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Abstract. Numerical forecast products with high temporal
resolution are crucial tools in atmospheric studies, allow-
ing for accurate identification of rapid transitions and subtle
changes that may be missed by lower-resolution data. How-
ever, the acquisition of high-resolution data is limited due
to excessive computational demands and substantial storage
needs in numerical models. Current deep learning methods
for statistical downscaling still require massive ground truth
with high temporal resolution for model training. In this pa-
per, we present a self-supervised framework for downscaling
atmospheric variables at arbitrary time resolutions by impos-
ing a temporal coherence constraint. Firstly, we construct an
encoder–decoder-structured temporal downscaling network
and then pretrain this downscaling network on a subset of
data that exhibit rapid transitions and are filtered out based
on a composite index. Subsequently, this pretrained network
is utilized to downscale the fields from adjacent time periods
and generate the field at the middle time point. By leveraging
the temporal coherence inherent in meteorological variables,
the network is further trained based on the difference be-
tween the generated field and the actual middle field. To track
the evolving trends in meteorological system movements, a
flow estimation module is designed to assist with generat-
ing interpolated fields. Results show that our method can ac-
curately recover evolution details superior to other methods,
reaching 53.7 % in the restoration rate on the test set. In ad-
dition, to avoid generating abnormal values and to guide the
model out of local optima, two regularization terms are in-
tegrated into the loss function to enforce spatial and tempo-
ral continuity, which further improves the performance by
7.6 %.

1 Introduction

In the field of meteorology, temporal downscaling refers to
the enrichment of time-series data by filling in the time gaps
in observations or numerical products, which can provide a
more continuous and comprehensive understanding of geo-
physical phenomena. Temporal downscaling in atmospheric
fields holds considerable importance, given its extensive ap-
plications across a wide range of domains. In climate re-
search, accurate temporal interpolation plays a vital role in
understanding long-term climate variations and assessing the
impacts of climate change (Papalexiou et al., 2018; Hawkins
and Sutton, 2011; Michel et al., 2021). By enriching his-
torical climate records with temporally enhanced data, re-
searchers gain a more detailed depiction of past climatic
events (Neukom et al., 2019; Barboza et al., 2022). For exam-
ple, the analysis of high-resolution data has revealed the re-
lationship between global temperature rise and the frequency
and intensity of extreme weather events, such as heat waves
and heavy rainfall (Seneviratne et al., 2012; Kajbaf et al.,
2022). In the field of weather forecasting, accurate temporal
downscaling significantly enhances the quality of short-term
weather predictions (McGovern et al., 2017; Requena et al.,
2021). Filling gaps between discrete atmospheric observa-
tions allows for accurate tracking and prediction of various
meteorological phenomena (Dong et al., 2013). For instance,
the ability to capture rapid changes in wind patterns using
high-resolution temporal data enables more accurate fore-
casting of severe storms, hurricanes, and their paths. This in-
formation is critical for issuing timely warnings, facilitating
evacuations, and minimizing the potential damage caused by
such weather events (Raymond et al., 2017). Furthermore,
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high-resolution time-series data aid in optimizing agricul-
tural practices, optimizing energy production from renewable
sources, and improving transportation planning by consider-
ing detailed weather patterns (Lawrimore et al., 2011; Lobell
and Asseng, 2017).

Current methods for temporally downscaling atmospheric
fields mainly fall into two categories: dynamical downscal-
ing and statistical downscaling. Starting from a specific ini-
tial condition, dynamical downscaling methods can interpo-
late or extrapolate atmospheric fields to a finer timescale by
integrating governing equations over time. Early pioneering
work by Lorenz (1963) established the basic framework of
using governing equations of fluid dynamics and thermody-
namics to predict future atmospheric states. Since then, mod-
els such as the Weather Research and Forecasting (WRF)
model (Skamarock et al., 2008) and the Community Earth
System Model (CESM) (Hurrell et al., 2013) have been de-
veloped, incorporating advanced physical parameterizations
and data assimilation techniques. These models have been
widely used in producing high-temporal-resolution datasets,
such as the European Centre for Medium-Range Weather
Forecasts Integrated Forecast System (ECMWF IFS) up-
dates (Bauer et al., 2015) and the High-Resolution Rapid
Refresh (HRRR) forecasts (Benjamin et al., 2016). How-
ever, the computational expense of these models is a sig-
nificant barrier, especially for high-resolution, long-term, or
global-scale studies (Maraun et al., 2010). In addition, these
models require highly accurate initial conditions. Studies by
Lorenz (1969) and Palmer et al. (2005) demonstrate how
uncertainties in initial conditions and model parameters can
lead to significant prediction errors over time, referred to as
the “butterfly effect”.

The limitations of dynamical downscaling methods have
prompted research into statistical alternatives, as they are
computationally less expensive and can be easily applied
across different spatial and temporal scales (Fowler et al.,
2007). These methods, often employing regression tech-
niques or machine learning algorithms, aim to identify and
exploit statistical relationships between low-resolution and
high-resolution data, such as weather generators (Lee et al.,
2012; Gutmann et al., 2011), heuristic approaches (Chen
et al., 2011; Liu et al., 2006), and autocorrelation (Mendes
and Marengo, 2010). However, as discussed by Maraun et
al. (2010), these methods often assume linear or local rela-
tionships in consecutive fields and may oversimplify com-
plex atmospheric dynamics.

In recent years, deep learning has been widely applied to
meteorology because of its potential to extract complex pat-
terns from large amounts of data (Reichstein et al., 2019). For
example, Kajbaf et al. (2022) conducted temporal downscal-
ing with artificial neural networks on precipitation time se-
ries with a 3 h time step. However, deep learning applications
in meteorology so far have generally relied on supervised
learning, requiring large amounts of high-resolution ground
truth data for training, which could be difficult to acquire

due to limited observation intervals, excessive computational
demands, and the high cost of data restoration (Bolton and
Zanna, 2019).

