weights to correctly rank flight segments with
a large EFcontrail, which is consistent with the approach used
in the modified MALE. The primary distinction between the
modified MALE and τw lies in their treatment of pointwise
errors (i.e. difference in the magnitude of EFcontrail between
the trajectory-based and the grid-based CoCiP), where τw
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Table A1. Classification of the commonly used passenger aircraft-engine types into seven unique groups based on their similarities in aircraft
mass and nvPM EIn.

Aircraft-engine classification nvPM EIn

Low Nominal High

Aircraft mass Light – A19N (LEAP-1A)

– A20N (LEAP-1A)

– A21N (LEAP-1A)

– B38M (LEAP-1B)

– A319 (CFM56)

– A320 (CFM56)

– A321 (CFM56)

– B737 (CFM56)

– B738 (CFM56)

– B739 (CFM56)

– B752 (RB211)

– B753 (RB211)

– B762 (CF6-80E)

– B763 (CF6-80E)

– A19N (Pratt & Whitney)
A20N (Pratt & Whitney)

– A21N (Pratt & Whitney)

– A319 (IAE V2500)

– A320 (IAE V2500)

– A321 (IAE V2500)

Medium – B788 (GEnx)

– B789 (GEnx)

– B78X (GEnx)

– B748 (GEnx)

– A332 (Trent
700/CF6-80E)

– A333 (Trent
700/CF6-80E)

– A342 (CFM56/Trent500)

– A343 (CFM56/Trent500)

– A345 (CFM56/Trent500)

– A346 (CFM56/Trent500)

– A359 (Trent XWB)

– A35K (Trent XWB)

– B788 (Trent 1000)

– B789 (Trent 1000)

– B78X (Trent 1000)

n/a

Heavy – B772 (GE90)

– B773 (GE90)

– B77L (GE90)

– B77W (GE90)

n/a n/a

Super heavy n/a – A388 (Trent 900)

– B742 (CF6-80C)

– B743 (CF6-80C)

– B744 (CF6-80C)

n/a

n/a: not applicable

disregards these errors unless they are significant enough to
alter their relative rankings.

Thirdly, the two performance curves are formulated to
measure the impact of model errors in the effectiveness of
contrail mitigation when interventions are prioritized to spe-
cific flight segments based on an imperfect prediction of the

EFcontrail per flight distance. More specifically, the perfor-
mance curves are constructed with the following steps:

1. Given the EFtraj
contrail and EFgrid

contrail per flight distance on
a common set of contrail segments (indexed from i = 1
to N ), sort the waypoint indices into two distinct lists,
ptraj(i) and pgrid(i). More specifically, ptraj(i) sorts the
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Table A2. Classification of the commonly used passenger aircraft-engine types into six unique groups based on their similarities in aircraft
mass and nvPM EIn.

Aircraft-engine classification nvPM EIn

Low Nominal High

Aircraft mass Light – A19N (LEAP-1A)

– A20N (LEAP-1A)

– A21N (LEAP-1A)

– B38M (LEAP-1B)

– A319 (CFM56)

– A320 (CFM56)

– A321 (CFM56)

– B737 (CFM56)

– B738 (CFM56)

– B739 (CFM56)

– B752 (RB211)

– B753 (RB211)

– B762 (CF6-80E)

– B763 (CF6-80E)

– A19N (Pratt & Whitney)

– A20N (Pratt & Whitney)

– A21N (Pratt & Whitney)

– A319 (IAE V2500)

– A320 (IAE V2500)

– A321 (IAE V2500)

Medium/heavy – B788 (GEnx)

– B789 (GEnx)

– B78X (GEnx)

– B748 (GEnx)

– A332 (Trent
700/CF6-80E)

– A333 (Trent
700/CF6-80E)

– A342 (CFM56/Trent500)

– A343 (CFM56/Trent500)

– A345 (CFM56/Trent500)

– A346 (CFM56/Trent500)

– A359 (Trent XWB)

– A35K (Trent XWB)

– B772 (GE90)

– B773 (GE90)

– B77L (GE90)

– B77W (GE90)

– B788 (Trent 1000)

– B789 (Trent 1000)

– B78X (Trent 1000)

n/a

Super heavy n/a – A388 (Trent 900)

– B742 (CF6-80C)

– B743 (CF6-80C)

– B744 (CF6-80C)

n/a

n/a: not applicable

EFtraj
contrail values from largest to smallest and represents

prioritizing flight segments for mitigation based on per-
fect knowledge of the contrail climate forcing, while
pgrid(i) sorts the EFgrid

contrail per flight distance values
from largest to smallest and represents prioritizations
based on an imperfect prediction of contrail climate
forcing.

