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Abstract. The integration of a nitrogen cycle represents a
recent advancement in Earth system models (ESMs). How-
ever, diverse formulations introduce uncertainty in the nitro-
gen effect on the carbon cycle, leaving the global carbon–
nitrogen coupling effect unclear. In this study, we present
CNit v1.0, a newly developed carbon–nitrogen cycle model
designed for integration with MAGICC (Model for the As-
sessment of Greenhouse Gas Induced Climate Change), a
widely used reduced-complexity model. CNit v1.0 has been
calibrated to two land surface models (CABLE and OCN)
and (the land component of) a set of Coupled Model Inter-
comparison Project Phase 6 (CMIP6) ESMs. CNit v1.0 is
able to capture the dynamics of the more complex models’
carbon–nitrogen cycle at the global-mean, annual scale. The
emulation results suggest a consistent nitrogen limitation on
net primary production (NPP) in CMIP6 ESMs, persisting
throughout the simulations (i.e., over the period 1850–2100)
in most models. The emulation provides a way to disentangle
diverse nitrogen effects on carbon pool turnovers in CMIP6
ESMs, with our results suggesting that nitrogen deficiency
generally inhibits litter production and decomposition while
enhancing soil respiration (from a multi-model mean per-
spective). However, this disentanglement is limited due to a
lack of simulations from CMIP6 ESMs which would allow us
to fully separate the nitrogen and carbon responses. The re-
sults imply a potential reduction in land carbon sequestration
in the future due to nitrogen deficiency. Future studies will
use CNit to further investigate the carbon–nitrogen coupling
effect, including uncertainty, in future climate projections.

1 Introduction

Atmosphere–ocean general circulation models (AOGCMs)
and Earth system models (ESMs) are currently the most pow-
erful tools we have for integrating our understanding of cli-
mate physics and providing comprehensive projections of the
global climate and its variability (Meehl, 1990). However,
these complex models require large computational power
for their simulations, while the difference in assumptions,
parameterizations, and structures across models often hin-
ders a systematic quantification of uncertainties (Ohgaito
et al., 2013). To combine the latest insights from various
AOGCMs and ESMs, simple climate models (SCMs) – also
called reduced-complexity models (RCMs) – are developed
and routinely updated to represent and integrate the full un-
certainty spectrum across the cause–effect chain of climate
change (Nicholls et al., 2020, 2021). The highly parameter-
ized formulations used in RCMs can, in some cases, param-
eterize the structural uncertainties from complex models. As
a result, this flexibility of RCM structures allows for factor
separation analysis to disentangle the key processes affect-
ing the climate. With these features, RCMs are widely used
for ensemble projections of scenarios and regularly feed into
climate policy.

The Model for the Assessment of Greenhouse Gas In-
duced Climate Change (MAGICC), originally introduced by
Wigley and Raper (1987, 1992, 2001) and further developed
since (Meinshausen et al., 2011a, 2020; Nauels et al., 2017),
is a key RCM that has been used for scenario classification
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in multiple IPCC reports (e.g., Climate Change 2014: Syn-
thesis Report, IPCC, 2014; Global Warming of 1.5 °C, IPCC,
2018; Climate Change 2023: Synthesis Report, IPCC, 2023).
MAGICC’s main design principle is this: be as simple as pos-
sible while as mechanistic as necessary in the sense of being
based on physical principles and/or long-term ESM calibra-
tions (Meinshausen et al., 2011a).

The nitrogen cycle is a critical part in the Earth sys-
tem’s biogeochemistry and has a significant impact on cli-
mate alongside other element cycles like carbon or phospho-
rus (Fowler et al., 2013; Elser et al., 2007). As an essential
nutrient for numerous fundamental biological processes, ni-
trogen is one of the major factors controlling the terrestrial
carbon cycle and thus influences the carbon–concentration
and carbon–climate feedbacks (Zaehle et al., 2010; Zaehle
and Dalmonech, 2011; Fowler et al., 2013; Zaehle, 2013), the
two main carbon cycle feedbacks (Arora et al., 2020). The in-
tegration of the nitrogen cycle and its effects within carbon
cycle models is a recent advancement in ESMs. Only three
Coupled Model Intercomparison Project Phase 5 (CMIP5)
ESMs (CCSM, CESM, NorESM), all of which had the same
land component (CLM4), included the nitrogen cycle (Flato
et al., 2014). However, at least 17 out of 39 CMIP6 ESMs in-
cluded a nitrogen cycle (see “Annex II: Models” in Climate
Change 2021: The Physical Science Basis; IPCC, 2021). Var-
ious assumptions and formulations have been incorporated
into the nitrogen cycle and the carbon–nitrogen coupling
(Meyerholt and Zaehle, 2015; Meyerholt et al., 2020), result-
ing in divergent responses of the carbon cycle (Zaehle et al.,
2015; Davies-Barnard et al., 2020; Arora et al., 2020; Kou-
Giesbrecht and Arora, 2022).

Generally, the inclusion of the nitrogen cycle reduces land
carbon sequestration under increasing atmospheric CO2 and
warming conditions by limiting photosynthesis (thus limit-
ing net primary production, NPP) and amplifying both plant
respiration and soil organic matter decomposition (Thornton
et al., 2007; Sokolov et al., 2008). On average, the carbon–
nitrogen coupled ESMs have smaller carbon–concentration
feedbacks and smaller carbon–climate feedbacks (weaker ab-
solute strength of the feedback parameters) compared to their
carbon-only counterparts (Arora et al., 2020). Plant nitrogen
uptake, the carbon : nitrogen ratio, the nitrogen regulation of
photosynthesis, and biological nitrogen fixation contribute to
the NPP difference (Du et al., 2018). Carbon–nitrogen in-
teraction simulations from the Jena Scheme for Biosphere-
Atmosphere Coupling in Hamburg (JSBACH) have sug-
gested a moderate reduction in the carbon–concentration
feedback while showing a negligible effect on the carbon–
climate feedback (Goll et al., 2017). However, enhanced soil
organic matter decomposition under warming increases min-
eral nitrogen availability, thereby leading to increased land
carbon sequestration on vegetation. The relative strength of
these compensating effects remains unclear. Therefore, there
is a need for better understanding and comparison of ESMs,
with the integration and parameterization of a nitrogen cycle

in RCMs providing one way to develop this understanding
and comparison.

The significance of the nitrogen cycle also highlights the
need to capture its effects within a key tool in climate sci-
ence, namely RCMs. To the best of our knowledge, there is
currently no RCM featuring the nitrogen effect, let alone a
fully coupled carbon–nitrogen cycle. As a result, this study
introduces a coupled carbon–nitrogen model (referred to as
CNit), which has evolved from the previous MAGICC car-
bon cycle model. Section 2 presents a detailed description of
the CNit model. Section 3 provides the results of offline cal-
ibration of CNit, firstly to two land surface models and then
to a series of CMIP6 ESMs across multiple scenarios. Sec-
tion 4 offers related discussions and analysis of the carbon–
nitrogen coupling effect, primarily focusing on the CMIP6
ESMs. Section 5 discusses the limitations and implications
of CNit’s emulation. The results demonstrate that CNit cap-
tures the global aggregate effects of coupling the nitrogen
cycle with the carbon cycle, in line with the latest generation
of specialized domain models and ESMs. Future work will
use MAGICC, updated to include CNit, to explore one of the
key uncertainties in future climate projections: the uncertain
evolution of future CO2 concentrations given the intertwined
carbon cycle feedback, CO2 fertilization, and nitrogen cycle
effects.

2 Model description

2.1 Overview of MAGICC and CNit

MAGICC is one of the most widely used RCMs. MAG-
ICC features variable climate sensitivities and a carbon cycle
that has successfully emulated a series of CMIP3 AOGCMs
and Coupled Climate–Carbon Cycle Model Intercomparison
Project (C4MIP) carbon cycle models (Meinshausen et al.,
2011a). The most recent updates of MAGICC include the in-
troduction of variable climate sensitivities and the updated
carbon cycle (Meinshausen et al., 2011a); the incorporation
of a sea level model (Nauels et al., 2017); and various im-
provements over time with regard to, for example, radiative
forcing schemes (Meinshausen et al., 2020). In its latest cal-
ibration, MAGICC was shown to reproduce the IPCC AR6
WG1 assessment well over a range of metrics (see Chap. 7
in Climate Change 2021: The Physical Science Basis; IPCC,
2021).

The continuously expanding understanding of climate
physics, chemistry, and biology, coupled with the rapid de-
velopment of complex models, necessitates corresponding
advancement of RCMs. Here we focus on the development of
the terrestrial carbon–nitrogen cycle model in MAGICC, re-
ferred to as CNit, which builds upon the previous MAGICC
carbon cycle (Meinshausen et al., 2011a). As a brief back-
ground, the initial design of CNit considered carbon and ni-
trogen processes at a level of detail similar to that of complex
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Figure 1. The coupled carbon–nitrogen cycle model (CNit v1.0) in MAGICC (NPP: net primary production; LPR: litter production respi-
ration; PU: nitrogen plant uptake; BNF: biological nitrogen fixation; LP: litter production; LD: litter decomposition; SR: soil respiration;
LS: mineral nitrogen loss; LU: land use emission; AD: atmosphere nitrogen deposition; FT: nitrogen fertilizer application; 2P, 2L, 2S,
and 2M: the partition of fluxes into plant, litter, soil, and mineral pools). The carbon and nitrogen mass conservation is described in Sect. 2.2.
The NPP simulation is described in Sect. 2.3. The carbon–nitrogen coupling is described in Sect. 2.4. The LPR flux is described in Sect. 2.5.
Each pool’s turnover time and its response to climate and carbon–nitrogen coupling are described in Sect. 2.6. The land use emission param-
eterization is described in Sect. 2.7.

models (albeit at a global scale rather than grid-box scale;
e.g., the box model design starts from the major state vari-
ables and fluxes that are required by C4MIP) (Jones et al.,
2016). However, during model parameterization and refine-
ment, some processes were simplified or integrated with oth-
ers to improve efficiency. For instance, biological nitrogen
fixation is directly allocated to organic nitrogen pools, by-
passing the intermediate step of mineral nitrogen enrichment
and subsequent plant uptake (Fig. 1). Additionally, certain
representations, such as land use emissions, were updated to
achieve a balance between model simplicity and mechanistic
insights (Sect. 2.7). These refinements align with MAGICC’s
need for computational efficiency and overall design philos-
ophy of being as simple as possible but as mechanistic as
necessary.

CNit is a globally integrated, annually averaged box model
(Fig. 1) designed to simulate terrestrial carbon and nitro-
gen dynamics. It includes carbon and nitrogen pools for
plant (P ), litter (L), and soil (S), along with an inorganic
mineral (M) nitrogen pool. The atmosphere (A) exchanges
carbon with the land carbon pools via net primary produc-
tion (NPP), heterotrophic respiration (RH), and land use or

other anthropogenic fluxes (LUc). Similarly, the atmosphere
exchanges nitrogen with the land nitrogen pools via nitro-
gen atmospheric deposition (AD), biological nitrogen fixa-
tion (BNF), gaseous nitrogen loss (LS2A), and land use or
other anthropogenic fluxes (LUn). CNit takes the land use
emissions of carbon and nitrogen, nitrogen fertilizer applica-
tion (FT), AD, and BNF, as the inputs. Then it models key
fluxes and solves a system of mass conservation equations to
determine the fluxes and states for carbon and nitrogen. The
resulting net land-to-atmosphere carbon and nitrogen fluxes
are then used to estimate atmospheric concentrations, which
subsequently inform radiative forcing and climate responses.
These climate responses, in turn, interact with the carbon–
nitrogen cycle, creating a feedback loop (see details in Mein-
shausen et al., 2011a).

The following sections outline the key components of
CNit: Sect. 2.2 introduces the mass conservation framework
and key fluxes; Sect. 2.3 details the NPP simulation; Sect. 2.4
explains carbon–nitrogen coupling, where we link nitrogen
plant uptake (PU) and NPP; Sect. 2.5 describes the litter pro-
duction respiration flux; Sect. 2.6 focuses on carbon and ni-
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trogen turnover calculations; and Sect. 2.7 addresses the im-
plementation of land use emissions.

2.2 Carbon and nitrogen mass conservation in CNit

The pools are interlinked by a system of first-order differen-
tial equations (Eqs. 1–9). In the equations, the subscripts “c”
and “n” for the turnover fluxes (litter production (LP), litter
decomposition (LD), and soil respiration (SR)) and land use
fluxes (LU) denote the carbon and nitrogen fluxes. The sub-
scripts X2Y for the partitioning factor “f ” refer to the frac-
tion of flux X that enters pool Y , whereas for land use flux,
the subscripts LU2Y specifically represent the partitioning
of the flux leaving pool Y due to land use changes. The flux
partition accounts for the intended time domain of applica-
bility – specifically, the long time step that integrates carbon
and nitrogen cycle dynamics over periods of 1 year or more.
Within this framework, fluxes such as NPP, BNF, PU, LU,
and turnover fluxes not only contribute to changes in their im-
mediate target pools but also propagate to subsequent pools.
For instance, the NPP flux is simultaneously partitioned into
plant, litter, and soil carbon pools (Eqs. 1–3). The partition-
ing factors always sum to unity, ensuring that no mass is lost
as a result of this partitioning.

The carbon mass balance in plant (CP), litter (CL), and
soil (CS) pools is calculated as follows:

dCP

dt
= fNPP2PNPP−LPR−LPc− fLU2Pc LUc, (1)

dCL

dt
= fNPP2LNPP+ fLP2LcLPc−LDc− fLU2LcLUc, (2)

dCS

dt
= fNPP2SNPP+ fLP2ScLPc+ fLD2ScLDc−SRc

− fLU2ScLUc. (3)

Note that the litter production respiration (LPR) is the litter
respiration produced from plant litter production that is re-
leased back to the atmosphere within a single time step (typ-
ically 1 year for MAGICC and CNit). Further details on the
LPR flux are provided in Sect. 2.5.

