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Abstract. The development, implementation, and evalu-
ation of a new weakly coupled ocean data assimilation
(WCODA) system for the fully coupled Energy Exascale
Earth System Model version 2 (E3SMv2) utilizing the four-
dimensional ensemble variational (4DEnVar) method are
presented in this study. The 4DEnVar method, based on the
dimension-reduced projection four-dimensional variational
(DRP-4DVar) approach, replaces the adjoint model with
the ensemble technique, thereby reducing computational de-
mands. Monthly mean ocean temperature and salinity data
from the EN4.2.1 reanalysis are integrated into the ocean
component of E3SMv2 from 1950 to 2021 with the goal of
providing realistic initial conditions for decadal predictions
and predictability studies. The performance of the WCODA
system is assessed using various metrics, including the re-
duction rate of the cost function, root mean square error
(RMSE) differences, correlation differences, and model bi-
ases. Results indicate that the WCODA system effectively
assimilates the reanalysis data into the climate model, consis-
tently achieving negative reduction rates of the cost function
and notable improvements in RMSE and correlation across
various ocean layers and regions. Significant enhancements
are observed in the upper ocean layers across the majority
of global ocean regions, particularly in the north Atlantic,
north Pacific, and Indian Ocean. Model biases in sea surface
temperature and salinity are also substantially reduced. For
sea surface temperature, cold biases in the north Pacific and
north Atlantic are diminished by about 1–2 °C, and warm bi-
ases in the Southern Ocean are corrected by approximately
1.5–2.5 °C. In terms of salinity, improvements are observed
with bias reductions of about 0.5–1 psu in the north Atlantic

and north Pacific and up to 1.5 psu in parts of the Southern
Ocean. The ultimate goal of the WCODA system is to ad-
vance the predictive capabilities of E3SM for subseasonal to
decadal climate predictions, thereby supporting research on
strategic energy-sector policies and planning.

1 Introduction

Climate predictions are essential for understanding and miti-
gating the impacts of climate variability and change. The ac-
curacy and reliability of climate predictions depends strongly
on the initialization of the climate models, which requires
realistic and high-quality initial conditions (ICs) for skillful
predictions (Dirmeyer et al., 2018). Data assimilation (DA)
techniques are important for providing realistic ICs by inte-
grating observational data into the model, thereby enhancing
the predictive capabilities of climate models (Tardif et al.,
2014). The efficacy of DA techniques has been demonstrated
through enhanced predictability on subseasonal to decadal
timescales (Zhou et al., 2024).

Numerous studies have focused on the initialization of cli-
mate models for decadal predictions (Branstator and Teng,
2012; Polkova et al., 2019). Climate models integrate mul-
tiple components, including the atmosphere, ocean, sea ice,
and land. For the initialization of climate models in decadal
predictions, DA methods can be categorized into uncoupled
data assimilation and coupled data assimilation (CDA). In the
uncoupled method, DA is performed independently within
the uncoupled atmosphere, land, and ocean models rather
than in a coupled model. The optimal analyses from these
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uncoupled models are then integrated together to establish
the ICs for the climate model’s predictions (Yao et al., 2021).
For example, some studies directly utilize existing reanaly-
sis data to initialize climate models for decadal predictions
(Yeager et al., 2012; Tian et al., 2021). Nevertheless, the un-
coupled DA method may lead to imbalances between dif-
ferent model components, potentially inducing initial shocks
and diminishing the reliability of climate predictions (Smith
et al., 2015; Zhang et al., 2020). Therefore, there is a grow-
ing interest in exploring and developing CDA methods to
enhance the coherence and accuracy of the ICs for climate
predictions.

Many research groups and institutions are actively en-
gaged in the development and refinement of CDA methods.
In CDA, the assimilation process is conducted directly within
a coupled model. Compared to uncoupled DA, CDA pro-
vides balanced ICs that are more coordinated across multiple
components of coupled models (Zhang et al., 2014). Previ-
ous studies have demonstrated that CDA enhances interan-
nual climate predictions more effectively than uncoupled DA
(Zhang et al., 2005; Shi et al., 2022). CDA techniques are di-
vided into weakly coupled data assimilation (WCDA) and
strongly coupled data assimilation (SCDA). In the WCDA
system, reanalysis data are assimilated independently within
each component of the coupled model. However, through the
coupled model integration, reanalysis information from one
component is transmitted to other components through inter-
actions across multiple systems (Browne et al., 2019; He et
al., 2020a). Sequential DA is distinctly partitioned into two
primary stages: the analysis and forecast steps. During the
WCDA analysis step, reanalysis information from one com-
ponent cannot directly influence other components due to
the lack of cross-component background error covariances.
Nonetheless, the coupled model is employed during the fore-
cast step to transfer reanalysis information from a single
component to others through the integration of the coupled
system (Laloyaux et al., 2016; Carrassi et al., 2018). The pri-
mary distinction between WCDA and uncoupled DA is the
use of the coupled model during the forecast step (Zhang
et al., 2020). Recent studies have developed WCDA sys-
tems that separately assimilate reanalysis data from the at-
mosphere (Li et al., 2021), land (Shi et al., 2024), and ocean
(He et al., 2017) into coupled models. On the other hand,
SCDA employs cross-component background error covari-
ances during the analysis step to directly exert an instanta-
neous impact of reanalysis information from a single compo-
nent on the state variables of other components, treating all
Earth system components as an integrated whole (Sluka et
al., 2016). Moreover, SCDA also allows the reanalysis infor-
mation from a single component to propagate to other com-
ponents during the forecast step through the coupled model
integration (Yoshida and Kalnay, 2018). Therefore, SCDA
offers potential benefits, including reduced model drift and
enhanced forecast accuracy (Smith et al., 2015). Neverthe-
less, the development of SCDA presents considerable obsta-

