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Abstract. During the past decades, wildfires have undergone
rapid changes while both the extent of fire activities and the
resulting greenhouse gas (GHG) emissions from wildfires
in China have remained inadequately quantified. We estab-
lished a wildfire emission model to generate the China Wild-
fire Emission Dataset (ChinaWED), which can be used to
explore the recent dynamics at a national scale. This dataset
is constructed at a monthly and kilometer scale under a
consistent and quantifiable calculation framework, provid-
ing average annual estimates of wildfire-induced GHG emis-
sions of 78.13± 22.46 Tg CO2, 279.47± 82.01 Gg CH4, and
6.26± 1.67 Gg N2O (Tg denotes teragrams and Gg giga-
grams) for the past decade. We observed significant de-
creases in both wildfire occurrences and emissions within
forests and grasslands. This trend, however, is counteracted
by variations in agricultural fires, which constitute the pri-
mary type of fire, accounting for at least half of the na-
tional total fire emissions. The seasonal cycle of wildfire
GHG emissions shows an evident apex that occurs during
the transition from mid-spring to early summer. At the re-
gional scale, northeast China, southwest China, and east
China emerge as hotspots of wildfire-induced emissions. Our
study offers new insights into China’s wildfire dynamics and
provides a detailed regional model for wildfire greenhouse
gas emissions over China.

1 Introduction

Wildfires exert a substantial impact on landscape vegetation
and influence the biogeochemical cycle through the emis-
sions of greenhouse gases (GHGs) (Bauters et al., 2021;
Guo et al., 2024; Rodríguez Vásquez et al., 2021). Approxi-
mately 2.1× 1015 g (2.1 Pg; Pg denotes petagrams) of carbon
was emitted globally through biomass burning, representing
about 22 % of all fossil fuel emissions, in 2021 (Friedling-
stein et al., 2022; van Wees et al., 2022; van der Werf et
al., 2017). Biomass burning constitutes a crucial compo-
nent of the global and regional GHG budget (carbon dioxide
(CO2), methane (CH4), and nitrous oxide (N2O)), which is
of particular concern given that 120 countries have pledged
to achieve net-zero GHG emissions. China, in particular,
have announced and initiated long-term climate plans, aim-
ing for carbon peaking by 2030 and carbon neutrality by
2060 (Liu et al., 2022). Additionally, over the past decade
in China, climate-driven fire weather, expanding vegetation-
based fuel loadings, and anthropogenic activities have led to
rapidly changing fire dynamics (Wang et al., 2023a; Wied-
inmyer et al., 2023; Ying et al., 2018). To address the chal-
lenge and achieve the climate goals, one key step is to estab-
lish a national-scale dataset that reflects recent wildfire emis-
sion dynamics and contributes to the domestic GHG budget
(Friedlingstein et al., 2022).
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Currently, there are different studies working on estimates
of China wildfire emissions that include contributions from
some global products. One of the most widely used ap-
proaches take the product of emission factors, fuel load-
ings, burned area, and combustion efficiency as the esti-
mate of emissions. It should be noted that limitations stem
from various aspects during the calculation steps. For ex-
ample, these studies may use the universal parameters (e.g.,
land cover types, emission factors) that do not match char-
acteristics of local fuels and further estimates (van Wees et
al., 2022; Wiedinmyer et al., 2023). Uncertainty also arises
from estimates of burned area due to remote-sensing-based
fire datasets with different emphases (e.g., active-fire prod-
ucts and burned-area products) (Chen et al., 2020; Giglio
et al., 2018; Schroeder et al., 2014). Some other research
has focused on agricultural fire emissions adopted tradi-
tional crop-yield-based approaches (CYBAs), primarily rely-
ing on provincial statistical data and field-reported measure-
ments such as crop production and estimates of burned crop
residues (Hong et al., 2023; Li et al., 2016). These parts are
hard to verify and can only be measured within administra-
tive boundaries. In addition, the estimates from CYBAs typ-
ically have relatively long updating cycles, often on a yearly
scale. These approaches form the fundamental framework of
emission estimates, yet various input parameters have been
incorporated and the emissions of GHGs may not be consis-
tent even within products.

Here, we present the China Wildfire Emission Dataset
(ChinaWED v1) for the period from 2012 to 2022 at a
monthly and kilometer scale. We focused on the limitations
existing in current studies and products and refined the esti-
mates of calculation components. Emission factors that are
specifically suited for evaluating wildfire emissions in China
retrieved from previous studies conducted domestically and
in neighboring countries were collected. Previous studies
have reported a majority of wildfire occurrences in crop-
lands, highlighting the need for improved burned-area esti-
mates that incorporate small-sized fire activities (Ying et al.,
2021; Zhang et al., 2015). The newly developed product is
easy to update with only 1-month to 2-month lags and pro-
vides consistent results for all three GHGs under the same
calculation framework. With the support of this ChinaWED
product, we can also capture and explore the magnitude, pat-
terns, trends, and drivers of the wildfire occurrences and the
wildfire-induced emissions in China within the past decade.