For the total land carbon (sum of plant, litter, and soil car-
bon, i.e., combining Eqs. 1–3), we obtain

dCLAND

dt
= NPP−RH−LUc. (4)

Note that RH includes LPR, SR, and the litter decomposition
that directly goes into atmosphere (LD2A, i.e., litter respira-
tion).

The nitrogen mass balance in plant (NP), litter (NL),
soil (NS), and mineral (NM) pools is calculated as follows:

dNP

dt
= fBNF2PBNF+ fPU2PPU−LPn− fLU2PnLUn, (5)

dNL

dt
= fBNF2LBNF+ fPU2LPU+ fLP2LnLPn−LDn

− fLU2LnLUn, (6)

dNS

dt
= fBNF2SBNF+ fPU2SPU+ fLP2SnLPn

+ fLD2SnLDn−SRn− fLU2LnLUn, (7)
dNM

dt
= AD+FT+ fLD2MnLDn+SRn−PU−LS. (8)

Note that (a) the mineral nitrogen loss (LS) is the mineral ni-
trogen turnover, (b) the nitrogen plant uptake (PU) is the min-
eral nitrogen taken up by the organic nitrogen pools, (c) the
mineral nitrogen pool receives additional nitrogen from ni-
trogen fertilizer application (FT), and (d) the sum of the
fraction of litter decomposition nitrogen entering the mineral
pool (LD2Mn, i.e., litter mineralization) and the nitrogen re-
leased during soil respiration (SRn, i.e., soil organic matter
mineralization) constitutes the ecosystem’s net mineraliza-
tion (netMIN).

For the total land nitrogen (sum of plant, litter, soil, and
mineral nitrogen, i.e., combining Eqs. 5–8), we have

dNLAND

dt
= BNF+AD+FT−LS−LUn. (9)

2.3 NPP simulation: effect of CO2 and temperature
forcings

The NPP flux is modeled by scaling an initial NPP (NPP0)
with the effect from changes in atmospheric CO2 (εCO2 ),
temperature change (εdT (NPP)), carbon–nitrogen cou-
pling (εCN(NPP)), and land use change (εLU):

NPP= NPP0× εCO2 × εdT (NPP)× εCN(NPP)× εLU. (10)

2.3.1 CO2 fertilization

The CO2 fertilization formulations can take multiple forms.
The first, the logarithmic formulation, is adapted from Ba-
castow and Keeling (1973) as follows:

ε
log
CO2
= 1+ slog

CO2
× ln(CO2/CO2ref) , (11)

where slog
CO2

represents the sensitivity of NPP to the logarithm
of the ratio of current atmospheric CO2 concentration (CO2)
to a reference CO2 level (CO2ref, e.g., the pre-industrial CO2
concentration) (i.e., the relative change from CO2 to CO2ref).

The second, the rectangular hyperbolic formulation, is
adapted from Hunt et al. (1991) and Gifford (1993) as fol-
lows:

εrect
CO2
=

1/(CO2ref−CO2b)+ s
rect
CO2

1/(CO2−CO2b)+ s
rect
CO2

, (12)

where CO2b is the CO2 concentration when NPP= 0, which
has a default value of 31 ppm (Gifford, 1993), and srect

CO2
de-

termines the CO2 sensitivity of NPP in the rectangular hy-
perbolic formulation.
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When the CO2 concentration increases from 340 to
680 ppm, the ratio of the feedback factor at 680 ppm to that at
340 ppm (r) is designed to be the same for both formulations
to ensure better compatibility:

r = ε
log
CO2

(680)/εlog
CO2

(340)= εrect
CO2

(680)/εrect
CO2

(340). (13)

The sensitivities of NPP in the two formulations are therefore
related by

r =
1+ slog

CO2
× ln(680/CO2ref)

1+ slog
CO2
× ln(340/CO2ref)

, (14)

srect
CO2
=

(680−CO2b)− r (340−CO2b)

(r − 1)(680−CO2b)(340−CO2b)
. (15)

The previous MAGICC carbon cycle model uses a linear
combination of the logarithmic and rectangular hyperbolic
formulations to calculate the final CO2 fertilization effect
(Meinshausen et al., 2011a). However, because the logarith-
mic formulation is an unbounded function, the linear com-
bination becomes unbounded as well unless the logarithmic
formulation is removed, resulting in an overreliance on the
rectangular hyperbolic formulation. The rectangular hyper-
bolic formulation itself can increase steeply if the CO2 sensi-
tivity of NPP in the rectangular formulation (srect

CO2
) is small.

Considering srect
CO2

is dependent on r (or slog
CO2

, Eqs. 14 and 15),

the small slog
CO2

value is easily attainable, thereby leading to a
high CO2 fertilization factor. To fix this problem, a sigmoidal
CO2 fertilization formulation is introduced and included in
the updated carbon–nitrogen model presented here.

ε
sig
CO2
=

ε
sig
CO2max

1+
(
ε

sig
CO2max− 1

)
× e
−s

sig
CO2

(CO2−CO2ref)
, (16)

where εsig
CO2max denotes the maximum of the sigmoidal CO2

fertilization (always ≥ 1, which occurs when CO2 reaches
infinity) and ssig

CO2
is the CO2 sensitivity of NPP in the sig-

moidal formulation.
We allow for a linear combination of CO2 fertilization for-

mulations. A method factor (mCO2 ) ranging from 0 to 2 is
used to combine the formulations and calculate the effective
CO2 feedback (illustrated in Fig. A1).

εCO2 ={ (
1−mCO2

)
× ε

log
CO2
+mCO2 × ε

rect
CO2

0≤mCO2 ≤ 1(
2−mCO2

)
× εrect

CO2
+
(
mCO2 − 1

)
× ε

sig
CO2

1<mCO2 ≤ 2
(17)

2.3.2 Feedback from temperature change

Global-mean temperature change (dT ) is taken as a proxy for
climate-related impacts on the carbon cycle fluxes, i.e., for
representing the carbon–climate feedback. The response of
NPP to dT is assumed to follow an exponential or sigmoidal

scaling of NPP0, determined by a given temperature sensi-
tivity (sexp

dT (NPP) or ssig
dT (NPP)). The latter is introduced to better

capture the trend of NPP in low-emission scenarios.

ε
exp
dT (NPP) = e

s
exp
dT (NPP)×dT (18)

ε
sig
dT (NPP) =

2

1+ e−s
sig
dT (NPP)×dT

(19)

Similarly, a method factor (mdT , between 0 and 1) is used
to control the effective temperature change feedback on NPP
(illustrated in Fig. A1).

εdT (NPP) = (1−mdT )× ε
exp
dT (NPP)+mdT × ε

sig
dT (NPP) (20)

2.4 The carbon–nitrogen coupling in CNit

The current carbon–nitrogen coupling is based on the min-
eral nitrogen requirement and availability, from which the
nitrogen deficiency (or surplus) can be calculated and, sub-
sequently, the influence on NPP can be determined. A di-
rect link between NPP (or photosynthesis) and plant nitrogen
status is a common treatment in complex carbon–nitrogen
coupled models (Zaehle and Dalmonech, 2011; Zaehle et al.,
2014).

The overall formulation design of the carbon–nitrogen
coupling effect on NPP is as follows: first, we establish
a relationship between NPP (carbon fixation) and nitro-
gen plant uptake (PU, nitrogen fixation). We calculate the
potential NPP (NPPpot, i.e., the carbon-only NPP) by set-
ting εCN(NPP) = 1 in Eq. (10). The corresponding PU re-
quirement (PUreq) is determined by this NPPpot (as well as
a temperature effect; see details in Eqs. 21 and 22). Then the
nitrogen deficiency or surplus is calculated based on PUreq
and nitrogen atmospheric deposition (AD), with which the
εCN(NPP) is updated and the actual NPP (NPPact) is deter-
mined. The following describes the process in detail.

2.4.1 The nitrogen plant uptake (PU) and NPP

First, we assume that the PU is a function of the NPP
(whether potential or actual) and scaled by the temperature
response of PU (εdT (PU)):

PU= PUmax× e
−

NPPref
NPP × εdT (PU), (21)

εdT (PU) = e
sdT (PU)×dT , (22)

where NPPref is a reference NPP used to normalize the
real-time NPP (further explanation in the next paragraph),
PUmax sets the upper bound of the PU without the temper-
ature feedback, and sdT (PU) is the temperature sensitivity
of PU.

When NPP= NPPref, with dT = 0, the PU is fixed to
PUmax/e. The PUmax and NPPref parameter pair defines a
unique plant carbon–nitrogen assimilation system. Specif-
ically, PUmax/(e×NPPref) reflects a default setting of the
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plant nitrogen : carbon ratio. It is also worth reiterating that
NPPref is not necessarily the same as the initial NPP (NPP0
in Eq. 10).

The formulation presented in Eq. (21) suggests an increas-
ing PU with increasing NPP. However, as NPP increases, the
PU needed per additional unit of NPP gradually decreases.
This provides a way for the model to represent a declining
carbon : nitrogen ratio in plant biomass with increasing NPP
due to, for example, CO2 fertilization.

2.4.2 The potential NPP (NPPpot) and plant nitrogen
uptake requirement (PUreq)

When the nitrogen effect is not considered, NPP can reach
NPPpot, which can be calculated using Eq. (10) (fixing
εCN(NPP) = 1). The PUreq can be calculated using the uni-
versal PU formula (Eq. 21) by replacing NPP with NPPpot:

PUreq = PUmax× e
−

NPPref
NPPpot × εdT (PU). (23)

The integration of PUreq over a certain time period (e.g., the
model time step) indicates the amount of mineral nitrogen
needed to realize the potential NPP.

2.4.3 The nitrogen effect on NPP

The mineral nitrogen availability depends on the current min-
eral nitrogen pool size and fluxes (Eq. 8). The net mineraliza-
tion (netMIN), which is the largest natural source of mineral
nitrogen, comes from litter and soil nitrogen turnovers. The
turnovers are dependent on the pool sizes based on a first-
order decay formulation (see Sect. 2.6). Considering that
PU is the predominant influx for the organic nitrogen pools
(5 to > 10 times greater than biological nitrogen fixation in
the complex models we have examined), the accumulation
of nitrogen in plant, litter, and soil pools is effectively con-
trolled by PU. In other words, PU and netMIN, the two major
fluxes channeled through the organic and inorganic nitrogen
pools either by consuming mineral nitrogen to enrich organic
nitrogen or vice versa, are closely intertwined and mutually
influence each other. This is supported by the results from
complex models (CABLE, OCN, and multiple CMIP6 mod-
els) that show a similar value and trend for PU and netMIN
at the global-mean, annual-mean level (Fig. A2).

When approximating netMIN as being linearly correlated
with PU, the unmet PUreq from netMIN alone can be calcu-
lated as a linear function of the PUreq itself (i.e., netMIN−
PUreq = f (PUreq)). Considering that nitrogen atmospheric
deposition (AD) also supports the PUreq, its effect of allevi-
ating the nitrogen deficiency is added by another linear func-
tion. The carbon–nitrogen coupling effect on NPP (εCN(NPP))
is then determined by

εCN(NPP) = εCN(NPP)0× e
f1×AD−f2×PUreq , (24)

where εCN(NPP)0 is a base nitrogen effect on NPP when there
is neither deficiency nor surplus. f1 and f2 are fitted pa-

rameters whose values are always positive. The (f1×AD−
f2×PUreq) term determines the relative strength of the cur-
rent AD and unmet PUreq (i.e., nitrogen deficiency/surplus).

This formulation is transformed from complex models
with the key idea of comparing mineral nitrogen availability
and plant nitrogen requirement. In complex carbon–nitrogen
models, the nitrogen availability is typically based on the cur-
rent mineral nitrogen pool size (with mass unit), and the ni-
trogen requirement is computed from the integrated fluxes in
a given time step (with mass unit) (Thornton et al., 2007;
Wiltshire et al., 2021; Zaehle et al., 2014). The competi-
tion from microbial immobilization is also considered in
some complex models. However, in a model with a much
longer time step (e.g., annual) like ours, such a system would
be inherently unstable since the mineral nitrogen pool size
would be orders of magnitude smaller than the annual nitro-
gen demand (i.e., the system would be unstable because the
turnover of the mineral nitrogen pool would be substantially
smaller than the time step).

Fixing f1 = 1 indicates that on the timescale of interest
(e.g., annually), all mineral nitrogen from AD is 100 % avail-
able for the plant. However, this is not necessarily correct
considering that (1) the process-level nitrogen limitation/fer-
tilization does not remain constant over the timescale of in-
terest (e.g., annually); (2) the mineral nitrogen accumulation
from previous time steps can be used for the current time
step; and (3) the direct mineral nitrogen loss, whose magni-
tude is determined by the mineral pool turnover time, may
counterbalance the effect of nitrogen deposition on the fer-
tilization. Therefore, giving freedom to both the f1 and the
f2 parameters implicitly allows our formulation to consider
the above effects.

Note that when both f1 and f2 parameters are calibrated,
the εCN(NPP) does not necessarily have to be εCN(NPP)0 at the
start of the experiments, which gives flexibility to the model
to determine the carbon–nitrogen coupling effect in the pre-
industrial condition.