cles, primarily due to the complexity of accurately establish-
ing cross-component background error covariances (Penny
and Hamill, 2017). As a result, most existing CDA systems
continue to employ the WCDA systems.

This study presents the development and implementation
of the weakly coupled ocean data assimilation (WCODA)
system for the fully coupled Energy Exascale Earth System
Model version 2 (E3SMv2), utilizing the four-dimensional
ensemble variational (4DEnVar) method. The 4DEnVar
method is based on the dimension-reduced projection four-
dimensional variational (DRP-4DVar) approach, notable for
its innovative application of 4DVar by replacing the adjoint
model with the ensemble approach (Wang et al., 2010). Pre-
vious studies have shown that 4DVar-based methods outper-
form simpler schemes (e.g., nudging or 3DVar) by maintain-
ing dynamical consistency with the model and minimizing
initial shocks in the forecasts (Sugiura et al., 2008; Zhang
et al., 2020). In the WCODA system, monthly mean ocean
temperature and salinity data from the EN4.2.1 reanalysis
are incorporated into the ocean component of E3SMv2 to
provide realistic ICs for decadal predictions. Although the
assimilation process during the analysis step is conducted in-
dependently within the ocean component, the fully coupled
E3SMv2 model is employed during the forecast step to trans-
mit reanalysis information from the ocean to other compo-
nents (e.g., atmosphere and land) through multi-component
interactions. Consequently, the reanalysis information assim-
ilated into the ocean ICs affects other model components
through the integration of the fully coupled model, empha-
sizing the operation of this system as a WCDA system. The
primary objective of this WCODA system is to advance our
understanding of the ocean’s role in climate predictability.
Shi et al. (2024) implemented a weakly coupled land data as-
similation in E3SMv2 for isolating the land’s role in climate
predictability. By improving the accuracy of ICs for both
land and ocean, we aim to advance the predictive capabili-
ties of E3SM for decadal predictions, ultimately supporting
research on energy-sector policy and planning.

This study presents and evaluates the 4DEnVar-based
WCODA system for E3SMv2. Section 2 provides a detailed
description of the E3SMv2 model, the ocean reanalysis data,
and the framework for implementing the 4DEnVar-based
WCODA system. Section 3 evaluates the assimilation per-
formance of the WCODA system. Finally, Sect. 4 provides
the conclusions.

2 Methodology

2.1 E3SM overview

Developed by the US Department of Energy, the Energy Ex-
ascale Earth System Model version 2 (E3SMv2) is a state-
of-the-art climate model to advance our understanding of cli-
mate variability and its future changes (Leung et al., 2020).
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E3SMv2 integrates multiple components to simulate the
complex interactions within the climate system, encompass-
ing the atmospheric, sea ice, ocean, land, and river transport
components. The atmospheric component (EAMv2) repre-
sents turbulence, clouds, and aerosol processes (Zhang et al.,
2023) and features a nonhydrostatic dynamical core (Taylor
et al., 2020). It operates on a dynamic grid with a horizontal
resolution of approximately 110 km and includes 72 verti-
cal layers that extend to the stratosphere (Golaz et al., 2022).
The sea ice component (MPAS-SI) simulates the formation,
evolution, and melting of sea ice, with detailed thermody-
namics and dynamics processes (Turner et al., 2022). The
ocean component (MPAS-O) is responsible for modeling the
physical state and biogeochemical processes of the ocean, in-
cluding detailed simulations of ocean currents, temperature,
and salinity (Reckinger et al., 2015). MPAS-O operates at
a horizontal resolution of ∼ 60 km in the mid-latitudes and
∼ 30 km at the Equator and poles, differing from the atmo-
spheric model’s resolution of 110 km. It is configured with
60 vertical layers, with finer resolution (∼ 10 m) near the
surface and coarser resolution (∼ 200 m) at depth. The ver-
tical mixing scheme employed is the K-profile parameteri-
zation, as described by Van Roekel et al. (2018). The land
component (ELMv2) encompasses various land surface pro-
cesses, including biophysical processes, soil processes, and
surface hydrology (Golaz et al., 2019). These simulations
are crucial for understanding land–atmosphere interactions
and their impact on climate variability. Additionally, the river
transport component (MOSARTv2) simulates the hydrolog-
ical dynamics of water flow through river basins, providing
insights into freshwater resources, flood risks, and sediment
transport (Li et al., 2013). The CPL7 coupler dynamically
integrates all five components by regulating the exchange of
energy, water, and momentum fluxes between different com-
ponents (Craig et al., 2012). A comprehensive evaluation of
the E3SMv2 model is presented by Golaz et al. (2022).