2 Methods

2.1 Emission estimation

In this study, we adopted the wildfire emission estimation
method based on the combination of four components –
burned area, fuel load, emission factor, and combustion com-
pleteness – calculated by the following equation:

Ei,x,t =

n∑
j

BAt,x ×FLx ×EFi,j ×CCx,j , (1)

where the subscript i represents specific emission types, j

represents different vegetated cover types, and x and t stand
for spatial and temporal information; hence Ei,x,t is the esti-
mated amount of emission type i in location x and month t ,
BAt,x is the total aggregated burned area derived from mul-
tisource satellite-based products in location x and month t ,
FLx is fuel load in location x, EFi,j is the emission factor
of specific emission type i for vegetated cover type j , and
CCx,j is defined as combustion completeness in location x

for vegetated cover type j .

2.2 Burned-area calculation

Satellite-based thermal anomalies include burned-area and
active-fire products, equipping researchers with the capabil-
ity to observe these distinctive signatures across extensive
spatial and temporal ranges. Burned areas are determined by
analyzing the disparities in visible and near-infrared channels
between pre- and post-fire satellite images. One of the most
common limitations in burned-area products is the exclusion
of small-sized or smoldering fires. In contrast, active-fire de-
tection is capable of sensing these fires, benefitting from the
use of the thermal-sensitive mid-infrared channel. Here we
use the MODIS Burned Area product and FIRMS VIIRS S-
NPP Active Fire records as the main input datasets (Giglio et
al., 2018; Schroeder et al., 2014).

MCD64A1 provides burned-area classification at 500 m
spatial resolution and monthly temporal resolution. VIIRS
S-NPP provides daily active-fire detection at 375 m spatial
resolution. Given active-fire detection’s capability to iden-
tify fires occupying 5 % or less of a pixel, the S-NPP Active
Fire records can provide more detailed information, partic-
ularly in regions like China where much crop residue burn-
ing occurs. Current models and studies count the active-fire
points located outside the existing burned area directly as
supplementary sources for fire activities. To avoid potential
excessive measurement, a reanalysis system combining both
burned area and active fire was designed and is demonstrated
in Fig. S1 in the Supplement. We reconstructed the external
burned area derived from circular kernels centered on those
active-fire records. The aggregated burned area is calculated
as below:

BAt,x = BAmain(t,x)+

n∑
m

AFsf(t,x,m), (2)

where the left part of the equation is the same as in Eq. (1),
BAmain(t,x) represents the burned-area cells in location x

and month t , and the sum of AFsf(t,x,m) represents potential
burned area determined through the counting of decomposed
small pixels from circular kernels centered on those active-
fire records (Figs. S1 and S2).
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Additionally, we incorporated an independent inventory
of fixed-location heat sources. This inventory features con-
tinuously operating heat-source objects and spatiotemporal-
aggregation characteristics in thermal anomalies. It encom-
passes heat-source objects including active volcanos and
industrial heat sources (e.g., coal-related plants, nonmetal
mineral production, ferrous-metal-related plants) (Liu et al.,
2018). We utilized this inventory as a filter to exclude false
active-fire detection pixels that are not caused by wildfires.
Finally, the processed burned-area results were resampled to
a 1 km spatial resolution to match the fuel load and land cover
mapping. In general, nearly three-quarters (76.2 %) of the to-
tal burned area is derived directly from the MCD64 Burned
Area product, while 24.5 % is supplemented by information
from VIIRS S-NPP 375 m Active Fire records. Through the
incorporation of an independent fixed-heat-source dataset,
we were able to filter out 0.7 % of the burned area.

2.3 Calculation of other components

Prior studies integrated upscaled systematic field investiga-
tions and regional or national censuses to map fuel load. Re-
cent results have shown that aboveground biomass (AGB)
can serve as a proxy observation, enabling indirect estima-
tions of dry matter. Remotely sensed biomass carbon den-
sity maps aimed at limited vegetation types have been widely
used. Here we used the newly developed dataset with 300 m
spatial resolution from Spawn et al. (2020), which incorpo-
rates a previously presented multisource biomass map and
harmonizes AGB from different vegetation types (Noon et
al., 2022; Spawn et al., 2020).