2.4.4 The actual NPP and PU

After the nitrogen effect is calculated, the actual
NPP (NPPact, i.e., NPP with the carbon–nitrogen cou-
pling effect) is determined by

NPPact = NPPpot× εCN(NPP). (25)

And based on Eq. (21), the corresponding actual PU (PUact)
becomes

PUact = PUmax× e
−

NPPref
NPPact × εdT (PU). (26)

The modeled NPPact and PUact are then used for the differ-
ential equations (Eqs. 1–9) to solve the carbon and nitrogen
states.
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2.5 The litter production respiration flux

MAGICC separately simulates a litter production respira-
tion (LPR) flux (the fast litter respiration produced from the
plant litter production that does not carry over into the subse-
quent year, i.e., that returns to the atmosphere on sub-annual
timescales) by scaling an initial plant litter production respi-
ration flux (LPR0) with the CO2 fertilization effect (εCO2 ),
the carbon–nitrogen coupling effect on NPP (εCN(NPP)),
the climate effect (εdT (LPR)), and the land use change ef-
fect (εLU).

LPR= LPR0× εCO2 × εdT (LPR)× εCN(NPP)× εLU (27)

εdT (LPR) = e
sdT (LPR)×dT (28)

The plant litter production respiration flux is assumed to be a
fast over-turning (e.g., within 1 year) outflux from the plant
carbon pool that circulates through the NPP to plant to lit-
ter to the atmosphere within a single time step. Considering
the close relationship between plant litter production respira-
tion flux and NPP, it is scaled by the same CO2 and carbon–
nitrogen coupling feedback as NPP, as well as the same land
use effect. Given that LPR results from three cascading pro-
cesses – NPP, litter production, and decomposition – it is
modeled with an exponential temperature response based on
its own temperature sensitivity (sdT (LPR)).

2.6 The turnover of carbon and nitrogen pools

The litter production (LP), litter decomposition (LD), and
soil respiration (SR) for plant, litter, and soil carbon/nitrogen
pools are assumed to be proportional to the corresponding
pool sizes, linked by the turnover time (τ ) and scaled by the
effect from temperature change (εdT ) and carbon–nitrogen
coupling (εCN).

Turnover=
pool sizei

τi
× εdT × εCN, (29)

where i refers to the plant, litter, and soil carbon/nitrogen
pools.

For the temperature feedback, it is assumed that each pro-
cess has its own temperature sensitivity. The feedback is then
modeled by an exponential relationship.

εdT (i) = e
sdT (i)×dT , (30)

where i refers to the carbon or nitrogen turnover process LP,
LD, or SR.

The carbon–nitrogen coupling feedback takes current ni-
trogen plant uptake (PU) and nitrogen atmospheric depo-
sition (AD) as proxies to represent the plant nitrogen sta-
tus and the nitrogen forcing, respectively. And similarly,
each turnover process has its own response to the cur-
rent PU (sPU(i)) and AD (sAD(i)). An exponential relationship
is used to simulate their effects on the processes.

εCN(i) = e
sPU(i)×PU

× esAD(i)×AD, (31)

where i refers to the carbon or nitrogen turnover pro-
cesses LP, LD, or SR.

The mineral nitrogen loss (LS) is the turnover flux for the
mineral nitrogen pool, which follows a first-order decay for-
mulation (Eq. 29). However, only a temperature effect is ap-
plied to LS since the current AD and PU, the two proxies for
the carbon–nitrogen feedback, are already directly the influx
and outflux for the mineral pool (Fig. 1).

2.7 The updated implementation of land use emissions
and their impact on NPP

Most scenarios run in MAGICC, for example those in AR6
(see Chap. 7 in Climate Change 2022: Mitigation of Cli-
mate Change; Riahi et al., 2022), directly report net land
use emissions (gross deforestation− regrowth) instead of the
separation of those two parts. Considering a box model with
fixed turnover times, when the input is constant (e.g., con-
stant NPP), a one-off subtraction of carbon out of one of the
pools (e.g., one-off gross deforestation) would not lead to a
permanent reduction in the amount of carbon in this pool.
Instead, it would yield an asymptotic rebound to the pre-
intervention carbon pool size over time (as the carbon that
was moved out of the pool is taken up by the land again),
which implies full regrowth in the long term. In MAGICC’s
previous carbon cycle, the partial regrowth was accounted
for using a factor that determines the fraction of expected re-
growth and adjustments to the turnover times (Meinshausen
et al., 2011a). This implementation blends the regrowth with
changes in the pool’s turnover fluxes. As the turnovers are
also impacted by feedbacks (Eq. 29), the previous MAGICC
carbon cycle setup required a parallel calculation of the non-
feedback case to retrieve the regrowth flux and correctly han-
dle the land use input.

2.7.1 The updated land use emission implementation

The updated land use emission implementation described
here makes the regrowth and gross deforestation more
straightforward. The LU input in Eqs. (1)–(4) refers to the
net land use emissions, which can be written as

LUc = LUgrsd−LUrgr, (32)

where LUgrsd and LUrgr refer to the gross deforestation (in-
stantaneous biomass extraction from land organic carbon
pool) and regrowth (legacy biomass addition to land organic
carbon pool), respectively.

The regrowth formulation assumes a constant regrowth
flux during the growing years following each instance of
gross deforestation. Therefore, the regrowth flux is calculated
as the total regrowth (part of the gross deforestation) divided
by the regrowth time, formulated as follows:

LUrgr =

ϕ
t∫

max(0,t−τrgr)

LUgrsd

τrgr
, (33)
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where ϕ refers to the fraction of gross deforestation that can
regrow and τrgr denotes the regrowth time required to reach
the partial regrowth.

The formulation assumes a constant regrowth flux (LUrgr)
for τrgr years after every single gross deforestation occur-
rence – the regrowth flux at time t is thus the potential total
regrowth (ϕ times the integration of LUgrsd) divided by the
required regrowth time (τrgr).

Note that, in this formulation for regrowth and gross de-
forestation, both fluxes exist only within a certain time pe-
riod (τrgr); hence they cannot change the long-term equilib-
rium of the system because the fixed turnover times always
return the system to its pre-deforestation state (Eqs. 1–4). We
discuss our solution for this in the next section.

2.7.2 The effect of land use emission on NPP

Instead of adjusting the turnover times (as in previous ver-
sions of the MAGICC carbon cycle), CNit applies the effect
of land use change to NPP to change the long-term equilib-
rium after the gross deforestation (εLU in Eq. 10), which is
formulated as

εLU =

CLAND0 − (1−ϕ)
t∫

0
LUgrsd

CLAND0

, (34)

where CLAND0 is the initial land carbon pool size.
The land use effect on NPP assumes that the NPP is re-

duced immediately after gross deforestation activities. Con-
sidering the simultaneous regrowth, the NPP reduction is
proportional to the accumulated permanent gross deforesta-

tion ((1−ϕ)
t∫

0
LUgrsd). With the land use effect on NPP, when

there is a one-off gross deforestation occurrence, the NPP
gradually decreases to a new value, with that value depend-
ing on the regrowth fraction ϕ (e.g., ϕ = 0 refers to zero re-
growth and the gross deforestation causes permanent carbon
loss from the land carbon pools). Because of the NPP change,
the long-term equilibrium of the system changes too.

The new formulation enables the separate calculation of
regrowth and gross deforestation without the non-feedback
run. Arguably, it also makes more physical sense because
deforestation reduces the amount of forest (area) available
to grow and hence the amount of NPP. The regrowth amount
is a linear function of regrowth time, representing a simpli-
fied approach compared to sigmoidal growth models. This is
a trade-off that could be re-considered in future work. The
applied effect on NPP also means an additional constraint on
MAGICC’s simulation of regrowth and gross deforestation.
However, it should be noted that the definition discrepancy
of land use change emissions itself still exists among differ-
ent models/approaches and leads to substantial differences in
land use emission estimates (Gasser and Ciais, 2013; Stocker
and Joos, 2015; Grassi et al., 2023). Thus, the LU input must

align with the outputs of complex models, the scenarios be-
ing applied, and specific definitions of land use change emis-
sions (e.g., ELUC in the Global Carbon Budget project) to
ensure consistency in model applications.

2.7.3 The limitation of land use emission in CNit

The formulation presented here has certain limitations. For
example, it does not account for variations in regrowth rates
among different ecosystems or across ecosystem succes-
sional stages – an inherent constraint of the global box model
approach. Additionally, it aggregates deforestation and har-
vest fluxes into a single LU input, although the regrowth
fraction parameter may provide some indication of harvest
activities that do not result in regrowth.

It should also be noted that MAGICC, whether using the
previous carbon cycle model or the CNit version, does not
simulate carbon or nitrogen storage in the product pool due
to its relatively small size (Eqs. 1–9 and Fig. 1). Thus, the
deforestation and harvest fluxes going into the product pool,
expected to be small, are accounted for in the land use emis-
sion input (LUc or LUn) and associated regrowth parameter,
while the land carbon (or nitrogen) pool does not include the
correspondingly stored carbon (or nitrogen) within the prod-
uct.

3 Model calibration

3.1 Overview of the calibration process and results

This section presents the offline calibration results for CNit,
i.e., calibrations using prescribed land surface temperature
and atmospheric CO2 concentration from the original model
outputs. We first describe the data acquisition and post-
processing of land surface model outputs and CMIP6 ESM
outputs (Sect. 3.2). Next, we define the calibration targets
(major fluxes and pool sizes) and weight them to create a
cost function. Finally, we apply optimization algorithms to
identify the “best-estimate” parameter set (Sect. 3.3). For
a single model, all experiments are calibrated simultane-
ously, resulting in one best-estimate parameter set that cap-
tures the model’s behavior across experiments. Using these
best-estimate parameter values, we evaluate CNit emulation
against model outputs and calculate the root mean square er-
ror (RMSE) and normalized RMSE to assess emulation per-
formance. A discussion of the calibration results for CABLE,
OCN, and CMIP6 ESMs is provided in Sect. 3.4 and 3.5.

3.2 Data acquisition and processing

3.2.1 Land surface models and outputs

The CABLE and OCN land surface model output datasets
(global-mean, annual-mean values) were obtained directly
from the modeling groups. CABLE is the land surface com-
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ponent for the Australian Community Climate and Earth
System Simulator (ACCESS-ESM1) (Law et al., 2017) and
ACCESS-CM2 (Bi et al., 2020). OCN is the updated land
surface model built on ORCHIDEE (Zaehle and Friend,
2010), the land surface component of the IPSL Climate
Model (IPSL-CM; Boucher et al., 2020). Both CABLE and
OCN provided the results from the carbon-only and the
carbon–nitrogen coupled setups for the Representative Con-
centration Pathway 8.5 (RCP8.5) scenario (Fleischer et al.,
2019), with OCN also providing the results for the RCP2.6
scenario (Meyerholt et al., 2020). The data from both the
carbon-only and carbon–nitrogen coupled setups of the land
surface models offer valuable information to constrain nitro-
gen interactions separately from the climate and CO2 effects.
The carbon–nitrogen coupled runs in CABLE consisted of
two experiments with constant and dynamic atmospheric de-
position inputs, respectively (Fleischer et al., 2019). These
experiments are useful for diagnosing the standalone effect
of atmospheric deposition. The climate data and atmosphere
CO2 concentration for the land surface model experiments
were derived from either their corresponding ESM outputs
(Meyerholt et al., 2020) or the RCP greenhouse gas con-
centrations (Meinshausen et al., 2011b). One OCN model
structure with a flexible carbon : nitrogen ratio, a linear bio-
logical nitrogen fixation and actual evaporation relationship,
and explicit mineral nitrogen loss representation – namely
the FLX/FOR/NL1 structure – from the 30 ensemble model
structures in the original paper (Meyerholt et al., 2020) was
selected for the CNit calibration in this paper. The selected
OCN model structure serves as a proof of concept for the
proposed CNit model. Future work will explore alternative
structures and address structural uncertainties.

3.2.2 CMIP6 ESMs and outputs

We select target ESMs based on the following criteria:
(1) the model includes a terrestrial nitrogen cycle; (2) the
outputs encompass the majority of carbon–nitrogen cycle
variables needed for C4MIP; and (3) the model has com-
pleted all selected experiments, including one idealized ex-
periment (1pctCO2), historical simulations (historical), and
four Shared Socioeconomic Pathway (SSP) scenarios (SSP1-
2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5), all of which are
CMIP6 tier 1 concentration-driven experiments. Based on
the data availability and completeness (in the Earth System
Grid Federation), six ESMs were chosen for this calibration
(Table 1).

The monthly gridded CMIP6 ESM outputs were down-
loaded from the Earth System Grid Federation (ESGF, https:
//esgf-node.llnl.gov/projects/cmip6/, last access: 18 Jan-
uary 2024) and processed into global-mean, annual-mean
values. Our grid-to-global aggregation used the model-
specific grid area (areacella) and land fraction (sftlf) to avoid
issues with the resolution variation across different model
outputs. Our monthly-to-annual aggregation first concate-

nated the original monthly outputs along the time dimension
and then calculated the annual values, weighted by the num-
ber of days in each month as defined by each ESM’s output
calendar. It should be noted that, even though the selected
ESMs and experiments provided relatively complete outputs
for the pools and fluxes, none of them reported all the re-
quired fluxes by C4MIP, especially those related to the land
use and anthropogenic perturbations (Tang et al., 2025). As
part of the processing, it was not trivial to reproduce the mod-
els’ mass balance based on the reported outputs (Tang et al.,
2025). For this paper, we have applied a workaround, which
we describe in the next section.

3.3 Calibration setup

3.3.1 Temperature profile and CO2 concentration

For CABLE and OCN, temperature and CO2 concentra-
tion data were obtained directly from the original providers
(Fig. A3). For CMIP6 ESMs, temperature data (tas)
were sourced from model outputs. CNit uses temperature
change (dT ) as a proxy for climate-related impacts, cal-
culated as the difference between the current temperature
and the initial year’s temperature (Figs. A3 and A4). CO2
concentrations were taken from the CMIP6 forcing datasets
(Meinshausen et al., 2017, 2020) – as all calibrated experi-
ments are concentration-driven.

