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Abstract. The Earth System Grid Federation (ESGF) holds
several petabytes of climate data distributed across millions
of files held in data centres worldwide. The processes of ob-
taining and manipulating the scientific information (climate
variables) held in these files are non-trivial. The ESGF Vir-
tual Aggregation is one of several solutions to provide an
out-of-the-box aggregated and analysis-ready view of those
variables. Here, we discuss the ESGF Virtual Aggregation in
the context of the existing infrastructure and some of those
other solutions providing analysis-ready data. We describe
how it is constructed, how it can be used, and its benefits for
model evaluation data analysis tasks, and we provide some
performance evaluation. It will be seen that the ESGF Vir-
tual Aggregation provides a sustainable solution to some of
the problems encountered in producing analysis-ready data
without the cost of data replication to different formats, al-
beit at the cost of more data movement within the analysis
compared to some alternatives. If heavily used, it may also
require more ESGF data servers than are currently deployed
in data node deployments. The need for such data servers
should be a component of ongoing discussions about the fu-
ture of the ESGF and its constituent core services.

1 Introduction

The importance of effective and efficient climate data anal-
ysis continues to grow as the demand for understanding the
climate system intensifies. Traditionally, climate data reposi-
tories have been structured as file distribution systems, pri-
marily facilitating file downloads. However, this conven-
tional approach poses challenges for climate data analysts,

requiring users and applications to invest substantial time in
managing data access, which is often unrelated to their on-
going research. The Earth System Grid Federation (ESGF)
is a global infrastructure and network that consists of in-
ternationally distributed research centres that follow this ap-
proach (Williams et al., 2016; Cinquini et al., 2012). While
the ESGF provides a critical platform for data sharing, its
current architecture lacks integrated tools for advanced data
analysis. Thus, researchers must handle data access and anal-
ysis independently.

To address this limitation, current research focuses on en-
hancing climate data infrastructures with built-in data anal-
ysis capabilities that streamline data access and processing.
Several methodologies are emerging based on analysis-ready
data (ARD, Dwyer et al., 2018), along with remote data ac-
cess and new formats for climate data storage (Abernathey
et al., 2021). This paper introduces the ESGF Virtual Ag-
gregation (ESGF-VA), an innovative method for climate data
analysis leveraging rarely exploited aspects of the ESGF. It is
based on the capabilities of virtual aggregations built on top
of the ESGF architecture and is designed to be included in the
federation as an external service. The ESGF-VA enables sci-
entists to perform efficient, scalable, and remote climate data
analysis within the ESGF. Section 2 provides an overview of
the current landscape of climate data analysis and infrastruc-
ture. Section 3 introduces the notion of ARD and virtual ag-
gregations in the context of climate data. Section 4 describes
a model evaluation use case and the benefits provided by the
ESGF-VA for the task. Following this, Sect. 5 delineates the
methodology employed in the ESGF-VA. Section 6 presents
a performance evaluation of the ESGF-VA, comparing it to
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other data access methods. Section 7 ends this paper with a
discussion and concluding remarks.

2 Background

In the ESGF, research centres collectively serve as a feder-
ated data archive, supporting the distribution of global cli-
mate model simulations representing past, present, and fu-
ture climate conditions (Balaji et al., 2018). The ESGF en-
ables modelling groups to upload model outputs to federa-
tion nodes for archiving and community access at any time.
To facilitate multi-model analyses, the ESGF ensures stan-
dardisation of model outputs in a specified format. It also fa-
cilitates the collection and archival of and access to model
outputs through the ESGF data replication centres. As a
result, the ESGF has emerged as the primary distributed-
data archive for climate data, hosting data for international
projects such as CMIP6 (Eyring et al., 2016) and CORDEX
(Gutowski Jr. et al., 2016). It catalogues and stores tenths of
millions of files, with more than 30 PB of data distributed
across research institutes worldwide (Fiore et al., 2021), and
it serves as the reference archive for Assessment Reports
(ARs, Asadnabizadeh, 2023) on climate change produced by
the Intergovernmental Panel on Climate Change (IPCC, Ven-
turini et al., 2023).

The significant growth of data poses a scientific scalability
challenge for the climate research community (Balaji et al.,
2018). Contributions to the increase in data volume include
the systematic increase in model resolution and the complex-
ity of experimental protocols and data requests (Juckes et al.,
2020). While these advancements enrich climate modelling
and analysis, they also exacerbate difficulties in accessing
and processing the resulting large datasets. Currently, the pri-
mary method of data acquisition involves downloading files
directly from repositories. However, as the number and size
of files continue to grow, this approach becomes increasingly
impractical, creating bottlenecks that make data analysis in-
efficient. The ESGF infrastructure is designed as a file dis-
tribution system, but scientific research often requires multi-
dimensional data analysis based on datasets encompassing
multiple variables and/or spanning the entire time period,
multiple model ensembles, and different climate model runs.
Several ongoing developments in scientific data research try
to address the issues of growing data volume and variety and
to provide new approaches to data analysis.