In summary, although advancements have been made in
temporal downscaling, there are still significant demands
for methods that can provide high temporal resolution
with better physical consistency; improved computational
efficiency; and, most importantly, less reliance on high-
resolution ground truth data. This motivates our study, which
aims to explore self-supervised learning as a potential solu-
tion to these challenges. As a form of unsupervised learning,
self-supervised learning is a machine learning method that
does not rely on supervision but leverages supervisory sig-
nals from the structure or properties inherent in data to train
deep neural networks (Liu et al., 2020). This approach can
leverage vast amounts of unlabeled data for training, thereby
significantly enhancing the model’s generalization capabili-
ties. It has been applied in diverse fields, including meteorol-
ogy science (Eldele et al., 2022; Pang et al., 2022; Wang et
al., 2022).

In this paper, we present TemDeep, the first self-
supervised framework for downscaling atmospheric fields at
arbitrary temporal resolutions based on deep learning. This
framework addresses this issue by imposing a temporal co-
herence constraint across time-series fields, which means
multiple consecutive fields themselves are leveraged as su-
pervision information to train the model. Firstly, we con-
struct an encoder–decoder-structured temporal downscaling
network, which is capable of performing interpolation at any
resolution (see Sect. 3.6), and pretrain this downscaling net-
work by designing a composite index to filter out a subset
of data with rapid changes (see Sect. 3.3). The pretraining
stage allows the model to initially capture general patterns
and features present in the atmospheric data. In the next step,
we utilize this pretrained model to downscale the fields from
adjacent time periods and subsequently infer the field at the
middle time point (see Sect. 3.4). Then, the model is fur-
ther trained based on the difference between the inferred field
and the actual middle field, according to the temporal coher-
ence inherent in atmospheric variables. To effectively track
the evolving trends in meteorological system movements, the
network adopts a flow estimation module to assist with syn-
thesizing fields. We have also designed a module to process
terrain data, which enables the model to better perceive the
prior information of the underlying surface. In experiments,
our method demonstrates effectiveness in accurate downscal-
ing various atmospheric variables at different temporal reso-
lutions, reaching over 53.7 % in the restoration rate, superior
to other existing unsupervised methods.

The structure of this paper is as follows: Sect. 3 presents
the details of the study area and data sources used in our
study. Further, we explain our methodology, specifically de-
tailing the entire training process and network architecture.
In Sect. 4, we conduct extensive experiments to assess the
model’s effectiveness. Finally, Sect. 5 summarizes the meth-

Geosci. Model Dev., 18, 2427–2442, 2025 https://doi.org/10.5194/gmd-18-2427-2025



L. Wang et al.: TemDeep 2429

ods and contributions made in this study and points out pos-
sible future works and applications.

2 Related work

2.1 Temporal downscaling

Time-series downscaling aims to enhance the temporal res-
olution of a given dataset, a process particularly relevant to
meteorology and climate science, where high-frequency ob-
servations or model outputs are often needed to capture rapid
atmospheric processes. In classical approaches, dynamical
downscaling has been extensively explored: running high-
resolution numerical weather prediction models (e.g., WRF,
CESM) from coarser initial fields (Skamarock et al., 2008;
Hurrell et al., 2013). Although this method accounts for com-
plex physical processes, it often incurs prohibitive computa-
tional costs, especially for large domains and long simula-
tions (Maraun et al., 2010). Consequently, statistical down-
scaling has emerged as a more computationally tractable al-
ternative. Early methods include regression-based techniques
that link coarse-scale predictors (e.g., large-scale geopoten-
tial height fields) to fine-scale variables of interest (Fowler
et al., 2007). However, such methods typically assume linear
or semi-parametric relationships, which may be insufficient
for capturing non-linear and non-stationary climate signals.
Similarly, approaches grounded in stochastic weather gener-
ators (Gutmann et al., 2011; Lee et al., 2012) or parametric
assumptions (Chen et al., 2011) can fail to represent abrupt
changes in meteorological variables, thereby producing over-
smoothed time series.

With the rise of machine learning, more sophisticated
models for time-series downscaling have surfaced. Super-
vised deep learning methods – such as feed-forward net-
works or long short-term memory (LSTM)-based architec-
tures – have been employed to predict higher-temporal-
resolution data from coarse inputs (Kajbaf et al., 2022).
These methods can outperform simple interpolation tech-
niques (e.g., linear or spline-based) by learning complex tem-
poral patterns. Nonetheless, a consistent challenge remains:
supervised approaches demand substantial ground truth at
high temporal resolution for training. In many regions and
periods, such data are either unavailable or too expensive to
generate using dynamical models.

Recent efforts to address these limitations include semi-
supervised or weakly supervised frameworks, where par-
tial or noisy high-resolution data are combined with addi-
tional constraints or complementary datasets (Bolton and
Zanna, 2019). In parallel, optical-flow-based interpolation
techniques have been explored for time-series data, espe-
cially in computer vision tasks, to estimate pixel- or voxel-
wise motion and generate intermediate frames (Reda et al.,
2019). While flow-based methods help track spatial shifts of
meteorological features, they often rely on small time-step

differences or still require some form of high-resolution ref-
erence for validation.

Thus, the demand remains for methods that (1) exploit
large volumes of low-resolution time-series data, (2) capture
non-linear transitions more effectively than simple averag-
ing, and (3) minimize or eliminate dependence on collocated
high-frequency labels. This gap motivates the exploration of
purely self-supervised strategies for time-series downscal-
ing, leveraging inherent structure in sequential meteorolog-
ical data.

2.2 Self-supervised learning

Self-supervised learning (SSL) has gained prominence in
computer vision and natural language processing (NLP) for
its ability to utilize large unlabeled datasets by creating “pre-
text tasks” that reveal intrinsic data structure (Liu et al.,
2020). Well-known image-based approaches such as Sim-
CLR (Chen et al., 2020) and MoCo (He et al., 2020) train
encoders by contrasting augmented views of the same image,
thereby learning robust feature representations without cate-
gory labels. Similarly, BYOL (Grill et al., 2020) employs a
bootstrapping strategy to learn latent representations through
a student–teacher framework, while CPC (van den Oord et
al., 2018) focuses on maximizing mutual information across
different parts of a sequence. These methods have proven
highly effective for downstream tasks like classification or
semantic segmentation, reducing the need for extensive la-
beled datasets.

