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Abstract. Spatial predictions of total organic carbon (TOC)
concentrations and stocks are crucial for understanding ma-
rine sediments’ role as a significant carbon sink in the global
carbon cycle. In this study, we present a geospatial prediction
of global TOC concentrations and stocks on a 5× 5 arcmin
grid, using a novel neural network approach. We also pro-
vide and apply a new compilation of over 21 000 global TOC
measurements and a new set of predictors, including fea-
tures such as seafloor lithologies, benthic oxygen fluxes, and
chlorophyll-a satellite data. Moreover, we compare different
machine learning models based on their performance met-
rics and predictions and assess their strengths and limitations.
For the dataset used, we find that the performance metrics
of the models are comparable and that the neural network
approach outperforms, on unseen data, methods such as k-
nearest neighbours and random forests, which tend to overfit
the training data. We provide estimates of mean TOC con-
centrations and stocks, both on continental shelves and in
deep-sea settings across various marine regions and oceans.
Our model suggests that the upper 10 cm of oceanic sedi-
ments harbour approximately 156 Pg of TOC stocks and have
a mean TOC concentration of 0.61 %. Furthermore, we intro-
duce a standardized methodology for quantifying predictive
uncertainty using Monte Carlo dropout. The method was ap-
plied to our neural network model and underlying features
to generate a map of information gain that measures the ex-
pected increase in model knowledge, achieved through ad-
ditional sampling at specific locations, which is pivotal for
sampling strategy planning.

1 Introduction

Burial of particulate organic carbon in marine sediments re-
moves carbon dioxide (CO2) from the atmosphere and gen-
erates molecular oxygen (O2) that accumulates in the atmo-
sphere (Berner, 1982; Hedges and Keil, 1995). It is a key
process in the global carbon cycle that largely controls the
atmospheric partial pressures of O2 and CO2 on geological
timescales (Berner, 1982, 2004). The mechanisms control-
ling concentrations, standing stocks, and degradation and ac-
cumulation rates of organic carbon at the seabed are, how-
ever, complex and remain a topic of active research (Arndt
et al., 2013; Burdige, 2007; Hedges and Keil, 1995; LaRowe
et al., 2020b; Bradley and Arndt, 2022). Furthermore, present
estimates of the spatial distribution of sedimentary carbon
concentrations and stocks across the global ocean, includ-
ing shelf regions, are limited due to sparse data and the high
spatial variability observed in shelf deposits (Atwood et al.,
2020; Diesing et al., 2021; Lee et al., 2019; Legge et al.,
2020; Seiter et al., 2004). An improved map of global or-
ganic carbon concentrations and stocks in marine surface
sediments, including the continental shelf, could, hence, help
to better understand processes governing the turnover and ac-
cumulation of organic carbon at the seabed.

Sedimentary organic carbon concentrations are typically
reported as total organic carbon (TOC in weight percent),
which includes particulate organic carbon bound to sediment
grains and a minor contribution by organic carbon dissolved
in sediment porewater (Hedges and Keil, 1995). TOC varies
between different geological environments (Emerson and
Hedges, 1988). Fine-grained shelf and delta sediments de-
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posited close to river mouths typically contain 0.5 %–1.0 %
TOC at 0–10 cm sediment depth (Berner, 1982). A major
fraction of TOC deposited in these environments (up to 67 %)
is not formed by marine plankton but is produced by land
plants (Burdige, 2005). Shelf regions where neritic carbon-
ates are formed by corals and other organisms at the seabed
contain about 1 % TOC (Berner, 1982). However, large parts
of the continent shelf (about 50 %–70 %) do not receive sed-
iment inputs and are covered by relict sands (Emery, 1968;
Hall, 2002) that contain only minor amounts of TOC (about
0.1 %). Typical deep-sea sediments, which are not associated
with high-productivity regions, contain about 0.2 %–0.4 %
TOC (Baturin, 2007; Berner, 1982; Lee et al., 2019; Seiter
et al., 2004). In oceanic upwelling regions with high pro-
ductivity, large amounts of TOC are rapidly deposited at the
seabed such that sedimentary TOC concentrations are usu-
ally higher than 1 % and may reach up to 10 % (Berner, 1982;
Lee et al., 2019; Seiter et al., 2004). Elevated TOC values are
also reported for surface sediments deposited in the Arctic
Ocean (1.0 %) and the deep basins of the Black Sea (2.0 %)
(Berner, 1982; Lee et al., 2019; Seiter et al., 2004). Consider-
ing these observations, the global mean TOC concentration
in both shelf and deep-sea sediments seems to be close to
0.5 % to 1.0 %.

The inventory or standing stock of TOC in surface sedi-
ments (in mass of carbon per seafloor area) is calculated by
multiplying TOC concentrations by the dry bulk density of
sediments and the thickness of the considered surface layer.
Different methods have been applied to derive the standing
stock of TOC at regional and global scales. An early esti-
mate based on limited data and expert knowledge concluded
that the global TOC stock is 146 Pg TOC for a 30 cm sur-
face layer (Emerson and Hedges, 1988). The first estimate
of the global TOC inventory derived by a machine learning
approach (k-nearest neighbours – kNNs) using an extended
database (5623 data points) yielded a global inventory of
87± 43 Pg TOC in the top 5 cm layer (Lee et al., 2019). In
subsequent publications with an extended database (11 574
sediment cores) and a more advanced machine learning ap-
proach (random forest model), the global inventory was es-
timated as 2322 Pg TOC for the top 1 m of the sediment
column (Atwood et al., 2020). This inventory exceeds the
global TOC inventory in terrestrial soils and suggests that
TOC in marine surface sediments is the largest TOC pool
at Earth’s surface (Atwood et al., 2020). Another estimate
of the global TOC inventory was derived by reactive trans-
port modelling of sedimentary processes employing a range
of global datasets (LaRowe et al., 2020a). This model yields
a global inventory of 170 Pg TOC for the top 10 cm affected
by biological mixing processes.

Since about 70 % of Earth’s surface is covered by oceans
and sampling sediments at the seafloor is costly, data cov-
erage will always be sparse. Therefore, advanced methods
are required to derive spatial information on sediment prop-
erties from a limited number of point measurements. Ma-

chine learning approaches, which have rapidly advanced in
recent years, are the most promising approach to tackling this
challenge. So far, k-nearest neighbours and random forest
models have been applied to derive global maps of sediment
porosity (Martin et al., 2015), TOC concentration (Lee et al.,
2019), TOC inventory (Atwood et al., 2020), sedimentation
rate (Restreppo et al., 2021, 2020), and regional estimates
of TOC accumulation rates (Diesing et al., 2021). However,
machine learning techniques have their own challenges and
limitations. Overfitting issues are often encountered, and a
standardized approach for estimating predictive uncertainty
has not yet been established (Lee et al., 2019).

Given these challenges, this paper aims to derive more
robust maps of TOC concentrations and inventories for the
global ocean. These maps, including the continental shelf,
are based on a new, larger TOC measurement database and an
extended collection of predictors to improve the accuracy of
predictions for highly heterogeneous and undersampled geo-
logical settings. We compiled an enlarged database of TOC
concentrations in surface sediments with 21 125 entries and
applied a deep neural network (DNN) as a more advanced
machine learning approach that considers the non-linear re-
lationships between TOC and other geological features. The
global ocean was divided into two different domains (shelf
and deep sea), and the network was trained separately for
each of these domains. Moreover, we introduced a standard-
ized methodology called Monte Carlo dropout to quantify
predictive uncertainties in the DNN model and derive infor-
mation gain to guide future sampling efforts.