Climate Analytics-as-a-Service (CAaaS, Schnase et al.,
2016), GeoDataCubes (Nativi et al., 2017; Mahecha et al.,
2020), cloud-native data repositories (Abernathey et al.,
2021), and web processing services (OGC, 2015) are some of
the systems that are being used to improve climate data anal-
ysis workflows. The data consolidation process in building
these new systems may involve data duplication of an enor-
mous volume of data, incurring large costs in terms of oper-
ational and storage requirements. However, the cost of data

duplication is assumed to be compensated for by a gain in ef-
ficiency in information synthesis. In order to overcome these
costs, several technologies do allow the creation of virtual
datasets which provide ARD capabilities without the need to
duplicate the original data sources. These provide the oppor-
tunity for more sustainable approaches to enhancing climate
data analysis capabilities. Figure 1 illustrates the outcome
of a data analysis task that integrates multiple files from the
ESGF, encompassing several model runs of a specific model
spanning 85 years of data. By leveraging the advantages of
ARD and remote data access, this task can be executed with-
out the need for file downloads, requiring only a few lines of
code.

The ESGF-VA serves as a bridge between the current im-
plementation of the ESGF and the development of cloud-
native data repositories for climate research. Figure 2 shows
how it fits into the current ecosystem. It is implemented as
an additional value-added user service on top of the ESGF,
running in conjunction with other value-added user services
such as the citation and persistent identifier (PID) handle ser-
vices (Petrie et al., 2021). To satisfy sustainability require-
ments, a balanced strategy is adopted to manage operational
costs and complexity. The ESGF-VA aims to advance the
sharing and reuse of scientific climate data by building a cat-
alogue of logically aggregated datasets, facilitating remote
access to the distributed data hosted in the ESGF. It offers
access (remotely) to convenient and adequate views of the
data (ARD) that allow ad hoc complex queries without the
need to duplicate data sources.

3 Analysis-ready climate datasets

The term ARD refers to datasets that have undergone pro-
cessing to enable analysis with minimal additional user ef-
fort (Dwyer et al., 2018). The climate data offered by the
ESGF are stored in NetCDF files (Rew et al., 1989), with an
atomic dataset defined as a set of NetCDF files that are ag-
gregated, containing the data from a single climate variable
sampled at a single frequency from a single model running
a single experiment (Balaji et al., 2018). These data conform
to a file request and a structure controlled by Data Reference
Syntax published in partnership with the ESGF. For example,
the CMIP6 data conform to the CMIP6 data request (Juckes
et al., 2020) and to the CMIP6 Data Reference Syntax (Tay-
lor et al., 2018).

Figure 3 shows an ESGF atomic dataset and a collection
of three NetCDF files that conform to the dataset. Tradi-
tional ESGF-based climate data analysis workflows involve
downloading the files in the collection for at least one atomic
dataset. The files are downloaded to a local workstation or
high-performance-computing (HPC) infrastructure. In subse-
quent steps of the data analysis workflow, developed software
tools and scripts are executed to perform data analysis tasks.
However, these programmes must often deal with the hier-
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Figure 1. Mean near-surface air temperature for different time periods and different model runs. The code needed to obtain this result is
minimal, enabled by the capabilities of the data cube. Because all the information is stored in one single ESGF Virtual Aggregation dataset,
only one data source is needed to perform the data analysis. The data are fetched directly from ESGF data nodes on the basis of remote data
access.

archical file organisation structure of an ESGF repository,
introducing complexities unrelated to the primary research
analysis task.

The goals of ARD are aimed at addressing the inherent
complexities associated with file handling. To achieve this,
various methodologies are under consideration based on ei-
ther aggregations of the original datasets or transitions to new
infrastructures such as cloud providers. Aggregation-based
approaches focus on creating either physical or virtual views
of data, optimised for efficient analysis, thereby relieving
users from the intricacies of directly manipulating NetCDF
files. On the other hand, performance-optimisation-based ap-
proaches involve leveraging hardware infrastructures, such
as cloud computing providers, to enhance the speed and ef-
ficiency of data analysis operations. By utilising these re-

sources, significant improvements in processing capabilities
can be achieved, thereby facilitating smoother data analysis
workflows.

ARD based on aggregations can be obtained at differ-
ent layers of abstraction and may involve varying levels of
complexity depending on the desired outcome. Many ap-
proaches are based on data analysis applications offering
functionality for abstracting the underlying files and hier-
archical file system organisation from the data user. Exam-
ples of this approach include Xarray’s (Hoyer and Hamman,
2017) open_mfdataset function and software applications for
climate data analysis. Listing 1 provides an example of the
usage of the open_mfdataset function. Examples of software
applications include cf-python (Hassell et al., 2017), xMIP,
(Busecke et al., 2023), intake-esm (Banihirwe et al., 2023),
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Figure 2. The ESGF Virtual Aggregation aims to be a sustainable
bridge that eases the technological transition between the current
state of the ESGF and more ground-breaking and expensive solu-
tions based on data replication, such as cloud-native repositories.

and intake-esgf (Collier et al., 2024). In general, these ap-
proaches hold an in-memory representation of the virtual
dataset or aggregation, which is manipulated by the data
analysis package behind the scenes.