2. Calculate four cumulative sums, F(x), for the EFcontrail
per flight distance and flight segment lengths (L) for the
trajectory-based and grid-based CoCiP:

F
(

EFtraj
contrail,k

)
=

k∑
ptraj(i)=1

EFtraj
contrail,i, (A9)
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Figure A7. Range of aircraft mass and nvPM EIn for each aircraft-engine group when they are clustered into three groups. The error bars for
each data point represent 1 standard deviation of these values, which are provided by the 2019 Global Aviation emissions Inventory based
on ADS-B (GAIA) (Teoh et al., 2024b).

F(L
traj
k )=

k∑
ptraj(i)=1

Li, (A10)

F(EFgrid
contrail,k)=

k∑
pgrid(i)=1

EFtraj
contrail,i, (A11)

and

F(L
grid
k )=

k∑
pgrid(i)=1

Li . (A12)

3. Construct two absolute cumulative density func-
tions by plotting F

(
EFtraj

contrail,k

)
versus F(Ltraj

k ) and

F(EFgrid
contrail,k) versus F(Lgrid

k ), both of which repre-
sent the performance curves for the trajectory-based and
grid-based CoCiP respectively.

An example of these performance curves is shown in Fig. 2
in the main text. We then use these performance curves to
derive two metrics that evaluate the effectiveness of contrail
mitigation based on imperfect knowledge of EFcontrail:

– the change in initial mitigation rate, i.e. the relative
reduction in EFcontrail per unit of re-routed flight dis-
tance for the most strongly warming contrails, which
is estimated as the gradient of a secant line (m) from
the origin to the fifth percentile of F

(
EFtraj

contrail

)
and

F
(

EFgrid
contrail

)
and expressed as a ratio of m

grid
k=5

m
traj
k=5

, and

– the change in the total flight distance flown that con-
tributes to 80 % of the total EFcontrail, which is estimated

as a ratio of F(L
grid
k=80)

F (L
traj
k=80)

.

In essence, m
grid
k=5

m
traj
k=5
(< 1) quantifies the reduced effectiveness of

the grid-based CoCiP in mitigating the most strongly warm-
ing contrails when compared to the trajectory-based CoCiP,

while F(L
grid
k=80)

F (L
traj
k=80)

(> 1) measures the additional effort that is re-

quired to mitigate 80 % of the total EFcontrail when imperfect
predictions are used. Table 4 summarizes the performance
metrics when various configurations of the grid-based CoCiP
(i.e. original aircraft-engine type and with different aircraft-
engine groupings) are evaluated against the trajectory-based
CoCiP. Figure A8 shows the mean percentage error across all
performance metrics when comparing the grid-based CoCiP
with different aircraft-engine groupings (1≤N ≤ 12) rela-
tive to the configuration using the exact aircraft-engine type.

A6 Flight trajectory optimizer

In Sect. 5.2, we use an in-house flight trajectory opti-
mizer together with the 4D EFcontrail per flight distance
provided by the grid-based CoCiP to minimize the total
CO2 mass-equivalent emissions (mCO2 eq, total =mCO2,fuel+

mCO2 eq, contrails) from a historical transatlantic flight, where
mCO2 eq, contrails is calculated using Eq. (8). Here, we describe
the algorithm of the flight trajectory optimizer. We note that
this flight trajectory optimizer is not intended to create trajec-
tories that could be used in real-world operations but rather
as a heuristic to estimate the time and fuel costs associated
with contrail mitigation and to demonstrate the utility of the
contrail forecasts in flight planning.

The optimizer attempts to make realistic trajectories by
implementing two constraints: (i) restricting the aircraft
cruise altitude at designated flight levels, typically in incre-
ments of 2000 ft (610 m), and (ii) requiring that the aircraft
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Table A3. Classification of the commonly used passenger aircraft-engine types into five unique groups based on their similarities in aircraft
mass and nvPM EIn.

