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Abstract. Accurately simulating severe haze events through
numerical models remains a challenge because of uncer-
tainty in anthropogenic emissions and physical parameteri-
zations of particulate matter (PM2.5 and PM10). In this study,
a coupled Weather Research and Forecasting with Chem-
istry (WRF-Chem)–four-dimensional local ensemble trans-
form Kalman filter (4D-LETKF) data assimilation system
has been successfully developed to optimize particulate mat-
ter concentration by assimilating hourly ground-based ob-
servations in winter over the Beijing–Tianjin–Hebei (BTH)
region and surrounding provinces. The effectiveness of the
4D-LETKF system and its sensitivity to the ensemble mem-
ber size and length of the assimilation window are investi-
gated. The promising results show that significant improve-
ments have been made by analysis in the simulation of par-
ticulate matter during a severe haze event. The assimila-
tion reduces root mean square errors in PM2.5 from 69.93
to 31.19 µg m−3 and of PM10 from 106.88 to 76.83 µg m−3.
Smaller root mean square errors and larger correlation coeffi-
cients in the analysis of PM2.5 and PM10 are observed across
nearly all verification stations, indicating that the 4D-LETKF
assimilation optimizes the simulation of PM2.5 and PM10
concentration efficiently. Sensitivity experiments reveal that
the combination of 48 h of assimilation window length and
40 ensemble members shows the best performance for re-
producing the severe haze event. In view of the performance

of ensemble members, an increasing ensemble member size
improves ensemble spread among each forecasting member,
facilitates the spread of state vectors about PM2.5 and PM10
information in the first guess, favors the variances between
each initial condition in the next assimilation cycle, and leads
to better simulation performance in both severe and moder-
ate haze events. This study advances our understanding of
the selection of basic parameters in the 4D-LETKF assimila-
tion system and the performance of ensemble simulations in
a particulate-matter-polluted environment.

1 Introduction

Although great progress regarding air pollution control has
been made during recent years, China is facing the highest
levels of particulate matter in the world (van Donkelaar et
al., 2016). Particulate matter consists of PM2.5 and PM10, re-
ferring to particles with aerodynamic diameters of less than
2.5 and 10 µm, respectively. A high concentration of particu-
late matter is a major factor for severe haze events (air quality
index larger than 200) in the Beijing–Tianjin–Hebei (BTH)
region of China, especially during winter (Yan et al., 2016;
Zhang et al., 2018). Numerical models are considered to be
useful tools for simulating haze events as they take complex
physical and chemical mechanisms into account, but the un-
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certainty in emissions and physical parameterizations still re-
mains a significant barrier in improving the simulation accu-
racy (Gao et al., 2017; Feng et al., 2018).

As an effective statistical approach, data assimilation
is capable of improving the accuracy of pollution simu-
lations by limiting the performance of models. A lot of
data assimilation approaches have been applied to atmo-
spheric science, including three-dimensional variation (3D-
Var) (Lorenc, 1986; Parrish and Derber, 1992; Sun et al.,
2020), four-dimensional variation (4D-Var) (Huang et al.,
2009; Benedetti et al., 2009), and ensemble Kalman filter
algorithms and their variants (Evensen, 1994; Whitaker and
Hamill, 2002; Miyazaki et al., 2012a). Among them, four-
dimensional local ensemble transform Kalman filter (4D-
LETKF) has shown unique characteristics in numerical sim-
ulation (Evensen, 2003; Kong et al., 2021). Firstly, derived
from finite-forecasting members, the background error co-
variance matrix of 4D-LETKF features flow-dependent char-
acteristics, and the linear combinations of ensemble mem-
bers produce a global analysis (Hunt et al., 2007). Secondly,
the computational time for 4D-LETKF remains robust as
the observation numbers increase, exhibiting strong compu-
tational ability in the parallel architecture when assimilat-
ing various measurements (Miyoshi et al., 2007; Hunt et al.,
2007; Dai et al., 2021). Lastly, 4D-LETKF can assimilate
time slots of asynchronous observations to optimize the cur-
rent state within the assimilation window, which efficiently
improves the quality of pollution prediction (Evensen, 2003;
Ott et al., 2004; Dai et al., 2019; Cheng et al., 2019).

The characteristics of 4D-LETKF underscore the impor-
tance of the ensemble member size and length of the assim-
ilation window for its effectiveness. The background error
covariance matrix, which represents the uncertainty in the
ensemble simulations, is determined by the spread of the en-
semble members (Peng et al., 2017). In general, 4D-LETKF
considers approximate model trajectories by observing lin-
ear combinations of the background ensemble trajectories.
However, limited numbers of ensemble members may bring
about insufficient dispersion of ensemble systems (Hunt et
al., 2004). Overall, the 4D-LETKF system can greatly im-
prove the utilization rate of observations by constraining
the state variables in an asynchronous hourly slot within
the assimilation window. A longer assimilation window effi-
ciently reduces the computational load by avoiding frequent
switches between state and forecast variables. But the trajec-
tories in a long assimilation window may diverge enough that
linear combinations will not approximate the model trajec-
tories. Moreover, the model ensemble trajectory may not fit
the observations well over the entire interval with the pres-
ence of model errors (Dai et al., 2019). Many studies have
discussed the choice of these two parameters for ensemble
Kalman filter algorithms and their variants. When optimiz-
ing hourly aerosol fields by satellite observations, Cheng et
al. (2019) revealed that the forecast with a 24 h assimilation
window was comparable to those with 1 h; the root mean

square error for aerosol optical depth (AOD) is 0.091 and
0.110, respectively, indicating the weights determined at the
end of the 24 h assimilation window are valid to optimize the
ensemble trajectories. However, Dai et al. (2019) proposed
that over 80 % of the hourly assimilation efficiencies for the
1 h assimilation window are higher than those with 6 or 24 h
in 4D-LETKF experiments, suggesting that assimilation ef-
ficiency decreases with the increase in the assimilation win-
dow interval. These different opinions reveal that there is still
a large uncertainty in the selection of parameters in the 4D-
LETKF assimilation system.