Software packages may offer persistence formats for their
aggregated logical view of the underlying files, but these
persistence formats are not interoperable between packages
and/or do not provide an interchangeable logical view of
aggregation. In the process of generating aggregated views,
data may be duplicated, or virtual aggregations can be used
to avoid the data duplication. The advantage of relying on
virtual dataset capabilities is that data duplication is avoided,
and the existing infrastructure may be reused to obtain ARD
capabilities without huge associated costs. Examples of vir-
tual aggregations that follow this approach include (but are
not limited to) the NcML (Caron et al., 2009), Kerchunk (Du-
rant, 2024), CFA (Hassell et al., 2023), and HDF5 virtual
datasets (The HDF Group, 2024). The lack of a standard per-
sistence format is also accompanied by different approaches
to aggregation methodologies, which arise from a lack of a
common data model and a suitable algebra in the context of
climate data management.

One attempt to address this issue is the development of the
Climate Forecast Aggregation (CFA) conventions, which can
describe an aggregated view of NetCDF files using the Cli-
mate Forecast (CF) conventions (Hassell et al., 2023). The
CFA conventions provide a formal syntax for storing an ag-
gregation view of file fragments using NetCDF itself as the
storage mechanism. Currently, this syntax is only supported
by cf-python, but libraries and tools are in development to
extend CFA support to other packages once the syntax has
been through the CF conventions process. The cf-python ap-
plication (Hassell et al., 2017) utilises an underlying data
model from the CF conventions, which extends the original
NetCDF data model with custom structure types. With this
data model, a set of unambiguous rules can be established

which allow formal manipulation of NetCDF variable frag-
ments.

Similarly, the software library NetCDF Java (Caron et al.,
2009) extends the original NetCDF data model with addi-
tional operations for the manipulation of climate datasets.
Using the NetCDF Java nomenclature, the operations join
existing and join new are defined, among others. A join ex-
isting operation concatenates variables of NetCDF datasets
based on a given input dimension. A join new operation
merges variables of NetCDF datasets by creating a new co-
ordinate dimension, thus extending the dimensionality of the
variable. Examples of both types of aggregations are shown
in Fig. 4. Such operations depend on clean notions of vari-
able identity in order to ensure the semantic correctness of
the aggregations. In addition, these virtual aggregations may
be performed by referencing remote sources of data using
the OPeNDAP protocol (Garcia et al., 2009). This particular
capability is exploited by the ESGF-VA to provide ARD to
the whole ESGF community by exploiting the existence of
OPeNDAP access in the federation (Caron et al., 1997).

As already discussed, another approach to ARD is to lever-
age the capabilities of novel hardware infrastructures such as
cloud providers. One notable example of this is the Pangeo
initiative, a collaborative effort that brings together diverse
communities to address challenges in climate data analy-
sis. Pangeo has facilitated the development of cloud-native
repositories tailored specifically for climate data analysis
needs. These repositories leverage the capabilities of com-
mercial public cloud providers, such as Amazon Web Ser-
vices (AWS) or Google Cloud Platform (GCP), to provide
scalable, efficient, and operational storage solutions for cli-
mate ARD. Pangeo has established a collaboration with the
ESGF for further enhancing the accessibility and usability
of climate data for researchers and practitioners worldwide
(Abernathey et al., 2021; Stern et al., 2022).

Cloud-native repositories have enormously facilitated cli-
mate data analysis by leveraging the capabilities of remote
data access provided by cloud infrastructures and ARD on
top of cloud-native data formats. As a result, climate data
are accessible from anywhere, and climate data analysts are
able to opt for the computation platform of their choice:
HPC infrastructures from their home institutions, user-paid
on-demand cloud resources running close to the cloud repos-
itory, or even a personal laptop. However, the establishment
of these repositories has demanded substantial investments
in terms of human resources and financial resources to ac-
commodate storage within the premises of cloud service
providers1. In addition, in order to keep consistent copies of
the source repositories, the cost required to sustain cloud-
native repositories is increased as long as the source repos-

1Refer to the Pangeo Showcase talk (https://doi.org/10.5281/
zenodo.10229275, Busecke and Stern, 2023) “How to transform
thousands of CMIP6 datasets to zarr with Pangeo Forge – And why
we should never do this again!” for further details on this topic.
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Figure 3. The ESGF listing of three files of a CMIP6 dataset. A common practice in the ESGF consists of splitting the dataset into many
files along the time dimension. Smaller files are easier to manage in the federation, but performing data analysis becomes harder. This image
is a screenshot obtained from the ESGF web portals. Credit is attributed to the ESGF partners supporting these portals. For further details,
please refer to https://esgf.llnl.gov/acknowledgments.html (last access: 6 May 2024).