2 Materials

2.1 Features

An extensive repository of features from both the sea surface
and the seafloor at a 5× 5 arcmin grid resolution has been
compiled using previously reported feature lists (Lee et al.,
2019; Restreppo et al., 2021; Hart-Davis et al., 2021) that
include a range of oceanographic, geological, geographic,
biological, and biogeochemical parameters. It is worth not-
ing that oceanographic features are updated very often from
newer models and measurements, and some of the fea-
tures used here might be outdated. Features deemed irrele-
vant to TOC distributions (e.g. crustal and mantle proper-
ties, distance to the plate boundary, continental ridges, and
trenches) were excluded. Additional features that may influ-
ence TOC distributions were added to improve TOC predic-
tions. These include total oxygen uptake (respiration rates) at
the seabed (Jørgensen et al., 2022), sediment lithology (Gar-
lan et al., 2018), tidal velocities (Hart-Davis et al., 2021),
and chlorophyll-a concentrations at the sea surface (NASA,
2014).

Ninety-nine raw feature grids are compiled for a com-
prehensive representation of the marine environment, pro-
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viding the necessary input for the neural network analysis
in this study to predict TOC concentrations in marine sed-
iments. Most of these features are easily measurable from
the sea surface by e.g. satellite observations, making them
a reliable dataset compared to the less accessible properties
of the seafloor. Some of the seafloor feature grids used in
this work were previously generated from raw data using
machine learning methods (e.g. a porosity grid provided by
Martin et al., 2015). Others were reprocessed in this work to
achieve global coverage at a resolution of 5× 5 arcmin (e.g.
sediment lithology, Garlan et al., 2018).

Neighbourhood information was incorporated for a sub-
set of the features. Specifically, 40 of the 99 initial features
were averaged spatially using a 50 km radius (Lee et al.,
2019). Spatial averaging was applied when TOC concentra-
tions are assumed to be affected not only by the local fea-
ture value, but also feature values in the surrounding area.
This approach was used for selected physical (e.g. current
velocity), chemical (e.g. dissolved compounds), and biologi-
cal (e.g. bio-fauna abundance) parameters.

Overall, a total of 139 features, including 99 original fea-
tures and 40 additional spatially averaged features, is used
in the model. The complete feature list is presented in Ap-
pendix A.

2.2 TOC data

The dataset for TOC concentrations (in weight percent) uti-
lized in this study has been compiled from multiple sources.
It includes global datasets (Seiter et al., 2004; Romanke-
vich et al., 2009; van der Voort et al., 2021; Paradis et al.,
2023) and regional datasets for the northern Gulf of Mexico
(Beazley, 2003) and the North Sea (Wenyen Zhang, personal
communication, 2023, HEREON). Each label represents a
known measurement (TOC concentration) and is paired with
the nearest grid point on the 139-feature grids via L2 distance
computation, resulting in the association of a feature vector
with each label. For those stations where TOC is reported
as function of sediment depth, we calculated the mean TOC
concentration for the top 10 cm and used this mean as the
model label. For many stations, values are only reported for
the top 1–2 cm (around 19 000 measurements). We included
these stations in our model since they contain valuable in-
formation, but we acknowledge that they may be somewhat
higher than those integrated over the top 10 cm since TOC
concentrations tend to decrease with sediment depth due
to ongoing TOC degradation. However, most sediments de-
posited on the continental shelf and in high-productivity re-
gions of the open ocean are affected by intense biogenic and
physical mixing processes (Boudreau, 1997) such that the
downcore TOC decrease is usually small within the mixed
surface layer (0–10 cm sediment depth). The labelled data
are pre-processed to enhance the reliability and robustness
of the dataset for subsequent model development and val-
idation. We first searched for duplicates in our combined

database that may arise when the same data are reported in
multiple databases. They were removed from the combined
database when longitudes, latitudes, and TOC concentrations
were identical. Moreover, coastal regions often exhibit clus-
tered measurements, potentially resulting in shared feature
vectors, as all the measurements lie in the same feature grid
cell. To mitigate this, a variance assessment is conducted.
Labels that share the same feature vectors, exhibiting high
variance (the standard deviation of these labels is higher than
20 % of the maximum of these labels) are excluded, while
those with low variance are averaged, and the shared fea-
ture vector is assigned. Also, some data points situated in
close proximity to land were not captured adequately by the
5× 5 arcmin grid. To address this, reasonable values are as-
signed by interpolating from the nearest points, ensuring the
overall quality of the dataset. Our database includes a total
of 110 149 data points that have been consolidated as dis-
cussed above such that the final TOC database employed
in the model is composed of 21 125 entries (Fig. 1). Both
the datasets for the labels and features can be downloaded
at https://doi.org/10.5281/zenodo.11186224 (Parameswaran
et al., 2024b).

3 Methods

The primary objective of this study is to build a supervised
prediction model that uses feature grid maps as inputs to pre-
dict TOC concentrations as outputs. Additionally, we aim to
quantify prediction uncertainties using Monte Carlo dropout
and information theory techniques. The supervised model
is trained using the set of labels (TOC data) and their cor-
responding feature vectors. Due to the non-linearity in the
relationships between data and features, we choose deep-
learning models, which are good at understanding such pat-
terns. Deep neural networks (DNNs) transform data non-
linearly with non-linear activation functions such as ReLU
(rectified linear unit), a piecewise linear function that outputs
0 for negative inputs and the input itself for positive inputs,
introducing non-linearity into the DNN. Therefore, even af-
ter one layer, multi-collinearity in the data is eliminated. In
our case of a deep neural network, the final output is con-
trolled by numerous combinations of ReLU functions involv-
ing higher-order interactions of original features (De Veaux
and Ungar, 1994).

3.1 Deep-learning model

Deep neural networks have achieved state-of-the-art results
in a variety of tasks in ocean observation, prediction, and
forecasting of ocean phenomena (Song et al., 2023). DNN ar-
chitectures, which are intrinsically non-parametric and non-
linear, are less susceptible to the curse of dimensionality.
They capture complex relationships between data and fea-
tures at different levels of abstraction through their hierarchi-
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Figure 1. Quantitative TOC measurements (i.e. labels) acquired from various sources (Seiter et al., 2004; Romankevich et al., 2009; van der
Voort et al., 2021; Beazley, 2003; Paradis et al., 2023). Notably, data point clusters are observed in close proximity to coastal regions. The
colour maps used for the figures in this paper are from Crameri (2023) and Thyng et al. (2016).

cal nature, which makes them well-suited to resolving highly
complex geoscientific problems (LeCun et al., 2015).

Here, we use a multi-layer perceptron (MLP), feed-
forward DNN to predict global TOC in sediments and intro-
duce a new approach to mapping uncertainty in predictions
that serves as a quantifiable measure of information gain
from sampling. To further improve our predictions, the global
ocean was separated into a continental shelf and deep-sea
region using the 200 m water depth horizon as a boundary.
Two separate models were trained for these regions (shelf: 0–
200 m, deep sea:> 200 m) to consider the different processes
that drive sedimentation and control TOC values in the deep-
sea and shelf environments. The same set of features is used
for both regions, but the interplay of these features differs be-
tween the contrasting environments. The weights and biases
in the DNN are initialized using the technique proposed by
He et al. (2015). Batch normalization (which normalizes the
inputs of each layer for faster and more stable training) and
dropout (which assigns a probability of being deactivated to
each node during training and thus prevents overfitting) are
applied to each layer for regularization. ReLU is used as the
activation function.

The Monte Carlo dropout method is implemented here to
estimate uncertainty in the DNN model, leveraging dropout
layers as approximate Bayesian inferences (Gal and Ghahra-
mani, 2016). It gives us an ensemble of predictions from dif-
ferent subsets of neurons in the same DNN model. Kullback–
Leibler (KL) divergence is used to map information gain
from the quantified predictive uncertainty. In the field of in-
formation theory, KL divergence represents the information
gain and is defined as the difference of the cross-entropy be-
tween the observation and prediction of an event and the en-

tropy in the observation of the event (Kullback and Leibler,
1951). In our context, the predicted distribution arises from
the Monte Carlo dropout prediction ensemble, while the re-
constructed observed distribution is modelled with a normal
distribution, with the predicted value as a mean and a stan-
dard deviation of 0.05 TOC % arising from both technical
handling and the precision of the weighting tool (Pape et al.,
2020).

