
Geosci. Model Dev., 18, 2373–2408, 2025
https://doi.org/10.5194/gmd-18-2373-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.

M
odeldescription

paperCLAQC v1.0 – Country Level Air Quality Calculator:
an empirical modeling approach
Stefania Renna1,2,3, Francesco Granella1,2,4, Lara Aleluia Reis1,2, and Paulina Schulz-Antipa5

1CMCC Foundation – Euro-Mediterranean Center on Climate Change, Lecce, Italy
2RFF-CMCC European Institute on Economics and the Environment, Milan, Italy
3Department of Management, Economics and Industrial Engineering, Politecnico di Milano, Milan, Italy
4Department of Social and Political Sciences, Bocconi University, Milan, Italy
5World Bank, Washington, DC, USA

Correspondence: Stefania Renna (stefania.renna@cmcc.it)

Received: 2 April 2024 – Discussion started: 6 May 2024
Revised: 17 December 2024 – Accepted: 21 January 2025 – Published: 22 April 2025

Abstract. The Country Level Air Quality Calculator
(CLAQC) is an open-source modeling tool that utilizes
national sectoral emissions and weather data to forecast
monthly and annual concentrations of PM2.5 and O3.
CLAQC leverages the recent advancements in the Coperni-
cus Atmosphere Monitoring Service (CAMS) system, em-
ploying CAMS global gridded emissions and CAMS reanal-
ysis pollutant concentrations to improve the accuracy of its
predictions. One of the notable strengths of CLAQC is its
ability to provide country-specific and sectoral information.
We have developed two methodological approaches, namely,
elastic net modeling and extreme gradient boosting regressor,
that can effectively predict annual average concentrations for
nearly all countries. Both methods show good performance
for the country’s yearly average, while sensitivity tests show
less robust results at the sectoral level. The tool can simulate
a vast range of policy scenarios and can be integrated into
national policy assessment and optimization frameworks. Fi-
nally, we present a method selection framework for each
country to optimize performance and an online tool display-
ing model results.1

1This document is the result of a research project funded by the
World Bank. The CLAQC tool was developed as an input for the
IMF-World Bank Climate Policy Assessment tool (CPAT).

1 Introduction

Exposure to air pollution is a significant global health con-
cern (Murray et al., 2020), recognized by the World Health
Organization (WHO) as the first environmental health risk
factor (World Health Organization, 2021). In 2019, ambi-
ent air pollution was responsible for approximately 8 % of
worldwide deaths, amounting to 4.51 million deaths. The
majority of these deaths (92 %) were caused by fine partic-
ulate matter (particles with a diameter smaller than 2.5 µm,
PM2.5), while the rest were due to tropospheric ozone (O3)
(Institute for Health Metrics and Evaluation (IHME), 2019;
Fuller et al., 2022).

Policies targeting energy and environmental sectors im-
pact airborne pollutants, leading to both co-benefits and
trade-offs in air pollution (Eastham et al., 2023). Therefore,
it is essential to consider the impact on air pollution when de-
signing global and national policies (Reis et al., 2022). There
is a clear need for tools that quantify the impacts associated
with such policies in the field of integrated assessment mod-
els (IAMs) and national to global policy scenario assessment.

IAMs are analytical tools that aim to comprehend the in-
teractions between the earth and human systems to assist pol-
icymakers in devising effective and cost-efficient greenhouse
gas and air pollution control policies. By estimating the con-
tributions of various sectors, it becomes possible to focus
resources on problematic areas and prioritize regulations or
incentives that promote cleaner production or consumption
practices.
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Considered cutting edge for their physicochemical rep-
resentation detail, chemistry-transport models (CTMs) are
tools for calculating the impact of emissions on pollutant
concentration levels. However, they can be computationally
heavy and challenging to use. Reduced-form CTMs address
such limitations in trading accuracy and process detail for
computational efficiency and can be used to assess multiple
scenarios and incorporated into policy optimization frame-
works. The most commonly used models to evaluate air pol-
lution policies, such as the Greenhouse Gas–Air Pollution
Interactions and Synergies (GAINS) model (Amann et al.,
2011; Kiesewetter et al., 2015), the SHERPA tool (Thunis
et al., 2016), the TM5-FAst Scenario Screening Tool (TM5-
FASST) model (Van Dingenen et al., 2018), and the Air Con-
trol Toolbox (ACT) tool (Colette et al., 2022), rely on a vari-
ety of methods.2

Recent efforts to provide more policy-specific contribu-
tions to air pollution have also emerged, such as the Cli-
mate Action Planning–Air Quality (CAP-AQ) framework
proposed by Kleiman et al. (2022). This approach emulates
a CTM using 100 United States sites, although limited to
the city level, and integrates sectoral climate-related green-
house gas emission reductions, air quality policy, and health-
related co-benefits in policy planning. Eastham et al. (2023)
employ a CTM to estimate local-specific response functions
that may be used to derive sector-specific contributions, al-
though they use a lower underlying resolution than the TM5-
FASST model. The Global Intervention Model for Air Pollu-
tion (Global InMAP) is a global-scale reduced-form air qual-
ity modeling tool that simulates PM2.5 concentrations result-
ing from different source heights and sites at a heterogeneous
grid size (Thakrar et al., 2022). The latter one is the most
detailed, up-to-date reduced-form air pollution model on a
global scale. Yet, even at its coarser temporal and spatial res-
olution, its runtime is still not compatible with an easy-to-
implement fast policy assessment. Other studies have com-
pared several air pollution health impact assessment tools
(Anenberg et al., 2016), applied similar reduced modeling
methods for local-scale air pollution modeling (Oxley et al.,
2022), or assessed the sectoral and fuel-specific contributions
of PM2.5 to mortality at various geographic scales (McDuffie
et al., 2021) using CTMs in simulation mode. However, only
the Response Surface Model by Eastham et al. (2023) is able
to simultaneously provide annual sectoral atmospheric con-
tributions to both PM2.5 and O3 concentrations at the national
and country level with global coverage.

All in all, the available reduced-form CTMs allow for the
assessment of multiple scenarios, ultimately contributing to

2For example, GAINS is a fully IAM using emissions–
concentrations relationships from the Unified EMEP Eulerian
model and CHIMERE. Similarly, the SHERPA tool emulates sce-
nario results from EMEP and CHIMERE (Menut et al., 2021), while
TM5-FASST is a source–receptor model based on the chemical
transport model TM5 (Van Dingenen et al., 2018).

better policy design. However, they are based on CTMs and
are therefore bounded by their resolution and scope. They
are also known to be less robust for highly non-linear pro-
cesses, such as secondary O3 formation and secondary PM
formation (Van Dingenen et al., 2018; Thunis et al., 2019).
Furthermore, they are limited by the number of underlying
scenarios in their training set. The Country-Level Air Qual-
ity Calculator (CLAQC) is a statistical model that aims at fill-
ing this gap by learning from coupled historical variations in
concentrations of PM2.5 and O3, sectoral emissions of mul-
tiple precursors, and meteorology. Similarly to determinis-
tic reduced-form models, empirical models are also bounded
but by the underlying observed data. Unlike in the source–
receptor models, the perturbation level is not set (Thunis
et al., 2019) as the model learns from all past variations. Pro-
vided with adequate data, a statistical model can learn from
a broad spectrum of variations in emissions, concentrations,
and atmospheric conditions akin to simulating a large num-
ber of training scenarios in process-based models. CLAQC
is built over 19 years of data spanning the entire global land-
mass and is provided with arguably a wide spectrum of input
variables. The large drop in emissions induced by COVID-
19 lockdowns and disruptions worldwide further expands the
range of training variables. Additionally, CLAQC allows for
more flexibility than the deterministic reduced-form mod-
els by relying on the global gridded Copernicus Atmosphere
Monitoring Service (CAMS) reanalysis products. As new
and better data come in every year, the emulator can be up-
dated, and a higher detail level may be possible at lower
trade-off costs. For example, the sub-national detail can as-
sist with better placement of energy, transport, and industrial
infrastructure. CLAQC complements the above-mentioned
models by providing an easy-to-use global tool with coun-
try and sectoral details.

The next section discusses the data used. We then present
in Sect. 2.5 the different methodological approaches that
have been followed: elastic net models (Sect. 2.8), and ma-
chine learning models (Sect. 2.9), while in Sect. 2.10, we
compare the two methodological approaches. In Sect. 3, we
present the validation of results and sensitivity analyses. In
Sect. 4, we discuss the limitations of our tool. Finally, we
draw conclusions in Sect. 5.

2 Data

Monitoring stations are used for air quality assessment. How-
ever, the lack of a spatially consistent large ground mon-
itoring network in a given area is a strong constraint to
achieving this objective. Despite the recent harmonization
and open-access advancements in air pollution data, most
publicly available global ground-level monitoring databases
(e.g., OpenAQ, 2024) provide reasonable territorial coverage
of the population only in developed countries, in particular in
the United States and Europe. The network of ground-level
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monitors is growing in emerging economies such as China
and India, yet urban and rural areas are largely unmonitored
in middle- and low-income countries. The uneven ground-
level monitoring geographical coverage is problematic, as
factors driving the emissions–concentrations relationship
differ between monitored and unmonitored areas (e.g., popu-
lation density, distance from industrial sources, and gross do-
mestic product per capita). Emissions-to-concentrations re-
lationships learned using ground-level monitoring yield esti-
mates that are biased toward richer countries.

To meet the CLAQC objectives of global coverage, an al-
ternative option to ground-level monitoring data is using re-
analysis data. Global, gridded reanalysis data combine and
harmonize satellite air pollution measurements and CTM
output with ground-level monitors. While maintaining the
quality of the monitor data at the location of the monitors,
they bridge the gap in ground-level monitoring networks
with satellite observations and models that span the entire
globe. This principle, called data assimilation, is based on the
method used in numerical weather prediction and air qual-
ity forecasting, where a previous forecast is combined with
newly available observations in an optimal way to produce a
new best estimate of the state of the atmosphere. Reanalysis
does not have the constraint of timely forecasts, allowing for
time to collect observations and allowing for the integration
of improved versions of the original observations, raising the
quality of the reanalysis product.

Using gridded data has many other advantages, allowing
for

– weighting reductions in concentrations by population,
obtaining changes in exposure to pollutants;

– better identifying the interactions of emissions with me-
teorology and topography;

– increasing statistical power without compromising
the estimation of country-specific emissions-to-
concentrations functions;

– reducing rigidity on the spatial scope (not limited to ad-
ministrative borders) and keeping the sub-national mod-
eling option flexible;

– global coverage, even in areas without ground-level
monitoring.