2.2 Ocean reanalysis dataset

The ocean temperature and salinity data in this study are de-
rived from the EN4.2.1 ocean reanalysis dataset. Produced
by the Met Office Hadley Centre, the EN4.2.1 product is de-
veloped based on quality-controlled ocean temperature and
salinity profiles from four input sources: Argo, ASBO (Arc-
tic Synoptic Basin-Wide Oceanography), GTSPP (Global
Temperature and Salinity Profile Programme), and WOD09
(World Ocean Database) (Good et al., 2013). The EN4.2.1
dataset includes observations from a wide range of profiling
instruments, such as Argo floats, expendable bathythermo-
graphs (XBTs), and mechanical bathythermographs (MBTs)
(Chen et al., 2020). According to Good et al. (2013), obser-
vations in EN4.2.1 are most abundant in the upper 100 m,
with vertical resolution refined to ∼ 1 m in the top 100 m.
Spatially, data density is high in regions such as the north At-
lantic and western Pacific but decreases significantly in high-

latitude and deep-ocean regions. This distribution in data
availability influences the assimilation results. Areas with
denser observational coverage, such as the upper north At-
lantic, are expected to show greater improvements through
assimilation, while regions with sparse observations may ex-
hibit limited improvements.

To initialize decadal climate predictions, monthly mean
ocean temperature and salinity data from the EN4.2.1 reanal-
ysis are assimilated into the fully coupled E3SMv2 model
across all 60 ocean layers from 1950 to 2021. The choice
to utilize monthly mean reanalysis data is based on two
primary reasons: firstly, data with higher temporal resolu-
tion (less than 1 month) might produce unwanted noise, po-
tentially compromising the accuracy of decadal predictions.
Secondly, the initialization for decadal predictions requires
assimilation cycles spanning several decades, and assimilat-
ing complex, real-time observations over such extended peri-
ods would be computationally prohibitive. Therefore, in line
with most existing studies that use reanalysis data for ini-
tializing decadal predictions (Pohlmann et al., 2019; Tian et
al., 2021), this study assimilates the monthly mean EN4.2.1
reanalysis through the WCODA system for decadal predic-
tions.

2.3 Implementation of the 4DEnVar-based WCODA
system

The 4DEnVar method employed by the WCODA system
is derived from the DRP-4DVar assimilation approach. The
DRP-4DVar technique addresses the high computational de-
mands of traditional 4DVar by employing an ensemble ap-
proach rather than utilizing the adjoint model (Wang et
al., 2010). Zhu et al. (2022) demonstrated that the DRP-
4DVar method significantly reduces computational time by
approximately 50 % compared to traditional 4DVar systems.
This advanced method enhances computational efficiency by
projecting the high-dimensional state space onto a lower-
dimensional subspace defined by an ensemble of historical
samples. DRP-4DVar achieves an optimal solution within
this sample space by aligning observations with model-
generated historical time series over a four-dimensional win-
dow (Wang et al., 2010). The DRP-4DVar approach has been
effectively implemented across multiple numerical models,
demonstrating its accuracy and effectiveness (Zhao et al.,
2012; Shi et al., 2021; Zhu et al., 2022). A comprehensive
explanation of the DRP-4DVar method is provided by Wang
et al. (2010). The DRP-4DVar method has also been imple-
mented in a weakly coupled land data assimilation system in
E3SMv2 (Shi et al., 2024).

Figure 1 illustrates the workflow of the 4DEnVar-based
WCODA system utilizing the DRP-4DVar approach within
the fully coupled E3SMv2 model. The DRP-4DVar algo-
rithm requires three primary inputs: observational innovation
(ỹ′obs), model background (xb), and perturbation samples. Ini-
tially, a fully coupled E3SMv2 simulation is conducted for
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Figure 1. Workflow of the 4DEnVar-based WCODA system utilizing the DRP-4DVar method for the E3SM model (modified from Fig. 1 in
Shi et al., 2024).