Uncertainty and information gain are inherently associ-
ated insofar as there cannot be high information gain without
high uncertainty. However, information gain also depends on
the observation probability distribution and is constrained by
it. In other words, information gain measures the expected
increase in model knowledge achieved through field sam-
pling at a specific location. This concept provides a strate-
gic guide for determining optimal sampling strategies: taking
samples in regions with the highest information gain values
is the most efficient way of refining our model’s representa-
tion of the real world. The mathematical formulation of en-
tropy, cross-entropy, and information gain is detailed in Ap-
pendix B.

4 Results and discussions

Understanding the global distribution of TOC concentrations
and stocks is crucial for advancing our knowledge of the
carbon cycle and sedimentary environments worldwide. Be-
fore delving into the prediction maps from the DNN, we first
compare the performance of three methods: DNNs, kNNs,
and random forests. Separate models are run for the deep-
sea and continental shelf regions, and the outcomes are sum-
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marized in Table 1. For kNN, five neighbours were utilized
for the continental shelves and four for the deep sea, based
on a sensitivity analysis with respect to model performance.
Random forests employed 100 estimators for both marine re-
gions. The DNN consists of 10 layers with 128 nodes each.
The choice of hyperparameters in the models is discussed in
Appendix C. This comparison sets the groundwork for a de-
tailed exploration of DNN results. All of the methods were
run with the same training–testing splits of the dataset, and
the random split is seeded to make the methods reproducible.

The results of this model comparison show that random
forest and kNN algorithms exhibit higher correlation co-
efficients and superior overall performance in the training
dataset than the DNN. However, the DNN outperforms the
other two algorithms in the testing data performance (Ta-
ble 1) for the dataset used. This discrepancy suggests a po-
tential overfitting issue, where the kNN and random forest
models may have become specialized in learning the training
data. The emphasis on generalization capabilities is crucial
in our context due to data scarcity in many regions, mak-
ing predictions in unexplored areas a priority. The correlation
plot between the measured and predicted data shows similar
errors for the training and testing datasets, which confirms
that the DNN model largely avoids overfitting (Fig. 2). The
observed underestimation of TOC concentrations at higher
values is likely due to the distribution of the ground truth
dataset, which is predominantly composed of low TOC con-
centrations (< 1 %). Training an NN model on such an im-
balanced dataset often results in a model that is biased to-
wards predicting lower values, effectively “erring on the side
of caution”. Several approaches could be employed to ad-
dress this issue, such as weighting the gradient descent steps
based on concentration values, applying a logarithmic trans-
formation to the TOC scale, or balancing the dataset by with-
holding low-value labels. However, each of these methods is
likely to introduce trade-offs, potentially reducing accuracy
in other areas. Ultimately, the most effective way of improv-
ing the model’s performance in predicting higher TOC con-
centrations is to obtain additional TOC samples within this
higher range.

The prediction map of the DNN is presented in Fig. 3,
while maps generated by kNN and random forests are pro-
vided in Appendix C (Figs. C1 and C2). Both the kNN and
random forests showed artifacts, particularly in the equato-
rial Pacific and Atlantic oceans, similar to the map published
by Lee et al. (2019). As stated by Lee et al. (2019), there
is no standard means of quantifying uncertainty in kNN. In
random forests, the variance or standard deviation of all the
sub-output values for measuring the regression uncertainty is
considered an uncertainty quantification method, but it is dif-
ficult to provide the uncertainty for an individual base learner
(Lucas and Giles, 2016). Estimating the confidence of the
predictions should be an important factor in deciding which
model to use. On the other hand, uncertainty quantification in
the DNN is an active field of research and has standardized

methods. Nonetheless, kNNs and random forests are useful
learning algorithms when computational resources are con-
strained and require an out-of-the-box solution.

We also tested a DNN model where the global ocean was
not separated into shelf and deep-sea regions but treated as
one entity. The resulting TOC map shows spurious features
in the Pacific Ocean (Appendix E), similar to those found in
previous predictions. This additional model shows that the
separation of the ocean into shelf and deep-sea regions im-
proves the model results.

Our DNN-based map of TOC concentrations (Fig. 3)
shows similarities to maps previously published by Seiter
et al. (2004) and Lee et al. (2019), who used geostatisti-
cal methods and a kNN model. All of the maps show ele-
vated concentrations in the Arctic region and in upwelling
areas located along the western continental margins of North
America, South America, Africa, the equatorial Pacific, and
the Arabian Sea. This pattern can be explained by elevated
rates of marine primary and export production in upwelling
regions delivering large fluxes of TOC to the seabed. The
low TOC values in the open oceans are related to lower pro-
ductivity and the large water depths limiting the TOC flux
to the deep-sea floor. The predictions in Fig. 3 are also con-
sistent with the early work on TOC distributions by Berner
(1982) and Emerson and Hedges (1988), showing low TOC
values in the open oceans and elevated values for upwelling
regions and the Arctic region. The high TOC concentrations
predicted for the Black Sea and Baltic Sea (Fig. 3) are proba-
bly related to the lack of oxygen in the bottom waters of these
marginal seas that promotes TOC preservation (Hedges and
Keil, 1995). The map published by Lee et al. (2019) shows
several large areas in the open Pacific that have unusually
high TOC concentrations. These patches are probably not re-
alistic since they do not appear in other maps and are not con-
sistent with our understanding of the TOC cycle. They may
be artifacts generated by the kNN method and the sparse data
coverage in these regions. Our new map avoids these artifacts
and presents a pattern that corresponds better to our under-
standing of TOC accumulation on the seafloor for both the
deep sea and the continental shelf, which were never mod-
elled individually on previous maps.

We also produced a map of TOC stocks for the global
ocean (Fig. 4). The TOC stocks were calculated using the
global porosity grid provided by Martin et al. (2015) and a
density of dry solids (ds) of 2.6 g cm−3. We performed the
calculation for the top 10 cm of the sediment column since
our TOC data have been measured within this mixed surface
layer. Moreover, the top 10 cm are the most vulnerable and
dynamic part of the sedimentary TOC pool since they are
subject to frequent biological and physical mixing processes
(Song et al., 2022) and are affected by human interventions
such as bottom trawling (Sala et al., 2021).

TOC stock= (1− porosity)× ds

× TOC concentration × 10 cm (1)
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Table 1. Comparison of machine learning methods based on performance metrics: Pearson correlation coefficient (Pearson CC), coefficient
of determination (R2), and mean squared error (MSE) for predicted values vs. observed labels for the training and testing data. The train : test
data ratio is 85 : 15. The better-performing method, based on the metric, is highlighted in bold.

Method Training data Testing data (15 % of all the data)

Pearson CC R2 MSE Pearson CC R2 MSE

kNN 0.921 0.45 0.517 0.852 0.719 0.541
Random forest 0.986 0.966 0.239 0.867 0.745 0.499
DNN 0.928 0.844 0.492 0.888 0.737 0.537

Figure 2. Heatmap of the correlation plot between measured (labels) and predicted data (targets) using DNN for (a) training data and
(b) testing data in order to assess the model performance. The minimal difference observed between the training and testing errors serves as
an indicator of the model’s ability to avoid overfitting.

The TOC stock is computed for global oceans and major
seas (Flanders Marine Institute, 2021), considering both con-
tinental shelves and deep-sea regions within each ocean and
sea (Table 2). Notably, the mean TOC concentration on con-
tinental shelves exhibits significant variability across regions.
A visualization of the TOC stock in the oceans is provided in
Appendix D.

According to our model, most the TOC stock can be found
in the vast deep-sea basins of the Pacific, Indian, and Atlantic
oceans, which is due to the large area of these basins (Ta-
ble 2). The shelf region harbours 12.1 % of the global stock
(Table 2, excluding the Baltic Sea and Caspian Sea), similar
to the fraction previously derived by Atwood et al. (2020),
who suggested that 11.5 % of the global TOC stock is located
on the continental shelves. The global TOC stock derived
from our model amounts to 155.8 Pg carbon for the 10 cm
layer considered in our calculations (Table 2). This value is
close to the global stock in the top 10 cm derived by reactive
transport modelling (170 Pg carbon, LaRowe et al., 2020a).
The other stock estimates were calculated by applying a
range of sediment thicknesses. When normalized to 10 cm,
the stock reported by Lee et al. (2019) amounts to 174 Pg car-

bon, while the stock derived by Atwood et al. (2020) amounts
to 232 Pg carbon. The first stock estimate, which was based
on expert knowledge and a limited database, corresponds to
only 49 Pg carbon when normalized to 10 cm (Emerson and
Hedges, 1988), which is lower than our estimate. Our new
global stock assessment, hence, falls into the range of previ-
ous estimates.