We used the land cover product from the ESA Climate
Change Initiative to describe the different vegetation types
(Li et al., 2018). This product has identical spatial reso-
lution to that of the harmonized AGB dataset. We further
aggregated the initial 37 classes into three major vegetated
categories, namely forest, herbaceous, and cropland. To re-
fine the estimation of crop residue burning, several indepen-
dent datasets of high-resolution crop-type mapping were uti-
lized as well. These datasets contain spatial distributions of
double-season paddy rice (Pan et al., 2021), single-season
rice (Shen et al., 2023), maize (Shen et al., 2022), winter
wheat (Dong et al., 2020a), and sugarcane (Zheng et al.,
2022) with 10 or 20 m spatial resolution.

It should be noted that the resolutions of all these datasets
mentioned were downscaled to 1 km. AGB was calculated by
summing all pixels, land cover was determined based on the
mode value of vegetated categories, and detailed crop types
were identified by counting classified pixels. AGB provided
consistent and seamless estimations of biomass carbon den-
sity globally for the fixed year of 2010. Land cover data were
computed from 2001 to 2020, while crop-type mapping was
primarily calculated between 2017 and 2020. We utilize an-
nual land cover data associated with the burned area for the
corresponding year (mapping the burned area in 2020 for

the period from 2020 to 2022). For distinct crop types, we
specifically employ the results obtained during their respec-
tive growing seasons, coupled with the monthly burned-area
data. The averaged multiyear crop-type mapping was harmo-
nized into land cover data where agricultural land use pixels
were present.

Different previous studies applied constant thresholds,
which is considered a major bias in emission estimation
(Zhang et al., 2008). We adopted a method based on the com-
bination of land cover types and fraction of burned area (FB)
assigned as a function of tree cover (Wiedinmyer et al., 2023;
Wu et al., 2018; Zhang et al., 2011). Agricultural land use
was set to a fixed combustion completeness value of 0.93.
The herbaceous category had similarly high CC values de-
fined by the fraction of tree coverage, while forests had much
lower CC values. Detailed values are listed in Table S1.

Emission factors for different vegetation and emission
types are summarized in Table S2. As well as the studies
that introduce global fire emissions, we selected publications
that focused on affected burned areas in China and neighbor-
ing countries. Obtaining detailed emission factors of differ-
ent crop types was one of our primary objectives, and they
were used in this study to help improve our burned-area-
based emission estimation. Forests were divided into trop-
ical, temperate, and boreal types, identified by the updated
digital Köppen–Geiger world map of climatic classification
(Beck et al., 2018).

3 Results

3.1 Characteristics of China wildfires and emissions

ChinaWED was calculated based on a burned-area-based ap-
proach. We integrated different remotely sensed datasets that
map regions affected by wildfires and detect active-fire spots
to reconstruct the burned area. From 2012 to 2022, the to-
tal burned area in China amounted to 5.31± 1.70 Mha yr−1

(megahectares per year) (Fig. 1). More than four-fifths of
the total burned area was located in croplands, equiva-
lent to the land area of Switzerland. Of the burned area,
11.0 % occurred in various types of forests, while less than
6 % of the burned area occurred in grasslands or other
herbaceous-dominated regions. Based on these burned-area
estimates and calculation of other components (emission
factors, fuel loads, etc.; see Methods), our results showed
that annual wildfire-induced GHG emissions in China
amounted to 78.13± 22.46 Tg CO2, 279.47± 82.01 Gg CH4,
and 6.26± 1.67 Gg N2O (Tg denotes teragrams and Gg giga-
grams; Fig. 1). Although the majority of all wildfire-induced
GHG emissions were still caused by cropland fires, the pro-
portions were quite different from those of burned areas.
A fifth of CO2 (21.1 %) and CH4 (19.9 %) emissions were
caused by forest fires, which was almost double the contri-
bution of this type measured in area. This comes from the
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differences in background fuel loads as measured in carbon
pools between forests and cropland, reported by research
on China’s terrestrial ecosystems (Tang et al., 2018). An
even more substantial proportion of national N2O emissions
came from forest fires, reaching 37.1 % of the total (Fig. 1).
Wildfire-induced N2O emissions are highly dependent on the
ratio of carbon to nitrogen in vegetation fuels, which was
higher in woody areas (Vernooij et al., 2021). In comparison
to wildfires on other land cover types, grassland fires played
a comparatively minor role in wildfire dynamics and emis-
sions.