Listing 1. Usage of Xarray’s open_mfdataset to generate an ARD dataset at the application layer from several NetCDF files.

itories keep updating their datasets. The following section
presents a model evaluation data analysis task that demon-
strates the benefits of ARD and remote data access as pro-
vided by the ESGF-VA for climate data analysis.

4 Model evaluation

ARD enable model evaluation data analysis tasks to be car-
ried out with much greater ease compared to working with
raw data files. This section illustrates a model evaluation task
focused on studying model member agreement on precipita-
tion outputs from the CanESM5 global climate model (Swart
et al., 2019) for the region of Europe. The data analysis task
computes relative anomalies of precipitation for two future
scenarios relative to the historical period. Due to the conve-
nience of dealing with ARD datasets and remote data access,
this workflow saves the user from locating and downloading
from the ESGF the 54 NetCDF files required to perform the
task. Instead, only three URLs will be used. These URLs can
be easily obtained from the ESGF-VA. The three URLs cor-
respond to the ESGF-VA endpoints of the CanESM5 multi-
member data sources of the historical scenario, SSP1–2.6,
and SSP5–8.5 of the CMIP and ScenarioMIP ESGF activi-
ties. Moreover, spatial and temporal subsetting is automati-

cally performed by OPeNDAP on behalf of the user, regard-
less of how the NetCDF files are split along the time coordi-
nate in the ESGF.

The data analysis task involves calculating model agree-
ment on precipitation anomalies by computing the difference
between the climatologies of both future scenarios relative
to the historical period. The climatologies for each scenario
have been computed as the temporal and model ensemble
member mean of 18 model runs, given that this information
is available out of the box in the ARD dataset from the ESGF-
VA. The years 1995 to 2014 are chosen as the reference for
the historical period, and the years 2080 to 2100 represent the
future period. Model member agreement will be computed
following the methodology of the low-model-agreement sim-
ple approach proposed in the Intergovernmental Panel on Cli-
mate Change (IPCC) Sixth Assessment Report (IPCC, 2023).
This methodology aims to display the robustness and uncer-
tainty in maps of multi-model mean changes. Model agree-
ment is computed using model member democracy without
discarding or weighting model members. Locations of low
model member agreement, those with < 80% agreement on
the sign of change, are marked using diagonal hatched lines
(Gutiérrez et al., 2021). The results for both future scenarios
are shown in Fig. 5.
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Figure 4. Illustration of both join existing and join new aggregations along the time dimension. In the case of the join exiting, the result
of the aggregation is a multidimensional array with the same dimensions (time, lat, and long), in which the size of the time dimension has
increased. In the case of the join new aggregation, the time dimension is a new dimension created to aggregate the existing two-dimensional
arrays into a new three-dimensional array.

Listing 2. NcML file that showcases a logical aggregation by performing a join existing aggregation over several local NetCDF files.

5 Implementation

ARD in the form of virtual aggregations or virtual datasets
allow users to view the data of their interest as single logi-
cal units rather than collections of files. This eliminates the
need to navigate through files that necessitate intricate data
analysis programming for interpretation. In the ESGF-VA,
the logical aggregations are based on aggregation capabili-
ties expressed in NcML and provided by NetCDF-Java. With
NcML, it is not required to inspect the storage internals of
the NetCDF files in order to perform the aggregation. This
is in contrast to other alternatives such as Kerchunk, which
currently requires that all the variables or multidimensional
arrays are parameterised with the same configuration (chunk-
ing, filters, etc.). This is often not the case in the ESGF. Ker-
chunk also needs to extract the byte positions of the chunks
from the source NetCDF files. Given that the ESGF con-
tains millions of NetCDF files, avoiding inspection of each
of them provides an enormous advantage. ESGF index nodes
contain metadata about NetCDF files, and they can be used

to quickly retrieve metadata from the NetCDF files. Thus,
the complexity and required time of the process of generat-
ing the virtual aggregations are reduced by several orders of
magnitude.

The implementation of the ESGF-VA involves the follow-
ing steps:

1. The search process involves querying the ESGF cata-
logue and indexing service to obtain dataset information
and metadata, which are then stored in a local database.

2. The aggregation process queries the local database to
create virtual datasets (NcMLs) for the entire federa-
tion. These are the ARD that the user utilises for remote
climate data analysis.

Figure 6 shows how NetCDF files from the ESGF that be-
long to the CMIP6 project are distributed between the vir-
tual datasets. Most virtual datasets contain few references
to NetCDF files inside 5 100), although some virtual ag-
gregations provide access to hundreds or even thousands of

Geosci. Model Dev., 18, 2461–2478, 2025 https://doi.org/10.5194/gmd-18-2461-2025
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Figure 5. Model member agreement on relative precipitation changes for 18 model members across two future scenarios from CanESM5.
These changes are calculated as the difference between the projected future scenario period and the historical reference. The results highlight
significant projected increases in precipitation over northern Europe by the end of the century under the fossil-fuel-based development
scenario. Diagonal lines indicate areas in southern Europe where model member agreement is low.

NetCDF files. Table 1 shows the ratio of NetCDF files per
NcML for each CMIP6 activity (Eyring et al., 2016). The fol-
lowing sections detail the implementation of both the search
and aggregation processes.