According to our DNN model, the mean TOC concentra-
tion in continental shelf sediments, excluding the Baltic Sea
and the Caspian Sea (0.70 %), is close to the concentration
in deep-sea sediments (0.59 %, Table 2). This is a surpris-
ing result since the high marine productivity and low water
depths on the shelf induce high TOC fluxes to the seabed
that should result in elevated TOC concentrations in surface
sediments. Moreover, large amounts of terrestrial particulate
organic carbon (POC) produced by land plants are deposited
in shelf sediments (Burdige, 2005), which should further in-
crease TOC concentrations in these deposits. However, TOC
concentrations in shelf surface sediments are diminished by
a number of factors: (i) frequent biological and physical re-
working that accelerates TOC degradation processes (Song
et al., 2022), (ii) dilution of TOC by inorganic material (clay,
silt, and sand) in delta deposits and other shelf regions with
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Figure 3. Global prediction map of the TOC concentration using a DNN. A higher TOC concentration is observed in the Arctic region and
in upwelling areas located along the western continental margins of America and Africa, the equatorial Pacific, and the Arabian Sea.

Figure 4. TOC stock map using the global porosity grid provided by Martin et al. (2015). The colour map is shown on a logarithmic scale.

high sedimentation rates (Berner, 1982), (iii) strong bottom
currents that inhibit sediment deposition such that large shelf
areas are covered by relict coarse-grained sediments that
were deposited in the geological past and that do not contain
significant amounts of TOC (Emery, 1968), and (iv) frequent
bottom trawling that exposes sedimentary TOC to oxygen
and accelerates TOC degradation (Atwood et al., 2020). Ac-
cording to our DNN model, these factors could potentially
decrease TOC concentrations in shelf sediments to such a
degree that they attain mean values that are close to those ob-
served in deep-sea sediments (Table 2). It should, however,
be noted that most TOC burial occurs on the shelf, where sed-
imentation rates are elevated due to the deposition of riverine
particles (Bradley and Arndt, 2022).

A method based on cooperative game theory (SHAP,
SHapley Additive exPlanations) is used to analyse our re-
sults further and identify features that have a large effect on

the predicted distribution of TOC concentrations (Lundberg
and Lee, 2017). The higher the SHAP value for a feature,
the more important the feature is for the predictions of that
particular model. According to our model analysis, the to-
tal oxygen uptake feature (Jørgensen et al., 2022) has the
largest effect (SHAP value) on predicted TOC concentra-
tions in shelf sediments, while the global porosity grid (Mar-
tin et al., 2015) was the most important feature for deep-sea
sediments. It should, however, be noted that the feature im-
portance ranking is only valid for our specific model set-up
and might not be representative of the real world. Model in-
terpretability and feature importance ranking are discussed
further in Appendix F.

To guide future sampling, a new information gain map
is provided (Fig. 5). It identifies the regions that should be
explored in order to improve the current model predictions.
Some of the main takeaways from the information gain map
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Table 2. TOC stock in the continental shelf and deep-sea regions.

Continental shelves Deep sea

Region Sum of the TOC Area Mean TOC Sum of the Area Mean TOC
stock (Pg) (×106 km2) concentration (%) TOC stock (Pg) (×106 km2) concentration (%)

Arctic Ocean 5.57 5.72 0.94 7.18 9.46 0.88

Indian Ocean 2.63 4.06 0.61 25.86 67.10 0.55

Mediterranean Sea 0.61 0.65 0.98 1.95 2.27 1.04

North Atlantic Ocean 2.82 4.26 0.63 14.96 37.46 0.58

North Pacific Ocean 2.74 3.83 0.66 31.16 73.42 0.67

South Atlantic Ocean 1.25 1.86 0.82 12.76 38.67 0.51

South China and Easter
Archipelago seas

1.56 3.00 0.48 2.58 3.74 0.83

South Pacific Ocean 1.26 1.46 1.02 32.96 83.81 0.58

Southern Ocean 0.21 0.57 0.59 6.39 20.16 0.43

Baltic Sea∗ 0.77 0.39 3.03

Caspian Sea∗ 0.72 0.38 2.27

Total 20.15 26.20 0.79 135.80 336.08 0.59

∗ The total sums and the mean concentrations in the continental shelves include the Baltic Sea and the Caspian Sea. Without these regions, the total TOC stock in the continental
shelves is 18.66 Pg, the area of the continental shelves is 25.42×106 km2, and the mean TOC concentration is 0.66 %.

are that (i) regions with high information gain are found
in parts of the equatorial Pacific Ocean, in Zealandia, and
around Papua New Guinea. These regions are less explored
geographically, and hence the model is not trained with the
features in this region. (ii) The continental slopes on the
western coast of North America, in the east of Iceland, and
in parts of the eastern coast of Africa have a higher informa-
tion gain, though they have more measurements. This could
be due to the steep slopes and rough topography in these re-
gions that may induce a high spatial heterogeneity in TOC
values that is not yet resolved by the model. (iii) Though the
Southern Ocean is not well-explored, regions with higher in-
formation gain are only found with relatively steep terrain,
such as areas located close to islands and ocean ridges. These
examples show that an abundance of measurements does not
necessarily correspond to lower information gain and vice
versa. Information gain depends not only on the geographi-
cal proximity of measurements, but also on their proximity
in the parameter space and the congruence of the measure-
ments made there. Including measurements from a region of
higher information gain should lead to higher model knowl-
edge, and hence this is more valuable compared to regions
of low information gain. An experiment showing this is pre-
sented in Appendix B.

5 Conclusions

The comparison between different modelling approaches, in-
cluding DNNs, kNNs, and random forests, highlights the
effectiveness of each method in predicting TOC concentra-
tions. While kNN and random forest models exhibit higher
correlation coefficients and overall performance in the train-
ing dataset, the DNN outperforms them in testing data per-
formance. This suggests a potential overfitting issue with the
kNN and random forest models, where they may have be-
come specialized in learning the training data. Nonetheless,
these algorithms remain useful, especially when computa-
tional resources are limited.

Our DNN-based map of TOC concentrations shows ele-
vated values in specific regions such as the Arctic and up-
welling areas along continental margins. These patterns are
consistent with known processes of marine primary and ex-
port production. Notably, our model that treats the shelf and
deep-sea regions as separate entities captures their individ-
ual dynamics with higher accuracy and yields a better global
map of TOC concentrations than a model version that sim-
ulates the entire ocean as one continuous system. It specif-
ically avoids artifacts like unrealistically high TOC concen-
trations in open-ocean regions with poor data coverage that
have also been encountered in previous kNN and forest mod-
els.
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Figure 5. The information gain map serves as a guide for determining optimal sampling locations, i.e. those with high information gain
values. The colour scheme highlights the high information gain regions with brighter colours. Information gain does not have any units and
is non-negative – [0, inf).

The computed TOC stock for global oceans and ma-
jor seas provides valuable insights into the distribution and
magnitude of TOC storage. Despite significant variability in
the mean TOC concentration across continental shelves, our
model confirms that the majority of the TOC stock is found
in deep-sea basins. Surprisingly, mean TOC concentrations
in continental shelves are close to those in deep-sea sedi-
ments, suggesting complex processes at play that diminish
TOC concentrations in shelf sediments.

The analysis of information gain highlights regions with
sparse or contradicting measurements and higher uncertainty,
providing guidance for future sampling efforts. It reveals that
the abundance of measurements does not necessarily cor-
respond to lower uncertainty, emphasizing the importance
of considering both geographical proximity and parameter
space proximity in sampling strategies.