During this period, the dataset recorded a declining trend
of −0.31± 0.15 Mha yr−2 (p < 0.1) (Fig. 1). All vegetation
wildfires decreased at different magnitudes, resulting in per-
vasive and slightly different declines in the three greenhouse
gases. Agricultural fires were gradually limited and demon-
strated a decline in burned area of −0.26± 0.14 Mha yr−2.
Affected by the variations in agricultural fires, our dataset
exhibited a statistically insignificant decline during the
study period, with rates of −2.41± 1.81 Tg CO2 yr−2,
−8.97± 6.96 Gg CH4 yr−2, and −0.15± 0.11 Gg N2O yr−2

during the study period. Compared with cropland, burned
area and all three types of wildfire-induced greenhouse
gases in forests and grasslands dropped significantly and
rapidly. The decline in forest fires contributed to nearly
a third (CO2 at −1.22± 0.36 Tg yr−2, p < 0.01, and CH4
at −3.93± 1.21 Gg yr−2, p < 0.05) and a half (N2O at
−0.15± 0.05 Gg yr−2, p < 0.05) of the total trends of emis-
sions (Fig. S3). The grassland contributed to a smaller de-
gree for all these GHGs (CO2 at −0.34± 0.08 Tg yr−2,
p < 0.01; CH4 at −0.51± 0.13 Gg yr−2, p < 0.01; and N2O
at −0.03± 0.01 Gg yr−2, p < 0.01) within the past decade.

The outcomes derived from diverse regions and land cover
types underscored the finding that those fires originating
within cropland significantly dominated the overarching dy-
namics of national wildfires and emissions. A spatiotempo-
ral association was assumed to exist between agricultural
activities, particularly those related to planting and harvest-
ing preparations, and the incidence of wildfires. Throughout
our study period, the majority of all three types of GHG
were concentrated in the first half of the year. More than
half of the annual CO2 emissions from wildfires were ob-
served from late winter to the middle of spring (February to
April), with nearly identical relative proportions of CH4 and
N2O. A secondary seasonal peak of wildfire-induced emis-
sions occurred in the harvest seasons in autumn (September
to November), accounting for nearly 20 % of the annual total
(Fig. 2a). We divided six specific wildfire-induced emissions
regions depending on their geographical location and envi-
ronmental characteristics (Fig. S4 and Table S3). The pat-
terns of double peaks in agricultural fire emissions in north-
east China had a significant impact on national emission lev-
els. During the major emission season, three-quarters of the
region’s total annual amount was emitted. It is important to
note that the temporal patterns are closely associated with

the local sowing and harvesting seasons (Fig. 2b) (Cheng et
al., 2022; Wang et al., 2020). Similarly in north China, the
major peak occurred in early summer (May and June), while
the secondary peak was in mid-autumn (September and Oc-
tober). Totals of 2.75 and 1.65 Tg of annual CO2 emissions
induced by agricultural fires were concentrated during these
respective time periods. East China displayed disparate sea-
sonal patterns, with the majority of agricultural fires occur-
ring during the summer, when the planting and harvesting
were carried out in double-season paddy rice fields in this
area (Fig. 2b) (Pan et al., 2021; Wu et al., 2023). Approx-
imately one-third of the annual regional emissions induced
by wildfires were concentrated in June. Consequently, this
correlation is validated through the examination of seasonal
cycles in wildfire occurrences, which constitute a prominent
temporal feature that drives the dynamics of national-scale
wildfire-induced emissions (Zhang et al., 2015).

3.2 Spatiotemporal patterns of wildfire and its GHG
emissions

To further explore the fire emission dynamics, we calcu-
lated the provincial and monthly burned areas and emis-
sions, which were then aggregated to obtain regional and sea-
sonal statistics. The results showed that the national wildfire-
induced emissions shared similar patterns for all three GHG
types in spite of their large disparities at both spatial and tem-
poral scales. More than four-fifths of the total of domestic
wildfire-induced GHG emissions (82.8 % for CO2, 83.2 %
for CH4, and 83.6 % for N2O) were located in three primary
peaks – in northeast, southwest, and east China, respectively
(Fig. 3) – which will be introduced in detail in the upcoming
sections.

Of all six regions, northeast China (Heilongjiang, Jilin,
Liaoning, and Inner Mongolia) was affected by the highest
wildfire emissions. Heilongjiang and Jilin were the top two
provinces not only within the region but also nationwide.
Many of the burned areas and emissions were located in vast
plains (Songnen, Liaohe, and Sanjiang plains) of northeast
China. The vegetation-sourced fire emissions from these two
provinces contributed to nearly 1/3 and 1/10 of the total do-
mestic emissions, respectively. Moreover, they exhibited a
mild increasing trend compared to the national pattern, reg-
istering non-significant trends of 0.14± 0.15 Mha yr−2 for
the burned area and 1.92± 1.92 Tg yr−2, 6.94± 7.34, and
0.11± 0.13 Gg yr−2 for CO2, CH4, and N2O, respectively
(Fig. 4). According to data from the National Bureau of
Statistics, the four provinces of northeast China have collec-
tively accounted for a quarter of the sown area and grain pro-
duction over the past decade. The extensive grain cultivation
areas, coupled with the widespread practice of burning crop
residues for land clearing, have significantly contributed to
the high levels of wildfire-induced emissions associated with
agricultural land use in northeast China. CO2 emissions from
crop residue burning accounted for 82.7 % of the regional
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Figure 1. The time series and trends of the China burned area and wildfire-induced emissions (CO2, CH4, N2O). The bottom pie charts show
the annual averages (standard deviation within the parentheses) and the proportions of different land cover types during the study period.
Note that significant trends are denoted by asterisks (∗ p < 0.1 and ∗∗ p < 0.05).