Among the disadvantages, the need to homogenize different
grids in terms of spatial resolution may lead to approxima-
tions during the data manipulation process.

2.1 Emissions

2.1.1 Precursors

The precursors of PM2.5 included in the models are BC,
OC, NH3, NOx , SO2, and NMVOC. All are expected to in-
crease PM2.5 concentrations at the country level, although

local decreases on the secondary fraction may happen (Clap-
pier et al., 2021). Data on OC and BC are almost perfectly
collinear: thus, emissions from these precursors are summed
into total carbon (TC) in the machine learning models where
both are available.

The precursors of O3 included in the models are its main
precursors: NMVOC, NOx , and SO2. NMVOC are expected
to increase O3, whereas the relationship between NOx and
SO2 to O3 may be negative (Van Dingenen et al., 2018).
We follow the approach of most reduced-form models, leav-
ing out the CO precursor for its relatively minor importance
(Amann et al., 2011).

2.1.2 CAMS emissions

Emission data are provided by CAMS Global Anthropogenic
(CAMS-GLOB-ANT) v5.3, with a monthly temporal reso-
lution and a spatial resolution of 0.1°. The data are orig-
inally expressed in teragrams (Tg) and are converted into
kilograms (kg). The CAMS emission data are based on exist-
ing available databases, including nationally reported emis-
sions, the Joint Research Centre’s (JRC) Emissions Database
for Global Atmospheric Research (EDGAR) (Huang et al.,
2017; Crippa et al., 2018), the Evaluating the Climate and
Air Quality Impacts of Short-Lived Pollutants (ECLIPSE)
project (Stohl et al., 2015), and the Community Emissions
Data System (CEDS) databases (Hoesly et al., 2018; Mc-
Duffie et al., 2020). It has the advantage of providing global
gridded monthly emissions from 2000 up to 2021, although
emission estimates of most recent years (2015–2021) are
extrapolated by applying CEDS 2014–2019 country-level
trends to gridded EDGAR v5 data and therefore are asso-
ciated with higher uncertainty. See Denier van der Gon et al.
(2023); Granier et al. (2019) for more detail on CAMS-
GLOB-ANT data harmonization and sectoral definitions.

The CAMS emission inventory is based on business-as-
usual emissions and does not take into account lockdown
measures and restrictions put in place to tackle the COVID-
19 pandemic. To correct this, we apply to 2020 emissions the
COvid-19 adjustmeNt Factors fOR eMissions (CONFORM)
constructed by Doumbia et al. (2021) for the following sec-
tors: power, industry, residential, public and commercial, and
transport.3

2.1.3 DACCIWA emissions

Data quality in low-income countries can be comparably
poorer due to the scarcity of measurements. Therefore, we
additionally consider the Dynamics–Aerosol–Chemistry–
Cloud Interactions in West Africa (DACCIWA) emission
data set as model input, an Africa-specific regional emission
inventory developed for providing more accurate estimations
for African countries, employing updated emission factors

3CONFORM data were downloaded from the ECCAD portal at
https://eccad.aeris-data.fr (last access: 27 March 2025).
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based on in situ measurements (Keita et al., 2021). DAC-
CIWA covers major human-related emission sources charac-
terizing the African continent, such as charcoal production,
wood stove combustion, and open-air garbage combustion,
and classifies emissions into the following sectors: traffic, en-
ergy, residential, industry, other, and waste. It has the same
spatial resolution as CAMS emissions and covers the period
from 1990 to 2015.

2.1.4 Sectoral aggregation

Our focus is on identifying sectors that are likely to be di-
rectly impacted by policies aimed at reducing the use of fossil
fuels. However, emissions from the various sectors, with the
exception of the agricultural one, are highly collinear, mak-
ing it difficult to distinguish the contribution of each indi-
vidual sector to the total pollution levels (see Sect. A1 for
further details). To overcome this challenge, we group to-
gether sectors with similar emission patterns, reducing the
complexity of the data and improving the accuracy of our
analyses. At the same time, we try to keep sectoral relevance
for policy models such as the IMF–World Bank Climate Pol-
icy Assessment Tool (CPAT) (Black et al., 2023). We do not
include biogenic and sectoral emissions from shipping and
aviation. Furthermore, natural emissions, such as desert dust
and sea salt, are not taken into account since they are less
likely to be subject to policy interventions. We build the fol-
lowing seven sectors from CAMS-GLOB-ANT data: agricul-
ture, industry, other (including the emissions not considered
in the other sectors), off-road transportation, energy power
generation, road transportation, and residential (including
buildings, commercial, and services). Note that the off-road
transportation sector includes railways and other types of
non-road transports not typically used on public roads, such
as agricultural machinery, construction equipment, and cer-
tain types of off-road vehicles used in industrial operations
(e.g., tractors, telehandlers, and excavators). See Table 1 for
the correspondence between the CAMS-GLOB-ANT sectors
and the CLAQC ones.

Note that CAMS and DACCIWA apply slightly different
sectoral classifications. For instance, we retain two transport-
related sectors from CAMS after aggregation, whereas DAC-
CIWA only includes one transport sector. Moreover, the final
does not consider agriculture in the original data. As a result,
we aggregate the available sectors into the following cate-
gories: transport, power, industry, residential, and other (with
the latter one containing waste as well).

2.2 Meteorology

All meteorological data, with the exception of wind direc-
tion, comes from TerraClimate (Abatzoglou et al., 2018).
TerraClimate has a wide variety of meteorological variables,
good temporal coverage (1958 to 2022), high spatial resolu-
tion (4 km× 4 km), and monthly time resolution. The follow-

Figure 1. Level plots of EAC4 concentrations of PM2.5 (January
2018) and O3 (July 2018) in µg m−3 with a color bar.

ing atmospheric variables are used as inputs to the models:
accumulated precipitation in millimeters, maximum 2 m tem-
perature in degrees Celsius (°C), minimum 2 m temperature
in °C, 10 m wind speed in m s−1, and mean vapor pressure
deficit in kilopascals. The wind direction in degrees comes
from the European Centre for Medium-Range Weather Fore-
cast’s (ECMWF’s) ERA5 Reanalysis Monthly Means prod-
uct by Copernicus Climate Change Service (C3S) (Coperni-
cus Climate Change Service, 2019).

2.3 Concentrations

We obtain the ground-level ambient concentration data for
PM2.5 and O3 air pollutants from ECMWF’s Atmospheric
Composition Reanalysis 4 (EAC4) monthly averaged fields
(Inness et al., 2019). The data cover the period from 2003
to 2021, which is the shortest time domain of all the avail-
able datasets. Consequently, all other datasets are limited to
this time period. The original spatial resolution of the data
is 0.75°, which is downscaled to 0.5°. PM2.5 and the mix-
ing ratio of surface-level ozone (obtained from the GEMS
ozone model level 60) are originally expressed in kg m−3

and kg kg−1, respectively. To facilitate analysis, we convert
them to micrograms per cubic meter (µg m−3). As an exam-
ple, Fig. 1 shows EAC4 concentration levels of PM2.5 and
O3 for January 2018 and July 2018, respectively.

To transform country-level, monthly PM2.5 concentra-
tions into population-weighted exposure, Expk,m, for coun-
try k and month m, we use the 2020 UN World Popula-
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Table 1. Correspondence between CAMS-GLOB-ANT and CLAQC sectoral aggregation.

CAMS-GLOB-ANT sector CLAQC sector

Agriculture livestock (AGL)
AgricultureAgriculture soils (AGS)

Agriculture waste burning (AWB)

Industrial processes (IND) Industry

Solvent application and production (SLV) Other, including the emissions
Solid waste and wastewater handling (SWD) not considered in the other sectors

Non-road transportation (TNR) Off-road transportation

Power generation (ENE)
Energy power generationFugitive emissions from solid fuels (FEF)

Refineries (REF)

Road transportation (TRO) Road transportation

Residential (SER) Residential, including buildings,
commercial and services

tion Prospects (WPP) Adjusted Population Count, v4.11, at
30 arcsec spatial resolution, from the Center for International
Earth Science Information Network (CIESIN) (Center For
International Earth Science Information Network-CIESIN-
Columbia University, 2018). We calculate monthly country-
level exposure, Expk,m, by summing over grid cells i popula-
tion weights, popi

popk
, and multiplying the sum by the grid-level,

monthly concentrations, Ci,m (Eq. 1). We only use popula-
tion data referring to one year, 2020, to avoid introducing an-
other source of variation in the models. To give a sense of the
data, we display 2018 country-level weighted concentrations
of PM2.5 and O3 in Fig. 2.

Expk,m =
n∑
i=1

popi
popk

·Ci,m (1)

2.4 Grid definition

All gridded data sources are re-scaled to the same
(0.5°× 0.5°) coordinate grid through linear interpolation
based on the population grid and merged into a single dataset.
For instance, concentration data originally at 0.75°× 0.75°
spatial resolution are downscaled to 0.5°× 0.5°, generating
intermediate values that align with the reference grid. The in-
terpolation is implemented using the interp_like func-
tion from the xarray Python package. Notice that some
cells may be attributed to multiple countries in case the cen-
troid falls exactly on the countries’ borders. This should not
be a source of concern as models are independently run coun-
try by country.

2.5 Methods

2.6 CLAQC rationale

We are interested in estimating the relationship between
emissionE of major ambient air pollutants and the respective
ground-level concentration C of major pollutants c (PM2.5,
O3). Denote such relationship f , so that

Cc = f (E). (2)

The formation, transport, and dispersion of pollutants are
complex natural phenomena that are highly dependent on
emissions; weather, W ; and other local characteristics, such
as topography. Hence, the design of pollution abatement
policies in country k can benefit from the estimation of
a country-specific emissions-to-concentrations function (a
country-wide population-weighted average) that accounts for
the interplay between emissions and weather:

Cc,k = fk(Ek,Wk). (3)

However, environmental and fiscal policies have heteroge-
neous effects across the main sectors of emissions and pre-
cursors, for instance, by inducing a rearrangement in the en-
ergy mix. Therefore, it is helpful to establish how country-
wide changes in the emissions of precursor p, from a given
sector s, alter ambient concentrations. The emitting sector s
includes energy production, industries, buildings, transport,
and agriculture. The set of pollutant precursors p includes
black carbon (BC), organic carbon (OC), ammonia (NH3),
non-methane volatile organic compounds (NMVOC), nitro-
gen oxides (NOx), and sulphur dioxide (SO2). We are thus
interested in estimating the following relationship:

Cc,k = fk,s,p(Ek,s,p,Wk). (4)
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Figure 2. EAC4 concentration inputs of PM2.5 weighted by the population and O3 in µg m−3 aggregated at the country level (2018).