Aircraft-engine classification nvPM EIn

Low Nominal High

Aircraft mass Light – A19N (LEAP-1A)

– A20N (LEAP-1A)

– A21N (LEAP-1A)

– B38M (LEAP-1B)

– A319 (CFM56)

– A320 (CFM56)

– A321 (CFM56)

– B737 (CFM56)

– B738 (CFM56)

– B739 (CFM56)

– B752 (RB211)

– B753 (RB211)

– B762 (CF6-80E)

– B763 (CF6-80E)

– A19N (Pratt & Whitney)

– A20N (Pratt & Whitney)

– A21N (Pratt & Whitney)

– A319 (IAE V2500)

– A320 (IAE V2500)

– A321 (IAE V2500)

Medium/Heavy – B788 (GEnx)

– B789 (GEnx)

– B78X (GEnx)

– B748 (GEnx)

– A332 (Trent
700/CF6-80E)

– A333 (Trent
700/CF6-80E)

– A342 (CFM56/Trent500)

– A343 (CFM56/Trent500)

– A345 (CFM56/Trent500)

– A346 (CFM56/Trent500)

– A359 (Trent XWB)

– A35K (Trent XWB)

– A388 (Trent 900)

– B742 (CF6-80C)

– B743 (CF6-80C)

– B744 (CF6-80C)

– B772 (GE90)

– B773 (GE90)

– B77L (GE90)

– B77W (GE90)

– B788 (Trent 1000)

– B789 (Trent 1000)

– B78X (Trent 1000)

n/a

n/a: not applicable

maintains a specific flight level for a minimum duration of
90 min between step climbs. Constraint (i) aims to account
for the established airspace structure, which typically dic-
tates vertical separation of flights travelling in opposite di-
rections at intervals of 1000 ft (305 m) (ICAO, 2016), while
constraint (ii) attempts to capture constraints in airspace ca-
pacity and air traffic controller workload where flights are

typically not permitted to perform frequent step changes in
cruise altitude (Filippone, 2015; Tobaruela, 2015). We also
do not consider a full 4D flight trajectory optimization in this
work. Instead, the optimization is only performed in two di-
mensions – namely, time and altitude – while retaining the
original horizontal flight path.
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Table A4. Classification of the commonly used passenger aircraft-engine types into four unique groups based on their similarities in aircraft
mass and nvPM EIn.

Aircraft-engine classification nvPM EIn

Low Nominal/High

Aircraft mass Light – A19N (LEAP-1A)

– A20N (LEAP-1A)

– A21N (LEAP-1A)

– B38M (LEAP-1B)

– A19N (Pratt & Whitney)

– A20N (Pratt & Whitney)

– A21N (Pratt & Whitney)

– A319 (CFM56)

– A319 (IAE V2500)

– A320 (CFM56)

– A320 (IAE V2500)

– A321 (CFM56)

– A321 (IAE V2500)

– B737 (CFM56)

– B738 (CFM56)

– B739 (CFM56)

– B752 (RB211)

– B753 (RB211)

– B762 (CF6-80E)

– B763 (CF6-80E)

Medium/heavy – B788 (GEnx)

– B789 (GEnx)

– B78X (GEnx)

– B748 (GEnx)

– A332 (Trent
700/CF6-80E)

– A333 (Trent
700/CF6-80E)

– A342 (CFM56/Trent500)

– A343 (CFM56/Trent500)

– A345 (CFM56/Trent500)

– A346 (CFM56/Trent500)

– A359 (Trent XWB)

– A35K (Trent XWB)

– A388 (Trent 900)

– B742 (CF6-80C)

– B743 (CF6-80C)

– B744 (CF6-80C)

– B772 (GE90)

– B773 (GE90)

– B77L (GE90)

– B77W (GE90)

– B788 (Trent 1000)

– B789 (Trent 1000)

– B78X (Trent 1000)

Figure A8. Mean percentage error across all performance metrics
for different grid-based CoCiP configurations (1≤N ≤ 12) com-
pared to the configuration using exact aircraft-engine types.

The main input parameter of the flight trajectory optimizer
is the cost index (CI), which is defined as the ratio between
the time and fuel-related fuel costs, and the optimizer min-
imizes the weighted objective function that combines time
costs, CO2, and contrail costs. The flight trajectory is di-
vided into equal flight segments, where each segment will
be traversed in approximately 5 min at a near-optimal cruise
speed. The search space used to find the optimal trajectory
is then constrained to a 2D grid representing the flight seg-
ments (i.e. horizontal axis) and flight level (i.e. vertical axis).
For the flight trajectory used in Sect. 5.2, the horizontal axis
consisted of 207 segments, each approximately 44.8 km in
length, and the vertical axis represents the altitude that is di-
vided into increments of 2000 ft (610 m) between a specified
minimum (assumed to be 26 000 ft (7925 m)) and maximum
altitude (assumed to be the maximum operating altitude of
the aircraft). We also ensure that the step climb/descent per-
formed at each flight segment is realistic and does not exceed
a nominal rate of climb and descent (ROCD) of 500 ft min−1

(2.54 m s−1).
The flight trajectory optimizer performs a breadth-first

Dykstra-like search across the 2D search space. Starting from
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Table A5. Classification of the commonly used passenger aircraft-engine types into three unique groups based on their similarities in nvPM
EIn.