Figure 2. (a) Seasonal cycle of national and regional wildfire-induced CO2 emissions. Monthly emission patterns from various land cover
types: grassland (green), forest (dark green), and cropland (yellow). The data points connected by lines for different land cover types indicate
the peak emission month for each year. The heatmap illustrates emission intensity (unit: arbitrary scale), with redder colors denoting higher
emission levels. (b) Average monthly CO2 emissions across six regions of China: northeast China, north China, east China, northwest China,
south China, and southwest China. Each region is plotted on distinct y axes to highlight seasonal variations. Four sets of colors represent
the four seasons. Detailed regional divisions are introduced in Fig. S4 and their patterns in Fig. 3. Seasonal and interannual patterns for
wildfire-induced CH4 and N2O emissions are illustrated in Figs. S5 and S6.

total wildfire-induced emissions and 62.5 % of the domes-
tic emissions for this type of burning. The rising trends of
agricultural fires constitute the majority of regional wildfire
dynamics.

Fires have been controlled over an average of 0.27 Mha of
burned area per year through systematic fire and forest man-
agement in northeast China (Figs. 3 and 4). For comparison,
a single fire event, namely the 1987 Great Black Dragon Fire,
destroyed 1.33 Mha of forests and resulted in nearly 200 fa-
talities (Zhao et al., 2020; Zong et al., 2022). Boreal for-
est wildfires led to emissions of 5.28 Tg CO2, 19.44 Gg CH4,

and 0.94 Gg N2O, constituting 12.3 % of the total wildfire-
induced emissions of this region. This amount was also
equivalent for nearly 90 % of the boreal forest wildfire emis-
sions nationwide. Grassland fires in northeast China, specif-
ically in the Hulun Buir and Xilingol grasslands, attracted
national attention, accounting for a significant proportion of
the total burned area (67.2 %) and wildfire-induced emissions
(46.7 %).

Southwest China, covering five provincial administrative
areas (Yunnan, Sichuan, and Guizhou provinces; Chongqing;
and the Xizang Autonomous Region), was the second-
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Figure 3. Spatial distributions of the density and the trends of wildfire-induced emissions (CO2, CH4, and N2O). Panels (a), (c), and
(e) show the density patterns, and panels (b), (d), and (f) show the trends. Their colors correspond to those in Fig. 1. To achieve better visual
performance, the maps demonstrate the density patterns and trends in 1° grids, where hatched area indicate significant trends (p < 0.05).
Locations of the provinces and regions are described in Fig. S4. Publisher’s remark: please note that the above figure contains disputed
territories.

largest regional-scale emitter of fire-sourced greenhouse
gases (Fig. 3). This region stands out as the only area
where agricultural wildfires did not dominate; instead, tem-
perate forest fires emitted more than all the other vegeta-
tion fires in this region (Fig. 4) (Cui et al., 2022; Ying
et al., 2021). Yunnan Province, a pivotal player in shap-
ing the wildfire dynamics of this region, contributed sub-
stantially, with an annual burned area of 0.16 Mha, emit-
ting 7.57 Tg CO2, 23.13 Gg CH4, and 0.81 Gg N2O. These
figures accounted for over 60 % of the regional burned area
and wildfire-induced emissions. From the perspective of re-
cent trends, this province contributed to 82.4 % of the re-
gional decrease in burned area and an even larger share of
the reduction in wildfire-induced emissions. The border fires
showed some shared similarities in fire-spreading mecha-
nisms and environmental factors between this region and the
adjoining area of mainland Southeast Asia, a global wildfire
hotspot. However, in comparison to Southeast Asian coun-
tries, southwest China had fewer and weaker fire activities
related to rapid land cover changes and massive relevant

wildfires, involving activities such as slash-and-burn agricul-
ture, commercial forest loss, and drainage in peatlands (Cur-
tis et al., 2018; Page et al., 2022). The occurrences of forest
fires usually arose from occasional personal activities or fire-
related cultural traditions (Ying et al., 2021). On the other
hand, due to recent implementations of fire policies and long-
standing efforts from firefighting teams, southwest China has
experienced a significant decline in forest fires, with a de-
crease of −0.02± 0.00 Mha yr−2 (p < 0.01) for burned area
and −0.74± 0.23 Tg yr−2 (p < 0.05), −2.38± 0.74 Gg yr−2

(p < 0.05) for CO2, CH4, and N2O, respectively. This reduc-
tion accounts for more than 65 % of national declines in for-
est fires.