We identify two methods to empirically derive f̂k,s,p, that
trade off simplicity and transparency with prediction power,
as we explain in what follows. The first method relies on
elastic net models, a penalized linear regression amenable
to a large number of predicting variables while preserving an
intelligible structure. f̂k,s,p is modeled as a linear function
of emissions and weather variables that can be easily repro-
duced.

The second method relies on machine learning algorithms
that are better suited than linear models to learn highly non-
linear relationships, such as those between precursors and
weather conditions. Better performance comes, however, at
the cost of interpretability, as machine learning algorithms
typically do not return simple predictor–target functions.
For this reason, we also provide approximate emissions-to-
concentrations relationships with functions that are suitable
for simpler spreadsheet-style use.

We follow two approaches that trade off interpretabil-
ity and predictive performance. We first estimate an Elas-
tic Net model, a linear model with selection and shrink-
age. The linear form allows for easy interpretation of coef-
ficients, whereas selection and shrinkage give more weight
to the variables of the highest importance and address multi-
collinearities in the data. Second, we fit an extreme gradient
boosting regressor, a decision tree-based machine learning
algorithm. Figure 3 shows the schematic representation of
the CLAQC workflow.

2.7 Coefficient constraints

We impose monotonic constraints on certain model coeffi-
cients to align with expected physicochemical relationships.
These constraints specify how input variables should affect
the target, ensuring interpretable and physically plausible re-
sults. For instance, a positive monotonic constraint enforces
a non-negative relationship, ensuring that as an input variable
increases, the predictor output does not decrease.

In the presence of noise, complex interactions in the data,
or predictor cross-correlation, models may otherwise learn
patterns that are not realistic or physically plausible. Addi-
tionally, monotonic constraints help prevent overfitting, en-

hancing robustness when input data are limited or uncertain.
For example, it is not expected that an increase in BC emis-
sions would lead to a decrease in PM2.5 concentrations.

While at the local scale, reducing certain precursors of
secondary inorganic aerosols might not always lead to a de-
crease in PM2.5 levels – due to non-linear atmospheric reac-
tions noted by Thunis et al. (2019) and Ding et al. (2021) –
our national-scale models focus on broader trends. To avoid
giving undue importance to cases where local emission re-
ductions might result in increased levels of inorganic PM2.5,
we apply monotonic constraints between emissions and con-
centrations.

Rather than directly including secondary inorganic
aerosols, the models incorporate interactions between PM
precursors – specifically NH3, NOx , and SO2 – as proxies
for secondary reactions.

It is crucial to understand that in situations where sec-
ondary reactions substantially affect the overall mass of
PM2.5 within a country, our models are designed to omit
these precursors from the list of predictors, thereby not re-
flecting a decrease in PM2.5 levels.

We further require that greater precipitations and tempera-
tures decrease PM2.5. Precipitation lowers PM2.5 by wet de-
position, while temperature is a proxy for inversion layer
height; i.e., high temperature generally means high inver-
sion layer heights and therefore a lower concentration (Sein-
feld, 2016). Although wind speed normally facilitates pollu-
tant dispersion, we impose no constraint on its role as long-
distance transportation of suspended particles may increase
PM2.5. All other coefficients are unbound.

Regarding O3, similarly, we impose that emissions of
NMVOC increase its concentrations while leaving emissions
of NOx unconstrained, allowing for non-monotone relation-
ships with O3 (Ding et al., 2021). We also constrain tem-
perature to increase O3 concentrations (Jhun et al., 2015;
Lu et al., 2019). O3 is a photo-chemical secondary pollutant
(Seinfeld, 2016),which increases with intensifying solar ra-
diation. Temperature is therefore used as a proxy.

We include the following variables in both models: sec-
toral emissions, precipitation, minimum temperature, max-
imum temperature, vapor pressure deficit, wind speed, and
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Figure 3. Methodological abstract.

wind direction. In the case of EN, we also add monthly emis-
sion sectoral totals (i.e.,

∑
sEk,s,m) and monthly emission

pollutant totals (i.e.,
∑
pEk,p,m) to increase the chances that

the models capture variations in emissions as well as monthly
fixed effects and interaction terms (see Sect. 2.8 for further
details on EN model specifications).

2.8 Elastic net models

Due to the high multicollinearity among predictors, as shown
in Appendix A1, ordinary least-squares (OLS) regression
may fail to yield reliable parameter estimates. Penalized lin-
ear regression maintains the interpretability of coefficients of
linear models while selecting the variables with the greatest
predictive power. We use elastic net models (Zou and Hastie,
2005), a method suitable for identifying the subset of best
predictors obtaining a parsimonious model. It solves the fol-
lowing minimization problem for the model parameters β0
and β, where β0 is the model’s intercept and β represents the
coefficients of the input variables:

min
β0,β

1
2N

N∑
1
(yi −β0− x

T
i β)

2
+ λ[

(1−α)‖β‖22
2

+α‖β‖1]. (5)

Combining the penalty elements of the Least Absolute Se-
lection and Shrinkage Operator (LASSO) regression (‖β‖1)
and Ridge regression (‖β‖22) on the basis of the alpha (α) pa-
rameter, the penalization parameter lambda (λ) selects vari-
ables like the former and shrinks them as it does the latter. It
regularizes the model coefficients, improving the model’s ac-
curacy and interpretability by decreasing the input variables’
space. This prevents our models from being volatile to ex-
treme variations and outliers. Such a technique avoids large
errors on the one hand, and, on the other, it results in more
conservative estimations of the concentrations obtained from
the emission reductions.

We perform elastic net modeling in R statistical language
(R Core Team, 2020), version 4.0.2 (22 June 2020), on 64 bit
Windows 10 (build 22621). To allow reproducing the R envi-
ronment, we employ the renv package (Ushey, 2022). The
elastic net workflow is represented in Fig. 4 and follows the
steps below. For each country, the steps are as follows:

1. To ensure reproducibility, a seed is set with the
set.seed R function.

https://doi.org/10.5194/gmd-18-2373-2025 Geosci. Model Dev., 18, 2373–2408, 2025
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2. We average the gridded monthly dataset to the country–
year–month level.4

3. We then identify and exclude outliers by applying the
interquartile range rule and listwise deletion.

4. We randomly split the 2003–2021 data into training
(84 % of observations) and test sets (16 %) stratifying
by month.5 We run sensitivity tests on the splitting ra-
tio, obtaining robust results across splittings: for further
insights, see Sect. A5.

5. We apply a k-fold cross-validation algorithm for tuning
the λ regularization parameter using the cv.glmnet
function from the glmnet R package (Friedman et al.,
2010). We apply the following specifications: 30 folds,
α = 0.5 corresponding to elastic net regularization with
no optimization of the alpha parameter, 'deviance'
type.measure for specifying the mean squared er-
ror loss function, and 'gaussian' family (Friedman
et al., 2020).

6. Monotonic constraints are imposed for certain predic-
tors. See details in Sect. 2.7.

7. We train the model on the training set by applying the
glmnet function from the glmnet R package.6

8. We evaluate its performance on the test set, i.e., on data
not used to build the model itself. We report the out-
of-sample R squared (R2) and root mean square error
(RMSE), calculated as in Eqs. (6) and (7). ytest

i is the
test set actual value for observation i, ŷtest

i is the test set
predicted value for observation i, ytest is the mean value
of the test set actual values, and ntest is the number of
observations in the test set.

9. Finally, we predict concentrations for varying lev-
els of emissions and derive empirical emissions-to-
concentrations relationships. More specifically, we sim-
ulate perturbations of emissions from −60 % to +60 %
at 10 % steps based on the last 5 years of data. This time-
frame is selected to reflect recent trends, offering more
policy-relevant insights into the empirical relationship
between emissions and concentrations. Notice that the
user could choose another time period for simulations.

4While we sum up sectoral emissions, we average weighted con-
centrations and meteorology variables. We treat wind direction as
a circular variable through the circular function from the
circular R package (Agostinelli and Lund, 2022).

5This is done using the stratified function from the
splitstackshape R package (Mahto, 2019). Note that an 80–
20 train–test splitting is applied for models based on DACCIWA
emissions.

6Notice that the glmnet function standardizes by default all the
variables, removing the influence of their scales.

R2
= 1−
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test
i )2

ntest
(7)

The elastic net linear regression models take the following
form for each country (Eqs. 8 and 9) (Seinfeld, 2016):

PM2.5t = α+
∑
s,p1

βs,p1Es,p1,t + γ1PPTt + γ2TMINt

+ γ3TMAXt + γ4VPDt + γ5WSt + γ6WDt+

+

∑
s

δsEs,t +
∑
p1

λp1Ep1,t +µENOx ,t ·ENH3,t

+ νESO2,t ·ENH3,t + ξESO2,t ·ENOx ,t+

+

∑
s

θsEs,t ·WSt ·WDt +φt + εt , (8)

O3t = α+
∑
s,p2

βs,p2Es,p2,t + γ1PPTt + γ2TMINt

+ γ3TMAXt + γ4VPDt + γ5WSt + γ6WDt+

+

∑
s

δsEs,t +
∑
p3

λp3Ep3,t +µENOx ,t ·ENMVOC,t

+ νESO2,t ·ENMVOC,t + ξESO2,t ·ENOx ,t+

+

∑
s

θsEs,t ·WSt ·WDt +φt + εt , (9)

where

- s ∈ {agriculture, industry, other, off-road transportation,
energy power generation, road transportation, residen-
tial}

- p1 ∈ {BC, NH3, NMVOC, NOx, OC, SO2}

- p2 ∈ {NMVOC, NOx}

- p3 ∈ {NMVOC, NOx, SO2}

- PM2.5t is the monthly concentration of PM2.5 in µg m−3

(population-weighted)

- O3t is the monthly concentration of O3 in µg m−3

- Es,p1,t is the monthly emissions of sector s and pollu-
tant p1 in kilograms

- Es,p2,t is the monthly emissions of sector s and pollu-
tant p2 in kilograms

- Es,p3,t is the monthly emissions of sector s and pollu-
tant p3 in kilograms

- PPTt is the monthly accumulated precipitation in mil-
limeters
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Figure 4. Visual representation of the elastic net models’ workflow.