5.1 The ESGF search process

For the search process, the ESGF Search RESTful API (Cin-
quini et al., 2012) is used by the client to query the contents
of the underlying search index, returning results matching the
given constraints in the whole federation. The search service
provides useful metadata that allow clients to obtain valu-
able information about the datasets being queried. However,
in the context of the ESGF-VA, it is not as efficient as one
would like – it is sufficient for the first implementation and
experiments described here, but in an operational context,
one would want to see time coordinate information held in
the index. This is because, otherwise, applications need to
read such information from each and every file in an aggrega-
tion, which may be a significant overhead, before any actual
data transfer.

The search process is performed through an iterative
querying of the ESGF search service, requesting small
chunks of data that are manageable by the service. The search
service limits the number of records that can be obtained
from a single request to 10 000 elements. Since the federa-
tion contains information on the order of tens of millions of
records, several requests need to be made. The results are
stored in a local SQL database, and multiple ESGF Virtual
Dataset labels are assigned to the record in order to identify
the virtual dataset in which the records participate in differ-
ent virtual aggregations. Figure 7 gives an overview of the
cost in size of generating the NcMLs.

5.2 The aggregation process

The aggregation process is responsible for generating the
virtual aggregations and mapping multiple individual ESGF
files and their metadata to the appropriate virtual datasets.
Although the number of records could be overwhelming,
the use of SQL indexes allows the aggregation process to
quickly retrieve the granules that belong to the different vir-
tual datasets. The result from the aggregation process in the
ESGF Virtual Aggregation is a collection of NcML files that
represent the virtual datasets. The virtual datasets are stored
in different directories in order to provide appropriate organ-
isation. Each virtual dataset is labelled with the data node as
to where each of the granules that form the virtual dataset be-
long. Additionally, the virtual datasets are generated in such
a way that replicas from the same virtual dataset are easily
identifiable.

The virtual datasets of the ESGF-VA are made of two
kinds of aggregations. First, the ESGF atomic dataset aggre-
gation is generated by concatenating the time series of each
variable along the time dimension. Figure 4 illustrates this
operation, and Listing 2 provides an NcML example. This
concatenation does not increment the rank of the dimensions
of the multidimensional array that represents the variable; it
only increases the size of the time dimension. This kind of
aggregation is ignored in time-independent variables such as
orography. Then the variables are aggregated by creating a
new dimension that represents the variant label (i.e. ensemble
members) or the different model runs of a climate model. The
rank of dimensions is incremented by 1 to accommodate a di-
mension for the ensemble or variant label. It is important to
note that, for this kind of aggregation to be performed prop-
erly, the climate variables involved must share a spatial and
temporal coordinate reference system, with the exact same
spatial coordinate values. If that were not the case, the re-
sulting multidimensional array would expose incorrect data.

https://doi.org/10.5194/gmd-18-2461-2025 Geosci. Model Dev., 18, 2461–2478, 2025
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Figure 6. Distribution of NetCDF files in the virtual datasets (NcMLs). Most of the virtual aggregations are made up of a relatively small
number of files, although some virtual datasets spawn hundreds or thousands of files.

Table 1. Number of virtual aggregations (NcMLs) and NetCDF files for which metadata were retrieved from the federation and ratio of
NetCDF files per NcML generated for CMIP6 in the ESGF Virtual Aggregation. Note that the distribution of the number of references to
NetCDF files or NcMLs does not follow a uniform distribution (see Fig. 6).

CMIP6 activity NcMLs NetCDF Ratio (NetCDF/NcML)

ISMIP6 2570 10 864 4.23
GMMIP 9489 587 501 61.91
LS3MIP 16 041 188 533 11.75
OMIP 17 009 441 578 25.96
PAMIP 19 824 4 931 240 248.75
CDRMIP 21 189 395 444 18.66
PMIP 26 277 645 989 24.58
GeoMIP 28 470 184 666 6.49
FAFMIP 41 324 208 881 5.05
LUMIP 57 140 581 573 10.18
HighResMIP 63 359 5 806 778 91.65
RFMIP 81 548 745 604 9.14
CFMIP 81 599 309 421 3.79
C4MIP 81 964 847 376 10.34
DAMIP 134 708 3 482 721 25.85
AerChemMIP 199 307 1 850 392 9.28
ScenarioMIP 250 591 17 317 882 69.11
CMIP 505 733 19 090 708 37.75
DCPP 506 085 8 152 594 16.11

Total 2 144 227 65 779 745 –

Listing A1 in the Appendix shows the NcML for the virtual
aggregation in Fig. 8.

5.3 Remote data access

The remote data access capabilities of the ESGF provided
by OPeNDAP and THREDDS (Caron et al., 1997) allow the
virtual aggregations to load the data directly and transpar-
ently from ESGF data nodes with no file downloads. Fig-
ure 8 shows a virtual dataset of the ESGF Virtual Aggrega-
tion (the NcML file) opened with Xarray through an OPeN-

DAP THREDDS data server since Xarray does not currently
support the opening of NcML files directly. Figure 1 shows
the result of a data analysis task from this dataset. Because a
single dataset contains all the ensemble members of a partic-
ular member run, only one dataset is needed to perform this
data analysis.