The accuracy simulation of severe haze events with air
quality index (AQI) larger than 200 has been a challenging
problem for a long time, posing severe threats to human daily
life and public health (Wang et al., 2014; Kong et al., 2021;
Gao et al., 2017). Although 4D-LETKF has unique advan-
tages in computational efficiency and analysis, there is lit-
tle research that investigates the impacts of 4D-LETKF as-
similation on pollutant simulations, especially in severe haze
events; in addition, it is also imperative to explore the ba-
sic optimal combination of assimilation parameters and its
explanation in this method. Our major objectives are to not
only evaluate the performance of 4D-LETKF in reproducing
particulate matter concentration during a severe haze event,
but also summarize the influence rules of ensemble size and
assimilation window length on particulate matter simulation
and explore whether these rules are applicable to a moder-
ate haze event (air quality index smaller than 200) as well.
The results have great significance for verifying and quan-
tifying the effect of 4D-LETKF assimilation on numerical
simulations of PM2.5 and PM10, subsequently providing a
general rule for parameter selection in the 4D-LETKF during
severe haze events. Herein, we utilize the 4D-LETKF system,
which is coupled with the Weather Research and Forecast-
ing with Chemistry (WRF-Chem) model to improve simula-
tive skill of particulate matter among northern China during
the winter of 2020. Section 2 briefly introduces detail setting
of WRF-Chem model, 4D-LETKF, observations and numer-
ical experiment designs. Section 3 compares the assimilation
with those in the prior simulation, summarizes and explains
sensitivity rules for parametric selection, and followed by a
conclusion in Sect. 4 lastly.

2 Methodology

2.1 Configuration of the forecast model

In our implementation, the fully coupled online WRF-Chem
version 3.9.1 is employed as a numeral forward model to de-
scribe the meteorological and chemical conditions simulta-
neously, in which it fully considers extensive chemical trans-
port processes including advection, convection and sedimen-
tation processes (Grell et al., 2005). The WRF-Chem model
is configured with two domains (d01 and d02), both using
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100 (west–east)× 100 (south–north) grid points but with hor-
izontal resolutions of 30 and 10 km, respectively. As shown
in Fig. 1a, the d01 domain covers most of east Asia, and the
area under the blue shadow is the d02 domain. The vertical
grid contains 40 full sigma levels, extending from the surface
to 50 hPa.

The initial and lateral boundary conditions of meteorolog-
ical fields are derived from the National Centers for Envi-
ronmental Prediction Final (NCEP FNL) analysis data with
a spatial resolution of 1°× 1° and temporal interval of 6 h.
A state-of-the-art and highly non-linear gas-phase chemical
mechanism Regional Atmospheric Chemistry Mechanism
(RACM) (Stockwell et al., 1997) is selected as the gas-phase
mechanism, and Goddard Chemistry Aerosol Radiation and
Transport (GOCART) (Schwartz et al., 2012) is adopted as
the aerosol mechanism. The parameterization scheme used
in research is shown in Table 1.

The anthropogenic emissions are obtained from the Multi-
resolution Emission Inventory for China (MEIC, 2024) com-
piled by Tsinghua University. The inventory includes anthro-
pogenic emissions from agriculture, industry, power, residen-
tial, and transportation sectors (Zheng et al., 2021). The in-
ventory has a spatial resolution of 0.25°× 0.25° and has been
interpolated to match the simulation resolution. The biogenic
emissions are calculated online by Guenther scheme (Guen-
ther et al., 1995). The PM2.5, PM10 concentrations output
from WRF-Chem are linearly interpolated to site observa-
tions. The evaluation of uncertainty in the emission inventory
has been shown in previous research (Zhang et al., 2009).

2.2 The 4D-LETKF algorithm and the state variables

The 4D-LETKF coupled with the WRF-Chem model is im-
plemented to investigate the influence of assimilation on par-
ticulate matter simulation in this research. In this section, we
introduce the 4D-LETKF algorithm and corresponding state
variables briefly, a more detailed information can be found
in Hunt et al. (2007). The LETKF features a flow-dependent
covariance matrix from ensemble simulation and determines
the analysis ensemble mean, xa (a posteriori), according to
the following formula:

xa
= xb
+Xbwa, (1)

where xb and Xb denote the ensemble mean of the first guess
and background ensemble perturbations, respectively. The
ensemble perturbation matrix (Xb) is calculated by xb (i)−

xb
{i = 1,2, . . .,k}, where k represents the ensemble member

size. The perturbation weight matrix wa is the Kalman gain
which linearly determines the increment between the analy-
sis and the first guess, and can be calculated as follows:

wa
= P̃ a

(
Y b
)T

R−1(y0
− yb), (2)

where P̃ a is the analysis error covariance in ensemble
space. y0 and yb denote the observations vector and en-

semble mean background observations, respectively. Ensem-
ble mean background observations derived from applying
the observation vector to the ensemble member state vec-
tor H (xb). The matrix R is the observation error covari-
ance matrix. The matrix Yb represents ensemble background
observation perturbations, whose ith column is yb(i)− yb,
{i = 1,2, . . .,k}. P̃ a can be obtained as follows:

P̃ a
= [(k− 1)I/ρ+ (Yb)TR−1Yb

]
−1, (3)

where I denotes the identity matrix and k is ensemble mem-
ber size. The multiplicative inflation factor ρ is necessary to
avoid the filter divergence (Anderson and Anderson, 1999;
Sekiyama et al., 2010), which is set to 1.1 to inflate the anal-
ysis covariance (Dai et al., 2019; Anderson, 2007). Analysis
ensemble perturbation (Xa) is calculated by

Xa
= Xb

[
(k− 1)P̃ a

]1/2
= XbW a. (4)

Calculated by the sum of the xa and each of the columns of
Xa, the ensemble analyses are served as optimal initial con-
ditions in each ensemble member to generate the first guess
in the next cycle.

Figure 2 is the flow chart of the WRF-Chem–4D-LETKF
assimilation system applied in our implementation. The sys-
tem conducts these processes within each assimilation cycle.
The 4D-LETKF generates a flow-dependent background er-
ror covariance matrix by ensemble member. Given that the
emissions inventory is an important source of uncertainty
in simulation (Pagowski and Grell, 2012), the research ran-
domly perturbs anthropogenic emissions of PM, black car-
bon (BC), and organic carbon (OC) in January for each
member to create the ensemble members, and the perturba-
tion follows a log-normal distribution in the k-dimensional
space. The mean values of perturbations of PM2.5, PM10,
BC, and OC emissions are equal to 1, and the variances of
these emissions are set according to corresponding uncer-
tainty in MEIC inventory (130 %, 132 %, 208 %, and 258 %
for PM2.5, PM10, BC, and OC, respectively) (Luo et al.,
2023). Such ensemble anthropogenic emissions are perfectly
correlated in spatial and temporal dimension and should not
be regarded as overly restrictive (Schutgens et al., 2010; Dai
et al., 2021). This study only adds perturbations one time
into emissions at the first cycle of assimilation to provide
the information spread of particulate matter. It is enough
to make the most out of the site information affecting the
first-guess field. The WRF-Chem–4D-LETKF system prop-
agates the ensemble forward simulation for the entire assim-
ilation window time and outputs the first-guess fields at each
hourly time slot. The ensemble mean of the first guess (xb)
and background ensemble perturbations (Xb) can be obtained
from the ensemble member here. Combining the observation
and the observation operator, the innovation (y0

−yb) and Yb

can be obtained in each time slot. The perturbation weight
matrix (wa) is valid within a relative short assimilation win-
dow (e.g., 24 or 48 h) (Hunt et al., 2004; Cheng et al., 2019).
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Table 1. WRF-Chem parameterization scheme in this study. RRTMG stands for Rapid Radiative Transfer Model for General Circulation
Models, and YSU stands for Yonsei University.