3.3.2 Inputs for CNit

The inputs for CNit (Fig. 1) include nitrogen atmospheric
deposition, biological nitrogen fixation, and fertilizer appli-
cation fluxes, all directly available from model outputs. For
land use emissions of carbon and nitrogen, CABLE and OCN
provide readily available data. However, CMIP6 ESMs do
not provide such data (Tang et al., 2025). To address this,
we calculated land use carbon emission (LUc in Fig. 1 and
Eqs. 1–4) as NPP−RH−dCLAND/dt , ensuring carbon mass
conservation (as there is no straightforward land use emis-
sion from the reported outputs alone; see details in Tang et
al., 2025).

Where available, land use and anthropogenic disturbance-
related nitrogen fluxes (fNAnthDisturb and fNProduct in the
CMIP6 Data Request) were combined to create the land use
nitrogen input for CNit (LUn in Fig. 1 and Eqs. 5–9).

3.3.3 Calibration target and optimization

Calibration targets for both land surface models and CMIP6
ESMs included NPP, heterotrophic respiration, nitrogen
plant uptake (PU), and all carbon and nitrogen pool sizes.
The cost function was calculated as the sum of normalized
errors for each target flux or pool size time series (i.e., square
(emulation−target)/(targetmax−targetmin)). This normaliza-
tion accounted for the differing magnitudes among target
variables and gives lower weight to variables with greater
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Table 1. The list of Earth system models (ESMs) selected for the calibration.

ESMs Variant label Land component Reference

CMCC-CM2-SR5 r1i1p1f1 CLM4.5 Cherchi et al. (2019)
CMCC-ESM2 r1i1p1f1 CLM4.5, BGC configuration Lovato et al. (2022)
MPI-ESM1-2-LR r1i1p1f1 JSBACH3.2 Mauritsen et al. (2019)
NorESM2-LM r1i1p1f1 CLM5 Seland et al. (2020)
UKESM1-0-LL r1i1p1f2 JULES-ES-1.0 Sellar et al. (2019)
MIROC-ES2L r1i1p1f2 VISIT-e Hajima et al. (2020)

variability. All available experiments were calibrated simul-
taneously without additional weighting, meaning the final
cost was calculated as the sum of the costs from all exper-
iments.

For CMIP6 ESMs, historical-period data and SSP scenario
results were combined (referred to as hist_SSP) into a unified
time axis spanning 1850–2100 or 1850–2300, depending on
data availability.

The calibration process employed the differential evolu-
tion algorithm (Storn and Price, 1997) for global optimiza-
tion and the Nelder–Mead algorithm (Gao and Han, 2012)
for local minimization. First, differential evolution ran for
30 000 iterations with 10 random initializations. Next, the
resulting 10 global-minimum parameter sets were used as
initial guesses for the Nelder–Mead algorithm, yielding re-
spective local minimums. Finally, the parameter set with the
lowest cost was selected as the best-estimate parameter set. A
full parameter list and the best-estimate values are provided
in Tables A1 and A2.

3.4 Calibrating CNit to CABLE and OCN: results and
comparison

CNit has successfully emulated the fluxes and pool sizes
from the CABLE and OCN experiments (Figs. 2 and A5),
with the RMSE (or normalized RMSE) ranging from 0.9–
2.6 GtC yr−1 (1.3 %–2.2 %) for NPP, 4.0–32.9 GtC (0.2 %–
1.0 %) for the land carbon pool size, 0.016–0.020 GtN yr−1

(1.1 %–1.9 %) for PU, 0.05–0.11 GtN (< 0.1 %) for the land
organic nitrogen pool size, and 0.0022–0.026 GtN (2.3 %–
6.2 %) for the mineral nitrogen pool size. There is a strong
and increasing nitrogen limitation on NPP in CABLE, in-
hibiting NPP by 9.4 % to 48.2 % (constant atmospheric
deposition) or 46.2 % (dynamic atmospheric deposition)
from 1901 to 2100. The total land carbon storage, i.e., the
total amount of carbon taken up by the land carbon cy-
cle, by 2100 under the RCP8.5 scenario in the constant
and dynamic atmospheric deposition experiments is 353 and
398 GtC, respectively, which is significantly lower than the
1634 GtC land carbon storage in the runs that use a carbon
cycle without nitrogen limitation. The large reduction in NPP
(influx of the system, Fig. 2) due to the carbon–nitrogen
coupling, along with the relatively small reduction in het-
erotrophic respiration (major outflux of the system, Fig. A5),

results in the decrease in net land carbon flux (Fig. 2) and,
thus, the decreased land carbon storage (Fig. 2).

The OCN model exhibits significantly less nitrogen limi-
tation on NPP (< 5.0 % inhibition) for both the RCP8.5 and
the RCP2.6 scenarios. This disparity may be attributed to
the fact that the NPP in OCN in the carbon-only simulations
(∼ 85 GtC yr−1 in 2100 in RCP8.5) is notably lower than that
in CABLE (∼ 140 GtC yr−1 in 2100 in RCP8.5). The car-
bon cycle in OCN has also experienced a higher temperature
change (∼ 8 °C from 1850 to 2100 in RCP8.5, Fig. A3) com-
pared to CABLE (∼ 5.5 °C from 1900 to 2100 in RCP8.5,
Fig. A3). The emulation captures the varied NPP increases by
applying a stronger CO2 fertilization effect and a more nega-
tive climate feedback in CABLE than in OCN. These respec-
tive changes are captured in CNit by the logarithmic carbon–
concentration feedback formulation with a high sensitivity
(slog

CO2
= 2.582) and negative sexp

dT (NPP) and ssig
dT (NPP) parame-

ters (Table A2). Nevertheless, the relatively minor NPP lim-
itation in OCN, along with the resulting decrease in net land
carbon flux (Fig. 2), leads to a reduction of 45 GtC (or 10 %,
RCP8.5) and 26 GtC (or 8 %, RCP2.6) in land carbon storage
by the end of 2100 compared to their respective simulations
that use a carbon cycle without a nitrogen limitation.

In the RCP8.5 experiment, CABLE and OCN show simi-
lar relative changes in PU over time; however, their starting
PU fluxes differ (∼ 0.6–1.0 GtN yr−1 in CABLE vs. ∼ 1.0–
1.4 GtN yr−1 in OCN). The emulation is able to capture both
dynamics by adjusting the maximum PU (PUmax) and tem-
perature sensitivity of PU (sdT (PU)) parameters. Specifically,
the different starting PU values stem from the higher PUmax
in OCN (2.4 GtN yr−1) than in CABLE (1.9 GtN yr−1). The
similar trends occur because of the higher sdT (PU) in CABLE
compared to OCN (0.014 K−1 vs. 0.008 K−1, Table A2),
which compensates for the effect of its lower PUmax (Eqs. 21
and 22). In the dynamic atmospheric deposition experiment,
the PU in CABLE is slightly higher than in the constant at-
mospheric deposition experiment, primarily accumulating in
the soil organic nitrogen pool (+3 GtN in 2100 compared to
the constant atmospheric deposition scenario, Fig. A5). The
accumulated organic nitrogen enriches the mineral nitrogen
pool instead of facilitating the nitrogen loss, as the system
remains nitrogen limited. In contrast, in the RCP8.5 experi-
ment from OCN, the new organic nitrogen is mainly stored
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Figure 2. Comparison of net primary production (NPP), land carbon pool size (CLAND), net land carbon flux (fCNetLAND), nitrogen plant
uptake (PU), land organic nitrogen pool size (NLANDo, sum of nitrogen in plant, litter, and soil pools), mineral nitrogen pool size (NM),
and net land nitrogen flux (fNNetLAND) between CABLE or OCN outputs (blue lines) and CNit emulations (orange lines). The experiments
labeled C, CN, and CNd denote the carbon-only, carbon–nitrogen coupled with constant nitrogen atmospheric deposition, and carbon–
nitrogen coupled with dynamic nitrogen atmospheric deposition configurations, respectively, in the land surface models.

in the plant pool (Fig. A5). The trend and magnitude of the
mineral nitrogen pool size in OCN are also largely differ-
ent from those in CABLE. The emulation captures the di-
verse mineral nitrogen trends by adapting the temperature
response of mineral nitrogen loss for the two models (weak
and negative sdT (LS) of −0.007 K−1 in CABLE vs. strong
and positive sdT (LS) of 0.088 K−1 for OCN, Table A2). The
order-of-magnitude difference in mineral nitrogen pool sizes

demonstrates the huge uncertainty in estimated mineral ni-
trogen quantities.

Comparing the behavior of the nitrogen cycle in OCN’s
RCP8.5 and RCP2.6 experiments, it is found that PU follows
the trend of NPP, supporting our assumption that PU can
be modeled based on NPP (Eq. 21). However, unlike in
the RCP8.5 scenario, the new nitrogen introduced by PU is
mainly accumulated in the soil nitrogen pool in the RCP2.6
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scenario (Fig. A5). Based on the formulation, the larger soil
nitrogen pool size implies more nitrogen mineralization (the
first-order turnover, Eq. 29), enabling the emulation to cap-
ture the increasing trend of the mineral nitrogen pool size
from 2050 to 2100 (Fig. A5). The organic nitrogen accumu-
lation in the RCP8.5 and RCP2.6 experiments does not pre-
cisely follow the corresponding carbon storage trends, where
the new carbon introduced by NPP is predominantly stored
in the plant carbon pool in both scenarios. This difference in-
dicates that the carbon cycle and nitrogen cycle, even though
closely intertwined, may react in a divergent manner com-
pared to climate change.

3.5 Calibrating CNit to CMIP6 ESMs: results and
comparison

CNit emulation captures the dynamics of major fluxes and
pool sizes for all the CMIP6 ESMs and experiments (Figs. 3
and A6), despite the diverse climate and CO2 forcings
(Fig. A4). More detailed comparisons of ESM outputs and
CNit emulations are provided in Fig. A6. Overall, the model
is able to emulate the wide range of ESM behavior. In the
rest of this section, we focus on cases where this is not the
case.

In the 1pctCO2 experiment, the emulated NPP is lower
than that from the UKESM1-0-LL and MIROC-ES2L out-
puts. The underestimation is mainly from the inconsistent
behavior of these two ESMs in the idealized 1pctCO2 exper-
iment and hist_SSP experiments. Both ESMs have simulated
higher NPP at the end of their 1pctCO2 runs (∼ 100 GtC yr−1

in 1999 for both ESMs) than that at the end of their SSP
runs (e.g., SSP1-2.6,< 80 GtC yr−1 in 2100 for both ESMs),
which is contradictory to their PU results (lower in 1pctCO2
and higher in SSPs, Fig. A6). Such behavior is in direct con-
tradiction with our assumption that higher NPP requires a
higher PU (Sect. 2.4, Eq. 21). Since NPP and PU are both set
as calibration targets, CNit has tried to minimize the gap be-
tween the emulated fluxes and targets, resulting in the simul-
taneous underestimation of NPP and overestimation of PU
for UKESM1-0-LL and MIROC-ES2L (Figs. 3 and A6).
However, such different behavior is only observed in the
1pctCO2 experiments for these two ESMs, indicating there
could be either some model response nonlinearities between
their 1pctCO2 and SSP runs that our model is not capturing
or some regionally distinct effects that we are not seeing in
the global, annual averages.

The underestimated NPP in the 1pctCO2 experiment has
led to an underestimation of ∼ 190 GtC of the land carbon
pool size for MIROC-ES2L (Fig. A6). But the underesti-
mation of emulated land carbon in UKESM1-0-LL is much
smaller (∼ 78 GtC, Fig. A6). This is because the CNit emu-
lation has overestimated the soil carbon storage in the later
phase of the 1pctCO2 experiment, which compensates for
some carbon loss by the underestimated NPP. The emulated
land carbon pool sizes (specifically the plant carbon pool

sizes) are slightly but systematically smaller than the outputs
from CMCC-CM2-SR5 and CMCC-ESM2 in their 1pctCO2
runs (Fig. A6). Such results primarily stem from CNit’s un-
derestimation of NPP during the middle of the 1pctCO2 ex-
periment (Fig. A6). The CNit emulation of pool turnovers
also contributes to the inconsistency between the emulation
results and ESM outputs. The first-order decay of carbon
pool turnover (Eq. 29) is not particularly effective in model-
ing the minor changes in pool sizes relative to the substantial
initial pool size. For example, both CMCC models exhibit a
soil carbon loss of approximately 45 GtC in their 1pctCO2
runs, with an initial soil pool size of around 2870 GtC. Con-
sequently, the calibration has prioritized achieving a better
fit for soil pool sizes at the expense of accurately represent-
ing plant and litter pool sizes. The different starting soil pool
sizes for the ESMs’ 1pctCO2 and historical simulations fur-
ther complicate the soil carbon turnover emulation (Fig. A6).
These different initial pool sizes in CMIP6 data do not make
much sense. However, without explicit reasons to discredit
the data, we have not adjusted our model to accommodate
such oddities; rather, they compromise the model’s fit.

The net land carbon flux is a highly variable flux (<
10 GtC yr−1 for all the ESMs, Fig. A6). CNit emulation of
the ESMs has both positive and negative errors (Fig. 3). The
CNit emulation has captured both their trends and magni-
tudes (Fig. A6).