6 Performance

To investigate the performance of accessing data using the
ESGF-VA, an experiment was carried out to examine data
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Figure 7. From left to right: sizes of the ESGF federation data
archive for CMIP6, including replicas, the local database contain-
ing the metadata from the federation, and the ESGF Virtual Dataset.
Note that the 21 PB of data refers to the size of the NetCDF files
stored within the federation. The metadata in the ESGF indexes re-
quire storage on the order of gigabytes, and allowance should be
made for the querying of the metadata of NetCDF files in a reason-
able amount of time. The storage requirement for the virtual aggre-
gations is reduced by several orders of magnitude compared to the
original data.

access performance by an Xarray client. This limited exper-
iment is enough to show some of the benefits of and some
of the issues with the ESGF-VA. The experiment was carried
out with the ESGF-VA utilising OPeNDAP and, for compari-
son, with Kerchunk aggregation. In both cases, virtual aggre-
gations were generated first, and each was performed with
varying numbers of Dask worker processes to test the poten-
tial scalability (albeit, this is in a situation where we know
that there is limited scalability on the servers themselves and
where we believe there would have been little or not con-
tention from other users). Here, Kerchunk refers to the use
of Kerchunk files to access individual blocks of compressed
data via Zarr and other Pangeo middleware from the client
talking directly to an ESGF HTTPS server, whereas OPeN-
DAP is the vanilla usage of the ESGF-VA for the client talk-
ing to an ESGF OPeNDAP server.

The experiment was simple: we read a dataset consisting
of the entirety of the atomic datasets (> 80 years) of daily
values for one spatially two-dimensional variable (the sur-
face temperature, tas) from each member of a simulation, and
we obtained a global mean of that data. The actual calcula-
tion was done on a cloud-hosted virtual machine in Spain
at Instituto de Física de Cantabria (IFCA), while the data
were read from each of four ESGF servers. In each case, the
dataset was chunked for Dask into segments of 400 daily val-
ues (so each chunk was about 50 MB in memory, the default
maximum limit for OPeNDAP) in order to examine the ben-
efit of using multiple Dask workers. We attempted to repeat
the experiment five times on each of the ESGF servers for
two, four, and eight Dask workers. However, it was not pos-
sible to get OPeNDAP results from all four servers or to get a
full set from each of the servers – the reasons for this are dis-
cussed below. We did not attempt to mitigate against file sys-
tem caching in this design as, while it could have impacted
the comparison, in practice, the I/O (input–output) time for

reading the data (∼ 10 GB on disc, ∼ 20 GB on memory)
would be small compared to the overall times reported.

The results are shown in Fig. 9. There are several obvi-
ous results: when using Kerchunk, considerable benefit was
gained by using more workers, and data nodes close to Spain
(where the calculation was done) yielded much faster out-
comes than remote data nodes. In each case, OPeNDAP is
much slower than Kerchunk, and the benefit of geographi-
cal proximity for the OPeNDAP results is much less obvious
(e.g. using eight workers to process data loaded from Aus-
tralia is faster than using eight works to process data from
the UK, but for two workers, it is much faster to use the UK
data). Unfortunately, DKRZ does not offer the OPeNDAP
service, and LLNL took the service down after we did our
first experiments and before we added the replicas. It is also
clear that the OPeNDAP results from the CEDA server are
anomalous in terms of having no dependency on the number
of workers.

As already noted, proximity matters. The benefit of the
client-side decompression used by Kerchunk is clear. A pri-
ori, we might have expected the OPeNDAP results to be
slower by roughly a factor of 2 (given that OPeNDAP decom-
presses server-side and sends the uncompressed data over the
wire), and this is roughly what is seen at LLNL and NCI. As
already noted, the CEDA OPeNDAP results are anomalous,
and so we make no attempt to explain the disparity between
the Kerchunk and OPeNDAP speeds seen there. For this ex-
periment, at least, with the fastest times seen (44 and 49 s
from CEDA and DKRZ, respectively), it is clear that the bot-
tleneck is in the data flow across the wide area.