Parameterization WRF-Chem option

Microphysics Morrison two-moment scheme (Morrison et al., 2009)
Longwave radiation RRTMG longwave scheme (Iacono et al., 2008)
Shortwave radiation RRTMG shortwave scheme (Iacono et al., 2008)
Planetary boundary layer YSU scheme (Hong et al., 2006)
Cumulus parameterization Grell 3D ensemble scheme (Grell, 1993)
Land surface model Noah (Tewari et al., 2004)

Figure 1. (a) WRF-Chem model domains. The grey border implies the BTH region. (b) Location of assimilated and independent verification
observation sites with topography (m). The red and blue dots imply the assimilated and independent verification observation site, respectively.
Publisher’s remark: please note that the above figure contains disputed territories.

The analysis ensemble derived from wa at the end of time
slots will serve as chemical initial conditions for the next as-
similation window. As the cycle of assimilation proceeds, a
linear combination of the analysis ensemble is continuously
obtained.

The ensemble Kalman filter generally encounters a spuri-
ous long-distance correlation problem because of the limited
numbers of ensemble members (Miyazaki et al., 2012a). To
avoid the problem above, it is necessary to apply observa-
tion localizations to filter observations from a long distance.
Overall, 4D-LETKF offers a flexible choice of observation
localizations in horizontal, vertical, and temporal dimensions
for each grid point (Cheng et al., 2019). In this study, the
horizontal localization factor is calculated as the Gaussian
function (Miyoshi et al., 2007), which gradually reduces the
effect of observations as the increasing departure from the
analysis grid:

f (r)= exp(−r2/2σ 2). (5)

Here, r represents the physical distance from the observation
to the analysis grid, and σ represents localization length. We

limit the localization factor from 0 to 3.65 times the local-
ization length (Zhao et al., 2015), ignoring the observation
beyond 3.65 times the localization length to the analysis grid.

The selection of the state variables depends on the gener-
ative mechanism of aerosol. As a result, 16 kinds of WRF-
Chem–GOCART aerosol variables are treated as state vari-
ables. For the PM2.5 observations, the observation operator
is described as follows:

yb
PM2.5
= ρd[P2.5+ 1.375S+ 1.8(OC1+OC2)

+BC1+BC2+D1+ 0.286D2+ S1+ 0.942S2], (6)

where ρd represents the dry-air density; P2.5 is the fine un-
specified aerosol contribution; S represents sulfate; and OC1
and OC2 are hydrophobic and hydrophilic organic carbon,
respectively.

BC1 and BC2 are hydrophobic and hydrophilic black car-
bon, D1 and D2 are dusts with effective radii of 0.5 and
1.4 µm, and S1 and S2 are sea salts with effective radii of
0.3 and 1.0 µm, respectively (Peng et al., 2018).
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Figure 2. Flow chart of the WRF-Chem–4D-LETKF assimilation system for particulate matter.

Similarly, the observation operator for PM10 is shown as
follows:

yb
PM10
= ρd[P10+P2.5+ 1.375S+ 1.8(OC1+OC2)

+BC1+BC2+D1+ 0.286D2+D3+ 0.87D4

+ S1+ 0.942S2+ S3], (7)

where P10 is the coarse unspecified aerosol contribution and
D3 and D4 are dusts with effective radii of 2.4 and 4.5 µm.
S3 is sea salt with an effective radius of 3.2 µm. Therefore,
the simulated PM10–2.5 is

yb
PM10–2.5

= ρd[P10+D3+ 0.87D4+ S3]. (8)

In this research, yoPM10–2.5
calculated using yoPM10

− yoPM2.5
is

used to analyze state variables including D5 and S4, which
are dust with effective radii of 8 µm and sea salt with effective
radii of 7.5 µm, respectively.

2.3 Site observation data and errors

Ground-based observations feature a high temporal resolu-
tion, which can capture variation in pollution concentration
on an hourly scale at the bottom of the troposphere, providing
continuous and reliable observations. The quality-assured
and quality-controlled hourly observation data of PM2.5 and
PM10 are used to explore the influence of 4D-LETKF as-
similation in this research. The pollution data were obtained
from the China National Environmental Monitoring Center
(CNEMC, 2024). As the research primarily focuses on the
BTH region, the assimilation and verification sites are mainly
located in the BTH region and neighboring provinces, pri-
marily in urban and suburban areas. In order to obtain more
reliable observation data, the quality control of observation
data in this study includes hourly observations of default
value and extreme value detection. First, during the haze pe-
riod, if the number of missing values for either type of pol-
lutant at one site exceeds 24 h, this site is considered to have
a certain uncertainty in observation quality, and data will not
be assimilated. Second, for each kind of observation in dif-
ferent station, the hourly observations outside the range of
m± 3σ , where the m and σ are the mean value and standard

deviation of daily concentration, respectively, will not be as-
similated. When selecting assimilation and verification sites,
spatial distribution uniformity is ensured for better assimila-
tion performance; consequently, those sites are randomly se-
lected. Finally, 127 assimilation sites and 69 verification sites
in the BTH region and surrounding provinces are selected
(Fig. 1b). It can be seen that the assimilation and verification
sites have a relatively uniform spatial distribution.

The observation error covariance matrix (R) is assumed to
be diagonal, implying that observational errors among each
pollution species are uncorrelated. The observation error (r)
consists of the measurement error (ε0) and the representation
error (εr):

r =

√
ε2

0 + ε
2
r . (9)

The measurement error (ε0) is defined as

ε0 = ermax+ 0.0075×50, (10)

where ermax is the base error, which is set to 1 for PM2.5 and
PM10 (Chen et al., 2019a), and50 denotes the observation of
concentration. Produced by the observation operator, the rep-
resentation error can be calculated by the following formula
(Elbern et al., 2007):

εr = γ ε0
√
1l/L, (11)

where γ is the tunable scaling factor set to 0.5,1l is the spa-
tial resolution of gridding (30 and 10 km for d01 and d02,
respectively), and L depends on station location, which de-
notes the range that an observation can reflect; here,L is 2 km
for this calculation.

Meteorological data were collected from the National Cli-
matic Data Center (NCDC, 2024), which provides the hourly
air temperature, dew point, and wind speed data. The obser-
vational meteorological data are used to validate the perfor-
mance of the simulations in this study.