- TMINt is the monthly minimum 2 m temperature in °C

- TMAXt is the monthly maximum 2 m temperature in
°C

- VPDt is the monthly mean vapor pressure deficit in kilo-
pascals

- WSt is the monthly 10 m wind speed in m s−1

- WDt is the monthly wind direction in degrees

- Ep1,t is the monthly composite index from the sum of
total emissions of pollutant p1 in kilograms

- Ep2,t is the monthly composite index from the sum of
total emissions of pollutant p2 in kilograms

- Ep3,t is the monthly composite index from the sum of
total emissions of pollutant p3 in kilograms

- Es,t is the monthly composite index from the sum of
total emissions of sectors s in kilograms

- φt is the monthly fixed effects

- εt is the error term.

In Eqs. (8) and (9), t indicates time, s is the emission sec-
tor, and p[n] refers to the sector-related emitted pollutants
in their respective models. PM2.5 and O3 concentration val-
ues obtained from the models in µg m−3 are country-level
monthly concentration averages indexed by time t , just as all
the other parameters in the equation; notice that PM2.5 levels
are weighted by population as explained in Sect. 2.3. α is the

model intercept; λ, β, γi , δ, µ, ν, ε, and θ are the predic-
tors’ coefficients; Es,p[n] are emissions of sector s and pollu-
tant p[n], respectively; and Ep and Es are total emissions of
pollutant p and of sector s, respectively. All emission vari-
ables are expressed in kilograms. PPTt stands for accumu-
lated precipitation in millimeters; TMINt and TMAXt are
minimum 2 m temperature and maximum 2 m temperature,
respectively, in °C; VPDt is mean vapor pressure deficit in
kilopascals; WSt is 10 m wind speed in m s−1; WDt is aver-
age wind direction in degrees; φt are month fixed effects;
and finally, εt is the stochastic term. Note that the emis-
sion terms in the equations differ due to their different at-
mospheric reactions. In both equations, we include multiple
emission terms to increase the chances that models capture
variations in emissions. In Eq. (8), to model the secondary
inorganic aerosol formation, we interact total emissions of
NOx and NH3, SO2 and NH3, and NOx and SO2, respec-
tively. Similarly, in Eq. (9), we interact total emissions of
NOx and NMVOC, SO2 and NMVOC, and SO2 and NOx .
As before, this attempts to capture the reactions between the
precursors of O3 since the presence of at least two of these
precursors is necessary for its formation. While NMVOC and
NOx are O3 main precursors, reacting in the presence of solar
radiation, SO2 plays an indirect role in O3 formation (Baird
and Cann, 2013; Seinfeld, 2016). SO2 is typically emitted by
industrial sources. It is involved in secondary PM formation,
which can reduce the radiative properties and oxidative ca-
pacity of the atmosphere, indirectly affecting O3 formation.
In both equations, we also create an interaction between sec-
toral emissions and wind speed and direction to proxy trans-
port and dispersion of pollutants. We include total sectoral
emissions to reflect the fact that sector-specific policies typ-
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ically impact multiple pollutants through dedicated emission
offset protocols. Additionally, we consider total emissions
from individual pollutants because variations in total pollu-
tant emissions may result from not only specific sectors but
also inter-sector changes, transported emissions, and chem-
ical reactions. Refer to Sect. A2.2 for the EN model speci-
fications with DACCIWA emissions and to Sect. A4 for EN
model implementation.

In order to have non-negative predicted values for y, we
add a non-negativity constraint that selects the maximum
value between zero and the EN model prediction, ŷEN. More-
over, in order to have non-extreme predicted values for y,
e.g., due to input data divergence, we apply a second safety
function that caps predicted values to 3 times the observed
country-level concentrations under no perturbations, 3y:

ŷ∗ =min {max {0, ŷEN} ,3y} . (10)

That is, the final prediction ŷ∗ is equal to 0 if ŷEN < 0, and
equal to ŷEN or at most 3y if ŷEN ≥ 0.

2.9 Machine learning models

Emissions-to-concentrations functions might not be suffi-
ciently well approximated by a linear function due to the non-
linearities of topography and secondary pollution formation
(Thunis et al., 2019). Machine learning models are powerful
tools that can reproduce highly non-linear relationships such
as the complex natural phenomena behind air pollution for-
mation, transport, and dispersion. Importantly, they do not re-
quire the user to impose a functional form. Differently from
the modeling with elastic net, data are not spatially aggre-
gated. In addition to the pre-processing steps described in
Sect. 2, we perform specific data processing.

1. Given the very high level of collinearity between BC
and OC emission data, we sum the two precursors into
a variable called total carbon (TC).

2. Emissions from the other sector are excluded. These
emissions are frequently missing or otherwise highly
correlated with other emissions. Moreover, their infor-
mative content is very low.

3. In addition to year and month of the year, we include an
identifier of grid cells as a predictor variable.

We use extreme gradient boosting regressor (Chen and
Guestrin, 2016), a tree-based algorithm that has been shown
to perform very well in supervised tasks with structured data
(e.g., Ma et al., 2020, in the context of air pollution).

The process is represented in Fig. 5 and is as follows.

1. For each country–pollutant pair, the input data for ML
are a grid panel dataset, composed of (N ) grid cells and
observed over (T ) time periods. For each grid cell, we
randomly assign the T observations (a time series) to the

train or test set. Hence, we stratify by grid cell, and ran-
domization occurs over the temporal dimension. This
stratified randomization ensures equal spatial represen-
tation in both datasets. Given unobservable but time-
constant characteristics of cells (such as topography)
and the desire for equal spatial representation, we pre-
fer this method to simple randomized allocation, which
might allocate the entire time series for a cell to either
set. We use three-fourths of the data as the training set
and the remaining fourth as the test set. As for EN mod-
els, we conduct sensitivity tests on the train–test split-
ting ratios, achieving consistent results across splits. For
more details, refer to Sect. A5.

2. We train the model on the training set.

3. We evaluate its performance on the test set. We re-
port the out-of-sample R2 and RMSE calculated as in
Eqs. (6) and (7).

4. We derive emissions-to-concentrations relationships
from the extreme gradient boosting algorithm in a
fashion similar to partial dependence plots (Friedman,
2001). Section 3.1 describes this step in more detail.

For ML models, we include an identifier of grid cell as
an input variable, similar to what cell fixed effects would be
in a regression framework. This increases the fit of models to
geographical variation in emissions, concentrations, weather,
and their interactions, especially in emission scenarios that
are not excessively different from the baseline. For instance,
recurrent transboundary pollution can be modeled by the in-
teraction of cell identifiers and months. The improvement in
geographic precision might come at the cost, however, of a
higher bias in the case of extreme perturbations. For robust-
ness, we also estimate the models without the identifier.

2.10 Method comparison

We summarize in Table 2 the advantages and disadvantages
of the methods used in the CLAQC framework. While the
elastic net models do not perform well using pixel-detail
data and use country-level aggregate data instead, for most
of the countries, the gradient boosting regressor method de-
livers reasonable results with high-resolution inputs increas-
ing the statistical power. The pixel-based approach allows
for flexible spatial aggregation, although we only discuss the
country-level spatial resolution here.

3 Discussion

3.1 Model results – emission scenarios

We simulate perturbations in emissions to simulate hypo-
thetical policy scenarios. Separately for every precursor, we
perturb emissions by a factor P and predict concentrations
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Figure 5. Visual representation of the extreme gradient boosting regressor models workflow.

Table 2. Comparison summary between CLAQC framework methods.

Elastic net Extreme gradient
boosting regressor

Simple equation Non intelligible form

Country-level emission totals allow for
direct and fast application but trade off
flexibility in spatial aggregation

Flexible regional aggregation

Moderate sensitivity to emission
changes

Low sensitivity to strong emission changes

Assume that historically correlated sectors will remain correlated

under the average monthly weather of the five most re-
cent years (2017–2021). Monthly predictions are then aver-
aged to yearly ones and, for ML, from grid-level to country-
level predictions. The process is performed with perturba-
tion from +60 % to −60 % at intervals of 20 %. While poli-
cies generally aim to reduce emissions, including emission-
increase scenarios is crucial for a comprehensive understand-
ing of potential air quality outcomes of a wide range of possi-
ble future conditions, for example, the persistent investments
in coal in India or the investment in gas fracking. It is im-
portant to showcase that these policy interventions may lead
to exposure increases. For these reasons, we have looked at
decreases and increases in emissions.

We consider model predictions as baseline predictions,
̂ConcentrationsBaseline,y .

The predicted relative change in concentrations for a per-
turbation P of emissions of precursor p in sector s is

%1 ̂ConcentrationsA,y,s,p =

̂ConcentrationsA,y,s,p − ̂ConcentrationsBaseline,y,s,p

̂ConcentrationsBaseline,y,s,p
· 100. (11)

Given that the model algorithms may include multiple
emission variables within a sector, e.g., both NOx and BC
emissions from the road sector, to account for the sectoral
range variability, we calculate the minimum and maximum
annual percentage variation in predictions from perturbed
emissions by perturbation and sectoral level (Eqs. 12 and 13).
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min
A,s

(
1 ̂ConcentrationsA,y,s,p

)
(12)

max
A,s

(
1 ̂ConcentrationsA,y,s,p

)
(13)

Figures 6 and 7 plot the relative variation in annual pre-
dicted concentrations of PM2.5 and O3, respectively, against
perturbations by sector ranging from −60 % to +60 % in
the selected major economies or populous countries: Brazil
(BRA), Germany (DEU), Egypt (EGY), Italy (ITA), Mexico
(MEX), Nigeria (NGA), Saudi Arabia (SAU), Turkey (TUR),
the United States (USA), and South Africa (ZAF). Sectors
are color-coded. To consult other countries’ results, refer
to the CLAQC online tool at https://datashowb.shinyapps.io/
CLAQC-App/ (last access: 27 March 2025).

In general, EN and ML models detect approximately the
same number of sectors. However, the sectors selected vary
according to the method. Moreover, EN models show greater
variability in predictions compared to ML ones. This is ex-
pected as linear methods are less accurate, based on only a
single estimator per predictor, and do not fully capture non-
linear relationships.

Regarding PM2.5, in 8 out of 10 EN models from Fig. 6,
the other sector is selected, affecting predictions the most in
the USA, ZAF, NGA, and EGY. In ITA, DEU, the USA, and
NGA, agriculture plays a relevant role as well. Also, the road
and residential sectors emerge as relevant in contributing to
particle formation, though we find the greatest impacts in
DEU, ITA, and BRA. Such sectors are often detected in ML
as well.