Similar experiments with other data highlighted some sub-
optimal data practices within the ESGF archive. A significant
number of CMIP6 datasets stored in the ESGF exhibit poor
chunking configurations, specifically related to the time coor-
dinate. Chunking in HDF5 is a crucial technique for optimis-
ing data access performance. It involves organising how data
are stored on the disc, enabling different arrangements based
on desired data access patterns. Proper chunking can greatly
enhance data access efficiency, similarly to how SQL indexes
improve database query performance. Conversely, incorrect
or inappropriate chunking choices can have a detrimental
impact on data access performance. Notably, the CMIP6
files within the ESGF often displayed a chunking config-
uration of (1,) for the time coordinate, resulting in severe
degradation of dataset access times (Fig. 10). Suboptimal
chunking configurations negatively affected the efficiency
of data retrieval and subsequent analysis tasks. A fix for
the standard climate model output writer (CMOR) has been
proposed (https://github.com/PCMDI/cmor/pull/733, last ac-
cess: 2 June 2024), although not all modelling centres use
CMOR.
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Figure 8. Example of an ESGF Virtual Aggregation NcML file of surface temperatures opened with the Xarray package through OPeNDAP–
THREDDS in a Jupyter Notebook. Readers may notice that surface temperature is a three-dimensional variable in the ESGF, but it is now a
four-dimensional variable including the model ensemble member dimension. The user does not need to know the number of files involved in
the dataset, and it can be analysed as a data cube instead of a series of NetCDF files. The data requested by the user through Xarray will be
fetched on demand directly from ESGF data nodes. The NcML is available in Appendix A.

7 Conclusions

We have introduced the ESGF Virtual Aggregation (ESGF-
VA) and have shown how it can be used to obtain data
from the existing ESGF OPeNDAP servers. In doing so,
we have showcased how the ESGF federated index and the
ESGF OPeNDAP endpoints can be used to deliver capabil-
ities beyond conventional file searching and downloading.
By enabling remote data analysis over virtual analysis-ready
data, the use of the ESGF-VA could enhance the efficiency
and productivity of climate data analysis tasks. It could em-
power researchers to access and analyse data directly within
the ESGF environment, eliminating the necessity for time-
consuming data transfers and facilitating more streamlined
and effective climate data analysis workflows.

7.1 Summary of findings

The virtual datasets provided by the ESGF-VA facilitate an
aggregated view of the time series, as well as of the ensem-
ble model members of a particular model. Thus, data analy-
sis comparing different runs of the same model can be per-
formed by loading only the view of one dataset. In doing
so, the details of the aggregation are hidden completely from
the user, who sees the dataset as a single NetCDF. Using the
OPeNDAP endpoints of the federation, data analysis can be
performed from anywhere. While this implementation of the
ESGF-VA exploits NcML and NetCDF Java, the concept is
readily extensible across any NetCDF client which supports
OPeNDAP – i.e. any client which utilises the NetCDF library
itself rather than directly using HDF5. However, because
OPeNDAP performs chunk decompression in the server, it
is not as efficient as other data access methods as more data
are sent over the network.
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Figure 9. The results of the experimental retrieval of data for mean-
ing using Kerchunk and OPeNDAP from a client in Spain (IFCA) to
servers in the UK (CEDA), Germany (DKRZ), the US (LLNL), and
Australia (NCI). The bars show the mean time, in seconds, taken
across experiment replicants for each configuration in terms of num-
ber of workers. Where error bars are shown, these reflect the min-
imum and maximum times taken. Kerchunk data are shown with-
out hatching, and OPeNDAP data are shown with hatching. Note
that there are no OPeNDAP data for DKRZ and no replicants –
and, hence, no error bars – for the OPeNDAP experiments using the
LLNL server.)

Figure 10. Required time to read a temporal coordinate as a func-
tion of storage type. Contiguous storage does not incur performance
issues. If chunking storage with a bad chunking scheme is used, per-
formance quickly deteriorates.

The creation of the virtual aggregations presented in this
work follows a much more maintainable approach than al-
ternatives focusing on duplication of the data, such as cloud-
native repositories. The storage requirements of the virtual
aggregations are minimal compared to the relative size of the
raw data. In addition, the generation of the virtual aggrega-

tions can be performed in a few hours, where most of the
time is spent querying the ESGF distributed index. As the
ESGF-VA aggregation information is obtained directly from
the existing ESGF index, it can be generated much faster than
with the process needed to generate Kerchunk indices, which
requires access to each file. The speed of the creation of new
virtual aggregations, coupled with the lack of actual data du-
plication, means that the system can cope well with an en-
vironment where datasets are being updated as data process-
ing issues are found and fixed since the ESGF-VA can be
quickly updated. However, whatever system is used to create
analysis-ready data, it is necessary to know that such updates
are necessary – it would be helpful for a future ESGF to have
some sort of automated alert system for data updates.

Certain issues regarding the data distribution of the ESGF
were identified during the creation of the ESGF Virtual Ag-
gregation. There is often inconsistent use of the version facet,
and a significant portion of the data stored in the federation
do not adhere to best practices regarding the chunking of
HDF5. In the first place, the version facet is supposed to dis-
tinguish between allegedly equal datasets that have changed
due to different kinds of errors, such as incorrect data due
to bad model executions or incorrect publication processes.
In practice, the version facet may, in some cases, end up di-
viding granules that should belong to the same aggregation
due to inappropriate usage of the facet. From an ESGF-VA
point of view, this could be avoided by using the latest value
of the version facet, but that would lead to issues with main-
tenance. There may be value in both providing better guid-
ance to modelling centres about how to use version facets and
adding some chunk checking to future ingestion processes.