Figure 2. Schematic diagram of the DRP-4DVar assimilation process within the 4DEnVar-based WCODA system for E3SM. The model
background (xb) includes atmospheric (xatm

b ), land (xlnd
b ), ice (xice

b ), river (xriver
b ), and oceanic (xocn

b ) components of the fully coupled
E3SMv2. The observational background (yocn

b ) is defined by the model outputs of monthly mean ocean temperature (T m
b ) and salinity (Sm

b )
using xb as the initial state. The ocean observation (yocn

obs ) represents the observed monthly mean ocean temperature (T m
obs) and salinity (Sm

obs)
from the EN4.2.1 reanalysis. The observational innovation (y′obs) is calculated as the difference between the observed ocean temperature and
salinity (yocn

obs ) and the model’s observational background (yocn
b ). x′a denotes the analysis increment. The optimal analysis (xa) encompasses

both the optimal analysis of the ocean component (xocn
a ) and the background states of other components. This optimal analysis (xa) is used

as the initial condition to produce the next month’s forecast, transferring ocean reanalysis information to other components.

1 month to generate both the model background (xb) and the
observational background (yb). Specifically, the model back-
ground (xb) refers to the monthly initial condition prior to
the assimilation, while the observational background (yb) de-
notes the monthly mean model output. Subsequently, the ob-
servational innovation (ỹ′obs) is calculated as the difference
in monthly mean ocean salinity and temperature between
the EN4.2.1 reanalysis (yobs) and the monthly mean model
output (yb). From 100 years of balanced pre-industrial con-
trol (PI control) simulations, 30 sets of monthly mean fore-
cast samples (ỹ′) are selected based on their highest corre-

lations with the observational innovation. More specifically,
the monthly mean forecast samples are computed by remov-
ing the long-term PI control monthly climatology from the
selected PI control monthly mean output, which is then di-
vided by the observational error. Correspondingly, 30 sets of
monthly initial condition samples (x′) for the monthly mean
forecast samples are derived. The analysis increment is cal-
culated within the perturbation samples, which consist of 30
monthly initial condition samples and their corresponding
monthly mean forecast samples. Due to the limited number
of samples and to diminish the influence of spurious corre-
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lations between distant grid points, the localization proce-
dure is incorporated into the assimilation process (Wang et
al., 2018). Finally, the DRP-4DVar algorithm solves for the
analysis increment within the sample space, which is then
added to the model background (xb) to produce the optimal
analysis (xa).

Figure 2 delineates the assimilation process using the
DRP-4DVar method within the 4DEnVar-based WCODA
system for the fully coupled E3SMv2 model. This assimi-
lation process includes both the analysis and forecast steps
through each 1-month assimilation window. In the initial
stage, the fully coupled E3SMv2 model employs the model
background (xb) as the monthly initial condition to run for
1 month, producing the monthly mean model outputs for
ocean temperature and salinity (yocn

b ). During the analy-
sis step, the observational innovation (y′obs) is computed by
comparing the discrepancies between the EN4.2.1 reanaly-
sis (yocn

obs ) and the model’s monthly mean outputs (yocn
b ) for

ocean temperature and salinity. The DRP-4DVar algorithm
then utilizes this observational innovation and the PI control
samples to compute the optimal analysis of the ocean compo-
nent (xocn

a ) at the start of the assimilation window. During the
subsequent forecast step, the optimal analysis (xa) includes
both the optimal ocean analysis (xocn

a ) and the background
states of other components prior to assimilation. This opti-
mal analysis serves as the new initial condition for the fully
coupled E3SMv2 model to run for 1 month to generate the
next month’s forecast. During this fully coupled model in-
tegration, reanalysis information from the ocean component
is transmitted to the other model components through inter-
actions across multiple systems. Although the assimilation
is directly applied to the ocean component, the use of the
initial conditions of all components from the optimal analy-
sis and the fully coupled climate model during the forecast
step ensures that the reanalysis information from the optimal
ocean analysis influences other components through inter-
actions across multiple systems. Therefore, according to the
definition of the WCDA system from previous studies (Car-
rassi et al., 2018; Zhou et al., 2024), this assimilation system
is designated as the WCODA system. Using the same DA
approach, Shi et al. (2024) documented the implementation
of DRP-4DVar as a weakly coupled land data assimilation
system in E3SMv2.

2.4 Experiment design

Two distinct numerical experiments are performed in this
study to assess the effectiveness of ocean data assimilation
within the 4DEnVar-based WCODA system. (1) The control
simulation (CTRL) is a free-running fully coupled integra-
tion over a 72-year period from 1950 to 2021, driven exclu-
sively by observed external forcings (e.g., solar radiation and
greenhouse gas and aerosol concentrations). The observed
external forcings, prescribed according to the CMIP6 pro-
tocol (Eyring et al., 2016), directly influence the atmospheric

Figure 3. Temporal variation of the reduction rate of the cost func-
tion (in %) in the WCODA system based on the 4DEnVar method
from 1950 to 2021.