In conclusion, our study contributes to a better understand-
ing of global TOC distributions and stocks, shedding light on
the complex interplay between biological, physical, and ge-
ological processes in marine sedimentary environments. The
insights gained from our modelling approach can inform fu-
ture research and management efforts aimed at preserving
and managing marine carbon sinks.

Appendix A: Feature list

File names adhere to the naming conventions discussed be-
low. The naming structure is partitioned by underscores and
periods in the following order: the interface to which the
gridded values refer, the quantity of values contained within
the grid, the units and reference values or units (e.g. metres
below sea level), the data source, the statistic calculated (if
applicable), the grid pitch, and the file extension.

SS Sea surface–atmosphere
interface (may also be the
average of the entire water
column)

SF Seafloor–water interface
(may also be denoted by GL
– ground level)

(r50 km) – raw feature and
feature averaged at a 50 km
radius

The units referenced are as follows.

KGM3 Kilograms per cubic metre

MS Metres per second

KM Kilometres

M_ASL Metres above sea level (i.e.
metres referenced to the sea
level)

MWM2 Milliwatt per square metre

TGCYR Teragrams of carbon per
year

TGYR Teragrams per year

MA Mega-annum

M Metres

MGCM2 Milligrams of carbon per
square metre

DEG Degrees

S Seconds

Most of the features presented below were collected by
Lee et al. (2020) and Phrampus et al. (2019). The new
datasets, including the additions from this work, are available
at https://doi.org/10.5281/zenodo.11186224 (Parameswaran
et al., 2024b).
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Table A1. Feature list with the descriptions and references used as input for all of the models in the paper.

Feature Explanation Data source

GL _COAST _FROM _LAND _IS _1.0
_ETOPO2v2.5m.nc (raw, r50 km)

Coastline, with a binary indicator for the presence
of a coastline. This dataset is derived from
ETOPO2v2, with 2 min gridded global relief data
for land topography.

National Geophysical
Data Center (2006)

GL _COAST _FROM _SEA _IS _1.0
_ETOPO2v2.r50km.men.5m.nc (raw, r50 km)

Coastline with a binary indicator for the presence
of a coastline using ETOPO2v2 relief data for
ocean bathymetry

National Geophysical
Data Center (2006)

GL _DIST _TO _COAST _KM
_ETOPO.r50km.men.5m.grd (raw, r50 km)

Distance of the ocean grid points to the nearest
coast

National Geophysical
Data Center (2006)

GL _ELEVATION _M _ASL
_ETOPO2v2.r50km.men.5m.grd (raw, r50 km)

Elevation data from ETOPO2v2, representing
heights above sea level

National Geophysical
Data Center (2006)

GL _RIVERMOUTH _CO2 _TGCYR-1
_ORNL.r50km.men.5m.grd (raw, r50 km)

Carbon dioxide flux at river mouths, measured in
teragrams of carbon per year (Tg C yr−1)

Ludwig et al. (2011)

GL _RIVERMOUTH _DOC _TGCYR-1
_ORNL.r50km.men.5m.grd (raw, r50 km)

Dissolved organic carbon flux at river mouths
(Tg C yr−1)

Ludwig et al. (2011)

GL _RIVERMOUTH _HCO3 _TGCYR-1
_ORNL.r50km.men.5m.grd (raw, r50 km)

Bicarbonate HCO3− flux at river mouths
(Tg C yr−1)

Ludwig et al. (2011)

GL _RIVERMOUTH _POC _TGCYR-1
_ORNL.r50km.men.5m.grd (raw, r50 km)

Particulate organic carbon flux at river mouths
(Tg C yr−1)

Ludwig et al. (2011)

GL _RIVERMOUTH _TSS _TGYR-1
_ORNL.r50km.men.5m.grd (raw, r50 km)

Total suspended solid flux at river mouths (50 km
resolution) (Tg C yr−1). All of the riverine fluxes
are binary features, with the magnitudes of the
fluxes defined at the coastline and with a value of 0
for the ocean’s interior.

Ludwig et al. (2011)

GL _TOT _SED _THICK _M _CRUST1
_NOAA.r50km.men.5m.grd (raw, r50 km)

Total sediment thickness in Earth’s crust (m) Whittaker et al. (2013)

2N2 _ocean _eot20 _modified.nc;K1 _ocean _eot20
_modified.nc;K2 _load _eot20 _modified.nc;K2
_ocean _eot20 _modified.nc;M2 _load _eot20
_modified.nc;M2 _ocean _eot20 _modified.nc;M4
_load _eot20 _modified.nc;M4 _ocean _eot20
_modified.nc;MF _load _eot20 _modified.nc;MF
_ocean _eot20 _modified.nc;MM _load _eot20
_modified.nc;MM _ocean _eot20 _modified.nc;N2
_load _eot20 _modified.nc;N2 _ocean _eot20
_modified.nc;O1 _load _eot20 _modified.nc;O1
_ocean _eot20 _modified.nc;P1 _load _eot20
_modified.nc;P1 _ocean _eot20 _modified.nc;Q1 _load
_eot20 _modified.nc;S1 _load _eot20 _modified.nc;S1
_ocean _eot20 _modified.nc;S2 _load _eot20
_modified.nc;S2 _ocean _eot20 _modified.nc;SA _load
_eot20 _modified.nc;SA _ocean _eot20 _modified.nc;
SSA_load_eot20_modified.nc;
SSA_ocean_eot20_modified.nc

Hart-Davis et al. (2021) provided global atlases of
both ocean and load tides, containing information
about the amplitudes and phases of 17 tidal
constituents (ocean and load) for the global ocean.
These constituents include 2N2, J1, K1, K2, M2,
M4, MF, MM, N2, O1, P1, Q1, S1, S2, SA, SSA,
and T2, which extend across the entire global
ocean and range from 66° S to 66° N. For higher
latitudes, the FES2014b model is used to fill in the
gaps. Eleven satellite altimetry missions contribute
to this model.

Hart-Davis et al. (2021)

ChlorSummerMean.nc Average chlorophyll-a concentration during
summer (June to November), collected from July
2002 till July 2022

NASA (2014)

ChlorWinterMean.nc Average chlorophyll-a concentration during winter
(December to May), collected from July 2002 till
July 2022

NASA (2014)
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Table A1. Continued.

Feature Explanation Data source

DERIVATIVE _GL _ELEVATION _M _ASL
_ETOPO2v2.5.nc

Slope from ETOPO2v2.5 data

GL _HEATFLUX _MWM2 _Becker.5m.nc Oceanic heat flux data (exchange of heat energy
between the ocean surface and the atmosphere) in
megawatts per square metre (MW m−2)

Becker et al. (2014)

GL _LAND _IS _1.0 _ETOPO2v2.5m.nc Land mask data National Geophysical
Data Center (2006)

POROSITY _global _prediction.grd Global prediction map for porosity of surface
sediments using a random forest method

Martin et al. (2015)

SF _ACTIVE _SEAMOUNTS
_KIM.r10km.wct.5m.grd

Volcanically active seamount location data at
10 km resolution

Kim and Wessel (2011)

SF _AVG _SEA _DENSITY _KGM3 _DECADAL
_MEAN _woa13x.5m.grd (raw, r50 km)

Sea density (kg m−3), averaged Boyer et al. (2013)

SF _COASTLINE _IS _1.0.5m.nc Coastline data from Global Land One-kilometer
Base Elevation (GLOBE)

National Geophysical
Data Center (2006)

SF _CURRENT _EAST _MS _2012 _12
_HYCOMx.5m.grd;SF _CURRENT _NORTH _MS
_2012 _12 _HYCOMx.5m.grd;SF _CURRENT _MAG
_MS _2012 _12 _HYCOMx.5m.grd (raw, r50 km)

Ocean bottom current data for the east–west
component, north–south component, and total
magnitude using the HYCOM model (m s−1). The
data are provided at 1/12° resolution. The dataset
has a time range from 1 August 1995 to 31
December 2012, temporally averaged.