In the case of O3 predictions, positive perturbations may
lead to a decrease in predicted concentration levels: this hap-
pens because NOx consumes O3 in NOx-rich regimes, such
as for DEU’s road sector in the ML model. The industrial
sector is picked up in both EN and ML models, particularly
for EN models in ITA, EGY, MEX, USA, SAU, and BRA. In
ML models, the agricultural sector is often associated with
major variations (TUR, NGA, ITA, USA, and MEX). The
power sector is another relevant sector, appearing in all se-
lected countries.

Mainly, we find that EN models are good for predicting
the total mass of ambient pollutants, while for some coun-
tries, they are not reliable for sectoral attribution. Therefore,
in such a case, we suggest opting for OLS coefficients to at-
tribute sector shares to pollutant totals (see Sect. A2.3 in the
Appendix for further details).

See Sect. A5 in the Appendix to consult sensitivity tests
on the train–test splitting ratio and Sects. A7.1 and A7.2 to
consult other model specifications’ results.

3.2 Model internal validation results

A key aspect of predictive model evaluation is to verify if
the models can reproduce events well based on past trends.

We present out-of-sample validation for both methods while
we perform validation against similar tools, i.e., ECLIPSE-
GAINS and TM5-FASST, for EN models only (for the latter
one, see Sect. A6 in the Appendix).

Figures 8 and 9 map the out-of-sample R2 and RMSE for
EN and ML models obtained from both CAMS and DAC-
CIWA emissions. We do not advise using the models for
countries with an R2 smaller than 0.5 or RMSE higher than
12.

Results vary by prediction target (PM2.5 vs. O3) and in-
put type (e.g., CAMS vs. DACCIWA emissions), which
may reflect inconsistencies in the emission or concentration
data. Additionally, local factors such as unique orography
and micro-meteorological conditions can significantly im-
pact predictions in some areas, even country-level averages.
Both elastic net and machine learning models are generally
better at predicting O3 than PM2.5 as the former is highly
correlated with incoming radiation or temperature, while pre-
dicting PM2.5 is more challenging due to its complex sec-
ondary chemistry, local sources, and particle composition.
Chemistry-transport models predict better O3 than PM as
well, due to the more complex mixture of particles and local
effects from more sources of the latter one (Guérette et al.,
2020).

Among the EN models with CAMS emissions for PM2.5,
13 countries have an R2 below 0.5, and 40 haveRMSE above
12. Only three countries have an R2 below 0.5, and four have
RMSE above 12 for O3. EN models for PM2.5 with DAC-
CIWA emissions perform comparably; R2 is smaller than 0.5
in 4 countries, and RMSE is greater than 12 in 19. All EN
models for O3 with DACCIWA emissions have an R2 above
0.5 and RMSE below 12.

The ML models without a pixel identifier perform poorly
in 10 and 2 countries regarding R2 for PM2.5 and O3, respec-
tively, while we find an RMSE above 12 in 21 countries for
PM2.5 and none for O3. As in the EN models, PM2.5 pre-
dictions appear to be less accurate than those for O3, while
the ML models from DACCIWA emissions perform better in
predicting both PM2.5 and O3 than the EN models. In gen-
eral, ML models with grid cell identifiers perform better than
those without them both in terms of explained linear varia-
tion and error. For more details on the ML models with grid
cell identifier, see Sect. A3.1, and for the validation metrics
of the other model specifications, see Sect. A3.2.

3.3 Model selection

Having estimated multiple models that rely on different al-
gorithms and data inputs, we set out to select the ones with
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Figure 6. Percentage variation in predicted concentrations by sector and perturbation for selected countries in EN and ML models for
weighted PM2.5. Bar charts on the sides of each subplot help visualize overlapping variations.

the best predictive power.7 We propose a systematic model
selection based on two criteria:

– Model error/reliability. It is measured by out-of-sample
R2 and RMSE.

– Reliability of emission input data. DACCIWA is pre-
ferred to CAMS as a source of data over Africa only as
the former is developed with more consistent methods,
which prefer in situ measurements as opposed to large
data proxies and source profiles. Where DACCIWA is
available, we assign a Source score of 1 to models us-
ing DACCIWA and 0 to models using CAMS. Where
DACCIWA is unavailable, Source takes the value 0.

We re-scale all the elements of our decision criteria be-
tween 0 and 1, with 1 being the maximum score. We obtain

7More specifically, we consider four possible model specifica-
tions for elastic net and four for machine learning: EN× {CAMS
emissions, DACCIWA emissions}× {with month-fixed effects,
without month-fixed effects} and ML× {CAMS emissions, DAC-
CIWA emissions}× {with grid identifier, without grid identifier}.

the ensemble score, sv , by weighting each of the criteria as
in Eq. (14). For each country, we choose the model that max-
imizes (Eq. 14).

1
6
·R2
+

1
6
·RMSE+

1
3
·Source (14)

We note that other weighting criteria for performance deci-
sions are possible. Figure 10 shows which model maximizes
each criteria (R2, RMSE, Source). As expected, elastic net
models have greater predictive power with month-fixed ef-
fects than without. Similarly, machine learning models per-
form better with pixel identifiers. On a general level, ma-
chine learning models perform better than elastic net models
in Europe; in Africa, the two methods share the map, while
the elastic net one is preferable in the remaining regions. We
note that, by construction, DACCIWA is always preferable to
CAMS as a source of input data over Africa only. To clarify
further, we discuss the case of South Africa. The PM2.5 re-
sults in Fig. 10 show that the ML model (pixel version) using
DACCIWA emissions maximizes R2 (panel a). For RMSE,
the EN model with DACCIWA emissions achieves the best
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Figure 7. Percentage variation in predicted concentrations by sector and perturbation for selected countries in EN and ML models for O3.
Bar charts on the sides of each subplot help visualize overlapping variations.

performance (panel b), and DACCIWA emissions are iden-
tified as the preferred input source (panel c). For O3, the
EN model using CAMS-GLOB-ANT emissions maximizes
R2 (panel a), while the one with DACCIWA emissions min-
imizes RMSE (panel b). In terms of input preference, DAC-
CIWA remains the preferred emission input (panel c).

Figure 11 maps instead the model specifications that max-
imize the composite criteria of Eq. (14). With some excep-
tions, the patterns highlighted in Fig. 10 are replicated.

All the maps and country-specific model results can be ex-
plored through the CLAQC-App web tool.

4 Limitations

The CLAQC framework is very ambitious in terms of de-
tail. However, it is important to note the limitations stemming
from the input data, model characteristics, and specifications.

First, results are highly dependent on input data avail-
ability and quality. Using gridded data at different resolu-
tions requires harmonization on a common global grid. As
data values are estimated at locations that were not origi-

nally measured in the raw data, the interpolation process can
introduce measurement errors of unknown distribution. We
source data for both emissions and concentrations from the
CAMS services. This choice allows for a smoother integra-
tion. However, biases in the emissions dataset may propa-
gate to the concentration ones and vice versa. Additionally,
while reanalysis is considered a state-of-the-art and com-
plete method, it will surely not yield the same results as
having institutionally approved ground monitoring stations
in each grid cell as it involves the use of data assimilation
and CTM extrapolation to regions without ground or satel-
lite monitoring. However, given the high disparities in the
available ground monitoring data across the globe, we be-
lieve that CAMS reanalysis products, such as CAMS-GLOB-
ANT and EAC4, are the next state-of-the-art available solu-
tion for these regions. Finally, we note that the model predic-
tions have been evaluated with the support of observed levels
of emissions and concentrations. Although we find a good
out-of-sample model performance on annual concentration
levels, caution is needed for the extrapolation of extreme per-
turbations. Furthermore, we did not analyze the reasons be-
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Figure 8. Out-of-sample performance metrics of ML (no pixel) and EN models (from both CAMS and DACCIWA data) as in Eqs. (8) and
(9) under Sect. 2.8: R2.

hind countries’ poor performance, which limits our ability to
interpret differences in results. In general, the model should
be used under the fit-for-purpose principle, i.e., for country-
level policy roll-out purposes.

Second, the COVID-19 pandemic provided disruptive
emission perturbations that are of key importance for this
model. However, they represent only one set of large pertur-
bations, which may differ from the real-world implementa-
tion of country-by-country policies and may differ spatially,
meteorologically, or seasonally.

Third, sectoral emissions include a very large variabil-
ity across publicly available databases. The results presented

here are therefore sensitive to these uncertainties. If the base-
line sectoral emission distribution used as input into CLAQC
is substantially different from the CAMS baseline sectoral
emissions, we recommend a rescaling of the total pollutant
emissions to the CAMS sectoral emission profile.

Fourth, the EN model estimators may present higher vari-
ability as they rely on fewer observations relative to the ML
models.

Fifth, as CLAQC was built to support policy impact evalu-
ation, the approaches presented here do not explicitly model
transboundary movements of pollution and biogenic emis-
sions, such as desert dust and sea salt. Only averages enter the
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Figure 9. Out-of-sample performance metrics of ML and EN models (from both CAMS and DACCIWA data) as in Eqs. (8) and (9) under
Sect. 2.8: RMSE.

models through the time and place identifiers (month-fixed
effects in EN and grid identifiers in ML). Secondary inor-
ganic aerosols (SIAs) are also not directly modeled. Instead,
their effects are approximated through interactions among
emissions’ predictors. In addition, we have not performed
sensitivity analyses to assess the impact of excluding SIAs
on the final estimates.

5 Conclusions

We have developed CLAQC, a tool that provides fast simu-
lations of emissions changes with national and sub-national
resolution and global coverage. Based on statistical methods,
it aims at supporting policy assessments in a timely fashion.
The user sets the emission reduction for a given precursor
from a given sector (or a combination thereof), and CLAQC
simulates the implied change in concentrations of PM2.5 and
O3. A possible application is, for instance, the calculation of
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Figure 10. Best model score for each pollutant, country, and decision criterion.

Figure 11. Best model score for each pollutant and each country.

co-benefits of climate policies. CLAQC can also be a tool for
the scientific community and complement instruments such
as IAMs.

CLAQC is grounded on two different methods that trade
off transparency and predictive performance. Both methods
perform well, with predictive performance above reasonable
levels for most countries. Elastic net models generally well
estimate total annual exposure, although they are less reli-
able for pinpointing the contributions of individual sectors.
For such a task, the machine learning approach should be
preferred.