7.2 Discussion

The performance analysis presented in this work suggests a
declining interest from the ESGF community in supporting
OPeNDAP, given the instability of this service compared to
data access based on HTTP. While we do not know the de-
tails of the individual server configurations, the fact that the
CEDA OPeNDAP results are so odd and the fact that both
DKRZ and LLNL no longer offer OPeNDAP servers make it
plausible to conclude that (a) it is difficult to deploy OPeN-
DAP and (b) there is currently not enough usage to justify it.
However, our results suggest that there may yet be mileage
in deploying properly configured OPeNDAP services in the
future ESGF (maybe with a different server) – at least until
such a time that remote direct access to chunks via HTTP is
available to a much greater proportion of NetCDF clients. In
doing so, the use of HTTP compression could mitigate the
issue of server-side decompression of the chunks. This func-
tionality is currently supported by NetCDF clients but is cur-
rently provided by few, if any, ESGF nodes. Finally, it would
also be helpful if the time coordinate information could be
stored in the ESGF index to be used by virtual aggregation
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clients in such a way as to avoid the need to read time coordi-
nate values from each file when opening the virtual dataset.

While the ESGF-VA provides many benefits for users,
albeit with the cost of moving the uncompressed data se-
lections, such benefits would only transpire if there was
sufficient server capacity to support demand. Although the
ESGF-VA itself requires no change to the ESGF architecture
itself, support for access to ESGF data via the OPeNDAP
protocol is currently delivered through the use of THREDDS
data server (a Java web application). While scaling out server
infrastructure with THREDDS is possible, it requires both
sufficient hardware and significant configuration knowledge.
The pros and cons of wider usage of the ESGF-VA or sim-
ilar OPeNDAP-based tools and the consequential need for
server capacity, along with the issues surrounding configura-
tion, should form part of future ESGF discussions.

It is clear that the ESGF has evolved and will evolve.
Our work suggests that the ongoing evolution of the ESGF
needs to address not only indexing and data downloading
but also, where possible, the provision of direct data access
that is suitable for a wide range of use cases. Such support
may include giving modelling centres good guidance on
how to chunk and organise their data beyond just relying on
CMOR as not all centres use CMOR. Despite the focus of
this work being on OPeNDAP, NcML, and Kerchunk, future
work will involve the evaluation and assessment of other
lightweight data servers and metadata file formats. These
will allow better decision making in the process of providing
both remote data access and the generation of ARD. Ex-
amples include but Xpublish (https://github.com/xpublish-
community/xpublish, last access: 14 October 2024)
and DMR++ (https://opendap.github.io/DMRpp-
wiki/DMRpp.html, last access: 14 October 2024).

Appendix A: NcML example

Listing A1.

Geosci. Model Dev., 18, 2461–2478, 2025 https://doi.org/10.5194/gmd-18-2461-2025

https://github.com/xpublish-community/xpublish
https://github.com/xpublish-community/xpublish
https://opendap.github.io/DMRpp-wiki/DMRpp.html
https://opendap.github.io/DMRpp-wiki/DMRpp.html


E. Cimadevilla et al.: The ESGF Virtual Aggregation (CMIP6 v20240125) 2473

Listing A1.

https://doi.org/10.5194/gmd-18-2461-2025 Geosci. Model Dev., 18, 2461–2478, 2025



2474 E. Cimadevilla et al.: The ESGF Virtual Aggregation (CMIP6 v20240125)

Listing A1.

Geosci. Model Dev., 18, 2461–2478, 2025 https://doi.org/10.5194/gmd-18-2461-2025



E. Cimadevilla et al.: The ESGF Virtual Aggregation (CMIP6 v20240125) 2475

Listing A1. NcML generated by the ESGF Virtual Aggregation.

https://doi.org/10.5194/gmd-18-2461-2025 Geosci. Model Dev., 18, 2461–2478, 2025



2476 E. Cimadevilla et al.: The ESGF Virtual Aggregation (CMIP6 v20240125)

Code availability. The code of the ESGF-VA is open source and
freely downloadable at https://doi.org/10.5281/zenodo.14203625
(Cimadevilla et al., 2024). The repository contains the Python
scripts that query the ESGF and that generate the local database
(search.py) and the NcMLs (ncmls.py). Required dependencies are
listed in the environment.yml file. A tutorial on locating and access-
ing ESGF-VA datasets is provided in the form of a Jupyter Note-
book (demo.ipynb). Other notebooks available in the repository pro-
vide the reproducibility of the figures and the performance results
of the study (model_evaluation.ipynb, performance.ipynb, and vali-
dation.ipynb). Kerchunk files used in this study may be found in the
kerchunks folder. Finally, a sample THREDDS catalogue for those
interested in setting up a THREDDS data server is included in the
content directory. For further details, refer to the README.md of
the repository.

Data availability. An archive of the raw NcMLs of the
ESGF-VA (CMIP6 v20240125) dataset is available at
https://doi.org/10.5281/zenodo.14987358 (Cimadevilla, 2025).

Supplement. The supplement related to this article is available on-
line at https://doi.org/10.5194/gmd-18-2461-2025-supplement.
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