In time-series contexts, SSL has likewise emerged as a
compelling direction. One line of work relies on contrastive
objectives: for example, splitting time-series data into seg-
ments and learning to discriminate between “true” tempo-
ral neighbors and randomly sampled distractors (Eldele et
al., 2022). Other strategies introduce masked reconstruction
tasks – analogous to masked language modeling in NLP – to
capture both local and global temporal dependencies (Pang
et al., 2022). These generic self-supervised approaches have
motivated new research in geoscience, where high-quality la-
beled data are typically sparse or expensive to obtain (Reich-
stein et al., 2019).

In meteorology, self-supervision has only recently begun
to receive attention. For instance, researchers have explored
spatio-temporal contrastive learning to classify weather sys-
tems (Wang et al., 2022). The advantage is the ability to
harness vast archives of reanalysis or satellite data, circum-
venting the need for comprehensive manual labeling. Despite
these advances, most SSL applications in meteorology focus
on classification or feature extraction rather than downscal-
ing. Adapting the paradigm of frame interpolation from the
vision domain to atmospheric fields remains non-trivial be-
cause meteorological variables exhibit domain-specific phys-
ical constraints (e.g., hydrostatic balance, mass conservation,
strong orographic influences).
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2.3 Self-supervised learning

Self-supervised learning (SSL) has emerged as a powerful
paradigm to leverage large-scale datasets without requiring
explicit labeling (Liu et al., 2020). In contrast to fully su-
pervised methods, SSL derives surrogate tasks from inher-
ent structures within the data – such as spatial coherence in
images or temporal consistency in sequential data – to gen-
erate “pseudo labels” for model training. In meteorological
applications, SSL is particularly attractive due to the mas-
sive volume and multivariate nature of atmospheric datasets,
which often lack the fine-grained annotations required for su-
pervised learning (Eldele et al., 2022; Pang et al., 2022).

Recent efforts have demonstrated the potential of SSL to
capture complex dynamics in atmospheric fields by creating
training objectives aligned with physical principles or tem-
poral continuity (Wang et al., 2022). Such approaches help
learn robust representations that generalize well across space
and time, enabling tasks like weather system classification,
anomaly detection, and data downscaling without the pro-
hibitive cost of manually generating high-resolution labels.
Moreover, self-supervision can naturally exploit the continu-
ity and multi-scale variability characteristic of climate and
weather processes, where adjacent temporal or spatial sam-
ples offer substantial information about underlying physics.
By systematically constructing self-supervised tasks around
these features, researchers can improve model fidelity and
reduce overreliance on synthetic datasets. In essence, SSL
paves the way for scalable and adaptive meteorological mod-
els, transforming abundant but under-labeled atmospheric
data into meaningful insights without heavy labeling require-
ments.

In fact, although atmospheric variables do not change lin-
early at different time steps, it is commonly believed that
their evolution is consistently guided by the same physical
laws and thus exhibit temporal coherence over time (Lorenz,
1969). In other words, for the state s (t) of any atmospheric
variable at any time t , it will transition from s (t − 1) to s (t)
following the mapping p guided by a set of physical laws, ex-
pressed as P : s (t − 1)→ s (t). Based on this invariant map-
ping constraint, time-series data themselves can be used as
supervision information to train the deep learning model.
To be specific, at any moment t , s (t) can be taken as the
truth value to train the mapping relationship from s (t − 1)
to s (t). As shown in the example in Fig. 1, for three con-
secutive field s(1), s(2), and s(3) with an interval of 1 h, if
the goal is to train a downscaling model M to fill the gaps at
1.5 and 2.5 h and obtain ŝ (1.5)=M(s (1) ,s (2)), ŝ (2.5)=
M(s (2) ,s (3)), after generating ŝ (2)=M

(
ŝ (1.5) , ŝ (2.5)

)
,

the existing s (2) can serve as supervision and the errors be-
tween ŝ (2) and s (2) be utilized as loss to trainM . Therefore,
it is clear that continuous atmospheric variables inherently
contain sufficient information, which can be utilized as su-
pervision for self-supervised temporal downscaling.

3 Data and methods

3.1 Study area and dataset

Our study focuses on the geographic area bounded by lat-
itude 20–45° N and longitude 100–125° E and with a spa-
tial resolution of 0.25°× 0.25° (see Fig. 2), and data for
this region were downloaded from the European Centre for
Medium-Range Weather Forecasts (ECMWF) ERA5 reanal-
ysis dataset. The dataset comprising 87 660 2 h interval sam-
ples from 2001 to 2020 is used as the training dataset. The
testing dataset consists of 8760 1 h interval samples in 2021.
To evaluate the generalization performance of the TemDeep
method, experiments were conducted on three atmospheric
variables: 2 m air temperature (t2m), 850 hPa geopotential
height (z), and 850 hPa relative humidity (RH). Horizontal
and vertical wind components are utilized to calculate wind
speed as part of a composite index (see Sect. 3.3). Recogniz-
ing the influence of topography on local climate and weather
patterns, we have also included terrain data with a resolution
of 15 km, sourced from NASA’s Shuttle Radar Topography
Mission (Hennig et al., 2001). This resolution is sufficient to
represent major terrain influences on atmospheric processes
without significantly increasing computational demands.