The CLAQC framework lends itself to multiple develop-
ments. It is a complementary tool to the modeling and policy
scenario community, providing empirically based estimates
and added value for global-scale sectoral and country-level
analyses. Its dynamic architecture makes it simple to update
with more recent data, and the framework can be extended
to both new data sources and methods. One potential evolu-
tion is to transform it into an ensemble model to enhance its
accuracy, robustness, and reliability.

Appendix A

A1 Multicollinearity

Differently from concentrations, emissions of pollutants and
precursors are not always directly measured, but they can
also be inferred using activity data and highly detailed emis-

Figure A1. Correlation matrix among CAMS emission predictors.

sion factors. Emission data display a high correlation, even
within grid cells, which is plausibly attributable to the cor-
relation of emissions of pollutants within sectors and in eco-
nomic activity across sectors. Figure A1 displays the cross-
pollutant correlations within sectors.
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A2 Elastic net models

A2.1 Method description

Shrinkage regression methods, such as elastic net, were de-
veloped to tackle some OLS limitations, in particular con-
cerning the model interpretation and prediction accuracy. In
OLS, the linear equation coefficients are estimated by min-
imizing the sum of squared residuals. Though, when there
are many predictors, OLS models generally show high vari-
ance and unstable coefficients. The elastic net method min-
imizes such variance. In fact, shrinkage regression may im-
prove prediction accuracy by either shrinking regression co-
efficients towards zero or setting them to zero or both. How-
ever, a trade-off is produced: as the variance is reduced, the
bias may increase, in this case, a bias toward more conserva-
tive outcomes. Moreover, in the OLS approach, when a large
number of predictors is present, it may not be straightfor-
ward to identify those representing the most relevant influ-
ence. In CLAQC elastic net models, a penalization parame-
ter lambda (λ) is introduced; in OLS, this parameter is zero.
In CLAQC, λ is selected using cross-validation to minimize
divergence so that for each country, the most optimized pe-
nalization parameter of the coefficients is identified. In such
a procedure, predictors are also standardized in order to iden-
tify solutions that do not depend on the unit of measurement
of the features. For further details, see Zou and Hastie (2005)
and Hastie et al. (2009).

A2.2 Elastic net models with DACCIWA emission data

The EN linear regression models obtained using DACCIWA
emission data (Keita et al., 2017, 2021) take the following
form for each country:

PM2.5t = α+
∑
s,p1

βs,p1Es,p1,m+ γ1PPTt + γ2TMINt

+ γ3TMAXt + γ4VPDt + γ5WSt + γ6WDt+

+

∑
s

δsEs,t +
∑
p1

λp1Ep1,t + ξESO2,t ·ENOx ,t

+

∑
s

θsEs,t ·WSt ·WDt +φt + εt , (A1)

O3t = α+
∑
s,p2

βs,p2Es,p2,t + γ1PPTt + γ2TMINt

+ γ3TMAXt + γ4VPDt + γ5WSt + γ6WDt+

+

∑
s

δsEs,t +
∑
p3

λp3Ep3,t +µENOx ,t ·ENMVOC,t

+ νESO2,t ·ENMVOC,t + ξESO2,t ·ENOx ,t+

+

∑
s

θsEs,t ·WSt ·WDt +φt + εt , (A2)

where

- s ∈ {transport, power, industry, residential, other}

- p1 ∈ {BC, NMVOC, NOx, OC, SO2}

- p2 ∈ {NMVOC, NOx}

- p3 ∈ {NMVOC, NOx, SO2}

- PM2.5t is the monthly concentration of PM2.5 in µg m−3

(population-weighted)

- O3t is the monthly concentration of O3 in µg m−3

- Es,p1,t is the monthly emissions of sector s and pollu-
tant p1 in kilograms

- Es,p2,t is the monthly emissions of sector s and pollu-
tant p2 in kilograms

- Es,p3,t is the monthly emissions of sector s and pollu-
tant p3 in kilograms

- PPTt is the monthly accumulated precipitation in mil-
limeters

- TMINt is the monthly minimum 2 m temperature in °C

- TMAXt is the monthly maximum 2 m temperature in
°C

- VPDt is the monthly mean vapor pressure deficit in kilo-
pascals

- WSt is the monthly 10 m wind speed in m s−1

- WDt is the monthly wind direction in degrees

- Ep1,t is the monthly composite index from the sum of
total emissions of pollutant p1 in kilograms

- Ep2,t is the monthly composite index from the sum of
total emissions of pollutant p2 in kilograms

- Ep3,t is the monthly composite index from the sum of
total emissions of pollutant p3 in kilograms

- Es,t is the monthly composite index from the sum of
total emissions of sectors s in kilograms

- φt is the monthly fixed effects

- εt is the error term.

Unlike the equations in (8) and (9) from Sect. 2.1.4, in
Eqs. (A1) and (A2), all NH3 predictors8, and agriculture sec-
toral emissions are not present, while the transport sector’s
predictors are not split into road and off-road transportation.

PM2.5 and O3 concentration values, in µg m−3, are ob-
tained from the models are country-level monthly concentra-
tion averages indexed by time t as all the other parameters in
the equation; emissions are in kilograms; weather variables’
units of measurement are expressed as specified in Sect. 2.8.

8This includes interactions containing NH3 totals.
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A2.3 Sectoral attribution

Given that in some cases, elastic net results are not suitable
for sectoral attribution, to tackle such an issue, we run con-
strained OLS models with sector totals and other controls
only. In this way, elastic net results can be used to predict
the total mass of our pollutants of interest, while OLS co-
efficients can be exploited to distribute concentration con-
tributions by sector. We follow the procedure explained in
Sect. 2.8 with some modifications. In particular, in step 2,
we first aggregate gridded sectoral emissions, Es,p[n],t , at the
country, year, and month level and then normalize them to
range from 0 to 1 (min–max normalization) as follows:

normEs,p,t =
Es,p,t −Mins,p

Maxs,p −Mins,p
, (A3)

where normEs,p,t is the normalized monthly sectoral
emission, Mins,p is the minimum emission level across
months for pollutant p and sector s, and Maxs,p is the maxi-
mum. Finally, we sum them sector-wise by country, year, and
month to obtain monthly sector total, normEs,t , as specified:

normEs,t =
∑
p,t

normEs,p,t . (A4)

In step 7 (model fitting), within the glmnet function, we
set the lambda parameter and all penalty factors related to the
emission variables equal to 0 and set the threshold parame-
ter for interrupting convergence to the solution, thresh, to
10−14 to get the OLS results. For the same reason, in step 8
(model evaluation), we set the penalty parameter lambda,
s, to 0.

For each pollutant, pollt , the model specification only in-
cludes the total sectoral emission, Es,p1,t ; weather variables;
and month-fixed effects, φt , and takes the following form:

pollt =α+ γ1PPTt + γ2TMINt + γ3TMAXt + γ4VPDt

+ γ5WSt + γ6WDt +
∑
s

δsEs,t +φt + εt . (A5)

However, it is important to acknowledge that such OLS
models may have limitations:

– Due to multicollinearity among certain sectors, it is
likely that OLS models will not include all sectoral pre-
dictors.

– OLS models may introduce bias since relevant vari-
ables, such as biogenic emissions, interactions, non-
linear terms, and others, are excluded from the model
specification.

– Assuming non-linear relationships between sectoral
emissions, weather conditions, and concentration lev-
els, if only linear variables are used, the OLS models
may incorrectly attribute sector shares.

– Mostly, OLS models will differ from elastic net models
in terms of variable selection and coefficient estimation.

A3 Machine learning models

A3.1 XGBoost additional remarks

As stated in Sect. 2.9, we consider two ML model specifi-
cations, with and without the grid cell feature. As expected,
models with a grid cell identifier perform better than those
without it (Fig. A2). Figure A3 compares the changes in
concentrations predicted with and without a grid cell identi-
fier in the extreme scenario of 100 % reduction in emissions.
The results of both sets of models are similar. We thus pre-
fer models with the identifier for their greater out-of-sample
performance.

A3.2 XGBoost models with DACCIWA emission data

A4 Model implementation

The models presented in this framework follow different im-
plementation procedures. While elastic net models can be
implemented using a linear equation and temporal profiles,
machine learning models can be implemented after emula-
tion through a spreadsheet-style format.

A4.1 Elastic net models

We provide a monthly scheduling profile for each country
to transform annual emissions into monthly emissions to be
fed into the models. We build such a monthly schedule us-
ing the most recent years of emission data (2017–2021) for
each couple of pollutant and sector, Es,p, representing a ref-
erence monthly emission value by sector and pollutant. The
monthly weights can be multiplied by the equivalent pollu-
tant and sector total annual precursor emissions and then be
used directly in Eqs. (8) and (9).

Additionally, we provide default meteorology fields that
can be used in the models in case the input data are missing.
The default meteorology variable fields are based on each
country’s average of the last 5 years of meteorology to repre-
sent current trends.

In health and crop impact assessments of air pollution
due to O3, other metrics, such as the 6-month warm sea-
son mean of daily maximum 8 h average (6mDMA8), are
more common. We provide a post-process dataset that al-
lows for converting from annual average O3 concentrations
to a 6mDMA8 metric, obtained by Tropospheric Ozone As-
sessment Report (TOAR) surface ozone data products. See
Schultz et al. (2017) for more details.

A4.2 Machine learning — guide to the Excel
spreadsheet

A machine learning model was built for every country
and ambient pollutant (PM2.5 and O3), and an empirical
emissions-to-concentrations relationship was constructed.
The Excel spreadsheet Results.xlsx contains the data
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Figure A2. Comparison of performance of models with (x axis) and without (y axis) grid cell identifier. Black lines indicate equality.

Figure A3. Concentrations under the simulation of perturbations for models with and without grid cell identifier. Each cross is a country–
sector–precursor–perturbation combination. Black lines indicate equality, colors indicate countries.

required to derive the changes and the levels of concentra-
tions of pollutants under emission scenarios supplied by the
user. Each row is defined by the combination of country,
pollutant, sector, and precursor. The goodness of fit of each
country–pollutant model, as measured by out-of-sample R2

and RMSE, is reported as well.
For easier implementation within a spreadsheet, the re-

lationships have been approximated with piecewise linear
functions that map perturbations of emissions to concentra-
tions. A perturbation P is the relative difference in emis-
sions between the baseline scenario and a chosen scenario
expressed in 100 percentage points.