2.4 Experiment design

A series of control and data assimilation experiments during
severe and moderate haze events, as listed in Table 2, have
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been carried out to achieve our major objective. The con-
trol experiments refer to numerical experiments without data
assimilation. The Severe-FR experiment with a 48 h spin-
up time is performed firstly to quantify the necessity of ad-
justing particulate matter concentration during a severe haze
event. Severe-FR-24h, Severe-FR-48h, and Severe-FR-72h
are accompanied by a restart every 24, 48, and 72 h, respec-
tively, and update meteorological boundary conditions. Ex-
cept Severe-FR, the rest of the experiments all have 24 h of
spin-up time at the beginning of each restart or assimila-
tion cycle. The settings of the assimilation experiment cy-
cle time are the same as in corresponding control experi-
ments. The detailed descriptions of experiment cycle time are
shown in Fig. S1 in the Supplement. Since the effectiveness
of 4D-LETKF is highly related to the ensemble member size
and length of the assimilation window (Rubin et al., 2016),
the sensitivity analysis is employed to investigate the influ-
ence from two parameters on assimilation effect (Kong et
al., 2023). The selection of assimilation parameters for the
sensitivity experiments includes 20, 40, and 60 for ensemble
members and 24, 48, and 72 h for the length of the assimila-
tion window empirically (Kong et al., 2021; Dai et al., 2021).
All sensitivity experiments use identical WRF-Chem physi-
cal parameterizations, anthropogenic emissions, and random
perturbations. Through the comparison between all assimila-
tion experiments, the influence rules of 4D-LETKF assimi-
lation have on the simulation of particulate matter in severe
haze can be retrieved. Lastly, aiming to determine the appli-
cable range of obtained influence rules above, two assimila-
tion experiments in a moderate haze event are performed to
validate whether the rules are also suitable for a less polluted
environment. The reasons for the selection of parameters are
described in detail in the next section.

The root mean square error (RMSE), mean error (bias),
mean absolute error (MAE), and correlation coefficient are
calculated in this study to evaluate the performance of each
numerical experiment. The assimilation efficiency (AE) for
estimating the data assimilation performance is also calcu-
lated by the following formulation (Yumimoto and Take-
mura, 2011):

AE=
RMSEf

−RMSEa

RMSEf × 100%, (12)

where RMSEa and RMSEf are RMSE with and without as-
similation, respectively. According to the definition, if AE is
positive, it means that RMSE has decreased due to the as-
similation effect. When AE is equal to 1, RMSE in analysis
completely disappears, and the analysis is equal to observa-
tions. The formulations of the correlation coefficient and root
mean square error are shown in the Supplement.

3 Results

3.1 Comparison of the analysis with the control
experiment

3.1.1 The reproduction of a severe haze event in BTH

It is essential to discuss the basic evolution of pollutants and
the necessity of pollutant data assimilation in a severe haze
event before conducting the assimilation experiments. The
severe haze event selected in this study occurred from 00:00
15 January 2020 to 00:00 21 January 2020 (UTC). The AQI
is a comprehensive indicator of overall air pollution and a
criterion for severe haze events (Zhan et al., 2018; Bao et
al., 2015). As a result, Fig. 3a shows the temporal variation
in AQI at the six sites in the BTH region during the inves-
tigated period. The peak value of AQI mainly appeared on
18 January and then rapidly decreased on 19 and 20 January.
The temporal averages of AQI have exceeded 200, with par-
ticulate matter identified as the primary pollutant. Figure 3b
provides the correlation coefficients and standardized stan-
dard deviations of five parameters from Severe-FR shown
against observations. Meteorological variables, including air
temperature, dew point temperature, and wind speed, are well
simulated when compared with PM2.5 and PM10. The cor-
relation coefficients of meteorological factors are all larger
than 0.6, while those of pollutant concentrations are all be-
low 0.4. Therefore, when the meteorological conditions can
be retrieved relatively accurately, particulate matter assimila-
tion is the key to improving the simulative skill of pollutants.

3.1.2 The improvement in the reproduction of severe
haze achieved by 4D-LETKF

The divergence between the assimilation and control experi-
ments reflects the contribution from 4D-LETKF initial con-
dition adjustment. Consequently, the study takes an ensemble
member size of 40 and assimilation window length of 48 h
to conduct the sensitivity experiment and compare it with
Severe-FR-48h, which has the same integration time in each
cycle to validate the effectiveness of the 4D-LETKF assimi-
lation system (the analysis from the selection of 40 ensemble
members and 48 h of the assimilation window length is pre-
sented here because it shows the best performance among
sensitivity experiments in the next section). Figure 4 reveals
the performance of control and assimilation experiments in
the severe haze event. The RMSE values of PM2.5 and PM10
in Severe-FR-48h are 69.93 and 106.88 µg m−3, and both
have a scattered distribution, indicating substantial uncer-
tainty exists in reproducing this severe haze event. In Severe-
40m-48h, the RMSE values of PM2.5 and PM10 are 31.19
and 76.83 µg m−3, decreasing by 55.40 % and 28.12 %, re-
spectively, in a high-particulate-matter-concentration envi-
ronment. The decreased RMSE values also imply that the
assimilation system has reached a well-calibrated stage. Not
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Table 2. Design of the numerical experiments in this research.

Experiment Design of simulation

Control experiments Severe-FR Free-run experiment in a severe haze event and without restart in integration
process.

Severe-FR-24h
Severe-FR-48h
Severe-FR-72h

Free-run experiment in a severe haze event and with a restart every 24, 48 and
72 h, providing deterministic simulation corresponding to data assimilation
experiment.

Moderate-FR-48h Free-run experiment in moderate haze events and with a restart every 48 h,
providing deterministic simulation corresponding to data assimilation
experiment.

Data assimilation
experiments in a severe
haze event

Severe-20m-24h
Severe-20m-48h
Severe-20m-72h

Assimilation experiment in a severe haze event with 20 ensemble members and
24, 48, and 72 h assimilation window length, respectively.

Severe-40m-24h
Severe-40m-48h
Severe-40m-72h

Assimilation experiment in a severe haze event with 40 ensemble members and
24, 48, and 72 h assimilation window length, respectively.

Severe-60m-24h
Severe-60m-48h
Severe-60m-72h

Assimilation experiment in a severe haze event with 60 ensemble members and
24, 48, and 72 h assimilation window length, respectively.

Data assimilation
experiments in a
moderate haze event

Moderate-20m-48h
Moderate-40m-48h

Assimilation experiment in a moderate haze event with 20 and 40 ensemble
members combine with 48 h assimilation window length.

Figure 3. (a) Temporal variation about AQI at six sites in the severe haze event. (b) A Taylor graph describing the simulation from Severe-FR
with five kinds of parameters compared with the observed ones in the BTH region.

only are more points grouped together, but smaller simula-
tion errors for PM2.5 and PM10 also imply that Severe-40m-
48h outperforms Severe-FR-48h in this severe haze event.