The new nitrogen cycle in MAGICC has demonstrated
the ability to capture the dynamics of nitrogen fluxes and
pools, especially the PU and land organic nitrogen pool, in
the ESM’s SSP scenario runs (Fig. 3). In the 1pctCO2 ex-
periment, however, the emulated PU is overestimated for
UKESM1-0-LL and MIROC-ES2L, which is accompanied
by the underestimation of their NPP, in an attempt to com-
pensate for the conflicting high NPP and low PU in the
ESMs’ outputs (Fig. A6). The emulated organic nitrogen
pool size is overestimated for NorESM2-LM (Fig. A6),
which is primarily attributed to the overestimated PU and soil
nitrogen pool sizes (Fig. A6).

The mineral nitrogen pool sizes exhibit the most diverse
results between the CNit emulation and the ESM outputs
(Fig. 3, details in Fig. A6). Firstly, the mineral nitrogen pool
sizes in UKESM1-0-LL are relatively well emulated. Sec-
ondly, the emulated mineral nitrogen pool sizes show sig-
nificant differences compared to NorESM2-LM outputs, in
both magnitudes and trends. Considering that both the PU
and the organic nitrogen pool size in NorESM2-LM are rel-
atively well emulated (Fig. A6), such differences in the min-
eral nitrogen pool size could be attributed to either the in-
put nitrogen fertilizer application flux or the turnover flux
of the mineral pool. The CNit emulation of mineral nitro-
gen turnover is a first-order decay formulation with an ex-
ponential temperature effect scaling (Eq. 29). Thus, the ini-
tial pool size and turnover time determine the magnitude
of the nitrogen loss flux. Among all the studied CMIP6
ESMs, NorESM2-LM has the largest initial mineral nitro-
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Figure 3. Comparison of net primary production (NPP), land carbon pool size (CLAND), net land carbon flux (fCNetLAND), nitrogen plant
uptake (PU), land organic nitrogen pool size (NLANDo, sum of nitrogen in plant, litter, and soil pools), mineral nitrogen pool size (NM), and
net land nitrogen flux (fNNetLAND) between CMIP6 ESM outputs and CNit emulations. Results are normalized to a range of 0–1 using the
following transformation: xaxis= (target− targetmin)/(targetmax− targetmin) and yaxis= (emulation− targetmin)/(targetmax− targetmin).
The diagonal dashed line represents points where the emulation matches the target exactly, with positions below and above the line indicating
underestimation and overestimation, respectively, by the emulator.
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gen pool (5.64 GtN vs. < 1.50 GtN for all the other ESMs),
which can lead to a large turnover flux. Conversely, the
pool size change of mineral nitrogen is not significant in
NorESM2-LM (0.78 GtN for 1pctCO2 and < 0.35 GtN for
all the hist_SSP experiments throughout the entire duration
of the simulation). The large flux and small pool size change
are naturally incompatible with each other in a first-order de-
cay assumption, indicating uncaptured nonlinearities of the
mineral pool simulation in NorESM2-LM. And lastly, the
CNit emulation has effectively captured the trends in mineral
nitrogen pool sizes simulated in CMCC-CM2-SR5, CMCC-
ESM2, MPI-ESM1-2-LR, and MIROC-ES2L across all ex-
periments (Fig. A6). Overall, the mineral pool is only a small
part of the land nitrogen pool (the mineral-to-organic nitro-
gen ratio across the time series was 0.23 %–0.31 %, 0.24 %–
0.31 %, 1.36 %–2.80 %, 2.05 %–2.53 %, 0.06 %–0.19 %, and
0.14 %–0.43 % for CMCC-CM2-SR5, CMCC-ESM2, MPI-
ESM1-2-LR, NorESM2-LM, UKESM1-0-LL, and MIROC-
ES2L, respectively). As a result, the net land nitrogen flux
is mainly controlled by the organic nitrogen dynamics and
shows consistency for the results from CNit emulation and
ESM simulation (Figs. 3 and A6).

4 Discussions

4.1 The climate and carbon–nitrogen cycle in CMIP6
ESMs

The climate and carbon–nitrogen cycle in CMIP6 ESMs re-
main considerably different from each other (Figs. 4 and A7
and Sect. A1), which contributes to the imperfect emulation
(especially the mineral nitrogen pool size, Fig. 3). The fol-
lowing discussion of the ESM outputs provides an overview
of the current model-based understanding of the climate and
carbon–nitrogen cycle from a global-mean, annual-mean per-
spective, from which we suggest future research needs. For
the sake of comparison, the subsequent figures and discus-
sions focus on the common experimental periods for sce-
narios and ESMs (e.g., 1850–2100 for the hist_SSP exper-
iments). If not specified, the value and spread in the discus-
sions are expressed as the mean± 1 standard deviation across
ESMs.

As a start, different ESMs have different temperature re-
sponses (Fig. A3), which has flow-on effects for the carbon
cycle and nitrogen cycle (Fig. A6). Regardless of the absolute
land carbon/nitrogen pool sizes (Fig. A8 and Sect. A2), the
accumulation of land carbon/nitrogen during the same exper-
imental period and their trends are considerably more simi-
lar (Fig. 4a and b). The accumulated land carbon storage is
472±201, 127±28, 164±50, 165±100, and 227±100 GtC
for the 1pctCO2, hist_SSP126, hist_SSP245, hist_SSP370,
and hist_SSP585 experiments, respectively. The correspond-
ing land nitrogen accumulation is 3.04± 4.65, 3.28± 1.03,
3.92±1.33, 3.76±1.32, and 3.54±1.64 GtN. Generally, the

land carbon accumulation and nitrogen accumulation are
proportional to maintain the stoichiometric relationship be-
tween carbon and nitrogen (Fig. 4a and b, the mean val-
ues). However, the opposite trend of land carbon and nitro-
gen change is found in the two CMCC ESMs (compared to
the other ESMs) in their 1pctCO2 runs, which explains the
much larger spread of land organic nitrogen accumulation
at the end of 1pctCO2 compared to the four hist_SSP ex-
periments (Fig. 4b). Both the land carbon storage and the
nitrogen storage show larger spread in the 1pctCO2 exper-
iment (without land use changes), which further highlights
the model structure uncertainty (and potentially also points to
some inconsistency in how models are running these experi-
ments). The higher spread of carbon and nitrogen storage in
higher-warming scenarios indicates the feedback uncertainty
(Melnikova et al., 2021).

The continuous and rapid depletion of mineral nitrogen
is observed in NorESM2-LM under the 1pctCO2 scenario,
coinciding with the highest accumulation of organic nitro-
gen (Fig. 4c). There are contrasting trends in mineral ni-
trogen pool size changes among models across all scenar-
ios (Fig. 4c), indicating a large discrepancy and very limited
agreement about mineral nitrogen estimation among ESMs.
Better understanding and proper representation of organic ni-
trogen decomposition (nitrogen mineralization) are key to
narrowing the gap (Thomas et al., 2015; Forsmark et al.,
2020; Davies-Barnard et al., 2020).

Because of the lack of observational constraints and
process-level understanding, the terrestrial carbon cycle is
a major source of uncertainty contributing to future cli-
mate projections and past climate simulations (Friedling-
stein et al., 2014; Ciais et al., 2014). By analyzing outputs
from 12 CMIP5 ESMs, a study has found that the projec-
tion uncertainty in global land carbon storage by 2100 is
> 160 GtC (more than 50 % larger than that of the studied
CMIP6 ESMs here), primarily driven by model structure dif-
ferences (Lovenduski and Bonan, 2017). Though ESMs have
been significantly improved over the past years (Eyring et
al., 2019, 2021; Chen et al., 2021; Washington et al., 2009),
with the inclusion of a nitrogen cycle as a realistic constraint
on the carbon cycle being the most recent improvement (at
the time of CMIP6) (Davies-Barnard et al., 2020; Wei et al.,
2022), the spread of the carbon–concentration feedback is
not much narrowed from CMIP5 to CMIP6 (Arora et al.,
2020). The variability in nitrogen pool size dynamics (Fig. 4b
and c) indicates considerable nitrogen-related uncertainties
accompanied by the carbon–nitrogen coupling (Du et al.,
2018; Thomas et al., 2013, 2015). So far, there has been
no standardized nitrogen cycle validation for ESMs, largely
because of limited observations, diverging representations,
and the diverse upscaling approaches used in CMIP6 ESMs
(Zaehle et al., 2014; Zaehle and Dalmonech, 2011; Spaf-
ford and MacDougall, 2021; Zhu et al., 2018). An improved
quantification of nitrogen effects on the carbon cycle and cli-
mate, e.g., isolating the nitrogen cycle feedback from the car-
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Figure 4. Carbon and nitrogen pool size dynamics (a: dCLAND, delta land carbon pool size; b: dNLANDo, delta land organic nitrogen pool
size (sum of nitrogen in plant, litter, and soil pools); c: dNM, delta mineral nitrogen pool size) from CMIP6 ESMs across different scenarios.

bon cycle feedback, though requiring meticulous experiment
design and extra model simulation, might be necessary to
improve climate projection uncertainty attribution (Spafford
and MacDougall, 2021). The lack of nitrogen observations
and limited mechanistic understanding remain fundamental
challenges in reducing uncertainty related to the nitrogen ef-
fect (Zaehle et al., 2014). The forthcoming online calibration
of the updated MAGICC to CMIP6 ESMs and its applica-
tion (e.g., sensitivity analyses, perturbed parameter analyses,
and feedback analysis) should provide new insights into the
projection uncertainty, which would be too computationally
expensive to obtain from ESMs (Bonan et al., 2019; Deser et
al., 2020).

4.2 The nitrogen effect on NPP

The NPP simulated by CMIP6 ESMs has a consistent trend
and is much more constrained than the pool sizes (Figs. 5a
and A8). The NPP simulation in CMIP6 ESMs has been
improved from the CMIP5 ESMs (Wei et al., 2022), at-

tributed to advancements in nitrogen processes and the avail-
ability of more observational data (Collier et al., 2018; Ran-
derson et al., 2009). Based on our calibrations, there is
generally nitrogen limitation on global-mean, annual-mean
NPP (Fig. 5b), which is consistent with experimental studies
and other model simulations (LeBauer and Treseder, 2008;
Wieder et al., 2015b; Thornton et al., 2007, 2009). Accord-
ing to our calibrations, NorESM2-LM is the only model that
shows nitrogen fertilization effects on NPP during the his-
torical period, alongside a persistent intensification of nitro-
gen limitation during the scenario period. This historical fer-
tilization coincides with an enrichment of the model’s min-
eral nitrogen pool, while the increasing limitation correlates
with the accumulation of organic nitrogen (see Figs. 4b and c
and A8d). These findings suggest that nitrogen mineraliza-
tion is constrained by nitrogen availability during the sce-
nario period in NorESM2-LM, resulting in reduced mineral
nitrogen levels and thereby exacerbating NPP limitation.
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Figure 5. (a) Net primary production (NPP) from CMIP6 ESMs and (b) the emulated nitrogen effect on NPP (εCN(NPP)) across different
scenarios (the dashed blue line serves as a reference for εCN(NPP) = 1).

Based on our calibrations, MPI-ESM1-2-LR and
UKESM1-0-LL show the strongest nitrogen limitation on
NPP during their hist_SSP runs, with an εCN(NPP) range
of 0.73–0.88 and 0.77–0.90, respectively. The strong ni-
trogen limitation from MPI-ESM1-2-LR in its 1pctCO2
simulation matches the continuous depletion of its mineral
nitrogen pool (Fig. 4c). It is noted that JSBACH, the land
component of MPI-ESM1-2-LR (Mauritsen et al., 2019),
shows very limited nitrogen limitation on NPP in its CMIP5
1pctCO2 idealized simulation (Goll et al., 2017). The more
severe depletion of mineral nitrogen in its CMIP6 output
(maximum> 0.43 GtN, Fig. 4c) than its CMIP5 result
(maximum< 0.3 GtN, value from the reference publication),
along with the much higher NPP simulated in CMIP6
(maximum∼ 110 GtC yr−1, Fig. 5a) compared to CMIP5
(maximum∼ 40 GtC yr−1, value from the reference publica-
tion), might be the reason for the strong nitrogen limitation.
On the other hand, we suspect that the strong nitrogen
limitation on NPP inferred for UKESM1-0-LL is primarily
the result of the incongruent high-NPP and low-PU results
from UKESM1-0-LL outputs (Fig. A6; i.e., this could be a
calibration issue rather than an easily explained feature of
UKESM1-0-LL).

Based on our calibration, CMCC-CM2-SR5 and CMCC-
ESM2 exhibit the least pronounced nitrogen limitation on
NPP (or even indicate fertilization) during their hist_SSP
runs, with an εCN(NPP) range of 0.93–1.05 and 0.93–1.03,
respectively. The similarly weak limitation is also observed

in our calibration to their 1pctCO2 runs. Their organic ni-
trogen pool sizes keep decreasing in the 1pctCO2 experi-
ment (Figs. 4b and A8b), which should contribute a large
flux of mineral nitrogen via decomposition. However, their
mineral nitrogen pools are not enriched (Figs. A6 and A8d),
indicating a considerable mineral nitrogen loss from these
two models. The slight nitrogen fertilization applied to NPP
(εCN(NPP) > 1) is found in our calibration to the CMCC mod-
els from 1975 to 2025 or 2100 depending on the scenario.
The Community Land Model (CLM) serves as the land com-
ponent for both CMCC models (Lovato et al., 2022). In
the Duke University and Oak Ridge National Laboratory
(ORNL) Free-Air CO2 Enrichment (FACE) experiments,
CLM has exhibited a nearly negligible initial-year nitrogen-
based NPP response (defined as NPP / canopy nitrogen),
alongside a 6 %–10 % NPP response to elevated CO2 (Zaehle
et al., 2014). The near-zero nitrogen-based NPP response and
significant NPP increase suggest that CLM perceives a rel-
atively high canopy nitrogen content (as supported by the
large land organic nitrogen pool sizes in the CMCC mod-
els’ output in Fig. A8b). This potentially contributes to the
weak nitrogen limitation observed in the CMCC models at
the global scale and underscores the potential utility of re-
gional observation studies in constraining the global nitrogen
effect. Most nitrogen limitation factors fall within the range
of 0.85–1.0, with limitations increasing in higher-emission
scenarios. This finding aligns with the OCN results from the
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RCP8.5 and RCP2.6 simulations (Fig. 2 and Meyerholt et al.,
2020).