3.2 Problem definition and overview

Given the initial atmospheric fields represented
{p}T

(
p ∈ Rnx×ny

)
as a continuous gridded dataset with a

temporal resolution of τ , our goal is to achieve temporal
downscaling at any resolution θτ

(
θ ∈ (0,1) ,R+

)
. Here, nx

and ny denote the number of grid points in the horizontal and
vertical directions, respectively. That is, for a given period of
weather process occurring between the interval [T0,T0+ τ ],
we aim to accurately generate the interpolated field at any
time point T0+ θτ . To achieve this goal, a self-supervised
framework is presented for temporal downscaling (see
Fig. 3), in which the training procedure consists of two
primary stages. In the first stage, we pretrain our model on
a subset of data to simulate the training process on a real
high-resolution dataset by selecting scenarios with rapid
transitions. Then, the model is further trained under guidance
of a temporal coherence constraint, leveraging supervision
information inherent in the low-temporal-resolution time
series. In addition, two regularization terms are utilized in
the loss function to guide the model out of local optima and
prevent abnormal values.

3.3 Reconstructing a pretraining dataset through
self-similarity

It is easily understood that scenarios with rapid transitions
could reflect a condensed evolution of atmospheric pro-
cesses, where changes that might typically occur over longer
durations are instead experienced in a compressed time pe-
riod (Davis et al., 1994; Stanley, 1997). Therefore, these
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Figure 1. Illustration of time-evolving atmospheric fields. The green arrows represent the evolution of an atmospheric field guided by
physical laws with temporal coherence. The blue arrows represent the outputs of a temporal downscaling model, which seeks to approximate
the physics-guided evolution.

Figure 2. Satellite image of the study area. The study area is outlined by the red rectangle (base map imagery provided by Esri World
Imagery).

scenarios occurring within shorter time intervals in low-
temporal-resolution data can potentially serve as “pseudo
labels” for scenarios within longer time intervals in high-
temporal-resolution data.

Based on this kind of self-similarity across timescales, we
propose to reconstruct a pretraining dataset by establishing
a composite index to filter out scenarios with rapid transi-
tions. This composite index is designed based on four phys-
ical variables that are indicative of weather system transfor-
mations, respectively, RH, t2m, 850 hPa wind speed (v), and
850 hPa vertical velocity (w). Rapid changes in wind speed
can indicate major weather phenomena, and similarly, hu-
midity changes are key to atmospheric stability, and sudden
shifts can trigger severe convection. t2m gradients drive at-
mospheric circulation, with steep gradients signifying devel-
oping weather fronts. Lastly, vertical velocity indicates ver-

tical air movement and can signal cloud formation or precip-
itation.

Given an atmospheric variable a, the normalized
change for each time step t is defined as 1a (t)=
(a(t+1)−a(t))

σ (a)
, where σ (a) represents the standard devia-

tion of the variable over the entire period. Let V (t)=
[1RH(t) ,1t2m(t) ,v (t) ,w (t)] denote the vector of nor-
malized changes and W = [w1,w2,w3,w4] be the respec-
tive weight vector; the composite index CI can be expressed
as

CI(t)=WT
·V (t)+ η

∑
i<j

(
wij ·Vi (t) ·Vj (t)

)
. (1)

Here, the superscript T denotes vector transposition, and the
summation extends over all unique pairs of variables (i < j).
The parameter η is a scaling factor set at 0.02, which can be
adjusted to regulate the influence of the interaction terms.
wij represents the weights linked with the interaction terms,
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Figure 3. Overview of the proposed TemDeep framework for self-supervised temporal downscaling. The overall network structure for
temporal downscaling is depicted in the top-right portion of the figure, which is composed of an encoder–decoder-structured field prediction
network and a flow estimation module, taking consecutive fields and terrain data as input.

ensuring that each variable has the same magnitude before
multiplication. The first componentWT

·V (t) is a linear com-
bination of normalized changes to quantify individual influ-
ence of each variable, while

∑
i<j

(
wij ·Vi (t) ·Vj (t)

)
is in-

troduced to account for synergistic effects among variables
by measuring the product of changes between pairs of vari-
ables. Finally, we empirically set a threshold θ for the com-
posite index at 0.75, and scenarios with a CI value above the
threshold are considered to exhibit rapid transitions:

T = t | CI(t) > θ, (2)

where T denotes scenarios with rapid transitions. Finally, we
obtained a collection of 1391 scenarios with 12 531 consec-
utive fields and group these samples every three fields into
4177 sets. During the pretraining process, we train the model
by providing the model with the two adjacent fields as input
and tasking it to generate a result that is close to the middle
field in the sequence.

3.4 Self-supervised training leveraging temporal
coherence

In our approach, we propose a self-supervised training pro-
cess, which leverages temporal coherence within continuous
atmospheric fields to generate interpolated fields at arbitrary
time resolutions. Taking inspiration from the success of un-
paired data to data translation in a variety of fields (Zhu et
al., 2017; Zhou et al., 2016; Gao et al., 2022; Reda et al.,

2019), we define a time-domain temporal coherence con-
straint, ensuring that the interpolated data point p̂T0+r cre-
ated at time T0+ τ right between pT0 and pT0+2τ must be
consistent with the original middle data point pT0+τ . That is,
as illustrated in Fig. 3, for a given triplet of consecutive data
fields, we generate two intermediate data points in the first
inference: one between the first two data points p̂T0+θr =

M
(
pT0 ,pT0+τ ,θτ

)
, where M is our downscaling network

(see Sect. 3.6), and the other between the last two data
points ( p̂T0+(1+θ)r =M

(
pT0+τ ,pT0+2τ ,θτ

)
). Then, in the

second inference, we generate an interpolated data point be-
tween these newly created intermediate data points, p̂T0+r =

M
(
p̂T0+θr , p̂T0+(1+θ)r , (1− θ)τ

)
. In this case, p̂T0+r should

match the original middle input data point pT0+τ , illustrat-
ing the concept of temporal coherence. By changing the time
parameter t = θτ (θ ∈ (0,1)), our method is capable of gen-
erating an array of interpolated data points that maintain tem-
poral coherence over time, effectively enriching the tempo-
ral resolution of the atmospheric dataset. To enforce temporal
coherence, we aim to minimize the difference between p̂T0+r

and pT0+τ , expressed as arg‖p̂T0+r −pT0+τ‖1, then the co-
herence loss Lc (8) can be defined in the form of L1 loss:

Lc (8)= ‖p̂T0+r −pT0+τ‖1. (3)
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3.5 Spatio-temporal continuity regularization

Despite the application of the temporal coherence constraint
to train the model, which allows for the simulation of evolv-
ing weather systems, it is still necessary to regulate the model
to guide it out of local optima and avoid generating abnormal
values. To address this concern, our approach leverages the
inherent continuity of atmospheric fields in space and time,
which is integrated into our model training process as a reg-
ularization term in the loss function. An example of spatial
and temporal gradients in t2m fields is provided in Fig. 4, and
Fig. 5 indicates that 99.59 % of the horizontal gradients and
99.31 % of the vertical gradients are lower than 3 K respec-
tively. Similarly, in the continuously varying fields, 99.55 %
of the temporal gradients are lower than 3 K. Therefore, it can
be assumed that the majority of grid points in t2m fields ex-
hibit strong spatial and temporal continuity, as well as other
densely distributed atmospheric variables, such as geopoten-
tial height and relative humidity. Here, spatial continuity im-
plies that nearby locations should share similar atmospheric
conditions, and our model incorporates a spatial continuity
loss term to ensure smoothness in both horizontal and verti-
cal directions:

Ls =
1
2

(∑
(x,y)⊂�

‖− ẑ (t,x,y)‖1

+

∑
(x,y)⊂�

‖− ẑ (t,x,y)‖1

)
, (4)

where (ẑ (t,x,y)) represents the model’s prediction at time t
and location (x,y). Meanwhile, temporal continuity assumes
that the atmospheric conditions do not change abruptly over
short periods, and accordingly, our loss function includes
a temporal continuity term that penalizes substantial differ-
ences between the model’s predictions at three consecutive
time steps:

Lt = λ
(
‖− ẑ (t)‖1+‖ẑ (t − 1)‖1

)
, (5)

where ẑ (t) denotes the model’s prediction at time t , and λ
is a parameter set at 0.35 to control the weight of temporal
continuity in the loss function.

3.6 Network architecture

In this section, we will introduce the network architecture of
TemDeep for generating interpolated fields. As illustrated in
Fig. 3, the field prediction network, serving as the backbone
network, adopts an encoder–decoder structure to generate in-
termediate fields (see Fig. 6 and Sect. 3.6.1). Meanwhile,
the flow estimation module adopts a unique combination of
larger convolutional kernels and Leaky Rectified Linear Unit
(ReLU) activations to capture long-range motions (see Fig. 7,
Sect. 3.6.2). Finally, intermediate fields and estimated flow
are fused to synthesize interpolated fields (Sect. 3.6.3).

3.6.1 Field prediction network

The field prediction network is composed of an encoder–
decoder architecture with the inclusion of residual blocks
(Azad et al., 2024), as shown in Fig. 6. It takes consecu-
tive single-element fields and terrain data as input and out-
puts intermediate fields. The encoder part includes four pri-
mary components, each comprised of a convolutional layer
and a subsequent residual block. These convolutional lay-
ers, coupled with ReLU activation functions, process input
data through multiple filter sizes (64, 128, 256, and 512 fil-
ters respectively). Notably, the first convolutional layer in-
corporates a 7× 7 kernel with a stride of 2 and padding of
3, enabling more robust feature extraction at the initial stage,
while subsequent layers employ 3× 3 kernels with a stride
of 1 and padding of 1. After each convolutional layer, a cor-
responding residual block follows, with in-channels and out-
channels matching the corresponding convolutional layer’s
filter size. These residual blocks consist of two convolutional
layers and ReLU activation functions, which helps to pre-
serve the identity function and facilitates deeper model learn-
ing without the problem of vanishing gradients. The decoder
part is designed to upsample and reconstruct the encoded
field back to its original resolution. It consists of four decon-
volutional layers, each applying the ConvTranspose2d func-
tion for upsampling, and these layers upsample the data from
512 filters back to 2 filters, which corresponds to the output
flow. Notably, the kernel size used in these layers is 4 with
a stride of 2 and padding of 1, which efficiently enlarges the
spatial dimensions back to the original size. After a convo-
lutional layer, we obtain forward and backward prediction
results:

→
p and

←
p .

Additionally, to process topographic information and inte-
grate it into input, we introduce a convolutional terrain in-
tegration module (CTIM). The CTIM employs a convolu-
tional layer with 3× 3 kernels, to create an intermediate fea-
ture map topographic information. Subsequent to the convo-
lution operation, batch normalization is applied to accelerate
the training process, followed by a ReLU activation function
to introduce non-linearity. This output then passes through a
second convolutional layer with 3× 3 kernels to further re-
fine the feature representation. Once again, we apply batch
normalization and ReLU activation to this output. The re-
sulting output from the CTIM is a set of terrain feature maps,
ready to be fed into the prediction network.

3.6.2 Flow estimation module

The flow estimation module aims to estimate motion infor-
mation and calculate forward and backward flow, which is
then fused with the intermediate fields from the field pre-
diction network to assist with generating interpolated fields.
Figure 8 provides an example of calculated flow in t2m fields.

The flow encoder is structured similarly to the encoder of
the field prediction network, which comprises four convo-
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Figure 4. Spatial and temporal gradients in t2m fields at 1 January 2021 08:00:00 UTC. (a) Horizontal gradients computed along the x
direction. (b) Vertical gradients computed along the y direction. (c) Spatial gradients showing the magnitude of the combined horizontal and
vertical temperature derivatives. (d) Time gradients illustrating the change in t2m relative to the preceding time step. The color scale (in K)
indicates where temperature varies most rapidly: red denotes warming (positive gradients), and blue denotes cooling (negative gradients).
Notably, strong gradients in panels (a)–(c) often align with complex terrain features, highlighting topographic influences. Meanwhile, tem-
poral gradients in (d) capture abrupt weather changes between consecutive time steps, underscoring the dynamic evolution of near-surface
atmospheric conditions.