East China is another peak region of fire activities in terms
of both burned area and wildfire-induced emissions in our
study. This region contains six provinces or municipalities
– Anhui, Jiangsu, Zhejiang, Hunan, Hubei, and Shanghai
– where more than 70 % CO2 wildfire emissions came
from crop residue burning except for in Zhejiang Province.
Similarly to north China (Hebei, Henan, Shandong, Beijing,

Geosci. Model Dev., 18, 2509–2520, 2025 https://doi.org/10.5194/gmd-18-2509-2025
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Figure 4. Regional quantities of and trends in wildfire occurrences and GHG emissions. The y axes of these subplots represent the four
wildfire-related metrics calculated in our study: burned area (BA) and CO2, CH4, and N2O emissions. The colored bars indicate the relative
contributions from different land cover types within the regions. The dark-gray bars represent the proportions relative to the national total,
with the corresponding values labeled to the side of the bars. Error bars in the right panels of each subplot depict the trends over the period
from 2012 to 2022. Significant trends are denoted by asterisks (∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01; NS indicates non-significant trends).

and Tianjin), wildfire patterns in east China feature high
intensity in agriculturally sourced fire emissions, with a
total amount of more than 10 Tg of wildfire-emitted CO2,
especially concentrated in the Huanghuai Plain, namely the
connected area of Shandong, Henan, Jiangsu, and Anhui.
Together, these two regions (east China and north China)
contain half of the national sown area and grain produc-
tion and account for 30.8 % of cropland burned area and
25.4 % of wildfire-induced CO2 emissions (Fig. 4). During
our study period, both regions had significant declines
in agricultural fires, at more than −0.22± 0.06 Mha yr−2

(p < 0.01) and −0.17± 0.02 Mha yr−2 (p < 0.01) for east
and north China, respectively. The decreasing burned area
for cropland led to emissions of −2.52± 0.64 Tg CO2 yr−2

(p < 0.01), −9.17± 2.28 Gg CH4 yr−2 (p < 0.01), and
0.15± 0.04 Gg N2O yr−2 (p < 0.01) in east China. By
contrast, there was an average of 0.59 Mha yr−1 burned
area because of forest fires in east China, 3 times higher
than that in north China. This further contributed to sig-
nificantly higher wildfire-induced emission reductions,
reaching −1.57 Tg CO2 yr−1, −5.03 Gg CH4 yr−1, and
−0.19 Gg N2O yr−1.

3.3 Comparison with other results

To assess the outcomes of our dataset, we conducted a com-
parative analysis by juxtaposing our estimations with those
from different studies or products. Our overall emission esti-
mates demonstrate moderate values, where the amount at-
tributed to agricultural fires was notably lower compared
to former estimates. On average, the quantities reported in
regional- to national-scale studies were at least 3 times higher
than our results (Hong et al., 2023; Li et al., 2022; Wu et
al., 2018). As previously mentioned, these studies employed
CYBAs, whereby the estimates of burned crop residues are
calculated by multiplying the crop production derived from
statistical data, the grain-to-straw ratio from field-based anal-
ysis, and the proportion of crop residues burned in the field
using empirical summaries. Previous studies have found that
the use of very high residue burning ratios could be the rea-
son for overestimates when compared with results based on
categorized cropland maps (Zhang et al., 2020). Directly uti-
lizing active-fire pixels as proxies for the effects of fire ac-
tivities can lead to higher values, thereby contributing to
an increase in emission estimates. To address this, we em-
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Figure 5. Comparisons with global fire emission products as well as
the burned-area baseline calculation with the direct use of satellite
datasets. The categories and the products are marked in titles and on
the x axis, respectively.

ployed an advanced satellite active-fire dataset for crucial
supplementary observations. This dataset allowed us to re-
fine burned-area estimates by reconstructing external burned
regions outside the area of the original burned-area data.
We achieved this using circular kernels centered on active-
fire records, aligning with national wildfire dynamics and
the dominance of agricultural or small-sized fires. Two in-
dependent active-fire products and the MCD64 Burned Area
product were incorporated as a baseline to make intercom-
parisons (Fig. 5). The sum of the pixel area from MOD14
and VIIRS S-NPP active-fire products was translated into
6.77± 1.60 and 8.20± 2.07 Mha yr−1 (Giglio et al., 2018,
p. 6; Schroeder et al., 2014). As a result, the burned-area cal-
culation by directly counting all active-fire pixels was at least
27.5 % higher than our result.