The
HYCOM+NCODA
Ocean Reanalysis
(2014)

SF _GRAINSIZE _D16 _MM _NGDC.5m.nc;SF
_GRAINSIZE _D50 _MM _NGDC.5m.nc;SF
_GRAINSIZE _D84 _MM _NGDC.5m.nc

Grain-size data with the 16th percentile (D16),
median (D50), and 84th percentile (D84)

National Geophysical
Data Center (1976)

SF _SEA _BULKMODULUS _MPA _DECADAL
_MEAN _woa13x.5m.nc

Sea bulk modulus (MPa) averaged over 6 decades
from the years 1955 to 2012. The sea bulk modulus
is an important thermodynamic property and is a
measure of resistance to the compressibility of a
fluid. It is calculated from the International
Equation of State of Seawater of Joint Panel on
Oceanographic Tables and Standards (1991).

Boyer et al. (2013)

SF _SEA _CONDUCTIVITY _SM _DECADAL
_MEAN _woa13v2x.5m.grd (raw, r50 km)

Average conductivity of seawater (dissolved ions)
at the sea surface over 6 decades from the years
1955 to 2012. The units are Siemens per metre
(S m−1).

Boyer et al. (2013)

SF _SEA _OXYGEN _MLL _DECADAL _MEAN
_woa13v2x.5m.grd (raw, r50 km)

Average dissolved oxygen concentration in
seawater in millilitres per litre over a decadal mean

Boyer et al. (2013)

SF _SEA _OXYGEN _PCTSAT _DECADAL
_MEAN _woa13v2x.5m.grd (raw, r50 km)

Oxygen concentration in seawater percentage
saturation averaged over 6 decades from the years
1955 to 2012

Boyer et al. (2013)

SF _SEA _PRESSURE _MPA _DECADAL _MEAN
_woa13x.5m.nc

Seawater pressure (MPa) averaged over 6 decades
from the years 1955 to 2012

Boyer et al. (2013)

SF _SEA _SALINITY _PSU _DECADAL _MEAN
_woa13v2x.5m.nc

Seawater salinity in practical salinity units
averaged over 6 decades from the years 1955 to
2012

Boyer et al. (2013)
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Table A1. Continued.

Feature Explanation Data source

SF _SEA _SEA _OXYGEN _UTILIZATION
_MOLM3 _DECADAL _MEAN
_woa13v2x.5m.grd (raw, r50 km)

Oxygen concentration in seawater utilization (mol m−3)
averaged over 6 decades from the years 1955 to 2012

Boyer et al.
(2013)

SF _SEA _TEMPERATURE _C _DECADAL
_MEAN _woa13v2x.5m.grd (raw, r50 km)

Seawater temperature in degrees Celsius averaged over 6
decades from the years 1955 to 2012

Boyer et al.
(2013)

SL _GEOID _M _ABOVE _WGS84 _NGA
_egm2008.5m.grd

Height of the geoid above the WGS84 reference ellipsoid (m)
and referenced to the National Geospatial-Intelligence Agency
(NGA)

Pavlis et al.
(2008)

SS _BIOMASS _BACTERIA _LOG10
_MGCM2 _WEI2010x.5m.grd (raw, r50 km);
SS _BIOMASS _FISH _LOG10 _MGCM2
_WEI2010x.5m.grd (raw, r50 km); SS
_BIOMASS _INVERTEBRATE _LOG10
_MGCM2 _WEI2010x.5m.grd (raw, r50 km);
SS _BIOMASS _MACROFAUNA _LOG10
_MGCM2 _WEI2010x.5m.grd (raw, r50 km);
SS _BIOMASS _MEGAFAUNA _LOG10
_MGCM2 _WEI2010x.5m.grd (raw, r50 km);
SS _BIOMASS _MEIOFAUNA _LOG10
_MGCM2 _WEI2010x.5m.grd (raw, r50 km);
SS _BIOMASS _TOTAL _LOG10 _MGCM2
_WEI2010x.5m.grd (raw, r50 km)

Distribution of mean biomass predictions for (a) bacteria, (b)
fish, (c) invertebrates, (d) macrofauna, (e) megafauna, and (f)
meiofauna. The mean biomass was computed using a random
forest algorithm. The total biomass was combined from
predictions of bacteria, meiofauna, macrofauna, and
megafauna biomasses. Predictions were smoothed by inverse
distance weighting interpolation to 0.1° resolution and
displayed on a logarithm scale (base 10), which was then
converted into 5 arcmin grids by Lee et al. (2019).

Wei et al.
(2010)

SS _CHLOROPHYLL _LOG _MG _M3
_MODIS _Aqua _MISSION _MEANx.5m.grd
(raw, r50 km); SS _PIC _LOG _MOL _M3-1
_MODIS _Aqua _MISSION _MEANx.5m.grd
(raw, r50 km); SS _POC _LOG _MOL _M3-1
_MODIS _Aqua _MISSION _MEANx.5m.grd
(raw, r50 km)

The Moderate Resolution Imaging Spectroradiometer
(MODIS) is a 36-band spectroradiometer measuring visible
and infrared radiation and obtaining data that are used to derive
the near-surface concentration of chlorophyll a (chlor_a)
(mg m−3). This is calculated using an empirical relationship
derived from in situ measurements of chlor_a, concentrations
of particulate organic carbon (POC) and particulate inorganic
carbon (PIC) (i.e. calcium carbonate or calcite), and blue- to
green-band ratios of in situ remote sensing reflectances (Rrs).

NASA
(2014)

SS _CORIOLIS.5m.nc Coriolis data, generated using empirical means Lee et al.
(2020)

SS _DENSITY _KGM-3 _SACD _Aquarius
_MISSION _MEANx.5m.grd

The Aquarius/SAC-D satellite mission, launched on 10 June
2011, was a joint venture between NASA and the Argentinian
Space Agency (CONAE). The mission featured the sea surface
salinity sensor Aquarius and was the first mission with the
primary goal of measuring sea surface salinity (SSS) from
space. The monthly maps of sea surface density are derived
from Aquarius sea surface salinity and ancillary sea surface
temperature. The time period used to average is between 25
August 2011 and 7 June 2015.

NASA
(2011)

SS _GEOID _ANOMALY _NGA
_egm2008.5m.nc (raw, r50 km)

The regional Free-air and Bouguer gravity anomaly grids
(averaged over 2.5 arcmin by 2.5 arcmin) are computed at BGI
(Bureau Gravimetrique International) from the EGM2008
spherical harmonic coefficients.

Pavlis et al.
(2008)

SS _MIXED _LAYER _DEPTH _MAX _M
_Goyetx.5m.grd (raw, r50 km); SS _MIXED
_LAYER _DEPTH _MIN _M _Goyetx.5m.grd
(raw, r50 km)

This shows the geographical distribution of the maximum and
minimum depths (m) of the mixed layer. The observations are
in the time span between March 1995 and February 1996.

Goyet et al.
(2000)
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Table A1. Continued.

Feature Explanation Data source

SS _PHOTO _AVAIL _RAD _EINSTEIN _M-2 _DAY
_SNPP _VIIRS _MISSION _MEANx.5m.grd (raw,
r50 km); SS _PHYTO _ABSORPTION _443NM _M-1
_SNPP _VIIRS _MISSION _MEANx.5m.grd

Daily average photosynthetically available radiation
(PAR) at the ocean surface (Einstein m−2 d−1). The
Visible Infrared Imaging Radiometer Suite (VIIRS) on
the Suomi National Polar-orbiting Partnership (SNPP)
was developed for global ocean colour products. PAR
is defined as the quantum energy flux from the Sun in
the 400–700 nm range. For ocean colour applications,
PAR is a common input used in modelling marine
primary productivity. An average of the sensors and the
443 nm wavelength maps is used as a feature.

NASA (2014)

SS _WAVE _DIRECTION _DEG _2012 _12
_WAVEWATCH3x.5m.grd (raw, r50 km); SS _WAVE
_HEIGHT _M _2012 _12 _WAVEWATCH3x.5m.grd
(raw, r50 km); SS _WAVE _PERIOD _S _2012 _12
_WAVEWATCH3x.5m.grd (raw, r50 km)

Mean wave direction (°), wave height (m), and wave
period (s). The data are provided at 1/12° resolution.
The dataset is averaged over the time range from 1
August 1995 to 31 December 2012. The features are
based on the third-generation wave model
WAVEWATCH III®.