Omitting subscripts for the country and emitted pollutant
for ease of notation, we call EBaseline,s,p the baseline emis-
sion from sector s of precursor p and EA,s,p the emission

under the alternative scenario A . Then, for every country,
pollutant, sector, and precursor, the perturbation PA,s,p is

PA,s,p =

(
EA,s,p

EBaseline,s,p
− 1

)
· 100. (A6)
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Assuming all other emissions are constant, the concentra-
tions under the alternative scenario A are

ConcentrationsA,s,p =

=



a−100,s,p if PA,p,t <−100

a−100,s,p + b−100,s,p ·
(
PA,p,t + 100

)
if − 100≤ PA,p,t <−80

a−80,s,p + b−80,s,p ·
(
PA,p,t + 80

)
if − 80≤ PA,p,t <−60

a−60,s,p + b−60,s,p ·
(
PA,p,t + 60

)
if − 60≤ PA,p,t <−40

a−40,s,p + b−40,s,p ·
(
PA,p,t + 40

)
if − 40≤ PA,p,t <−20

a−20,s,p + b−20,s,p ·
(
PA,p,t + 20

)
if − 20≤ PA,p,t < 0

a0,s,p + b0,s,p ·
(
PA,p,t

)
if 0≤ PA,p,t < 20

a20,s,p + b20,s,p ·
(
PA,p,t − 20

)
if 20≤ PA,p,t < 40

a40,s,p + b40,s,p ·
(
PA,p,t − 40

)
if 40≤ PA,p,t < 60

a60,s,p + b60,s,p ·
(
PA,p,t − 60

)
if 60≤ PA,p,t < 80

a80,s,p + b80,s,p ·
(
PA,p,t − 80

)
if 80≤ PA,p,t < 100

a100,s,p + b100,s,p ·
(
PA,p,t − 100

)
if PA,p,t > 100

.

(A7)

The coefficient aj,s,p is the level of concentrations when
emissions of precursor p from sector s are perturbed
by j%. The coefficient bj,s,p is the slope of the piece-
wise function in the interval starting at j . The coefficients
a−100,s,p, . . .,a100,s,p and b−100,s,p, . . .,b100,s,p are reported
in the spreadsheet in columns L to AG. The coefficient a0,s,p
is the value that the function takes when the perturbation is
null. Thus, it is a generally close approximation of the con-
centration level given baseline emissions. Emissions are in
kilograms, while concentrations of PM2.5 are expressed in
µg m−3, and concentrations of O3 are in 6mDMA8 µg m−3.
Baseline concentrations, in column H, are the average con-
centrations (over the entire country) from 2017 to 2021. In
column I, baseline emissions are the average precursor emis-
sions from a given sector over the same period.9 Scenario
emissions, in column J, are set by the user. The perturba-
tion in column K is automatically computed. Concentrations
under the alternative scenario are computed in column AK
following Eq. (A7). It should be noted that the calculation as-
sumes that only emissions of the row sector–precursor pair
are perturbed. All other emissions are assumed to be con-
stant. The change in concentrations attributable to the pertur-
bation PA,s,p is calculated in column AI as the difference be-
tween baseline concentrations and concentrations under the
alternative scenario. Again, this is the change in concentra-
tions assuming all other sectoral emissions are kept constant.
The change is computed as follows:

1ConcentrationsA,s,p = ConcentrationsBaseline

−ConcentrationsA,s,p
= a0,s,p −

[
aj,s,p + bj,s,p · (PA,s,p − j)

]
= a0,s,p − aj,s,p − bj,s,p · (PA,s,p − j), (A8)

where PA,s,p is inside an interval starting at j . When sce-
nario emissions are set to zero, the change in concentrations

9Averages are weighted by population in models for PM2.5, but
not in models for O3.

gives the (opposite of the) estimated contribution of each
sector–precursor to the total concentrations in 2017–2021.
The approximation of the emissions–concentrations relation-
ship functions is best for small and moderate perturbations
and larger under scenarios of extreme perturbations. We sug-
gest applying perturbing emissions only in the ±60 % range
based on the fitness-for-purpose principle and given the lim-
itations discussed in Sect. 4. To avoid that approximation er-
ror reverses the relationship between emissions and concen-
trations of PM2.5, which is known to be positive, we impose
in column P that negative perturbations cannot result in an
increase in concentrations, and vice versa. The total change
in concentrations under emission scenario A is computed in
column AJ summing across sectors and precursors:

1
Country

ConcentrationsA,s,p

=

∑
s,p

1ConcentrationsA,s,p

=

∑
s,p

a0,s,p − aj,s,p − bj,s,p · (PA,s,p − j). (A9)

The level of concentrations under scenario A is then re-
ported in column AJ as

ConcentrationsA = ConcentrationsBaseline

+ 1
Country

ConcentrationsA,s,p. (A10)

It should be noted that, differently from the other columns,
the total change in concentrations 1

Country
ConcentrationsA,s,p

(column AJ) and the level of concentrations ConcentrationsA
(column AK) are invariant within a country–pollutant pair.
Therefore, the same value appears in multiple rows.

Comparing the two scenarios

It is possible to compare concentrations in two scenarios in
the following way. Consider two scenarios, A and B . The dif-
ference in concentrations attributable to changes in precursor
p from sectors s is

1ConcentrationsA,s,p −1ConcentrationsB,s,p
= a0,s,p − ajA,s,p − bjA,s,p · (PA,s,p − j)−

[
a0,s,p

−ajB ,s,p − bjB ,s,p · (PB,s,p − j)
]

= ajB ,s,p + bjB ,s,p · (PB,s,p − j)− ajA,s,p − bjA,s,p

· (PA,s,p − j), (A11)

whereas the difference in the total change in concentra-
tions (and the difference in levels of concentrations) is

1
Country

ConcentrationsA,s,p − 1
Country

ConcentrationssB,s,p

= ConcentrationsA−ConcentrationsB

=

∑
s,p

ajB ,s,p + bjB ,s,p · (PB,s,p − j)− ajA,s,p

− bjA,s,p · (PA,s,p − j). (A12)
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Example. All emissions are set to zero in scenario A and set
uniformly at 90 % of baseline emissions in scenario B .

1
Country

ConcentrationsA,s,p − 1
Country

ConcentrationsB,s,p

= ConcentrationsA−ConcentrationsB

=

∑
s,p

a−20,s,p + b−10,s,p · (−10+ 20)− a−100,s,p

− b−100,s,p · (−100+ 100) (A13)

A5 Train–test splitting sensitivity analysis

The training and test dataset splits differ between EN and ML
models due to differences in their data samples. EN mod-
els are trained and tested on country-level aggregated data,
while ML models use gridded country-level data, resulting
in a larger sample size. Given these differences, we do not
harmonize data splitting across methods. Instead, we ensure
a sufficiently large training set for EN models to reduce vari-
ance in parameter estimates.

To validate model configurations more robustly, we con-
duct additional runs with varied train–test splits for models
obtained from CAMS emissions: 75–25 and 70–30 for EN
models and 80–20 and 70–30 for ML models, alongside their
original splits. Figures A4 and A5 present emission policy
scenarios derived from EN models for PM2.5 and O3, com-
paring splits of 84–16, 75–25, and 70–30. Similarly, Figs. A6
and A7 compare policy scenarios for ML models using 80–
20, 75–25, and 70–30 splits. These sensitivity analyses con-
firm that model predictions remain stable across different
train–test splits, showing only minor variations.

A6 Model external validation results

For the elastic net methodology only, we evaluate the
previously presented CLAQC models against different
global data sources: namely, the Evaluating the Cli-
mate and Air Quality Impacts of Short-Lived Pollutants
(ECLIPSE) scenarios (https://iiasa.ac.at/models-tools-data/
global-emission-fields-of-air-pollutants-and-ghgs, last ac-
cess: 27 March 2025, Stohl et al., 2015) provided within the
GAINS model (Amann et al., 2011; Kiesewetter et al., 2015)
and the TM5-FASST model (Van Dingenen et al., 2018).

A6.1 Comparison with the GAINS model

To evaluate CLAQC models against GAINS, we obtain the
anthropogenic emission data from ECLIPSE CLE (Current
legislation)10 v5, 1990–2050, quinquennial, at 0.5° spatial
resolution, focusing on 2020, 2025, and 2030. Annual grid-
ded sectoral emission data cover the following sectors and
are originally expressed in kt yr−1 (these have been converted
to kilograms to implement them into the CLAQC model):
agriculture (waste burning on fields), industry (combustion

10This is the baseline scenario.

and processing), power plants, energy conversion, extrac-
tion11, residential and commercial, waste, and surface trans-
portation.12

We download the GAINS PM2.5 concentrations from the
GAINS Online (https://gains.iiasa.ac.at/models/index.html,
last access: 27 March 2025, IIASA, 2009) tool, measured
in µg m−3.13 To acknowledge initial differences between
datasets, we compare 2015 CAMS PM2.5 concentrations
with 2015 GAINS PM2.5 concentrations (see Fig. A8).

We compare the model outcomes after having applied pop-
ulation weights to the GAINS reported concentrations (see
Fig. A9). The weighted CAMS concentrations from almost
all considered countries are above the line of equality. Given
that starting emissions and concentrations show different val-
ues between the two approaches, CLAQC and ECLIPSE-
GAINS models, we expect that also their outcomes will yield
different results. While CAMS concentrations range between
19.3 and 199.7 µg m−3 (median of 54.3 µg m−3), GAINS
concentrations span between 9.5 and 74.9 µg m−3 (median
of 30.6 µg m−3).

Regarding the comparison between CAMS and GAINS
emissions, we find that while annual pollutant totals in the
two datasets reflect similar magnitudes, annual sectoral emis-
sions diverge substantially in their order of magnitude, e.g.,
up to the order of thousands. More broadly, such hetero-
geneity is confirmed when comparing other sectoral emission
sources present in the literature (Li et al., 2017; Kurokawa
and Ohara, 2020). Thus, sector-specific air quality models
face the infamous problem of drastic input source uncer-
tainty when it comes to delivering sectoral details. Impor-
tantly, even a few orders of magnitude of differences between
the emission input data and the emission data used during the
model training may generate non-realistic concentrations as
the resulting coefficients are scaled to the order of magni-
tude of the underlying training data. There are two ways of
overcoming this issue: (i) using CLAQC for scenario com-
parison, i.e., a reference scenario and a policy scenario are
simulated, and the difference between the two scenarios may
be used for policy analysis instead of the absolute values, and
(ii) implementing the emissions into CLAQC by applying the
CAMS sectoral emission shares to the total of the emissions
inputted. Here we apply the latter.