Figure 5. Cumulative percentage of spatial and temporal gradients. The x axis represents the gradient magnitude (in K per grid or K per time
step), and the y axis denotes the cumulative percentage of grid cells or time steps below that gradient threshold. Each curve corresponds to
one type of gradient: horizontal (red), vertical (blue), combined spatial (green), and temporal (yellow). The plot reveals that the vast majority
of temperature gradients in both space and time are relatively small (e.g., below 3 K), while only a small fraction exhibits larger gradients.

lutional layers, each followed by a Leaky ReLU activation
function. The initial layer utilizes a 7× 7 convolutional ker-
nel to extract features from the input, stepping down to a
stride of 2 and padding of 3. Following this, the subsequent
layers use 3× 3 convolutional kernels with a stride of 1 and
padding of 1, moving from 64 to 128, to 256, and finally to
512 filters for a more detailed and intricate feature extraction.
The subspace features obtained at this layer, after undergo-
ing convolution and ReLU, yield an activation map V (see
Eq. 6).

The flow decoder includes five deconvolution layers that
upscale the downsampled encoder outputs. Each layer em-
ploys a bilinear upsampling technique to double the spa-
tial dimension, followed by two convolutional layers and
a Leaky ReLU activation. Finally, we obtain forward flow
(FT0+θτ→T0+τ ) and backward flow (FT0+θτ→T0) after two
convolutional layers.

3.6.3 Fusion and loss function

We can synthesize the target field p̂T0+θr by fusing the out-
puts from the field prediction network and the flow estima-
tion module as follows:

p̂T0+θr = (1− θ)
←

V � g
(
←
p,FT0+θτ→T0

)
+ θV � g

(
p,FT0+θτ→T0+τ

)
, (6)

where g (·) is a warping function (Jiang et al., 2017). V rep-
resents the activation map, referring to whether pixels remain
activated when moving forward from t = T0 to t = T0+ θτ ,

and
←

V is calculated by
←

V =
[
1−V (i,j)

]
.

In order to make the estimated flow resemble the actual
flow, we utilize it as motion information to further assist
in enhancing the quality of field reconstruction, and accord-
ingly, the flow estimation loss can be defined as

LF = ‖
(
←
p,FT0+θτ→T0

)
‖1+‖

(
p,FT0+θτ→T0+θτ

)
‖1. (7)
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Figure 6. Detailed architecture of the field prediction network. The
encoder consists of four convolutional layers, each followed by a
residual block (shown by the orange arcs). These layers progres-
sively expand the number of feature channels from 32 up to 512
through increasing filter sizes (e.g., 32 → 64 → 128 → 256 →
512), while ReLU activations introduce non-linearity. The decoder
mirrors this process with four deconvolution (ConvTranspose) lay-
ers to restore the spatial resolution and reduce the channel depth,
ultimately yielding two separate output branches.

Finally, the loss function to train the model can be expressed
by combing the coherence lossLc (Sect. 3.3), flow estimation
loss LF (Sect. 3.5.3), and continuity loss (Ls+Lt ) (Sect. 3.4)
as

L= Lc+LF+α (Ls +Lt ) , (8)

where α is a parameter set at 0.35 to adjust the weight of
continuity regularization.

3.7 Evaluation metrics

In order to evaluate the performance of our model, we pro-
pose three metrics: restoration rate (Re), consistency degree
(CS), and continuity degree (CT). Among them, Re is pri-
marily utilized for the evaluation of the discrepancy between
the downscaled results and the true values, while CS and CT
are auxiliary metrics for the analysis and comparison of dif-
ferent methods.

The restoration rate measures the degree to which our
model recovers lost information compared to simple linear
interpolation, and a larger Re indicates a better downscaling
performance. Let the restoration rate of linear interpolation
be zero. Then, the formula for calculating Re is as follows:

Re= 1−
1
�

∑
(x,y)⊂�

∣∣Dtruth (x,y)−D(x,y)
∣∣2

1
�

∑
(x,y)⊂�

∣∣Dtruth (x,y)−Dlin (x,y)
∣∣2 . (9)

In this formula,Dtruth is the ground truth,D denotes the data
generated by our model, Dlin is calculated through linear in-
terpolation, and � represents all pixels in the field.

The consistency degree is a metric used to evaluate the
level of consistency in generated fields, and a larger CS in-
dicates a smaller discrepancy between the estimated flow

F̂T0→T0+θr and the true flow FT0→T0+θr . It is calculated based
on the flow estimation module and can be expressed as

CS= 1−
‖− F̂T0→T0+θr‖1

‖FT0→T0+θτ‖1
. (10)

The continuity degree measures how smoothly the preceding
field transitions to the next, and a larger CT indicates more
smoothness. The mathematical representation is

CT= 1−

∣∣‖−pT0‖1−‖−pT0‖1
∣∣

‖−pT0‖1
, (11)

where P̂T0+θr is the interpolated field, and pT0 is the preced-
ing field.

4 Results and discussion

We conduct experiments on an Ubuntu 20.04 system
equipped with eight A100 GPUs. The TemDeep model is
trained using the Adam optimizer (Kingma and Ba, 2014)
with an initial learning rate of 1×10−5 and a mini-batch size
of 256. Downscaling results of t2m, z, and RH fields at dif-
ferent time resolutions, respectively, 2, 3, 4, 5, and 6 h, into
1 h time intervals, are shown in Table 1.