component and subsequently affect other components (e.g.,
land and ocean) through their coupling with the atmosphere.
This free-running simulation allows for unrestricted interac-
tions among the various Earth system components, includ-
ing the atmosphere, land, and ocean. The CTRL simulation
serves as a baseline for evaluating the assimilation effective-
ness of the WCODA system. (2) The assimilation experiment
(ASSIM) incorporates monthly mean ocean temperature and
salinity data from the EN4.2.1 reanalysis into the ocean com-
ponent of the fully coupled E3SMv2 model across all 60
ocean layers spanning the entire ocean depth. This assim-
ilation is conducted using a 1-month assimilation window,
covering the same 72-year period from 1950 to 2021. The
assimilation run is initialized directly from the historical run
in 1950 using the fully coupled state at the start of the simula-
tion. At the beginning of each monthly assimilation window,
the EN4.2.1 reanalysis information is incorporated into the
ocean state variables, after which the fully coupled model
continues with free integration. During this free integration
process, the reanalysis information assimilated into the ocean
ICs influences other model components through interactions
across multiple systems. The historical external forcings for
both the ASSIM and CTRL experiments are derived from the
CMIP6 protocol (Eyring et al., 2016).

2.5 Assessment criteria

To comprehensively evaluate the effectiveness of the
WCODA system, multiple quantitative metrics are em-
ployed, including the root mean square error (RMSE), cor-
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Figure 4. Spatial patterns of root mean square error (RMSE) differences in ocean temperature (in °C) between ASSIM and CTRL across nine
ocean layers from 1950 to 2021. The RMSE differences are shown for nine different ocean depths: (a) 5 m, (b) 45 m, (c) 85 m, (d) 135 m,
(e) 327 m, (f) 528 m, (g) 708 m, (h) 879 m, and (i) 1106 m. Dotted areas represent statistical significance at the 95 % confidence level.

relation coefficient, and reduction rate of the cost function.
The reduction rate of the cost function serves as a fundamen-
tal measure to assess the assimilation system’s accuracy and
is calculated using the formula:

1
2 (yobs− ya)

T R−1(yobs− ya)−
1
2 (yobs− yb)

T R−1(yobs− yb)

1
2 (yobs− yb)T R−1(yobs− yb)

. (1)

Here, yobs denotes the EN4.2.1 reanalysis, yb represents the
pre-assimilation observational background, ya indicates the
post-assimilation monthly mean model analyses, and R de-
notes the observation error covariance matrix. In this study,
R is assumed to be diagonal, and its diagonal elements are
statistically computed based on the variance of the EN4.2.1
ocean temperature and salinity data. The characteristics of R
directly influence the assimilation process, where larger val-
ues reduce the relative weight of the EN4.2.1 reanalysis and
smaller values increase it. Negative values of the reduction
rate of the cost function signify the successful integration
of reanalysis data into the model’s state variables. To vali-
date the correctness of this assimilation system, the EN4.2.1

reanalysis continues to be utilized as the reference data for
evaluation.

3 Results

3.1 Reduction rate of the cost function

In Fig. 3, the monthly variation in the reduction rate of the
cost function for the 4DEnVar-based WCODA system is pre-
sented for the 72-year period from 1950 to 2021. As noted
earlier, negative values of the reduction rate of the cost func-
tion indicate the successful incorporation of reanalysis data
into the coupled model. However, the reduction rate is pre-
sented here as positive percentages to represent improve-
ments due to the assimilation. The reduction rate of the cost
function reaches 12.03 % in the first month. Over the entire
72-year period from 1950 to 2021, the average monthly re-
duction rate of the cost function is 4.20 % for all months in
ASSIM. This average reduction rate of 4.20 % is compara-
ble to the 4.4 % reduction rate reported by He et al. (2020a),
who used a similar 4DEnVar-based assimilation system in a
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Figure 5. Similar to Fig. 4 but for ocean salinity (in psu).

different climate model, further supporting the effectiveness
of the 4DEnVar approach. The initial sharp reduction rate of
the cost function reflects the rapid adjustments made by the
model to align with the reanalysis data. As the assimilation
progresses, subsequent iterations refine these adjustments,
resulting in a slower rate of reduction. More importantly, the
reduction rate of the cost function remains below the zero
line in each month of assimilation, indicating consistent im-
provements due to the assimilation. These findings demon-
strate the successful implementation of the WCODA system,
confirming that the EN4.2.1 reanalysis data have been effec-
tively integrated into the fully coupled model.

3.2 Performance of RMSE differences

Figure 4 illustrates the RMSE differences in monthly ocean
temperature between ASSIM and CTRL from 1950 to 2021
across nine ocean layers. Negative values indicate a reduc-
tion in RMSE, signifying improvements due to assimilation,
while positive values denote an increase in RMSE, indicat-
ing degradations. Overall, the assimilation from the WCODA
system leads to marked improvements in ocean tempera-
ture simulations across most global regions. Both upper and
deeper ocean layers exhibit widespread negative RMSE dif-