Although both land surface models and our calibrations to
ESMs indicate a continuous nitrogen limitation on NPP at
the global scale, there is room for debate regarding the real-
ism of a long-term nitrogen limitation. Considering the sub-
stantial amounts of atmospheric nitrogen deposition and an-
thropogenic additions, alongside the ubiquitous presence of
nitrogen-fixing organisms, the ability of ecosystems to opti-
mize nitrogen use efficiency in response to varying nitrogen
availability remains unclear. Previous studies suggest that
ecosystems should be capable of effectively balancing these
factors to alleviate long-term limitations on overall NPP (Vi-
tousek and Howarth, 1991). This holds particularly true for
tropical forests where nitrogen is abundant and rapidly circu-
lated (Hedin et al., 2005; Cusack et al., 2011). In such cases,
other nutrients like phosphorus and potassium might play a
critical role (Wright et al., 2011; Alvarez-Clare et al., 2013).
Further validation is required to assess the long-term effects
of nitrogen limitation on NPP and to understand the differ-
ences between regional and global patterns.

4.3 The nitrogen effect on pool turnovers

According to our calibrations, the carbon–nitrogen coupling
has largely enhanced plant carbon turnover in both CMCC
models and MIROC-ES2L, as evidenced by εCN(LPc) val-
ues ranging from 1.09 to 1.50, 1.07 to 1.50, and 1.12
to 1.40, respectively, during the hist_SSP period (Fig. 6a).
The εCN(LPc) values exhibit an increasing trend from the
SSP1-2.6 scenario to the SSP5-8.5 scenario. The calibration
to the other ESMs, however, suggests that the plant nitrogen
status has inhibited litter production (εCN(LPc) in the range of
0.6–0.8 during the hist_SSP period and no significant differ-
ence among different scenarios). The carbon–nitrogen cou-
pling effect (εCN) and temperature effect (εdT ) effectively
change the turnover rate determined by the initial turnover
times (Eq. 29). Considering that the temperature feedback
is always 1 at the beginning of each experiment (dT = 0)
and the dynamics of plant carbon are similar across different
ESMs (Figs. 4a and A6), the strong nitrogen enhancement in
litter carbon production in the CMCC models is mainly be-
cause of their high initial plant carbon turnover times (31 and
66 years, respectively, Table A2), compared to the other
ESMs (15 to 25 years, Table A2). The combination allows for
the total litter production rate to remain at a similar level for
all the ESMs, a key requirement given that they have similar
plant pool size changes (Fig. A6), relatively consistent NPP
(the influx for the plant carbon pool, Fig. 5), and similar plant
litter respiration (the outflux for the plant carbon pool, the
LPR0 parameter in Table A2). The enhanced litter production
in MIROC-ES2L, however, is needed to compensate for its
much lower plant respiration flux (LPR0 = 0.96 GtC yr−1 in
MIROC-ES2L vs. 4.16–9.90 GtC yr−1 in other ESMs). The
weak limitation (or even fertilization) of NPP found for the

CMCC models (Fig. 5b) and the continuous loss of soil or-
ganic nitrogen (Figs. 4b and A6, 1pctCO2 and historical pe-
riod) suggest that the system is less nitrogen limited. The re-
sulting plant nitrogen availability partially contributes to the
fast plant carbon turnovers in our calibration to the CMCC
models.

Our calibrations to all the ESMs except for MPI-ESM1-2-
LR show consistently inhibited litter decomposition after the
nitrogen effect is applied (εCN(LDc) in the range of 0.55–0.96
for the hist_SSP runs), and such inhibition slightly increases
from SSP1-2.6 to SSP5-8.5. The significantly enhanced lit-
ter decomposition in our calibration to MPI-ESM1-2-LR is
attributed to the high carbon input into its litter pool and the
small temperature sensitivity, which are supported by (1) the
highest NPP and its partition into the litter pool among the
ESMs (Fig. 5a and Table A2, fNPP2L = 0.59), (2) the highest
litter production partition into the litter pool (fLP2Lc = 0.96,
Table A2), and (3) the lowest temperature sensitivity of litter
decomposition (sdT (LDc) = 0.024, Table A2). The strong ni-
trogen limitation on NPP (Fig. 5b), the continuous depletion
of the mineral nitrogen pool (Figs. 4c and A6, 1pctCO2 and
historical period), and the highest biological nitrogen fixation
(Fig. 7a) in our calibration to MPI-ESM1-2-LR indicate that
the plant nitrogen is insufficient. The strong εCN(LDc) along
with the low fLD2Sc (0.07, Table A2) suggests that the system
is trying to mineralize more litter carbon to mediate the plant
nitrogen deficiency and to maintain an ecologically reason-
able carbon : nitrogen stoichiometry.

The soil respiration is found to be restricted in our
calibration to UKESM1-0-LL (εCN(SRc) = 0.61–0.69 dur-
ing the hist_SSP period), while it is significantly enhanced
in other ESMs. The strongest enhancement is found in
the two CMCC models (εCN(SRc) = 1.24–1.50 during the
hist_SSP period), followed by NorESM2-LM (εCN(SRc) =

1.20–1.36 during the hist_SSP period). The calibrations to
these three models show longer soil carbon turnover times
(283–476 years, Table A2) than the other ESMs. The order-
of-magnitude-larger mineral nitrogen pool size in NorESM2-
LM compared to other ESMs (Fig. A8d) and the continu-
ously growing mineral nitrogen and organic nitrogen pool
sizes (Fig. 4c, hist_SSP experiments) support the enhanced
soil organic matter decomposition. It is observed that the
mineral nitrogen pool size exhibits a continuous decrease
during the NorESM2-LM’s 1pctCO2 run, while it first in-
creases and then decreases in its SSP5-8.5 run (Figs. 4d
and A6). Considering that plant uptake and net mineraliza-
tion are the two major fluxes controlling the mineral nitrogen
dynamics, this result suggests a potential threshold associ-
ated with climate or CO2 concentration, limiting the net min-
eralization rate from matching the ongoing increase in plant
uptake (Fig. A6). The high temperature change (Fig. A7)
and its subsequent large temperature effect on respiration
in UKESM1-0-LL could be responsible for the nitrogen-
inhibited soil respiration. The substantial land carbon accu-
mulation in MIROC-ES2L (Fig. 4a) requires less respiration,
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Figure 6. The emulated nitrogen effect on carbon pool turnovers, including (a) litter production (εCN(LPc)), (b) litter decomposi-
tion (εCN(LDc)), and (c) soil respiration (εCN(SRc)), from CMIP6 ESMs across different scenarios.

thus explaining the neglectable nitrogen effect on its soil
respiration. The diverse impacts of nitrogen on soil carbon
turnover align with existing experimental findings, which
have demonstrated contrasting trends in nitrogen additions
across various substrate decompositions (Averill and Waring,
2018; Hobbie, 2008). As a result, studies have suggested that
the classic stoichiometric decomposition theory should be re-
vised (Craine et al., 2007).

5 Limitations and implications

A key limitation of RCMs is their resolution, which arises
from the trade-off between spatial heterogeneity and compu-
tational efficiency. Therefore, it is important to note that the
feedbacks, pool size dynamics, and fluxes discussed in this
paper are aggregated from extensive spatiotemporal datasets
into an annual and global framework. This means the rep-
resentation of the carbon–nitrogen cycle reflects a synthesis

of diverse regional and sub-annual dynamics. Consequently,
the results presented here are at a global scale and may differ
from regional or sub-regional studies, necessitating cautious
interpretation.

5.1 The simulation of mineral nitrogen pool dynamics

Our emulation is less effective in capturing the mineral
nitrogen pool sizes for some ESMs (e.g., NorESM2-LM,
Figs. 3 and A6). However, the large mineral nitrogen pool in
NorESM2-LM (Fig. A8d) and the significant discrepancies
in mineral nitrogen pool size changes among ESMs (Fig. 4c)
and land surface models (Fig. 2) highlight the need for a
deeper understanding of these dynamics in complex models.
This should include enhanced theoretical underpinning and
improved observational constraints (Zaehle and Dalmonech,
2011; Thomas et al., 2015). The heterogeneous terrestrial
nitrogen cycle results in challenges and discrepancies even
compared to the regional observations we do have (Schulte-
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Figure 7. (a) Biological nitrogen fixation (BNF) and (b) its ratio to net primary production (BNF : NPP) from CMIP6 ESMs across different
scenarios.

Uebbing and de Vries, 2018; Ramm et al., 2022; Menge et
al., 2012). The uncertain atmospheric deposition and nitro-
gen fertilizer application further complicate the evaluation of
the mineral nitrogen pool size and its dynamics (Mulvaney et
al., 2009; Reay et al., 2008; Gruber and Galloway, 2008).

The two main controls of the mineral nitrogen pool size,
the nitrogen mineralization (from organic decomposition)
and mineral nitrogen loss, are still poorly understood at the
process level (Manzoni et al., 2008; Hedin et al., 2005). For
instance, the microbial decomposition of organic matter (het-
erotrophic respiration) can be limited, stimulated, or even un-
affected by the nitrogen addition as a result of differences in
soil microbial biomass or activity changes (Bardgett et al.,
1999). The nitrogen effect on decomposition has been found
to be sensitive to the types of substrates, but generally the im-
pact on the decomposition rate is negative or neutral (Hobbie,
2008). The root allocation, plant growth, litter production,
biodiversity, etc., are all influenced by nitrogen (Phoenix et
al., 2006; Wright et al., 2011). However, a 13-year-long ni-
trogen addition study has found that lower nitrogen addition
rates had no effect on litter production or soil respiration in
a Pinus sylvestris forest (Forsmark et al., 2020). This raises
questions about the overall nitrogen effect at the ecosystem
level, particularly considering the uneven geographical dis-
tribution of atmospheric nitrogen deposition (Phoenix et al.,
2006). Alongside climate factors such as warming and pre-
cipitation, as well as other ecological or physical constraints,
the situation becomes even more complicated (Plett et al.,
2020; Lim et al., 2015; Cusack et al., 2010; Reich et al.,

2014; Li et al., 2019). These findings underscore the highly
complex dynamics of mineral nitrogen, suggesting that the
current formulation of mineral nitrogen loss in CNit, charac-
terized by simple first-order decay and a single temperature
response (Eq. 29), is very likely an oversimplification. In-
troducing constraints into the global stoichiometry of nitro-
gen mineralization could potentially enhance the modeling
of mineral nitrogen pool dynamics (Manzoni et al., 2008;
Meyerholt and Zaehle, 2015). Nevertheless, these new de-
velopments in MAGICC are a step towards better represen-
tation of carbon–nitrogen dynamics. The calibration results
also demonstrate that the current CNit formulation mostly
captures the trend of mineral nitrogen pool sizes in the ma-
jority of the studied CMIP6 ESMs and experiments at the
global-mean, annual-mean level (Figs. 3 and A6).

5.2 The biological nitrogen fixation as an input instead
of being simulated

Biological nitrogen fixation (BNF) serves as the primary
non-anthropogenic nitrogen input in the global nitrogen cy-
cle (Vitousek et al., 2002; Gruber and Galloway, 2008;
Fowler et al., 2013). The trend of BNF generally mirrors that
of NPP (Figs. 7a and 5a), but the relative differences between
ESMs are more pronounced (e.g., the largest initial biologi-
cal nitrogen fixation found in MPI-ESM1-2-LR is approxi-
mately 4 times that of the smallest one found in NorESM2-
LM). This similarity in the trend arises because the model
representations of BNF in all the studied ESMs were based,
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at least partly, on its empirical relationship with either NPP
or evapotranspiration derived from the widely recognized
global BNF estimate (Cleveland et al., 1999). Figure 7b il-
lustrates a variety of global patterns of BNF : NPP in the
CMIP6 ESM outputs, showcasing diverse trends such as
decreases (CMCC-CM2-SR5, CMCC-ESM2, and MIROC-
ES2L in the 1pctCO2 experiment), increases (UKESM1-0-
LL in the 1pctCO2 experiment and MIROC-ES2L in SSP
experiments), stability (UKESM1-0-LL in SSP scenarios), or
even a peak followed by a decrease (NorESM2-LM in low-
SSP scenarios and MIROC-ES2L in high-SSP scenarios). It
is noteworthy that the mean BNF : NPP remains relatively
constant at approximately 0.0018 GtN GtC−1 across all ex-
periments.

Recent findings from a meta-analysis of field measure-
ments challenge the notion of a statistically significant rela-
tionship between biological nitrogen fixation and NPP/evap-
otranspiration (Davies-Barnard and Friedlingstein, 2020).
An analysis of model uncertainty in recent studies high-
lighted that variations in the BNF representation could sig-
nificantly impact future climate projections (Wieder et al.,
2015a; Kou-Giesbrecht and Arora, 2022). For instance, em-
ploying different BNF representations within a shared frame-
work has resulted in modeled BNF responses to elevated
(200 ppm higher) CO2 ranging from −4× 10−3 to 56×
10−3 GtN yr−1 (Meyerholt et al., 2016). This variation has
led to a global land carbon storage range of 281 to 353 GtC
(over ∼ 150 years of simulation), with N2O emissions fluc-
tuating from −1.6× 10−3 to 0.5× 10−3 GtN yr−1 (Meyer-
holt et al., 2016). A recent study assessing BNF structural
uncertainty in CMIP6 ESMs has revealed that the response
of BNF and other nitrogen cycle variables could differ, even
among models with similar structures (Davies-Barnard et al.,
2022). Conflicting empirical relationships and updated ob-
servations underscore the considerable uncertainty in BNF
estimation and potential need for revisions to BNF formula-
tions. While we could develop parameterizations to emulate
the BNF formulations used in ESMs, the BNF flux repre-
sents a relatively minor flux with questionable data quality
and highly uncertain formulations and/or mechanisms (e.g.,
CABLE prescribes constant BNF). Therefore, we opt not to
pursue it further here. Instead, CNit directly prescribes BNF
from CMIP6 ESM outputs to circumvent further structural
uncertainty stemming from simplified parameterization.