We then input ECLIPSE emissions into the CLAQC
model. Firstly, we pre-process the data to match the input
requirements of CLAQC; in particular, we do the following:

– We aggregate sectoral emissions to make them match
CLAQC’s variables.

– We re-scale the surface transportation sector into off-
road and road transportation based on CAMS shares.

11Including gas flaring.
12Shipping sectoral emissions are not considered.
13Notice that for O3, GAINS reports a different metric, i.e.,

SOMO35; therefore, we make such an evaluation for PM2.5 only.
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Figure A4. Percentage variation in predicted concentrations of EN models for population-weighted PM2.5 obtained from CAMS emissions,
by sector and perturbation for selected countries: 84–16 (initial splitting), 75–25, and 70–30 train–test splitting. Bar charts on the sides of
each subplot help visualize overlapping variations.

– We re-scale ECLIPSE CLE V5 annual sectoral emis-
sions to monthly sectoral emissions by applying
CLAQC monthly emission profiles based on 2014–2018
data.

– We use the resulting gridded emissions with typical me-
teorology data14 and aggregate them at the country level
to be implemented into the CLAQC model.

14Here we refer to an average of all years.

Finally, after running ECLIPSE emissions into CLAQC, we
aggregate the obtained country-level monthly concentrations
at the annual level to compare them with GAINS country-
level annual concentrations.

As shown in Fig. A10, the GAINS model underesti-
mates population-weighted concentrations of PM2.5 in sev-
eral Asian countries for the year 2020.15 CLAQC predicted
values ranging between 2.9 and 154.2 µg m−3 (median of

15The same pattern is repeated in the years 2025 and 2030, so we
omit such graphs.
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Figure A5. Percentage variation in predicted concentrations of EN models for O3 obtained from CAMS emissions, by sector and perturbation
for selected countries: 84–16 (initial splitting), 75–25, and 70–30 train–test splitting. Bar charts on the sides of each subplot help visualize
overlapping variations.

67.7 µg m−3) as opposed to GAINS concentrations ranging
between 8.5 and 80.6 (median of 27.2 µg m−3). These dif-
ferences can be explained by the different sectoral emission
aggregations, spatial and temporal resolutions, and differ-
ent approaches followed in calculating concentrations. While
CAMS concentrations are derived from a combination of
multiple sources, including measurements taken from mon-
itoring stations, satellite observed data, and modeled atmo-
spheric data (from an ensemble of models), GAINS uses rela-

tionships from EMEP and CHIMERE models (see Sect. 2.3).
Since the CAMS data use satellite imagery, they include
many natural sources that may not be easily observed by
models, such as sea salt, desert dust, and wildfires.
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Figure A6. Percentage variation in predicted concentrations of ML models for weighted PM2.5 obtained from CAMS emissions, by sector,
pollutant, and perturbation for selected countries: 80–20, 75–25 (initial splitting), and 70–30 train–test splitting.

A6.2 Comparison with the TM5-FASST model

The TM5-FASST model16 is a reduced-form air quality
source–receptor model at the global scale constructed by the
JRC. CLAQC model comparison is applied only to TM5-
FASST single-country regions among the 56 regions avail-
able.

16This model is derived from "spreadsheet FASST V1.2
NORMALIZED".

TM5-FASST concentrations are expressed as population-
weighted PM2.5 in µg m−3, including dust and sea salt. Thus,
they are directly comparable with CAMS-CLAQC yearly
population-weighted concentrations, i.e., CLAQC model’s
outcomes aggregated at the annual level. We use TM5-
FASST annual pollutant total emissions.17

17Total emissions consist of IPCC Fifth Assessment’s Represen-
tative Concentration Pathways (RCP) (Lamarque et al., 2010).
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Figure A7. Percentage variation in predicted concentrations of ML models for O3 obtained from CAMS emissions, by sector, pollutant, and
perturbation for selected countries: 80–20, 75–25 (initial splitting), and 70–30 train–test splitting.

We implement the 2015 CAMS emissions into the TM5-
FASST scenario, aggregating the CAMS monthly sectoral
emissions by pollutant and year and comparing its predic-
tions with CAMS emissions inputted into CLAQC mod-
els. As a result, in the case of PM2.5 exposure, TM5-
FASST with CAMS-CLAQC emissions predicts lower val-
ues compared to CLAQC emissions into the CLAQC model
(see Fig. A11a). The latter ones range between 5.7 and
55.7 µg m−3, with a median of 26.6 µg m−3, while pre-
dictions from CAMS-CLAQC emissions into TM5-FASST

range between 1.3 and 24 µg m−3, with a median of
7.4 µg m−3. Differently, in the case of O3 exposure18,
CAMS-CLAQC emissions into the CLAQC model predict
lower concentrations compared to the TM5-FASST model,
as detailed in Fig. A11b. Specifically, CLAQC predicted
exposures from CAMS-CLAQC emissions range between
5.2 and 55.7 µg m−3 (median of 22.1 µg m−3), while TM5-

18O3 exposure is converted from 6mDMA8 expressed in parts
per billion into O3 mean exposure in µg m−3.
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Figure A8. Country-level annual concentrations of PM2.5 in Asia in
2015 from CAMS and GAINS datasets (µg m−3). The dotted lines
represent the following factor differences between models: y = 2x
and y = x

2 .

Figure A9. Country-level annual population-weighted concentra-
tions of PM2.5 in Asia in 2015 from CAMS and GAINS datasets
(µg m−3).

FASST values range between 47.8 and 140 µg m−3 (median
of 114 µg m−3).

A7 Emission scenarios

A7.1 Emission scenarios of models from DACCIWA
emissions

In this section, we present the stylized emission scenarios
generated using DACCIWA emissions in both EN and ML
models for a subset of countries: the Democratic Republic
of the Congo (COD), Egypt (EGY), Ethiopia (ETH), Kenya
(KEN), Nigeria (NGA), Tanzania (TZA), Uganda (UGA),
and South Africa (ZAF) (see Figs. A12, A13, and A14).

As in the case of models derived from CAMS emissions,
EN models from DACCIWA emissions shown in Fig. A12
exhibit greater sectoral variability compared to ML models.
In both methods, the residential sector emerges as a signifi-
cant contributor to PM2.5 concentrations. The transport and
industry sectors are consistently present in all ML models

Figure A10. Country-level annual population-weighted concentra-
tions of PM2.5 in Asia in 2020 from CLAQC and re-scaled GAINS
datasets (µg m−3).

Figure A11. Country-level annual population-weighted concentra-
tions of PM2.5 and O3 from CLAQC emissions into CLAQC and
CLAQC emissions into TM5-FASST (µg m−3).

considered, though with relatively lower weights than the
residential sector. Also, the power sector has a minimal im-
pact on concentrations, except for ZAF. Among the EN mod-
els, the power sector is influential in five out of eight coun-
tries, while in ML models, it notably contributes to con-
centrations in only one country (ZAF). Regarding O3, the
industry and power sectors exhibit higher contributions in
COD, EGY, KEN, and ZAF in EN models, while ML mod-
els consistently include the residential, transport, and indus-
try sectors. In most cases, both EN and ML models cap-
ture the same relationship between emissions and concentra-
tions, though with different magnitudes. However, there are
instances where ML and EN models present contrasting as-
sociations between sectors and concentrations. For example,
in the EN model for COD, an increase in industrial emissions
corresponds to an increase in concentrations, while the ML
model indicates a decrease.

In Figs. A13 and A14, we show the variation in per-
centages in predicted concentrations of EN and ML models
(without pixel detail) obtained from CAMS emissions, not
only by sector and perturbation but also by precursor, for se-
lected countries.

https://doi.org/10.5194/gmd-18-2373-2025 Geosci. Model Dev., 18, 2373–2408, 2025
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Figure A12. Percentage variation in predicted concentrations by sector and perturbation for selected countries in EN and ML models from
DACCIWA emissions for PM2.5 and O3 (without pixel detail). Bar charts on the sides of each subplot help visualize overlapping variations.
Geosci. Model Dev., 18, 2373–2408, 2025 https://doi.org/10.5194/gmd-18-2373-2025
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Figure A13. Percentage variation in predicted concentrations of EN and ML models (without pixel detail) for PM2.5 obtained from CAMS
emissions by sector, pollutant, and perturbation for selected countries.

https://doi.org/10.5194/gmd-18-2373-2025 Geosci. Model Dev., 18, 2373–2408, 2025
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Figure A14. Percentage variation in predicted concentrations of EN and ML models (without pixel detail) for O3 obtained from CAMS
emissions by sector, pollutant, and perturbation for selected countries.

Geosci. Model Dev., 18, 2373–2408, 2025 https://doi.org/10.5194/gmd-18-2373-2025
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A7.2 Emission scenarios of ML models with pixel detail

Figure A15. Percentage variation in predicted concentrations by sector and perturbation for selected countries in ML models (with pixel
detail) obtained from CAMS emissions. Bar charts on the sides of each subplot help visualize overlapping variations.

https://doi.org/10.5194/gmd-18-2373-2025 Geosci. Model Dev., 18, 2373–2408, 2025
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Figure A16. Percentage variation in predicted concentrations of ML models (with pixel detail) obtained from CAMS emissions by sector,
pollutant, and perturbation for selected countries.

In Figs. A15 and A16, we show perturbation plots for
ML models with sub-national-level detail. When consider-
ing PM2.5, it is observed that both versions of the ML mod-
els generally select the same precursors. However, there are
slight variations in the prediction outcomes based on changes
in these precursors. For instance, in the USA model, all avail-
able sectors are chosen in both model versions. However, in

the pixel-level model, the residential and road sectors carry
more weight compared to the aggregate version, particularly
for positive perturbations. This pattern holds true for models
predicting O3 levels as well. Continuing with the example
of the USA case, while for most precursors the contribution
seems to be similar among models, the pixel-level model ex-
hibits a reduced relevance of the residential and power sec-

Geosci. Model Dev., 18, 2373–2408, 2025 https://doi.org/10.5194/gmd-18-2373-2025
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tors in comparison to the country-level model, especially for
negative perturbations. On the other hand, the agriculture
sector makes a similar contribution in both model versions.
Overall, it appears that the ML aggregate version serves as a
reliable approximation of the spatially heterogeneous models
with pixel detail, indicating its effectiveness in capturing the
underlying dynamics.

Code and data availability. All datasets used in CLAQC
applications are freely available online. The modeling
scripts and the output datasets are openly downloadable at
https://doi.org/10.5281/zenodo.14177055 (Renna et al., 2024).
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