4.1 Quantitative analysis

In order to evaluate the effectiveness of our proposed method
on temporal downscaling, we select several methods that do
not require supervision information for comparison, namely
linear interpolation, cubic spline interpolation, and optical-
flow-based interpolation. The linear interpolation method
computes the average value between adjacent fields, while
cubic spline interpolation, using four data fields, achieves a
smooth curve with cubic polynomials. Additionally, optical-
flow-based interpolation estimates pixel motion between
fields to predict their state at a desired time point. As il-
lustrated in Table 1, for the six tasks of t2m (2 h→ 1), t2m
(3 h→ 1), t2m (4 h→ 1), t2m (5 h→ 1), z (2 h→ 1), and RH
(2 h→ 1), the TemDeep method scores 0.537, 0.508, 0.442,
0.376, 0.576, and 0.498 in Re, respectively, all considerably
higher than the scores achieved by other methods under un-
supervised conditions. The approximate time for each infer-
ence is 600 ms. Without the pretraining stage, Re is relatively
lower on all tasks, suggesting that this stage is important
in initially capturing general patterns in atmospheric data.
The supervised training condition TemDeep∗ method scores
the highest, implying that supervised training can further en-
hance the downscaling performance of the TemDeep method.

The flow estimation module provides an improvement of
0.075 in Re by guiding the model to learn the movement of
weather systems, and the result demonstrates more consis-
tency with the trends of weather system movements, as il-
lustrated in Fig. 9g. In contrast, if completely ignoring the
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Figure 7. Detailed architecture of the flow estimation module. The flow encoder applies successive convolutions (7× 7 followed by 3× 3
kernels) and Leaky ReLU activations to extract progressively deeper motion features from input fields. After reaching 512 filters, a final
3× 3 convolution and Leaky ReLU produce a subspace activation map. In the flow decoder, multiple upsampling stages (e.g., by a factor of
2) and 3× 3 convolution layers with Leaky ReLU progressively restore spatial resolution, eventually yielding two 1× 1 convolutions that
predict forward flow and backward flow.

Figure 8. Forward and backward flow visualization. Panels (a) and (b) represent the t2m fields at 08:00 and 12:00 on 1 January 2021, while
panels (c) and (d) represent the forward flow from 08:00 to 12:00 and backward flow from 12:00 to 08:00, respectively.

motion of weather systems, the result of time interpolation
would simply be an average of the preceding and succeeding
fields, leading to significant errors compared to the ground
truth, as shown in Fig. 9e. The spatio-temporal continuity
regularization also provides an improvement of 7.6 % from
0.499 to 0.537 in Re by ensuring the generated fields be con-
sistent with the observed patterns in the input data. As de-
picted in Fig. 9h, without this regularization, the model oc-
casionally produces erroneous estimates of the intensity and
direction of motion. Nevertheless, with the inclusion of the
regularization term, the results are inevitably constrained to
linear changes to a certain degree, which has conflicts with
the actual non-linear evolution.

To strike a balance between the spatio-temporal continu-
ity regularization and actual non-linear evolution, we intro-
duce a parameter in the loss function to adjust the weight for
regularization and conduct ablation studies, with the results
shown in Fig. 10. A larger α implies that the model empha-
sizes on regularization, and thus CT increases while CS de-
creases. Finally, α is set at 0.35, and Re reaches a maximum
of 0.537.

Figure 11 shows the restoration rate of the test set in
these experiments. Increasing the training dataset size con-

sistently improves model performance, but the impact dimin-
ishes gradually. Once the number of training data reaches a
critical value (e.g., 8760), further increases no longer result
in significant improvements, suggesting the model is reach-
ing its performance limits. When the data volume reaches
26 280, doubling the data leads to only a modest 1 %–2 %
improvement.

4.2 Case study

In this section, a case study is employed to explore
TemDeep’s ability in recovering evolving details of t2m, z,
and RH fields, as shown in Fig. 12. Hourly interpolation is
conducted between 08:00 and 12:00 on 1 January 2021, to
obtain three interpolated fields at 09:00, 10:00, and 11:00
(UTC).

In the temporal interpolation of t2m fields, the selected
area in January exhibits a noticeable temperature difference
between the sea and the land at 12:00 compared to 08:00,
and the gradual changes occurring at 09:00, 10:00, and 11:00
are clearly reproduced by the TemDeep method. Due to the
sensitivity of t2m to altitude, the temperature gradient near
the Sichuan Basin is clearly depicted, closely aligning with
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Table 1. Performance comparison among different methods based on Re. According to Eq. (9), the result of linear interpolation is set to 0 as
the basis for comparing other methods. Among all unsupervised comparison methods, TemDeep achieved the best performance, approaching
the supervised TemDeep∗. RH and z are only downscaled from 2-hourly to 1-hourly intervals.

Methods t2m (2 h→ 1) t2m (3 h→ 1) t2m (4 h→ 1) t2m (5 h→ 1) z (2 h→ 1) RH (2 h→ 1)

Linear 0.000 0.000 0.000 0.000 0.000 0.000
Cubic spline 0.102 0.041 0.019 0.018 0.135 0.074
Optical flow 0.219 0.188 0.102 0.059 0.342 0.236
Non-flow 0.462 0.431 0.359 0.307 0.505 0.417
Non-regular 0.499 0.470 0.397 0.325 0.525 0.488
Non-pretrain 0.528 0.501 0.433 0.372 0.568 0.489

TemDeep 0.537 0.508 0.442 0.376 0.576 0.498

TemDeep∗ 0.682 0.641 0.579 0.430 0.701 0.553

Note that “non-flow”, “non-regular”, and “non-pretrain” represent methods that do not include flow estimation, regularization modules, and
pretraining steps, respectively.

Figure 9. Visualized comparison. Panels (a), (b), and (c) respectively represent the true values of RH fields on 1 January 2021. Panel (d)
represents the wind direction and speed at 850 hPa at 06:00, where the wind in the central region points towards the southeast, driving
the dry air mass in the same direction, resulting in the expansion of the dry area towards the southeast. Panels (e), (f), and (g) display the
interpolation results at 06:00 obtained through different methods. Panel (h) represents the result from TemDeep when the spatio-temporal
continuity regularization is removed.

the contour of the actual altitude gradient, as marked by the
rectangle. Most importantly, at 10:00, regions marked by the
triangles exhibit large surrounding gradients and non-linear
abrupt changes, resulting in a lower continuity degree of
0.54. In this case, the TemDeep method still achieves a high
precision in reproducing the field, with a restoration rate of
0.49, reaching 0.48 and 0.52 at the preceding and following
field, respectively.