5.3 The disentangled climate feedback and nitrogen
effect from emulation

One advantage of RCMs is that their simplified formulations
attempt to capture the overall effects of complex processes
in ESMs, aiding the identification and quantification of key
effects in the system. Based on the assumptions and defi-
nitions in this updated carbon–nitrogen cycle, we can sepa-
rate the temperature feedback and carbon–nitrogen coupling
feedback for different pool turnovers (Eq. 29). However, a

significant challenge in this separation arises from the ex-
ponential formulation of both feedbacks and the increasing
trends of all the feedback proxies (temperature change (dT ),
nitrogen plant uptake (PU), and nitrogen atmospheric de-
position (AD), Figs. A4 and A6). This setup suggests that
these feedbacks (or the related sensitivity parameters) may
change in opposite directions to compensate each other while
still producing a similar overall feedback. The formulations
(Eq. 29) suggest that the turnover time and the overall feed-
back can also offset each other to reach a similar turnover
flux.

To examine the correlation of parameter values and
feedback separation, we applied Markov chain Monte
Carlo (MCMC) sampling to the sensitivity parameters and
turnover times for each of the individual ESMs (60 walk-
ers× 1000 iterations= 60 000 runs, starting from the best-
estimate parameter values). The results show that there is a
weak-to-moderate negative correlation between temperature
sensitivity and plant uptake sensitivity for most of the ESMs
(the absolute value of Spearman’s r = 0.04–0.72 for most
cases, highlighted in yellow in Fig. A9). The strongest corre-
lations are found in NorESM2-LM (Spearman’s r =−0.53,
−0.72, and −0.46 for the litter production, litter decompo-
sition, and soil respiration, respectively). The weakest corre-
lations are found in MIROC-ES2L (Spearman’s r =−0.04,
−0.34, and 0.04 for the litter production, litter decompo-
sition, and soil respiration, respectively). The temperature
sensitivity and atmospheric deposition sensitivity show rel-
atively weak correlations (the absolute value of Spearman’s
r < 0.3 for most cases, Fig. A9).

The weak-to-moderate correlations between temperature
sensitivity and plant uptake sensitivity are mainly due to the
feedback proxies, dT and PU, which, though both exhibit-
ing the same increasing trend, do not strictly change with the
same gradients (e.g., the temperature change fluctuates near
zero, while plant uptake shows a clear increasing trend from
1850–1975 in the historical simulations, Figs. A4 and A6).
Increasing one type of sensitivity while decreasing another,
though it could lead to similar overall feedback at the early
stage when temperature change and plant uptake are less per-
turbed, cannot guarantee similar overall feedback throughout
the entire time series (e.g., the difference in overall feed-
back from different sensitivities is amplified as the temper-
ature change gets higher and plant uptake becomes larger).
In other words, the parameter values cannot simply all vary
in the opposite direction to compensate for the feedback.
Instead, to reach the desirable turnover flux to satisfy the
pool size dynamics, the parameter values need to be adjusted
(and not necessarily offset each other) to obtain the respec-
tive “correct” or best-estimate feedback. Such results suggest
that separating the carbon–nitrogen coupling feedback from
the temperature feedback (the assumption for Eq. 29) is a
reasonable assumption, although this should be investigated
further in future work and is achieved most readily in simula-
tions that specifically target this separation, for example the
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nitrogen-on and nitrogen-off experiments performed by the
land surface models we used here.

The turnover times and plant uptake sensitivities exhibit
strong positive correlations in all the ESMs (displayed in
bold in Fig. A9), indicating that plant uptake sensitivity is
the predominant factor influencing the overall feedback to
compensate for turnover time changes. This is supported by
the dominance of carbon–nitrogen coupling feedback in both
the magnitudes and the trends of the overall feedback (Figs. 6
and A10), further emphasizing the substantial disparity be-
tween temperature feedback and carbon–nitrogen coupling
feedback and the imperative of distinguishing between the
two.

One limitation of disentangling the carbon–nitrogen cou-
pling feedback from the climate feedback is that the feed-
back strength is primarily derived from emulation. Although
several factors support this distinction, (1) the evidence pre-
sented in Figs. A9 and A10 underscores the clear differen-
tiation between climate feedback and carbon–nitrogen cou-
pling feedback, (2) the dynamics of the pool size offer in-
direct yet compelling constraints (referred to as “emergent”
constraints) for the feedback, and (3) the selection of feed-
back formulations (exponential rather than linear relation-
ships) and proxies (with varying magnitudes) further restricts
the parameters from offsetting each other. However, the ab-
sence of nitrogen-off simulations from the CMIP6 ESMs
presents challenges for direct verification. Given the com-
putational expense of running all scenarios in nitrogen-off
mode, it is recommended that ESMs perform nitrogen-off
simulations for select idealized scenarios (e.g., 1pctCO2 or
flat10 – constant emissions of CO2 of 10 GtC yr−1; Sander-
son et al., 2024) for diagnostic purposes.

6 Conclusion and future work

In this work, we have detailed CNit v1.0, a new coupled
carbon–nitrogen model for MAGICC, which enhances the
model’s capability to represent terrestrial biogeochemical
processes and feedbacks. Based on the offline calibration re-
sults from land surface models and multiple CMIP6 ESMs,
we have demonstrated that CNit v1.0 is able to effectively
emulate the behavior of the carbon–nitrogen cycles from var-
ious more complex models, encompassing a broad spectrum
of carbon–nitrogen states and dynamics.

The temperature change and carbon–nitrogen state/dy-
namics (especially those related to the nitrogen cycle
and mineral nitrogen) exhibit significant variability among
CMIP6 ESMs, particularly in their 1pctCO2 and high-SSP
scenario runs, which highlights the model structure uncer-
tainty. The contrasting trends in mineral nitrogen dynamics
and the order-of-magnitude differences in pool sizes under-
score the limited agreement in mineral nitrogen modeling. A
thorough analysis, focusing on the new uncertainties intro-
duced by the nitrogen cycle, is imperative for the CMIP6 and

future ESMs. The upcoming (in future research) sensitivity
analysis, perturbation parameter analysis, and feedback anal-
ysis of the updated MAGICC model are expected to provide
insights for uncertainty attribution.

The CNit emulation indicates a general nitrogen limita-
tion on NPP, which follows a similar trend across the stud-
ied CMIP6 ESMs. Combining the results from NPP and
turnovers suggests that, at the multi-model mean level, the
carbon–nitrogen coupling limits both NPP and plant and lit-
ter carbon pool turnovers, though the weaker NPP nitrogen
limitation could also lead to significantly enhanced litter pro-
duction. Soil respiration is instead enhanced in most of the
ESMs. The combination indicates that terrestrial ecosystems
may become net carbon sources sooner than we would ex-
pect based on models that do not consider the impact of the
nitrogen cycle.

The presented carbon–nitrogen coupling in MAGICC
demonstrates the ability to emulate many complex models
while nonetheless having limitations, particularly in simulat-
ing mineral nitrogen pool dynamics and biological nitrogen
fixation. There are currently significant inconsistencies be-
tween ESM outputs and observations of the mineral nitrogen
pool size and biological nitrogen fixation, in terms of both
magnitudes and trends, suggesting that substantial revisions
are possible in the near future. Therefore, the current formu-
lation and treatment of these aspects in MAGICC may have
to be updated too while aiming to continue to strike a balance
between model simplicity, process representation, and emu-
lation performance, reflecting a fundamental design principle
for RCMs and MAGICC in particular. Future work on MAG-
ICC’s carbon–nitrogen cycle will focus on the calibration of
the full MAGICC structure to CMIP6 ESMs (and/or obser-
vational data), evaluation of model performance with respect
to computational efficiency and mechanistic insight, incor-
poration of additional constraints, uncertainty quantification,
sensitivity analysis, application of probabilistic projections,
and continued model development (e.g., land use emission
implementation and nitrogen process representation) to align
with advances in complex models and emerging theoretical
frameworks.
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Appendix A

Table A1. Full list of calibrated CNit parameters: long name and range.

Parameter Long name Range for the calibration

NPP0 Initial net primary production (NPP), base NPP without any effect 40–60 GtC yr−1

CO2ref Reference CO2 concentration, typically the CO2 at pre-industrial level Fixed as initial-year CO2
CO2b CO2 concentration when NPP= 0 in the rectangular hyperbolic formulation of CO2 fertilization Fixed as 31 ppm
s

log
CO2

CO2 sensitivity of NPP in the logarithmic formulation 0–3 (dimensionless)

s
sig
CO2

CO2 sensitivity of NPP in the sigmoidal formulation 250–350 ppm
mCO2 Method factor for NPP CO2 fertilization calculation 0–2 (dimensionless)
s

exp
dT (NPP) Temperature sensitivity of NPP in the exponential formulation −0.3 to 0.3 K−1

s
sig
dT (NPP) Temperature sensitivity of NPP in the sigmoidal formulation −1.5 to 1.5 K−1

mdT Method factor for NPP temperature response calculation 0–1 (dimensionless)
ϕ Fraction of regrowth from deforestation 0–1 (dimensionless)
τrgr Time for deforestation regrowth 50–150 years
PUmax Maximum nitrogen plant uptake (PU) 0–3 GtN yr−1

NPPref Reference NPP for PU 0–120 GtC yr−1

sdT (PU) Temperature sensitivity of PU −0.3 to 0.3 K−1

εCN(NPP)0 Base carbon–nitrogen coupling effect on NPP 0–3 (dimensionless)
f1 Fitting parameter representing the nitrogen deficiency from net mineralization alone −3 to 0 (dimensionless)
f2 Fitting parameter representing the nitrogen supply from atmospheric deposition 0–3 (dimensionless)
LPR0 Initial litter production respiration (LPR), base LPR without any effect 0–10 GtC yr−1

sdT (LPR) Temperature sensitivity of LPR −0.3 to 0.3 K−1

fNPP2P Fraction of NPP allocated to plant carbon pool within 1 year 0–1 (dimensionless)
fNPP2L Fraction of NPP allocated to litter carbon pool within 1 year 0–1 (dimensionless)
fLP2Lc Fraction of litter carbon production allocated to litter carbon pool within 1 year 0–1 (dimensionless)
fLD2Sc Fraction of litter carbon decomposition allocated to soil carbon pool within 1 year 0–1 (dimensionless)
fLU2Pc Fraction of land use carbon loss from plant carbon pool within 1 year 0–1 (dimensionless)
fLU2Lc Fraction of land use carbon loss from litter carbon pool within 1 year 0–1 (dimensionless)
τCP Turnover time of plant carbon pool 0–800 years
τCL Turnover time of litter carbon pool 0–800 years
τCS Turnover time of soil carbon pool 0–800 years
sdT (LPc) Temperature sensitivity of litter carbon production −0.3 to 0.3 K−1

sdT (LDc) Temperature sensitivity of litter carbon decomposition −0.3 to 0.3 K−1

sdT (SRc) Temperature sensitivity of soil carbon decomposition −0.3 to 0.3 K−1

sPU(LPc) Nitrogen plant uptake sensitivity of litter carbon production −10 to 10 yr GtN−1

sPU(LDc) Nitrogen plant uptake sensitivity of litter carbon decomposition −10 to 10 yr GtN−1

sPU(SRc) Nitrogen plant uptake sensitivity of soil carbon respiration −10 to 10 yr GtN−1

sAD(LPc) Nitrogen atmospheric deposition sensitivity of litter carbon production −10 to 10 yr GtN−1

sAD(LDc) Nitrogen atmospheric deposition sensitivity of litter carbon decomposition −10 to 10 yr GtN−1

sAD(SRc) Nitrogen atmospheric deposition sensitivity of soil carbon respiration −10 to 10 yr GtN−1

fBNF2P Fraction of biological nitrogen fixation (BNF) allocated to plant nitrogen pool within 1 year 0–1 (dimensionless)
fBNF2L Fraction of BNF allocated to litter nitrogen pool within 1 year 0–1 (dimensionless)
fPU2P Fraction of PU allocated to plant nitrogen pool within 1 year 0–1 (dimensionless)
fPU2L Fraction of PU allocated to litter nitrogen pool within 1 year 0–1 (dimensionless)
fLP2Ln Fraction of litter nitrogen production allocated to litter carbon pool within 1 year 0–1 (dimensionless)
fLD2Sn Fraction of litter nitrogen decomposition allocated to soil carbon pool within 1 year 0–1 (dimensionless)
fLU2Pn Fraction of land use carbon loss from plant nitrogen pool within 1 year 0–1 (dimensionless)
fLU2Ln Fraction of land use carbon loss from litter nitrogen pool within 1 year 0–1 (dimensionless)
τNP Turnover time of plant nitrogen pool 0–800 years
τNL Turnover time of litter nitrogen pool 0–800 years
τNS Turnover time of soil nitrogen pool 0–800 years
τNM Turnover time of mineral nitrogen pool 0–100 years
sdT (LPn) Temperature sensitivity of litter nitrogen production −0.3 to 0.3 K−1

sdT (LDn) Temperature sensitivity of litter nitrogen decomposition −0.3 to 0.3 K−1
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Table A1. Continued.