ferences, indicating improvements after assimilation, partic-
ularly in the tropical and mid-latitude ocean regions. Notable
regions of improvement include the north Atlantic, tropical
and north Pacific, and parts of the Southern Ocean. How-
ever, increased RMSE values are observed near strong ocean
currents and upwelling regions, such as the Gulf Stream, Ag-
ulhas Current, and California coast. These regions are char-
acterized by strong horizontal gradients and mesoscale vari-
ability, which are not well captured by MPAS-O at relatively
coarse resolution and hence present challenges for the as-
similation system and likely contribute to diminished perfor-
mance. In the upper ocean layers, RMSE performance is bet-
ter during winter compared to summer in some regions, such
as the tropical Pacific (Figs. A1 and A2). In the deeper layers,
the assimilation still shows notable improvements in regions
such as the north Pacific and parts of the Southern Ocean,
though with more pronounced degradation observed in the
equatorial Atlantic and parts of the Indian Ocean. This degra-
dation in the deeper layers may be attributed to larger obser-
vational errors in these regions or the inherent complexity of
deeper ocean processes that pose challenges for assimilation
(Wunsch and Heimbach, 2007; Balmaseda et al., 2013).
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Figure 6. Spatial patterns of the differences between ASSIM and CTRL for their correlations of ocean temperature with observations across
nine ocean layers. Dotted regions indicate statistical significance at the 95 % confidence level. Panels (a) to (i) represent different ocean
depths: (a) 5 m, (b) 45 m, (c) 85 m, (d) 135 m, (e) 327 m, (f) 528 m, (g) 708 m, (h) 879 m, and (i) 1106 m.

The RMSE differences for ocean salinity between AS-
SIM and CTRL across various ocean layers are presented in
Fig. 5. The majority of ocean regions display notable im-
provements for ocean salinity after assimilation. In the upper
ocean layers, significant enhancements are particularly evi-
dent in the north Pacific and parts of the north Atlantic. How-
ever, certain areas exhibit degradation in RMSE, particularly
in parts of the south Pacific. In the deeper layers, the im-
provements are less extensive but remain evident in regions
such as parts of the north Atlantic and north Pacific. How-
ever, RMSE degradation becomes notable in the equatorial
Atlantic and parts of the Indian Ocean, highlighting the need
for further improvements in these regions. The degradation
in the deeper ocean layers can be attributed to two main fac-
tors: observational data limitations and challenges in repre-
senting deep-ocean processes in the model. For the EN4.2.1
reanalysis, the coverage and quality of observations tend to
decrease with depth, potentially resulting in greater uncer-
tainties in the deep ocean. This sparse observational cover-
age limits the constraints that assimilation can impose on the
model state. Furthermore, in the E3SMv2 model, the com-

plexity of simulating deep-ocean processes, such as vertical
mixing and bottom water formation, may contribute to biases
that are difficult to correct through assimilation.

3.3 Performance of correlation differences

Figure 6 illustrates the differences between ASSIM and
CTRL in their correlations with observed monthly ocean
temperature from 1950 to 2021 across nine ocean layers.
The seasonal cycle and linear trend have been removed be-
fore computing the correlations. Positive values denote an
increase in correlation following assimilation, indicating im-
provements, whereas negative values suggest a decrease in
correlation. In the upper ocean layers, the assimilation has
led to improved correlations for ocean temperature across
many ocean regions. Notably, the equatorial Pacific Ocean
exhibits substantial improvements, indicating potential en-
hancements in modeling phenomena such as the El Niño–
Southern Oscillation (ENSO). Further analysis of the winter
Niño 3.4 index (Fig. A3) confirms that the assimilation im-
proves the representation of ENSO variability, with the cor-
relation coefficient increasing from 0.06 in CTRL to 0.79 in
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Figure 7. Similar to Fig. 6 but for ocean salinity.

ASSIM. Moreover, parts of the north Pacific also exhibit no-
ticeable improvements. In the deeper layers, improvements
are observed in the western Pacific and parts of the South-
ern Ocean. However, certain areas exhibit diminished per-
formance, possibly due to sparse observational coverage in-
troducing higher uncertainty into the assimilation process or
imbalances between ocean state variables during the assimi-
lation (Edwards et al., 2015; He et al., 2020b). In summary,
ASSIM has enhanced ocean temperature simulations by re-
ducing RMSE (Fig. 4) and improving correlation (Fig. 6)
across many ocean regions, with notable improvements in
the upper ocean layers, including the equatorial Pacific and
north Pacific.

The correlation differences for ocean salinity between AS-
SIM and CTRL across various ocean layers are depicted in
Fig. 7. In the upper ocean layers, the majority of global ocean
regions exhibit marked improvements for ocean salinity, with
positive correlation differences dominating. Noteworthy im-
provements are evident in the tropical Pacific, north Pacific,
and parts of the north Atlantic. In the deeper layers, the im-
provements in correlation become more localized, primarily
concentrated in the western Pacific and parts of the Southern
Ocean. Meanwhile, reductions in correlations are observed in

parts of the equatorial Pacific and the south Atlantic, indicat-
ing the need for further improvements. Overall, ASSIM has
improved simulations of ocean salinity by reducing RMSE
(Fig. 5) and improving correlation (Fig. 7) in many ocean
regions, with notable enhancements in the upper ocean lay-
ers, particularly in parts of the north Pacific and the western
Pacific.