For the 850 hPa z fields, their variations are relatively sim-
pler compared to the t2m fields, making downscaling easier
and leading to less precision fluctuation. The average Re over
the 3 h period reaches 0.56. At 08:00, there is a high-pressure
region on the western edge, surrounded by low pressure, re-
sulting in a significant gradient. In the generated z fields, this

gradient gradually diminishes from 09:00 to 11:00, and the
central high-pressure region moves northeastward and even-
tually dissipates, as marked by the ellipse and arrow, which
evolves closely in accordance with the ground truth.

Similarly, in the three generated RH fields, the drier region
on the eastern edge can be observed slowly moving eastward,
consistent with the ground truth. At 08:00, the drier region is
still located some distance away from the 125° E line, but
after 4 h of continuous changes, the easternmost part of the
dry region has already crossed the 125° E line, and TemDeep
has reproduced this movement of dry air mass, rather than
simply averaging the fields.
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Figure 10. Model performance under the enforcement of spatio-temporal continuity with varying weights. Panel (a) shows Re of TemDeep
trained under self-supervised conditions and supervised conditions (denoted as TemDeep∗) at different α. Panel (b) shows consistency degree
and continuity degree of TemDeep at different α.

Figure 11. Restoration rate versus training data size for t2m fields.
The x axis shows the amount of training data (number of 2-hourly
samples), while the y axis indicates the restoration rate, a mea-
sure of how effectively the downscaled results recover fine-scale
temporal variations. Two methods are compared: TemDeep (self-
supervised) and TemDeep∗ (supervised).

4.3 Discussion

This study addresses a persistent challenge in atmospheric
science: generating high-resolution temporal data without re-
lying on expensive high-frequency observations. By propos-
ing a self-supervised framework that leverages temporal co-
herence, our method contributes to the growing body of
literature on data-driven downscaling approaches, particu-
larly those aiming to reduce dependence on ground-truth,
high-resolution data (Kajbaf et al., 2022; Bolton and Zanna,
2019). Unlike traditional supervised deep learning methods,
which require substantial labeled datasets, our approach re-

lies on the inherent temporal dynamics present in consecu-
tive reanalysis fields, thereby extending the notion of self-
supervised learning (Liu et al., 2020) to meteorological time
series.

A key novelty lies in the pretraining step that extracts
“rapid-transition” samples, inspired by the notion that com-
pressed, abrupt changes can serve as effective surrogates for
higher-frequency transitions (Davis et al., 1994). By specif-
ically targeting periods of strong gradients in temperature,
humidity, and wind fields, our model can learn the nuanced
behavior of evolving weather systems without explicit high-
resolution labels. This differs from standard statistical down-
scaling methods (Chen et al., 2011; Mendes and Marengo,
2010) that typically assume linear or limited autocorrela-
tion structures. Moreover, the incorporation of a flow estima-
tion module to track and warp features aligns with the pre-
vious literature on optical-flow-based interpolation (Reda et
al., 2019), yet we extend these ideas by enforcing additional
spatial and temporal continuity. Such continuity constraints
provide a safeguard against physically implausible discon-
tinuities – a limitation observed in simpler interpolation or
purely optical-flow-based methods (Lorenz, 1963).

Another valuable contribution is the explicit integration of
terrain information. While dynamical downscaling methods
(Skamarock et al., 2008) naturally handle topographic influ-
ences, they often incur high computational costs. Our ap-
proach achieves a similar fidelity in representing orographic
effects at a fraction of the computational effort. This aligns
with recent trends in using auxiliary data (e.g., terrain or land
cover) to refine regional climate modeling (Barboza et al.,
2022). In doing so, we bridge a gap between purely physics-
based models and data-driven approaches by allowing the
model to incorporate physical priors in a flexible, trainable
manner.

Geosci. Model Dev., 18, 2427–2442, 2025 https://doi.org/10.5194/gmd-18-2427-2025



L. Wang et al.: TemDeep 2439

Figure 12. Hourly downscaling results for t2m, geopotential height, and relative humidity fields from 08:00 to 12:00 on 1 January 2021.
Each row focuses on a different atmospheric variable, with a global map on the left and a zoomed-in region of interest (black box) on the
right. The enlarged panels show the interpolated fields at 09:00, 10:00, and 11:00, alongside the actual field at 08:00 and 12:00. Colored
shapes (e.g., circles, triangles) highlight notable features such as strong gradients or rapidly shifting weather systems.

5 Conclusions

This paper proposes a self-supervised model for downscaling
atmospheric fields at arbitrary time resolutions by leverag-
ing temporal coherence. This model combines an encoder–
decoder-structured field prediction network with a flow esti-
mation module, fuses intermediate fields and motion infor-
mation of weather systems, and finally synthesizes fields at
desired time points. We first pretrain the model based on a re-
constructed dataset to initially capture data patterns and then
further utilize existing consecutive fields as supervision for
model training. Experiments on three variables (t2m, z, RH)
indicate that the proposed TemDeep model can accurately re-
construct the evolutionary process of atmospheric variables
at 1-hourly resolution, superior to other unsupervised meth-
ods.

As for future research, we will explore multi-modal data
fusion to leverage complementary information from various
sources. Since ERA5 only provides data at 1 h temporal res-
olution, further research will focus on identifying datasets
with higher temporal resolution for more accurate downscal-
ing. Further, we plan to extend our downscaling model based
on previous work of self-supervised weather system classifi-
cation (Wang et al., 2022), that is, to downscale temporal and
spatial data by referring to similar types of weather systems
through similarity search in the historical dataset. To enable
real-time downscaling and more refined forecasting, we will
also work on simplifying the model architecture to reduce
computational complexity, making it more feasible for de-
ployment in operational environments where fast processing
times are critical.
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cus Climate Change Service (Copernicus Climate Change Ser-
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