In order to acquire the base distribution of simulation er-
rors for particulate matter, Fig. 5 presents the frequency dis-
tribution of deviations between observed and simulated par-
ticulate matter concentrations in Severe-FR-48 and Severe-

40m-48h experiments. It is obvious that Severe-40m-48h in-
creases the frequency of low deviations and decreases those
of high deviations in the simulation of PM2.5. The devia-
tion pattern of PM2.5 in Severe-40m-48h is generally more
squeezed together, with higher peaks, and symmetrical to the
value of 0 than Severe-FR-48h. For the deviation distribution
pattern of PM10, it shows a high frequency of negative devia-
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Figure 4. Scatterplot and density plot of PM2.5 and PM10 in Severe-FR-48h and Severe-40m-48h versus observations from verification
stations (µg m−3). The color bar represents the Gaussian kernel density estimation.

tions and great underestimation in the Severe-FR-48h, and
this underestimation has been effectively corrected by the
adjustment of initial conditions and step analysis in Severe-
40m-48h. In particular, the proportion of deviation within
20 µg m−3 in the Severe-40m-48h is 69.98 % for PM2.5 and
31.90 % for PM10.

Figure 6 exhibits the spatial distribution of four statistical
parameters about RMSE for particulate matter in the BTH
region. By comparing from the Severe-FR-48h and Severe-
40m-48h, it is clear there is a significant RMSE reduction
for PM2.5 after assimilation, implying that the actual evolu-
tion of PM2.5 can be better represented by Severe-40m-48h.
For instance, the RMSE values of PM2.5 in Baoding, Heng-
shui, and Cangzhou have significantly decreased to 29.85,
18.98, and 19.06 µg m−3, respectively, compared to 80.55,
55.22, and 76.32 µg m−3 in Severe-FR-48h. AE in most ver-
ification stations exceeding 50 % also suggests the high ef-
ficiency of 4D-LETKF assimilation for the simulation of
PM2.5. Although the performance of the assimilation exper-
iment in Shijiazhuang does not have a good agreement with
observation and shows a positive difference, high values of
AE in most verification stations also prove the validation
of the assimilating effect for PM10. Compared to Severe-
FR-48h, Severe-40m-48h productively reduces the RMSE of
PM10, accompanied by high values of 61.18 %, 59.17 %, and

52.18 % of AE on Zhangjiakou, Tangshan, and Hengshui, re-
spectively.

The spatial distribution of correlation coefficients from
Severe-40m-48h, Severe-FR-48h, and their difference for
PM2.5 and PM10 is also illustrated in Fig. 7. The assimilation
experiment increases the correlation coefficients to more than
0.6 at all sites in the simulations of PM2.5 and exceeds 0.7 in
the southern BTH region in the simulations of PM10. Severe-
40m-48h also reverses the opposite trend of PM2.5 and PM10
series in Severe-FR-48h versus observations; for example,
the correlation coefficients in Severe-FR-48h at Chengde and
Zhangjiakou are −0.42 and −0.53, but they increase to 0.52
and 0.69 after assimilation in the simulations of PM10. In-
corporating more assimilable observations may further in-
crease the correlation coefficient in the simulation of particu-
late matter (Kong et al., 2021). Data assimilation by multiple
observations from diverse platforms is necessary because it
can integrate and coordinate observational information into
aerosol forecasts them well and then improve air pollutant
forecast accuracy (Barbu et al., 2009; Ma et al., 2020).

The temporal variations in particulate matter from Severe-
40m-48h and Severe-FR-48h and observations from six in-
dependent verification stations are shown in Figs. S2 and S3.
The six independent verification stations have experienced
different levels of air pollution and distributed uniformly over
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Figure 5. Frequency distribution of the deviations about the simulated PM2.5 and PM10 concentrations in Severe-40m-48h and Severe-FR-
48h with the observed ones subtracted (deviation is in µg m−3).

Figure 6. Spatial distribution of RMSE values from Severe-40m-48h (a, e), Severe-FR-48h (b, f), and their difference (c, g) and AE (d, h)
for PM2.5 (a–d) and PM10 (e–h) from 15 to 21 January among verification stations in the BTH region. The difference implies the RMSE in
Severe-40m-48h without those in Severe-FR-48h (µg m−3). AE is assimilation efficiency and has been described in the Methodology section.
The grey border denotes the BTH region.

the BTH region. It is apparent that the analysis at six stations
have good agreement with observations for both PM2.5 and
PM10, which can better characterize the peaks and valleys of
particulate matter concentration over investigated period.

Table 3 lists the 1RMSE, 1CORR, and AE in the simu-
lations of particulate matter at independent stations outside
the BTH region. The RMSEs and correlation coefficients
have decreased and increased, respectively, after assimilat-
ing ground-based observations, suggesting that the uncer-
tainty in Severe-FR-48h has been well optimized in not only
the BTH region, but also the whole simulation domain. The
main source of these gains is generated from local initial
field assimilation. Compared to Severe-FR-48h, the analysis
in Yuncheng shows that the RMSE values of PM2.5 and PM10
have decreased remarkably by 98.26 and 144.56 µg m−3, and
such a great improvement may be related to the enhanced es-

timation capability about state variables of particulate matter.
The high values of AE also suggest that verification obser-
vation sites outside the BTH region have achieved a good
Kalman gain. In previous research, predicting heavy haze
events in northern China, especially over the BTH Region,
remained a challenge when compared to other regions like
Pearl River Delta and Yangtze River Delta in China (Feng et
al., 2018; Gao et al., 2017). In this research, the analysis is
propagated by meteorological elements, including tempera-
ture, air pressure, and wind fields, which come from NCEP
Final analysis data and may provide an optimal meteorologi-
cal boundary conditions for the assimilation of pollutant con-
centrations.
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Figure 7. Spatial distribution of correlation coefficients from Severe-40m-48h (a, d), Severe-FR-48h (b, e), and their difference (c, f) for
PM2.5 (first row) and PM10 (second row) from 15 to 21 January among verification stations in the BTH region. The difference implies the
correlation coefficient in Severe-40m-48h without those in Severe-FR-48h. The grey border denotes the BTH region.

Table 3. Statistics about PM2.5 and PM10 from analyses in the cities among neighboring provinces of the BTH region. 1RMSE (1CORR)
represents the RMSE (correlation coefficient) from the analysis with those from Severe-FR-48h subtracted (1RMSE is in µg m−3).