3.4 Vertical and temporal analysis of RMSE and bias
for ocean temperature and salinity

Figure 8 presents the vertical profiles of the globally av-
eraged RMSE of ocean temperature and salinity compar-
ing ASSIM and CTRL. Negative values in the RMSE dif-
ference indicate a reduction in the global mean RMSE due
to assimilation. For ocean temperature, the RMSE differ-
ences are relatively small but become more negative within
the upper 85 m of the ocean. As the depth increases beyond
135 m, the RMSE differences become significantly negative,
indicating a marked improvement in ocean temperature af-
ter assimilation. Unlike temperature, the salinity RMSE dif-
ferences show substantial deviations in the upper 155 m of
the ocean, indicating notable improvements. The RMSE dif-
ferences gradually decrease as depth increases from 155 to
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Figure 8. Vertical profiles of the globally averaged RMSE differ-
ences between ASSIM and CTRL for (a) ocean temperature (in °C)
and (b) ocean salinity (in psu) over the period from 1950 to 2021.

305 m, but a slight increase is observed between 305 and
1106 m. This suggests that the assimilation of salinity data
has a more pronounced effect in the upper ocean than in
deeper layers, possibly due to larger observational errors in
these layers (Jacobs et al., 2021; Wang et al., 2015). The ex-
tended profiles in Fig. A4 indicate that below 1106 m, the
RMSE differences between ASSIM and CTRL gradually de-
crease for both ocean temperature and salinity, suggesting the
limited impact of assimilation in the deeper layers. In sum-
mary, these results emphasize the capability of the WCODA
system to enhance the simulation accuracy for both ocean
temperature and salinity.

The temporal evolutions of the global mean bias and
RMSE for vertically averaged ocean temperature and salinity
in the top 1000 m are illustrated in Fig. 9. The temperature
bias (Fig. 9a) in CTRL is persistently positive, indicating a
systematic overestimation of ocean temperature. This over-
estimation in ocean temperature primarily originates from
depths below 300 m (Figs. A5 and A6). In contrast, AS-
SIM consistently reduces this bias, with values approach-
ing the zero line. Similarly, the temperature RMSE (Fig. 9b)
highlights a significant decrease in RMSE for ASSIM com-
pared to CTRL, reflecting a more accurate alignment with
observed temperature. For ocean salinity, the salinity bias
(Fig. 9c) reveals that CTRL maintains a consistent nega-
tive bias, suggesting an underestimation of ocean salinity.
This salinity bias in CTRL is already prominent in the upper
300 m (Figs. A5 and A6). However, ASSIM effectively miti-
gates this bias, bringing the bias values closer to the zero line.
Furthermore, the salinity RMSE (Fig. 9d) is notably lower
in ASSIM than CTRL, indicating enhanced model perfor-
mance and a closer match to observed salinity. Notably, it
takes approximately 10–15 years for the biases in both tem-
perature and salinity to stabilize near the zero line, reflecting
an adjustment period where the assimilation system equili-
brates. Overall, ASSIM exhibits superior performance rel-
ative to CTRL in reducing bias and RMSE for both ocean
temperature and salinity.

3.5 Climatological mean differences for sea surface
temperature and salinity

Figure 10 presents the climatological mean differences be-
tween CTRL and observation, as well as between ASSIM
and observation, for both sea surface temperature (SST) and
salinity (SSS). Pronounced cold biases are evident in the SST
difference between CTRL and observation (Fig. 10a), partic-
ularly in the tropical and north Pacific, north Atlantic, and
parts of the Indian Ocean. Significant warm biases are ob-
served in the Southern Ocean and parts of the south Atlantic.
In contrast, these SST biases found in CTRL are substan-
tially reduced by ASSIM (Fig. 10b), with cold biases in the
north Pacific and north Atlantic diminished by approximately
1–2 °C and warm biases in the Southern Ocean corrected
by about 1.5–2.5 °C. The SSS difference between CTRL
and observation highlights a global pattern of salinity biases
(Fig. 10c). The CTRL simulation generally underestimates
salinity across most global oceans, indicating a widespread
lower salinity. This fresh bias is particularly pronounced in
the north Atlantic and north Pacific. Notably, in the Mediter-
ranean Sea, CTRL exhibits a large positive salinity bias ex-
ceeding 2.5 psu. Compared with CTRL, ASSIM significantly
reduces the overall fresh biases in CTRL (Fig. 10d). Notable
improvements are observed in the north Atlantic and north
Pacific, where salinity biases are reduced by approximately
0.5–1 psu, and in parts of the Southern Ocean, where reduc-
tions reach up to 1.5 psu. In summary, ASSIM demonstrates
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Figure 9. Temporal variations in the global mean bias (a, c) and RMSE (b, d) for ocean temperature (in °C) and salinity (in psu) averaged
over the upper 1000 m from 1950 to 2021. The red lines represent ASSIM, while the blue lines represent CTRL.

marked improvements in both SST and SSS biases compared
to CTRL, emphasizing the importance and effectiveness of
the WCODA system in enhancing model accuracy and relia-
bility.