Expanding to a broader scope, various global fire emission
inventories have been developed using different model set-
tings. We selected four widely used products: (1) the Global
Fire Emissions Database (GFED version 4.1s with small fire
boosting) (van der Werf et al., 2017), (2) the Fire INventory
from NCAR (FINN version 2.5) (Wiedinmyer et al., 2023),
(3) the Global Fire Assimilation System (GFAS version
1.2) (Kaiser et al., 2012), and (4) the Quick Fire Emissions
Dataset (QFED version 2.5) (Koster et al., 2015). They em-
ploy either burned-area-based approaches (GFED and FINN)
or fire-energy-based approaches (QFED and GFAS). Our re-
sults maintain ranges similar to those of other global products
(Fig. 5). The refined calculation for burned-area estimates
yielded higher values than the sole use of burned-area prod-
ucts and lower values than those only consisting of active-
fire products (see details in Methods). Correspondingly, the
GHG emissions were different as well when the active-fire-
dominated product FINN had higher estimates than ours.
GFED demonstrated 64.3 % to 90.3 % of the results from
ChinaWED in the emissions from the three GHGs.

4 Discussions

4.1 Factors influencing the changes in wildfire seasonal
cycles

In China, regulations and policies substantially impact an-
thropogenic activities and thus the spatiotemporal distribu-
tion of the occurrences of wildfires and emissions. In the
agricultural department, policies have addressed the issue of
straw burning due to its extensive aerosol and greenhouse
gas emissions. In the early 21st century, a specific law for
the prevention of air pollution was published, followed by
the releases of regulations on the comprehensive utilization
of straw (Wu et al., 2018; Zhang et al., 2015). The national-
scale Air Pollution Prevention and Control Action Plan was
initiated in 2013, with regional amendments progressively
moving from a “legitimate burning” policy to “strict prohibi-
tion” (Geng et al., 2021). Since the enactment of stricter reg-
ulations on straw burning under the framework of the second
revision of the Atmospheric Pollution Prevention and Con-
trol Law in 2016, significant progress has been made in con-
trolling agricultural fires. Comprehensive control measures,
especially in the agricultural sector, have substantially con-
tributed to a rapid decline in the estimated burned area at the
national scale. Between 2012 and 2016, the annual burned
area decreased dramatically from 6.46 Mha yr−1 before 2016
to 3.89 Mha yr−1 after 2016. Another consequential effect of
the implementation of these banning policies has been shifts
in burning seasons (Ding et al., 2019; Zhang et al., 2020).
Despite northeast China being the only region with trends
contrary to the national declines, a shift in the primary burn-
ing season from autumn to spring was also observed in this
area after 2013 due to the implementation of straw-burning
bans (Cheng et al., 2022; Wang et al., 2020).

It has been reported that there has been a noticeable de-
cline in the global burned area, driven by the expansion and
intensified capital management of agricultural land use (An-
dela et al., 2017). Since the beginning of the 21st century,
there has also been a growing emphasis on fire management
from both administrative bodies and scientific communities
in China. This evolution has contributed to the more strin-
gent implementation of measures, particularly in controlling
ignition sources in agricultural practices and forest and grass-
land areas. From local fire suppression measures to national
ignition-proof initiatives, efforts have been progressively em-
ployed to bring forest fires under control (Chen et al., 2019;
Ying et al., 2018). In comparison with forest fire dynamics
reported in previous studies that focused on the first decade
of this century, the southern part of China has experienced
a significant decline in burned area as well as in wildfire-
induced emissions (Wang et al., 2023b; Ying et al., 2018;
Zong et al., 2022), but the establishment and improvement
of legal systems and infrastructure for forest and grassland
fire prevention dealing with uncontrolled transboundary fires
remain challenging. Nationally, an area of 0.07 Mha yr−1
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has been affected within a 10 km buffer zone near the bor-
ders with neighboring countries. This accounted for 1.3 %
of the domestic burned area and contributed to emissions of
1.03 Tg yr−1 CO2, 3.35 Gg yr−1 CH4, and 0.09 Gg yr−1 N2O.

4.2 Improvements of ChinaWED compared to
previous studies

As described already, we refined our estimates of emission
factors, fuel loadings, and burned area, mainly with a set of
more localized parameters and advanced satellite-based ob-
servations. Fuel loadings in these previous global products
are mainly derived from biogeochemical models. According
to recent studies, the use of aboveground biomass (AGB) as a
proxy for fuel loadings can enable indirect estimations of dry
matter and improve fire emission estimates (Di Giuseppe et
al., 2021). We thus used a high-resolution harmonized car-
bon density map that was consistently and seamlessly re-
ported across a wide range of vegetation types based on the
relative spatial extent of each type. The emission factor is a
scalar that evaluates the ratio between emissions and the to-
tal amount of dry matter that was consumed during burning
processes. In this study, in addition to the previously sum-
marized emission factors, we collected field-based research
in China and neighboring countries and recompiled values
into a new table of wildfire emission factors for different land
cover types. A detailed selection of these components can be
found in Table S2. Although the use of AGB as a fuel load
proxy has demonstrated superior performance compared to
vegetation models or estimations derived from fire radiative
power (FRP; Di Giuseppe et al., 2021), it is crucial to high-
light that our current model relies entirely on a static AGB
dataset. This limitation creates a scenario where fuel loads
have few impacts on the variability in emission estimates.
Future improvements could be achieved by integrating dy-
namic input products and enhancing the precision of AGB
estimations in croplands.