City/statistical variable PM2.5 PM10

1RMSE 1CORR AE 1RMSE 1CORR AE

Taiyuan −21.30 +0.41 23.93 % −54.8 +0.71 39.05 %
Changzhi −38.39 +0.38 65.93 % −63.06 +0.68 63.22 %
Jincheng −37.94 +0.37 66.85 % −94.32 +0.89 72.45 %
Shuozhou −27.07 +0.31 58.96 % −100.08 +0.84 69.96 %
Yuncheng −98.26 +0.67 77.85 % −144.56 +1.25 80.64 %
Hohhot −92.30 +0.67 74.53 % −121.79 +1.41 68.92 %
Chifeng −16.90 +0.55 64.95 % −38.18 +0.95 60.85 %
Huludao −38.56 +0.20 59.11 % −95.95 +1.04 65.76 %
Jinzhou −42.97 +0.21 61.17 % −46.26 +0.83 45.83 %
Chaoyang −39.37 +0.37 51.14 % −83.04 +1.23 61.86 %
Jinan −44.90 +0.63 69.71 % −71.22 +0.59 62.93 %
Qingdao −23.99 +0.27 37.98 % −72.05 +0.44 72.21 %
Shouguang −28.70 +0.21 58.03 % −48.92 +0.39 47.57 %
Anyang −35.87 +0.41 62.53 % −32.08 +0.60 33.15 %
Zhengzhou −26.26 +0.37 37.51 % −3.64 +0.42 3.73 %
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3.2 The sensitivity of 4D-LETKF to ensemble member
size and length of the assimilation window

In the previous section, the performance from the assimila-
tion experiment with 40 ensemble members and 48 h of as-
similation window length is compared against those which
do not integrate hourly pollutant observations. The results
fully demonstrate the ability of the 4D-LETKF assimilation
method to reproduce severe haze events in spatial and tempo-
ral dimensions. However, the 4D-LETKF assimilation effect
highly relies on the selection of the ensemble member size
and length of the assimilation window; so how is the assim-
ilation approach different from the parameterized selection
in the severe haze event? It is of great meaning to conduct
sensitivity experiments based on the ensemble member size
and length of the assimilation window, compare each of their
performances according to statistical metrics, and summarize
the general influence rule of the 4D-LETKF parameter selec-
tion. Consequently, nine panels of sensitivity experiments are
conducted with the selection of the ensemble member size
(20, 40, and 60 members) and the length of the assimilation
window (24, 48, and 72 h) to maximize the positive innova-
tion in this section.

Figure 8 reveals the heatmap of RMSE in each sensitiv-
ity experiment of particulate matter over verification sites
among the BTH region. The results of the free-run experi-
ment with different integration times (24, 48, and 72 h) are
offered here for comparison with analysis which have the
same assimilation cycle time. The RMSEs of PM2.5 and
PM10 in each free-run experiment exceed 60 and 100 µg m−3,
respectively. It is apparent that 4D-LETKF performs better
than the FR experiment in the simulation focusing on PM2.5
and PM10 over a wide range of ensemble member sizes and
assimilation window lengths, illustrating the broad applica-
bility of 4D-LETKF data assimilation to these parameters.
However, it can be found that the analysis of PM2.5 and
PM10 is dependent on the length of the assimilation win-
dow and dramatically related to ensemble member size in
all sensitivity experiments. Unlike the short-lived and chem-
ical reactive species (such as SO2 and NO2) which easily
undergo complex and non-linear photochemical reactions,
a relatively longer assimilation window length seems more
suitable for assimilating ground-based particulate matter ob-
servations (Peng et al., 2017; Kong et al., 2021). A longer
assimilation window length could also avoid the underes-
timation of model spread, which implies overconfidence in
the first-guess state estimate by enough integration time for
each member (Schutgens et al., 2010; Miyazaki et al., 2012a;
Hunt et al., 2007). Hence, 48 or 72 h assimilation windows
are advised to optimize the ensemble concentration trajec-
tories. On the other hand, increasing ensemble member size
efficiently reduces uncertainty in PM2.5 and PM10, as evi-
denced by the decrease in RMSEs from free-run to assimi-
lation experiments with 20 and 40 members. However, when
compared with the results from 40 ensemble members, the

accuracy of numerical simulations does not significantly im-
prove for PM2.5 and PM10 with 60 ensemble members either,
indicating that 40 members are sufficient and feasible to pro-
vide a reliable estimation of the background error and anal-
ysis rather than more numerical source consumption. Con-
sidering numerical source consumption and RMSE values
in the simulations of PM2.5 and PM10, Severe-40m-48h is
more comparable to the observations when compared with
the other eight panels of sensitivity experiments.

3.3 The influence of ensemble member size on the
ensemble spread

In order to explore why increasing the ensemble member size
can efficiently reduce the uncertainty in the analysis of PM2.5
and PM10, as revealed in Fig. 8, this study investigates the
spatial distribution of the standard deviations of PM2.5 and
PM10–2.5 of the first guess (xb(i)) and analysis field (xa(i))
in terms of ensemble members. The standard deviations of
ensemble members describe how the emission perturbation
propagates among the forward model, and this perturbation
is driven by the underlying surface pollution emission inputs
and meteorological conditions. Therefore, the standard devi-
ation in the first-guess fields quantifies the dispersion degree
of the ensemble background; substantially impacts the cal-
culation of assimilation parameters, such as ensemble state
vector perturbations; and further affects the performance of
particulate matter predictions.

Since the RMSE decreases with increasing ensemble
member size when 20 and 40 members are in the setting,
and a 48 h assimilation window corresponds to a smaller
RMSE, this study compares the spatial distribution of ensem-
ble standard deviations from Severe-20m-48h and Severe-
40m-48h to explain the relationship between the ensemble
member size and simulation errors in the analysis result.
Figure 9 depicts contour maps of the spatial distribution
of temporal averaged standard deviations in the first guess
and analysis of Severe-40m-48h, Severe-20m-48h, and their
difference for PM2.5 and PM10–2.5 during the severe haze
event. The first guess in Severe-40m-48h and Severe-20m-
48h shows that the relatively high standard deviations are
generally observed in the southern BTH region, while those
in the northern areas are close to zero for both PM2.5 and
PM10–2.5. High-value centers are distributed in densely pop-
ulated areas and urban centers including Shijiazhuang, Xing-
tai, Tianjin, and Tangshan, where the standard deviations
generally exceed 30 µg m−3. Combined with Fig. S4, it can
be seen that the areas with large concentration standard de-
viations correspond well to the spatial distribution of anthro-
pogenic emissions and the areas with large standard devia-
tions of emission sources. The standard deviations of con-
centrations of PM2.5 and PM10–2.5 have a close relationship
with the allocation and configuration of anthropogenic emis-
sion sources because disturbances are only added to emis-
sion sources for each ensemble member without disturbing
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Figure 8. Heatmap showing the RMSE in each sensitivity experiment of particulate matter over verification sites (µg m−3). The number in
each small square represents the RMSE between the observation and simulation for each combination of ensemble member sizes and the
lengths of assimilation window methods.