4 Conclusions

This study documents the development and assessment of
the new 4DEnVar-based WCODA system in the fully cou-
pled E3SMv2 model, employing the DRP-4DVar method.
The DRP-4DVar approach significantly reduces computa-
tional demands by replacing the traditional adjoint model
with the ensemble technique. As a weakly coupled assimila-
tion system, the WCODA system independently assimilates
ocean reanalysis data within the ocean component during the
analysis step. However, during the subsequent forecast step,
the reanalysis information from the optimal ocean analyses is
propagated to other components of the Earth system through
interactions across multiple systems, thereby enhancing the
coherence of ICs across different components of the climate
model.

Monthly mean ocean temperature and salinity data from
the EN4.2.1 reanalysis are integrated into the ocean compo-
nent of E3SMv2 from 1950 to 2021, which can be used to
provide realistic ICs for decadal climate predictions. The ef-
fectiveness of the WCODA system has been assessed using
several metrics, including the reduction rate of the cost func-

tion, RMSE differences, correlation differences, and model
biases. The reduction rate of the cost function consistently
shows negative values in each month over the 72-year pe-
riod, indicating successful assimilation of the EN4.2.1 re-
analysis data into the climate model. Compared to CTRL,
ASSIM achieves significant reductions in RMSE and en-
hancements in correlation in the upper ocean layers, with no-
table improvements observed in parts of the north Atlantic,
north Pacific, and Indian Ocean. ASSIM substantially miti-
gates model biases for SST and SSS observed in CTRL, par-
ticularly reducing cold biases in the north Pacific and north
Atlantic by approximately 1–2 °C, correcting warm biases in
the Southern Ocean by about 1.5–2.5 °C and significantly in-
creasing salinity estimates to reduce the model fresh biases
by approximately 0.5–1 psu in the north Atlantic and north
Pacific and up to 1.5 psu in parts of the Southern Ocean.

Despite these advancements, the WCODA system exhibits
limitations in certain regions, particularly in the deeper lay-
ers of the southern Pacific Ocean and south Atlantic. The
reliance on the EN4.2.1 product could pose limitations to
the assimilation process due to the sparse salinity observa-
tions and potential for static instabilities in data-sparse re-
gions. Reanalysis products such as ORAS5 and GLORYS
provide promising alternatives for mitigating these limita-
tions. Future efforts should explore incorporating these re-
analysis products into the WCODA system to improve the
assimilation performance in challenging areas. Furthermore,
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Figure 10. Climatological mean differences in sea surface temperature (a, b; in °C) and salinity (c, d; in psu) from 1950 to 2021. Panels (a)
and (c) show the differences between CTRL and observation, while (b) and (d) show the differences between ASSIM and observation. Dotted
areas indicate regions where the differences are statistically significant at the 95 % confidence level.

expanding the application of the WCODA system to other
components of the climate model, such as the atmosphere
and sea ice, could enhance overall predictive skill. These
developments are essential for providing more accurate and
reliable long-term climate predictions, ultimately aiding in
the formulation of energy-sector policies and management
strategies.
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Appendix A

Figure A1. Spatial patterns of RMSE differences between ASSIM and CTRL for ocean temperature (in °C) during summer. Results are
presented for nine different ocean layers: (a) 5 m, (b) 45 m, (c) 85 m, (d) 135 m, (e) 327 m, (f) 528 m, (g) 708 m, (h) 879 m, and (i) 1106 m.
Dotted areas represent statistical significance at the 95 % confidence level.

Figure A2. Similar to Fig. A1 but during winter.
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Figure A3. Time series of the winter Niño 3.4 index from 1950 to 2021 for the observation (black line), ASSIM (red line), and CTRL (blue
line). The correlation of the Niño 3.4 index with the observation in ASSIM and CTRL is also shown.

Figure A4. Vertical profiles of the globally averaged RMSE differences between ASSIM and CTRL for (a) ocean temperature (in °C) and
(b) ocean salinity (in psu) with depths from 1106 to 5375 m.

Geosci. Model Dev., 18, 2443–2460, 2025 https://doi.org/10.5194/gmd-18-2443-2025



P. Shi et al.: Development and evaluation of a new 4DEnVar-based WCODA system 2457

Figure A5. Temporal variations in the global mean bias (a, c) and RMSE (b, d) for ocean temperature (in °C) and salinity (in psu) averaged
over the upper 300 m. The red lines represent ASSIM, while the blue lines represent CTRL.

Figure A6. Similar to Fig. A5 but averaged over the upper 700 m.
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