The HY-
COM+NCODA
Ocean
Reanalysis
(2014)

SS _WINDSPEED _MS-1 _SACD _Aquarius
_MISSION _MEANx.5m.grd (raw, r50 km)

Mean wind speed (m s−1) from the Aquarius/SAC-D
satellite mission. The time period used for averaging is
between 25 August 2011 and 7 June 2015.

NASA (2011)

TOU _Jorgenson2022.nc Global map of the total oxygen uptake (TOU) of the
seabed

Jørgensen et al.
(2022)

litho_maps_type1_.nc Lithology map: mudflats binary map (median grain
size < 0.05 mm)

Garlan et al.
(2018)

litho_maps_type2_.nc Lithology map: fine-sand binary map (median grain
size 0.05–0.5 mm)

Garlan et al.
(2018)

litho_maps_type3_.nc Lithology map: sand binary map (median grain size
0.5–2 mm)

Garlan et al.
(2018)

litho_maps_type4_.nc Lithology map: clay binary map (median grain size
< 0.01 mm)

Garlan et al.
(2018)

litho_maps_type5_.nc Lithology map: gravel and stone binary map (median
grain size > 2 mm)

Garlan et al.
(2018)

litho_maps_type6_.nc Lithology map: bedrock binary map Garlan et al.
(2018)

lithology _grain _size _global _8.nc Global seabed sediment map with 24 different classes
or types of sediments based on a logarithmic
progression of the median grain size

Garlan et al.
(2018)

Appendix B: Information gain

In this paper, KL divergence, also known as information gain
or relative entropy, has been used to quantify model uncer-
tainty. As Rényi (1961) pointed out, in the absence of ob-
servational information, the amount of information can be
taken to be numerically equal to the amount of uncertainty
concerning the model prediction. The mathematical deriva-
tion of KL divergence against the theoretical background of

information theory (Shannon, 1948) is presented below. The
information entropy of a random variable X with a probabil-
ity distribution P is represented as

H(P )=−
∑
i

P(xi) logP(xi). (B1)

The Shannon (1948) definition of entropy determines the
minimum channel capacity required to reliably transmit the
information as encoded binary digits. Usually, the true distri-
bution P(X) denotes observed data, measurements, or an ex-
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Figure B1. Top left: difference in the prediction of the TOC concentration between φ(x,W,b) and φwh+low_ig(x,W,b)2. Top right: differ-
ence in the prediction of the TOC concentration between φ(x,W,b) and φwh+high_ig(x,W,b)2. Brighter colours (shades of yellow) show
higher differences, and darker colours (shades of blue) show lower differences. Bottom left (red box): zoomed-in version of the equatorial
Pacific region in panels (a) and (c). Bottom right (green box): zoomed-in versions of the Caspian and Black seas in panels (b) and (d).

act probability distribution. Here, P(X) is constructed using
a normal distribution with a mean value equal to Monte Carlo
dropout prediction and a standard deviation of 0.05 TOC %,
which arises from both technical handling and the precision
of the weighting tool (Pape et al., 2020). The predicted dis-
tributionQ(X) is derived from the Monte Carlo dropout pre-
diction ensemble. The measure Q(X) typically represents a
theoretical framework, a model, a description, or an approxi-
mation of P(X). The cross-entropy between P(X) andQ(X)
measures the average number of binary digits to represent an
event from P(X) by Q(X). It is represented as

H(P,Q)=−
∑
i

P(xi) logQ(xi). (B2)

The information gain that measures the difference between
the cross-entropy (Eq. B2) and the entropy (Eq. B1) is repre-
sented as DKL(P ‖Q).

DKL(P ‖Q)=H(P,Q)−H(P )

=

∑
i

P(xi) log
(
P(xi)

Q(xi)

)
(B3)

DKL(P ‖Q) is always non-negative and remains well-
defined for continuous distributions. To obtain the contin-
uous distribution for the predicted distribution Q(X), the

prediction ensemble is binned into histograms to obtain an
approximate probability density function (PDF). This PDF
is then modelled using curve-fitting techniques typically fit-
ted to a Gaussian distribution (Algorithm G2). DKL(P ‖Q)

is calculated globally for each prediction and plotted on the
information gain map.

In supervised machine learning, a model’s predictive per-
formance is usually determined by withholding a test dataset
during the training phase and comparing the final model out-
puts to these known values. Such a procedure is not possi-
ble when evaluating the performance of information gain:
firstly, the concept of a ground truth for the information gain
values does not exist. Secondly, we aim to measure the ef-
fect that data point selection guided by information gain has
on the model output, not the information gain itself. Thus,
in order to explore the effect that information gain has on
data sampling and model refinement, we devised the follow-
ing experiment: a DNN model with the same parameters as
the original one was trained while withholding one-third of
the original training dataset: φwh(x,W,b). Afterwards, this
model was used to calculate the information gain for each
point in the withheld data. These additional data points were
sorted according to their information gain values and divided
into two subsets of equal size. Each of these subsets was
used along with the initial two-thirds to train two new DNN
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Table B1. Performance metrics of models trained on different subsets of data based on information gain for different splits of data (seeds):
Pearson CC, R2, and MSE for predicted values vs. observed labels for the training and testing data. The train : test data ratio is 85 : 15. The
better-performing dataset, based on the metric, is highlighted in bold. It shows that the performance on the test dataset, or the generalisation
is mostly higher when using the dataset with higher information gain.

DNN model with different training datasets Training data Testing data (15 % of all of the data)

Pearson CC R2 MSE Pearson CC R2 MSE

φwh+low_ig(x,W,b)1 0.918 0.840 0.535 0.814 0.641 0.692
φwh+high_ig(x,W,b)1 0.918 0.833 0.586 0.825 0.679 0.640

φwh+low_ig(x,W,b)2 0.927 0.856 0.405 0.887 0.784 0.525
φwh+high_ig(x,W,b)2 0.924 0.843 0.470 0.877 0.761 0.593

φwh+low_ig(x,W,b)3 0.935 0.864 0.410 0.819 0.668 0.575
φwh+high_ig(x,W,b)3 0.932 0.853 0.428 0.855 0.728 0.475

models: one with added high information gain data points
(φwh+high_ig(x,W,b)) and one with added low information
gain data points (φwh+low_ig(x,W,b)). To validate the en-
tirety of the training data, the process was repeated two more
times, withholding a different third of the dataset each time.

In two of the three executions, the (test) perfor-
mance of φwh+high_ig(x,W,b) was superior to that of
φwh+low_ig(x,W,b) (Table B1). While the difference in per-
formance from the different data subsets might be small
in magnitude, the selection of high information gain points
also has a positive effect on the structure of the global
inference patterns: in Fig. B1 we took the prediction
maps for both models of the worst-performing data subset,
φwh+high_ig(x,W,b)2 and φwh+low_ig(x,W,b)2, and calcu-
lated the absolute difference between them and the inference
map of the original model φ(x,W,b) in Fig. 3. Regardless
of the performance metrics, the high information gain model
resembles the output of the original model more closely than
the low information gain model.

Appendix C: Comparison of the methods

One of the drawbacks of using DNN is the number of hy-
perparameters that needs to be tuned. The number of layers
and the nodes in each layer were decided using a trial-and-
error method starting with the simplest configuration of three
layers of eight neurons. The model complexity was increased
till the validation and training performance were comparable,
thus avoiding overfitting while still getting relatively good
performance in the test dataset. The initial learning rate was
chosen based on the model convergence. The DNN model
had 10 layers of 128 nodes each with a learning rate of 0.01.
The batch size, decided based on the amount of data, was
set to 500 and was also chosen based on model convergence.
On the other hand, the parameters that were tuned in the ran-
dom forest algorithm and kNNs were the number of trees in
the forest (controlled by the number of estimators in sklearn)
and the number of neighbours, respectively. They are tuned

using the performance metrics for 1–50 neighbours for kNN.
The number of estimators is 10, 20, 30, . . ., 100 for random
forests.