the meteorological field in this haze event. The variation in
the difference in the third column entirely comes from in-
creasing the ensemble member size. The positive difference
between Severe-40m-48h and Severe-20m-48h in the first
guess suggests that increasing the ensemble member size
leads to greater differences among each ensemble for both
PM2.5 and PM10–2.5 over BTH areas. The high efficiency of
4D-LETKF is strongly influenced by sufficient information
spread among ensemble members, which integrate spreading
out observational information to produce the analysis from
the first guess (Rubin et al., 2016). As a result, the increasing
ensemble member size improves divergence for each mem-
ber and facilitates the state vectors of PM2.5 and PM10–2.5 in-
formation spread in the first guess, which means that Severe-
40m-48h performs better than Severe-20m-48h in this severe
haze event. The standard deviations of PM2.5 in the analy-
sis are generally lower than those in the first guess. Due to
the localization of 4D-LETKF, that is, the ground-based ob-
servation data only optimized for the simulation grid within
a certain range, square-like areas of low standard deviations
appear in the analysis of PM2.5 for both 40 and 20 ensem-
ble members. Nearly all assimilated stations are located at
the center of low-value square areas, suggesting that 4D-
LETKF tunes all PM2.5 trajectories to a small range with a
low standard deviation at each slot of analysis by the assimi-
lation of ground-based observations. For PM10–2.5, there are
no square-like areas of low standard deviations in the analy-
sis for both 40 and 20 ensemble members, indicating that 4D-
LETKF does not have an obvious limitation for PM10–2.5 tra-
jectories; however, the decreased standard deviations effect
from 4D-LETKF is still distinct for the particulate matter be-
cause PM10 consists of PM2.5 and PM10–2.5 in the simulation.
Enlarging the ensemble member size helps improve the stan-
dard deviations of PM2.5 and PM10–2.5 in the analysis, while
the improving magnitude of PM2.5 is obviously smaller than
PM10–2.5. The assimilation results are not directly influenced
by the increased standard deviations in analysis. Such a low
increase in standard deviations (generally below 3 µg m−3)

is unlikely to induce uncertainty in the fitting and averag-
ing process but facilitates divergence in initial conditions be-
tween forecasting members in the next assimilation cycle. In
addition, Fig. S5 depicts the spatial distribution of the stan-
dard deviation from Severe-60m-48h, Severe-20m-48h, and
their difference in the first-guess and analysis fields. It can
be seen that increasing the number of ensemble members
generally also improves the standard deviation in the first
guess and analysis over the BTH region for both PM2.5 and
PM10–2.5. Overall, the increase in standard deviations gen-
erated by the increasing ensemble member size directly im-
proves the information spread of ensemble members in the
first-guess field and the assimilation effect of 4D-LETKF,
while the positive difference in the standard deviation in the
analysis favors the variances between each initial condition
in the next assimilation window during the severe haze event.

On the other hand, for both the first guess from Severe-
40m-48h and Severe-20m-48h, the high standard deviations
are found near the Shijiazhuang region in Fig. 9, but Shi-
jiazhuang station (37.91° N, 114.35° E) still has a larger
RMSE and smaller AE, as shown in Fig. 6. This seems con-
trary to the opinion that increasing standard deviations in the
first-guess field is beneficial to raising the accuracy of pol-
lutant simulations. Therefore, Shijiazhuang station and the
stations with high values of AE (exceed 50) and differences
in the standard deviation in the first guess (exceed 1 µg m−3),
including Beijing, Tangshan, Handan, Baoding, Cangzhou,
and Hengshui regions, are selected to explore the tempo-
ral distribution of standard deviation differences between 40
and 20 ensemble members so as to further advance our un-
derstanding of the relationship between the ensemble mem-
ber size and simulation uncertainty in the 4D-LETKF sys-
tem. The geographical locations of observations are shown
in Fig. S6 of the Supplement. Figure 10 examines the tempo-
ral distribution of the standard deviation difference for PM2.5
and PM10–2.5 during the investigated period at Shijiazhuang
station and results averaged from the selected stations. From
17 to 18 January, the standard deviation difference in the first
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Figure 9. Contour maps of spatial distributions of temporal averaged PM2.5 and PM10–2.5 standard deviations in the first guess (a–f) and
analysis (g–l) of Severe-40m-48h, Severe-20m-48h, and their difference (Severe-40m-48h without Severe-20m-48h) within the simulation
period (µg m−3). The black dots in the analysis of PM2.5 and PM10–2.5 show the location of assimilated stations. The grey border denotes
the BTH region.

guess at Shijiazhuang station increased drastically and ex-
ceeded 10 µg m−3 for both PM2.5 and PM10–2.5. This uneven
temporal distribution results in a large standard deviation dif-
ference of the first guess in Fig. 9. This huge divergency
between ensemble members may be attributed to the peak
pollutant levels with AQI exceeding 300 at Shijiazhuang sta-
tion occurring on 17 January, as shown in Fig. 3. In highly
polluted environments, 40 forecasting members with differ-

ent perturbations in emission sources are more likely to have
different concentrations of particulate matter in first-guess
fields. An excessively large spread of PM2.5 and PM10–2.5
for ensemble members may cause an overly high estimation
of background error variance and obtain a poor Kalman gain.
Moreover, it can be found that the standard deviation differ-
ence in PM2.5 and PM10–2.5 at Shijiazhuang station is obvi-
ously lower than the average from selected stations, except
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for the high dispersion time, suggesting the increasing num-
ber of ensemble members has limited impact on the spread
between each ensemble member at Shijiazhuang during these
dates. Standard deviations that are too low imply filter di-
vergence near Shijiazhuang station, which may induce the
underestimation of model spread, reduce the effect of obser-
vation information, and make the system more certain of the
state estimate of particulate matter concentrations in the first
guess (Hunt et al., 2007). In addition, reducing uncertainty
in the mixed anthropogenic emission inventory may be an
important approach to avoid filter convergence near the Shi-
jiazhuang region. Generally edited by empirical and statisti-
cal data such as anthropogenic emission factors and activity
dataset, the anthropogenic emissions based on the bottom-
up method can hardly capture the real spatiotemporal distri-
bution of anthropogenic emissions over China as there are
frequent variations in energy consumption, even in the lat-
est version. In the southern BTH region, great positive in-
novations in particulate matter emissions in posterior esti-
mation have been introduced in previous research, implying
that the update of underestimated emissions in this region
may enlarge ensemble spread since a large quantity of emis-
sions corresponds to a higher degree of perturbation (Peng
et al., 2017; Feng et al., 2023). In a word, the perturbations
added to emissions and meteorological fields need to be exe-
cuted carefully in the 4D-LETKF system to avoid too high or
too low of an ensemble spread degree which determines how
analysis results perform against observation information and
first-guess fields (Dai et al., 2021).