Additionally, in the estimates of burned area, ChinaWED
leveraged the sensitivity of active-fire products with higher
spatial resolution and developed a new set of calculation
methods that were suitable for smaller fires. The global prod-
ucts had different frameworks. FINN focuses on active-fire
detection clusters joined for the determination of extended
burned areas, and the burned area from GFED is mainly de-
rived based on a linear combination of the distribution of
active-fire and original burned-area data. QFED and GFAS
utilize fire energy as the intermediate product to represent
the effects of fires for estimating wildfire-induced emissions.
These models employ empirical continuous functions to in-
corporate discrete observations and calculate the temporal
integral of fire radiative power (FRP). Furthermore, Chi-
naWED is designed for the analysis of wildfire-induced GHG
emissions. Most products reported wildfire-induced CO2 and
CH4 emissions, while only two of them provided N2O emis-
sion estimates (Fig. 5).

5 Conclusions

Wildfire is one of the most common land-surface distur-
bances to ecological and socioeconomic processes. It com-
busts vegetation and releases greenhouse gases and aerosols.
Employing a burned-area-based approach, we featured mul-
tisource fire locations, updated emission factors, and high-
resolution fuel load maps to generate a new China wild-
fire emission dataset. The wildfire dynamics showed that
during the past decade, an average of 5.31± 1.70 Mha of
burned area and emissions of 78.13± 22.46 Tg CO2 yr−1,
279.47± 82.01 Gg CH4 yr−1, and 6.26± 1.67 Gg N2O yr−1

were observed. At the national scale, the spatiotemporal
characteristics of fire occurrences were markedly influenced
by agricultural activities, which contributed to more than
four-fifths of burned area and at least half of greenhouse
gas emissions. Extensive agricultural fires played an impor-
tant role in shaping the seasonal cycle of wildfire emissions
(Hong et al., 2023; Xu et al., 2023). Northeast, north, and east
China emerged as hotspots for this type of fire, with a ma-
jor peak in emissions occurring in mid-spring to early sum-
mer. We observed a rapid and significant decline in burned
area and wildfire-induced emissions in vast areas in China,
which may be largely attributed to the implementation of
fire prevention and bans on straw burning. Notably, the rel-
ative declining rate of burned area, translating into around
5.8 % yr−1, was 4 times higher than the global average (An-
dela et al., 2017). Northeast China was the only region with
an opposite trend, suggesting a situation that requires more
adaptive policies rather than mandatory bans. Compared with
estimations by other studies and global products, our results
have moderate values, largely caused by the mismatches in
burned area and estimates of burned crop residues. Overall,
the calculation of burned area for small-sized fire activities
and the recalibrated emission factors, tailored for wildfires
in China, contribute to the findings of this study. These re-
sults offer new insights into the spatiotemporal patterns of
China’s wildfire-induced greenhouse gas emissions and pro-
vide important estimates as a part of the budget for national
terrestrial ecosystems. Future updates will focus on integrat-
ing additional field-based studies and refining the estimates
of various burning processes.

Code and data availability. Python code for this model can
be obtained from https://doi.org/10.5281/zenodo.13800556
(Lin and Wang, 2024) (Python version 3.11.6). Key
packages used in the code include rasterio (version
1.3.9), NumPy (version 1.25.2), pandas (version 2.1.3),
and SciPy (version 1.10.1). Fire products include
MCD64A1.061 (https://doi.org/10.5067/MODIS/MCD64A1.061,
Giglio et al., 2021) and VIIRS S-NPP Active Fire
(https://doi.org/10.1016/j.rse.2013.12.008, Schroeder et
al., 2014). Aboveground biomass data are available from
https://doi.org/10.1038/s41597-020-0444-4 (Spawn et al., 2020).
Different crop types are available from double-season paddy rice
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(https://doi.org/10.3390/rs13224609, Pan et al., 2021), single-
season rice (https://doi.org/10.57760/sciencedb.06963, Shen et al.,
2025), maize (https://doi.org/10.6084/m9.figshare.17091653.v4,
Shen et al., 2021), winter wheat
(https://doi.org/10.6084/m9.figshare.12003990.v2, Dong et
al., 2020b), and sugarcane (https://doi.org/10.3390/rs14051274,
Zheng et al., 2022).

Supplement. The supplement related to this article is available on-
line at https://doi.org/10.5194/gmd-18-2509-2025-supplement.
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