Though it is difficult to tune the DNN model, Table 1 high-
lights superior performance in the training dataset for kNNs
and random forests, while their test performance or general-
ization capability lags behind that of DNNs. Figures C1 and
C2 show artifacts of the global predictions from kNNs and
random forests, particularly in the equatorial Pacific and At-
lantic oceans.
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Figure C1. Global prediction map of TOC concentrations using a k-nearest neighbour algorithm, with the five nearest neighbours in the
continental shelves and the four nearest neighbours in the deep sea. Spurious patches are observed in the equatorial Pacific Ocean and in the
Atlantic Ocean.

Figure C2. Global prediction map of TOC concentrations using a random forest algorithm with 100 estimators. Spurious patches are observed
in the Atlantic Ocean and the Bay of Bengal.

Appendix D: TOC stock in different marine regions

Table 2 breaks down how much TOC stock is found in dif-
ferent parts of the ocean. Each region is listed, showing how
much TOC is there. Here we show a visualization of the dif-
ferent regions in Fig. D1.

In Fig. D2, we use a waffle chart to make it easier to see
how the TOC is split among these regions. It is like dividing a
pie into slices, but here we use squares. With a total of about
156 Pg of TOC worldwide, the South Pacific Ocean gets the
biggest share, while the Baltic Sea gets the smallest.
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Figure D1. TOC stocks in different oceans.

Figure D2. TOC stocks in different oceans: waffle chart.

Appendix E: DNN model run without separation of
deep-sea and shelf environments

Here, we test a DNN model where the global ocean was not
separated into shelf and deep-ocean regions but treated as
one entity. The resulting TOC map shows spurious features
in the Pacific Ocean, similar to those that occur in the map
published by Lee et al. (2019). These results underscore the
importance of separating shelf and deep-ocean regions in or-
der to achieve more accurate and realistic model outcomes.
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Figure E1. TOC concentration map when the DNN model was not separated into shelf and deep-ocean regions. We see unrealistic TOC
concentrations, especially in the Pacific Ocean.

Appendix F: Model interpretability using SHAP values

Explaining and understanding why a model makes a cer-
tain prediction is as crucial as accuracy and uncertainty in
the predictions. This becomes particularly challenging in
high-dimensional spaces, where interpreting complex mod-
els can be more intricate compared to simpler yet less ac-
curate models. Lundberg and Lee (2017) proposed SHAP
as a unified framework for interpreting predictions. SHAP
assigns importance values to each feature for a particular
prediction, providing a comprehensive understanding of the
model’s decision-making process. In our supervised learn-
ing model f trained on features X ∈ X ⊆ Rd to predict out-
comes Y ∈ Y ⊆ R, SHAP, a feature attribution method, con-
siders the model predictions to be decomposed as a sum
f (x)= φ0+

∑d
j=1φ(j,x), where φ0 is the baseline expec-

tation (i.e. φ0 = E[f (x)]) and φ(j,x) denotes the Shapley
value of feature j at point x.

In our analysis, we aim to simplify the interpretation pro-
cess by presenting the average importance of features across
all of the predictions, from the deep sea to the continental
shelves. All of the effects describe the behaviour of the model
and are not necessarily causal in the real world.

The summary plot in Figs. F1 and F2 combines the feature
importance with feature effects. The summary plot displays
Shapley values representing the impact of features on pre-
dictions. Each point represents a Shapley value for a feature
and an instance. The y axis position indicates the feature,
while the x axis position corresponds to the Shapley value.
Feature values are represented by colours ranging from low
(blue) to high (red). To visualize feature importance, points
are spread along the y axis to reveal the distribution of Shap-
ley values per feature. The features are ordered based on their
importance, determined by the mean absolute Shapley values
across all of the predictions. The Shapley value is expressed
in the same units as the TOC concentration. This indicates
the extent to which a specific feature value influences the
TOC concentration and whether it drives it towards higher
or lower values.
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Figure F1. Summary plot of Shapley values of the deep-sea DNN model. The global porosity grid (Martin et al., 2015) has the highest
feature importance. Regions with high porosity lead to higher TOC concentrations and vice versa. In the mechanistic model of Bradley and
Arndt (2022), porosity is positively correlated with the organic carbon flux through a specific depth. The biological features that include
total biomass, meiofauna, fish biomass in the sea surface (Wei et al., 2010), oxygen concentration in bottom waters (Boyer et al., 2013), and
daily average PAR (NASA, 2014) show that higher biomass or marine productivity leads to higher TOC concentrations, as expected. On
the other hand, higher oxygen saturation leads to oxic conditions, resulting in the oxidation of the organic carbon and hence a lower TOC
concentration. The other features which dominate are the physical oceanographic features, where higher feature values result in lower TOC
concentrations, such as tidal features (Q1 loading) (Hart-Davis et al., 2021), sea bulk modulus (Boyer et al., 2013), and seafloor pressure
(Boyer et al., 2013).
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Figure F2. Summary plot of Shapley values of the continental shelf DNN model. The total oxygen uptake (Jørgensen et al., 2022) of the
seabed has the highest feature importance, with regions of higher oxygen uptake resulting in lower TOC concentrations and denoting oxic
conditions. Regions with higher porosity (Martin et al., 2015) result in higher TOC concentrations, while regions with lower porosity result
in lower TOC concentrations but with less impact. The lithology map is a binary map. Regions with fine sand, with grain sizes between
0.05 and 0.5 mm (1 mm being the higher feature value), have low TOC concentrations. Higher sediment thicknesses in Earth’s crust lead to
lower TOC concentrations because of dilution (Berner, 1982). The bottom current components, north–south and east–west, result in reduced
TOC concentrations due to higher resuspension of sediments, the inhibition of sedimentation, and burial of organic carbon. Higher average
seawater conductivity results in lower TOC concentrations. Higher particulate organic carbon (POC) in the water column has a positive
impact on the TOC concentrations, as expected. It can be seen that the feature importance is not as clearly defined as in the deep ocean (as
the high (red) and low (blue) feature values are mixed) because of the complex dynamics on continental shelves.
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Appendix G: Algorithms

Algorithm G1 DNN training with batch normalization and
dropout, including Monte Carlo dropout for inference.

Require: Labelled dataset D = {(x1,y1), (x2,y2), . . ., (xN ,yN )}
xi : feature vector for the ith label
yi : corresponding TOC %

Input: feature vector xj
Output: predicted TOC % predicted% for xj

1: Method: construct a neural network with 10 layers and 128
nodes per layer: φ(x,W,b)

2: Apply batch normalization and dropout to each layer.
3: Initialize optimizer (e.g. Adam) with appropriate learning rate

and parameters.
4: Initialize loss function (e.g. mean squared error) for regression.

5: Train the neural network with D for 1000 epochs:
6: for epoch= 1 to num_epochs do
7: Randomly shuffle the training dataset..
8: for (xi ,yi) in D do
9: Forward pass: compute predictions ŷi = φ(xi ,W,b).

10: Compute target loss: losstarget =MSE(yi , ŷi).
11: Back-propagation: update weights and biases using opti-

mizer, with losstarget as the cost function.
12: end for
13: end for
14: Set dropout to active during inference
15: Perform Monte Carlo dropout for M forward runs:
16: ŷensemble

j
= φ(xj ,W,b,dropout_maskT )

17: Predicted TOC %, ŷj for xj =
1
M

∑M
m=1ŷ

ensemble
j

Algorithm G2 Calculating information gain for the predic-
tions.

Require: Monte Carlo dropout prediction ensemble, ŷensemble, for
each grid cell

1: for each grid cell do
2: Fit a Gaussian probability density function Qj (y) for

ŷensemble
j

using histograms and curve fitting algorithm.
3: Generate original distribution Pj (y) with mean ŷj and stan-

dard deviation 0.05 (sampling error).
4: Calculate Kullback–Leibler divergence:

DKL(Pj‖Qj )=
∑
iPj (yi) log

(
Pj (yi )

Qj (yi )

)
5: end for
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