Aircraft-engine classification

nvPM EIn Low – A19N (LEAP-1A)

– A20N (LEAP-1A)

– A21N (LEAP-1A)

– B38M (LEAP-1B)

– B788 (GEnx)

– B789 (GEnx)

– B78X (GEnx)

– B748 (GEnx)

Nominal – A319 (CFM56)

– A320 (CFM56)

– A321 (CFM56)

– B737 (CFM56)

– B738 (CFM56)

– B739 (CFM56)

– B752 (RB211)

– B753 (RB211)

– B762 (CF6-80E)

– B763 (CF6-80E)

– A332 (Trent
700/CF6-80E)

– A333 (Trent
700/CF6-80E)

– A342 (CFM56/Trent500)

– A343 (CFM56/Trent500)

– A345 (CFM56/Trent500)

– A346 (CFM56/Trent500)

– A359 (Trent XWB)

– A35K (Trent XWB)

– B772 (GE90)

– B773 (GE90)

– B77L (GE90)

– B77W (GE90)

– B788 (Trent 1000)

– B789 (Trent 1000)

– B78X (Trent 1000)

– A388 (Trent 900)

– B742 (CF6-80C)

– B743 (CF6-80C)

– B744 (CF6-80C)

High – A19N (Pratt & Whitney)

– A20N (Pratt & Whitney)

– A21N (Pratt & Whitney)

– A319 (IAE V2500)

– A320 (IAE V2500)

– A321 (IAE V2500)

the initial point of the horizontal grid and the lowest flight
level, the algorithm iterates through each of the feasible grid
points to determine the optimal Mach number (Mopt) for the
given aircraft type and CI. The Mopt that minimizes the total
cost of cruise at each flight segment is given by

Mopt = argmin
M

(
CI+1m(M)

VTAS

)
, (A13)

where the CI is assumed to be 60 in this study, 1m(M) is
the fuel burn over this flight segment for a given Mach num-
ber (M), and VTAS is the aircraft true airspeed. The fuel burn
for the original and alternative flight paths, which represent
different cruise altitude options, is computed using the Poll–
Schumann (PS) aircraft performance model (Poll and Schu-
mann, 2020, 2021, 2024). The estimated fuel burn accounts
for various input parameters such as the aircraft type, am-
bient air temperature, ambient wind conditions (which influ-
ence VTAS), and aircraft mass. We then define a set of allowed
actions for the aircraft to transition to the next flight segment:

– If the aircraft is at the starting point of the search, it is
allowed to stay level or climb.

– If the aircraft remained level during the last horizontal
segment, it must continue to remain level unless it has
exceeded the specified time interval (> 90 min) since
the last altitude change.

– If the aircraft was climbing or descending during the last
horizontal segment, it must maintain its current climb
and descent until it has reached an allowed flight level
for cruise, at which point it has the option to remain
level or continue its climb or descent.

– Each action is allowed only if the required thrust and lift
are within the rated operating conditions of the aircraft
as determined by the PS model.

At each grid point reached through an allowed action, the al-
gorithm compares the cumulative cost of the current flight
trajectory with any previously identified optimal path to that
same grid point. During each iteration, the algorithm only
saves the lowest-cost path for reaching the designated grid
point. The search concludes once it has examined every vi-
able grid point, and the optimal trajectory is reconstructed by
starting from the final grid point and retracing the sequence
of actions that were previously taken to reach that point. We
note that the optimized flight trajectories are not checked for
practical usage, and a real-world flight trajectory optimiza-
tion needs to consider practical flight and air traffic manage-
ment constraints, such as the minimum separation between
aircraft, airspace congestion and design (i.e. North Atlantic
Organised Track System), and air traffic controller workload
(Molloy et al., 2022).
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Code and data availability. The pycontrails repository that con-
tains the algorithms for the Poll–Schumann (PS) aircraft per-
formance model, the trajectory-based CoCiP (Cocip), and
the grid-based CoCiP (CocipGrid) is publicly available at
https://doi.org/10.5281/zenodo.11263606 (Shapiro et al., 2024).
The grid-based CoCiP can also be accessed via an application pro-
gramming interface (API) at https://api.contrails.org (Breakthrough
Energy, 2025a) and https://nav.contrails.org (Breakthrough Energy,
2025b). This document contains Copernicus Climate Change Ser-
vice information from 2024. Neither the European Commission nor
the ECMWF is responsible for any use of Copernicus information.

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/gmd-18-253-2025-supplement.
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