The results above suggest that the increasing ensemble
member size enlarges ensemble spread, benefits the informa-
tion spread in the first guess, and finally improves the sim-
ulation skill in the severe haze event. However, it has not
been determined whether these influence rules are also prac-
tical for a more common and less polluted condition. There-
fore, two assimilation experiments in a moderate haze event,
Moderate-20m-48h and Moderate-40m-48h, are performed
to examine the applicable range. As shown in Fig. S7, the
moderate haze event spans from 00:00 15 January 2019 to
00:00 21 January 2021 (UTC). This moderate event began
on 15 January, with AQI increasing until 18 January, reach-
ing a moderate level but not lasting for a long time, and then
decreasing on 19 and 20 January. Most areas experienced
mild or moderate air pollution, with AQI generally below
200; the primary pollutant was particulate matter after cal-
culation. The simulations of the moderate haze event utilize
the same anthropogenic emission inventory as used in the se-
vere haze event since the two events both happen in January,
thereby avoiding the additional influence introduction from
emission source variation and the perturbations to the infor-
mation spread and assimilation effect.

Figure S8 shows the simulated concentrations of PM2.5
and PM10 against ground-based observations during the
moderate air pollution event. The RMSEs of PM2.5 in
Moderate-FR-48h, Moderate-20m-48h, and Moderate-40m-

48h are 40.40, 24.12, and 18.52µg m−3, respectively, and the
RMSEs of PM10 are 73.47, 67.81, and 57.04 µg m−3, respec-
tively. The concentrations of PM2.5 and PM10 in assimila-
tion experiments are more in agreement with observations,
suggesting the validation of 4D-LETKF initial condition ad-
justment in the moderate haze event. The phenomenon that
the simulation error in PM2.5 and PM10 decreases with an
increasing ensemble member size is the same as those char-
acteristics have shown in the severe haze event before.

Similar to Fig. 9, Fig. S9 presents the spatial distributions
of standard deviations of PM2.5 and PM10 in the first guess
of Moderate-40m-48h, Moderate-20m-48h, and their differ-
ence. The relatively smaller magnitude of the standard de-
viation difference in the first guess may relate to relatively
low PM2.5 and PM10 concentrations in the moderate haze
event. A positive difference in the first guess and analysis for
particulate matter implies the Moderate-40m-48h obtains a
higher diversity of ensemble members than Moderate-20m-
48h which are also similar with those happening in the severe
haze event.

4 Summary

The numerical reproduction of severe haze events with an
AQI larger than 200 has been a challenging problem in the
field of atmospheric pollution for a long time. In this re-
search, a WRF-Chem–4D-LETKF coupled data assimila-
tion system has been successfully developed by an ensemble
member with perturbed anthropogenic emissions to improve
the simulative skill of particulate matter in the severe haze
event during the winter of 2020. The research validates the
effectiveness of 4D-LETKF data assimilation, discusses the
optimal parameter combination of the ensemble member size
and length of the assimilation window for the 4D-LETKF
assimilation system, and summarizes and explains the influ-
ence rules from parametric selection to the 4D-LETKF as-
similation effect during the severe and moderate haze events.

It is concluded that the Severe-40m-48h experiment shows
the best performance in the simulations of PM2.5 and PM10
after comparing the statistical errors and computing resource
consumption across multiple sensitivity analyses, with RM-
SEs of 31.19 and 76.83 µg m−3 for PM2.5 and PM10 in the se-
vere haze event. Severe-40m-48h optimizes the underestima-
tion of particulate matter concentrations in Severe-FR-48h
and remarkably improves the simulation accuracy in the en-
tire BTH region and neighboring provinces. For example, the
RMSEs of PM2.5 in Baoding, Hengshui, and Cangzhou de-
crease to 29.85, 18.98, and 19.06 µg m−3, respectively, from
80.55, 55.22, and 76.32 µg m−3 in Severe-FR-48h. Severe-
40m-48h is also capable of retrieving the peaks and valleys
of particulate matter concentration over the investigated pe-
riod. To examine the dependence of the assimilation effect of
4D-LETKF, nine panels of sensitivity tests were conducted
according to the ensemble member size and length of the as-
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Figure 10. Temporal distribution of standard deviation difference (Severe-40m-48h without Severe-20m-48h) in the first guess for PM2.5
and PM10–2.5 at Shijiazhuang station, averaged from the selected stations (µg m−3). The dashed red line represents a value of zero.

similation window. The findings suggest that the simulation
accuracy of PM2.5 and PM10 can be strongly improved by
increasing the ensemble member size from 20 to 40. A rela-
tively longer assimilation window length such as 48 or 72 h
combined with an ensemble member size of 40 is advised
in the 4D-LETKF assimilation system. In view of perfor-
mance of the ensemble members, increasing ensemble mem-
ber size improves ensemble spread among each forecasting
member, facilitates the spread of state vectors of PM2.5 and
PM10 information in the first guess, favors the variances be-
tween each initial condition in the next assimilation window,
and leads to better performance in the simulation of the se-
vere haze event. A similar conclusion can also be drawn from
the moderate haze event, suggesting that this influence rule
is applicable in both severe and moderate haze conditions.

There are still some deficiencies in this research. Although
we have performed data quality control in this study, we do
not use approaches such as super observations to improve the
correspondence between grid points and observations (Jin et
al., 2022; Miyazaki et al., 2012a), which may increase the
representational error and result in the possibility of two sta-
tions with different concentrations interpolating on the same
grid. Improving the spatial resolution of the forward model
or introducing super observations may mitigate this problem
(Miyazaki et al., 2012b; Feng et al., 2020b). Furthermore, the
concentration of state variables of particulate matters in ini-
tial conditions is optimized in this study, but there still remain
large uncertainties in anthropogenic emission data, which is
important chemical boundary input for pollutant simulations.
These uncertainty sources may play a significant role in the
over- or underestimation of pollutant ensemble modeling.
The anthropogenic emission inversion based on an ensemble
Kalman filter and their variants is recognized as an effective
approach to reducing uncertainty in anthropogenic emission
sources (Peng et al., 2018; Feng et al., 2020a; Chen et al.,
2019b). The jointly adjusted initial conditions and emission
source with 4D-LETKF should be the focus of future work
to further improve the forecast skills regarding air pollutants
during heavy-pollution events.

Code and data availability. The WRF-Chem version 3.9.1 and
LETKF source code and data in this research are available at
https://doi.org/10.5281/zenodo.14010521 (Lin, 2024). The observa-
tion data are available at https://doi.org/10.5281/zenodo.14835237
(Lin, 2025).
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