Parameter Long name Range for the calibration

sdT (SRn) Temperature sensitivity of soil nitrogen decomposition −0.3 to 0.3 K−1

sdT (LSn) Temperature sensitivity of mineral nitrogen loss −0.3 to 0.3 K−1

sPU(LPn) Nitrogen plant uptake sensitivity of litter nitrogen production −10 to 10 yr GtN−1

sPU(LDn) Nitrogen plant uptake sensitivity of litter nitrogen decomposition −10 to 10 yr GtN−1

sPU(SRn) Nitrogen plant uptake sensitivity of soil nitrogen respiration −10 to 10 yr GtN−1

sAD(LPn) Nitrogen atmospheric deposition sensitivity of litter nitrogen production −10 to 10 yr GtN−1

sAD(LDn) Nitrogen atmospheric deposition sensitivity of litter nitrogen decomposition −10 to 10 yr GtN−1

sAD(SRn) Nitrogen atmospheric deposition sensitivity of soil nitrogen respiration −10 to 10 yr GtN−1

Figure A1. Illustration of the functionality of the method factor for CO2 fertilization (mCO2 ) and temperature feedback (mdT ). AnmCO2 of 0,
1, and 2 represents the logarithmic, rectangular, and sigmoidal CO2 fertilization formulations, respectively (Eq. 17). Similarly, an mdT of 0
and 1 corresponds to the exponential and sigmoidal temperature response formulations, respectively (Eq. 20). Intermediate values represent
a linear combination of the two formulations.

Figure A2. Relationship between nitrogen plant uptake and net mineralization as simulated by CABLE and OCN.
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Figure A3. Global average surface temperature change over land (dTLAND, delta annual mean tas over land) and CO2 concentrations from
land surface models across different scenarios.

Figure A4. Global average surface temperature change over land (dTLAND, delta annual mean tas over land) and CO2 concentrations from
CMIP6 ESMs across different scenarios.
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Table A2. Full list of calibrated CNit parameters: values.

Parameter CMCC-CM2-SR5 CMCC-ESM2 MPI-ESM1-2-LR NorESM2-LM UKESM1-0-LL MIROC-ES2L CABLE OCN

NPP0 41.92 41.88 68.93 36.23 69.95 62.06 57.38 53.98
CO2ref 284.317 284.317 284.317 284.317 284.317 284.317 296.474 285.24
CO2b 31 31 31 31 31 31 31 31
s

log
CO2

0.000 0.788 1.451 0.948 0.113 0.004 2.582 0.594

s
sig
CO2

335.90 297.10 337.71 263.82 250.77 269.25 315.82 289.88
mCO2 1.82 2.00 0.53 0.01 0.99 2.00 0.00 1.00
s

exp
dT (NPP) −0.293 0.108 −0.300 −0.121 −0.223 −0.016 −0.143 −0.156

s
sig
dT (NPP) 0.245 0.143 1.192 0.314 0.249 0.278 −0.147 0.512
mdT 0.82 0.99 0.30 0.56 0.84 0.93 0.83 0.38
ϕ 0.99 1.00 0.97 1.00 1.00 1.00 1.00 0.94
τrgr 96.00 73.02 149.00 149.18 50.05 93.51 52.72 107.39
PUmax 2.57 3.00 2.06 2.30 2.67 2.42 1.89 2.17
NPPref 49.45 55.91 48.21 41.78 118.97 107.90 54.17 40.79
sdT (PU) −0.003 −0.013 0.011 0.015 −0.048 −0.019 0.014 0.008
εCN(NPP)0 0.96 1.03 1.23 1.41 1.23 1.07 1.58 1.19
f1 2.31 2.26 0.00 1.25 1.69 2.54 0.64 0.26
f2 −0.09 −0.19 −0.33 −0.46 −0.84 −0.47 −0.80 −0.17
LPR0 8.58 6.20 9.90 6.56 4.16 0.96 7.81 9.00
sdT (LPR) −0.25 −0.22 −0.12 0.16 −0.19 0.30 −0.10 0.06
fNPP2P 0.62 0.38 0.36 0.63 0.49 0.66 0.95 0.54
fNPP2L 0.20 0.36 0.59 0.35 – 0.20 0.03 0.41
fLP2Lc 0.94 0.92 0.96 0.72 – 0.49 0.89 0.99
fLD2Sc 0.01 0.11 0.07 0.07 – 0.97 0.02 0.00
fLU2Pc 0.88 0.88 0.88 0.92 0.94 0.56 0.53 0.11
fLU2Lc 0.00 0.04 0.10 0.05 – 0.30 0.09 0.84
τCP 31.26 66.11 24.42 22.56 14.96 16.14 15.46 22.89
τCL 1.30 1.35 7.40 1.15 99.99 7.72 4.09 6.98
τCS 452.96 283.42 117.35 476.71 20.99 22.01 125.82 290.81
sdT (LPc) 0.040 0.056 0.054 −0.124 0.040 −0.051 0.001 −0.061
sdT (LDc) 0.073 0.063 0.024 −0.028 – 0.032 0.045 −0.007
sdT (SRc) 0.043 0.045 0.046 −0.042 0.064 0.027 0.066 0.046
sPU(LPc) −0.032 −0.078 −0.517 −0.562 −1.778 0.142 0.079 0.060
sPU(LDc) −0.740 −0.759 0.222 −0.142 – −1.009 −0.008 0.104
sPU(SRc) 0.309 0.288 0.098 0.299 −1.363 −0.113 −0.058 0.009
sAD(LPc) 5.716 6.354 3.095 3.929 6.884 3.015 0.304 −0.826
sAD(LDc) 3.925 3.738 1.453 1.235 – 4.438 0.417 −0.420
sAD(SRc) 0.833 1.158 −0.190 −1.236 3.092 2.355 0.043 0.026
fBNF2P 0.00 0.05 0.32 0.13 0.13 0.15 0.73 0.23
fBNF2L 0.01 0.17 0.48 0.02 – 0.21 0.04 0.25
fPU2P 0.23 0.14 0.04 0.41 0.04 0.98 0.17 0.13
fPU2L 0.74 0.34 0.82 0.06 – 0.01 0.72 0.00
fLP2Ln 0.66 0.16 0.40 0.03 – 0.17 0.04 0.19
fLD2Sn 0.77 0.46 0.01 0.78 – 0.88 0.37 0.89
fLU2Pn 0.61 0.12 0.31 0.24 0.13 0.10 0.51 0.16
fLU2Ln 0.33 0.13 0.30 0.41 – 0.28 0.39 0.25
τNP 14.12 30.66 28.03 36.84 46.98 15.74 12.81 33.79
τNL 0.61 2.20 6.81 10.85 1.02 670.15 3.03 14.23
τNS 690.09 728.42 318.18 601.92 222.76 247.10 108.00 180.87
τNM 6.49 6.73 11.46 58.17 0.92 1.37 1.99 0.44
sdT (LPn) 0.011 −0.015 −0.051 −0.062 −0.010 −0.018 0.027 −0.031
sdT (LDn) 0.065 0.038 0.000 0.014 0.002 0.005 0.021 0.037
sdT (SRn) 0.014 0.011 0.010 0.005 0.049 0.028 0.056 0.007
sdT (LSn) 0.056 0.051 −0.005 0.299 0.012 0.042 −0.007 0.088
sPU(LPn) −0.306 0.134 −0.724 0.600 −2.519 1.159 −0.896 0.583
sPU(LDn) −1.029 −0.449 0.498 0.148 0.000 1.909 0.473 −0.661
sPU(SRn) 0.810 0.892 0.161 0.977 −1.047 1.041 −0.073 0.685
sAD(LPn) 2.282 0.791 4.425 2.845 6.632 1.790 0.188 −2.124
sAD(LDn) 2.504 1.205 0.955 0.224 0.001 −0.064 −0.052 −1.172
sAD(SRn) −0.510 −0.777 −0.745 −0.844 2.294 1.851 −0.975 −0.401

Note that the missing values (indicated by “–”) for UKESM1-0-LL are due to the model’s lack of a litter pool. As a result, there are no turnover times, feedback-related parameters, or fractionation
values associated with the litter pool.
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Figure A5. Comparison of net primary production (NPP), plant carbon pool size (CP), litter carbon pool size (CL), soil carbon pool size (CS),
land carbon pool size (CLAND), net land carbon flux (fCNetLAND), nitrogen plant uptake (PU), plant nitrogen pool size (NP), litter nitrogen
pool size (NL), soil nitrogen pool size (NS), mineral nitrogen pool size (NM), land organic nitrogen pool size (NLANDo, sum of nitrogen
in plant, litter, and soil pools), and net land nitrogen flux (fNNetLAND) between CABLE or OCN outputs (blue lines) and CNit emulations
(orange lines). The experiments labeled C, CN, and CNd denote the carbon-only, carbon–nitrogen coupled with constant nitrogen atmospheric
deposition, and carbon–nitrogen coupled with dynamic nitrogen atmospheric deposition configurations, respectively, in the land surface
models.
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A1 The diversity of temperature outputs from CMIP6
ESMs

Temperature change, a pivotal driving force for the carbon–
nitrogen cycle, exhibits significant variation between the two
land surface models (Fig. A3) and among the simulations of
CMIP6 ESMs (Fig. A4), even when they undergo the same
experiment. For the sake of comparison, Fig. A7 and the sub-
sequent discussions focus on the common experimental pe-
riods for scenarios (e.g., 1850–2100 for the hist_SSP experi-
ments).

UKESM1-0-LL shows the highest temperature change
among all models and experiments, whereas NorESM2-LM
exhibits the lowest temperature change. Both the idealized
1pctCO2 – one of the base experiments in the Diagnostic,
Evaluation and Characterization of Klima (DECK) experi-
ments – and the historical simulation are in the core set of
experiments performed under CMIP5, CMIP6, and previous
CMIP phases (Eyring et al., 2016; Taylor et al., 2012). As
CMIP6 and C4MIP necessitate consistent forcings and ex-
perimental protocols for simulations conducted by partici-
pating ESMs (Eyring et al., 2016; Jones et al., 2016), the
wide spread of the land surface temperature change values
– especially from the 1pctCO2 experiment where land use
change is not included (with a standard deviation of 1.3 °C
and absolute difference of 3.9 °C at the end of the simula-
tion) – highlights the various parameterizations of physical
processes in ESMs resulting in large differences in the ESMs
climate sensitivities (Rugenstein et al., 2020; Meehl et al.,
2020), for example, the structural uncertainty (Deser et al.,
2020; Duan et al., 2021). The previous MAGICC simulation
with constraints from historical CO2 measurements and tem-
perature observations is found to reduce uncertainty in the
temperature projections (Bodman et al., 2013).

Recent studies interpreting surface air temperature outputs
from multiple CMIP6 ESMs indicate that the multi-model
mean effectively captures the historical temperature trend
in observations (Fan et al., 2020; Papalexiou et al., 2020).
Results from a study using outputs from 29 CMIP6 ESMs
show that the post-1988 warming is overestimated in 90 %
of the simulations and the observed long-term persistence of
global mean temperature (for the period of 1880–2014) is
not accurately captured in most of the ESMs (Papalexiou et
al., 2020), suggesting further model selections based on the
case-specific intended uses. However, previous evaluation of
the long-term persistence of temperature on continental areas
(60° S–60° N) during 1930–2004 in CMIP5 ESMs demon-
strated that most models captured the long-term persistence
reasonably well (Kumar et al., 2013). Moreover, grouping
CMIP6 ESMs and re-analyzing the global mean temperature
based on the grouped models can also lead to different con-
clusions on the warming trend (Scafetta, 2023). These results
indicate that more careful interpretation of the simulated tem-
perature is needed. They also justify using each ESM’s global
mean land temperature as input in this study instead of the

global mean temperature (to avoid differences in calibration
based on inconsistency with the target model’s temperature
rather than any issue with the reduced-complexity model).

A2 The diversity of the carbon–nitrogen cycle in
CMIP6 ESMs

Based on the varied temperature results, it is not surpris-
ing that the carbon–nitrogen cycle fluxes and pools from the
CMIP6 ESMs are diverse (Fig. A8). The initial land carbon
pool ranges from 1396 GtC (MPI-ESM1-2-LR) to notably
higher values of 3300 GtC (CMCC-CM2-SR5 and CMCC-
ESM2). The initial nitrogen pool sizes are even more in-
consistent among ESMs. The largest initial organic nitrogen
pool is 265 GtN from the two CMCC models, which is more
than 4 times the size of the smallest one from MPI-ESM1-2-
LR (61 GtN). These results have led to a wide range of ini-
tial organic carbon : nitrogen ratios from 12 (the two CMCC
models) to 23 (MPI-ESM1-2-LR) (Fig. A8c). The trends
for the carbon pool size and carbon : nitrogen ratio exhibit
a similar pattern. They display a consistent increase in the
1pctCO2 scenario, while in the hist_SSP simulations, they
initially decrease (1850–1970) and then rise again (1970–
2100). The mineral nitrogen pool, on the contrary, shows
significant variations in both pool sizes and trends across
CMIP6 ESMs (Fig. A8d). The initial pool sizes range from
< 0.2 GtN (UKESM1-0-LL and MIROC-ES2L) to 5.6 GtN
(NorESM2-LM). The trends are found to be either opposite
or unrelated.

The substantial variation in simulated carbon pools is
a long-standing issue for both CMIP5 and CMIP6 ESMs
(Anav et al., 2013; Varney et al., 2022). The initial-condition
differences are responsible for the models’ internal variabil-
ity (Deser et al., 2020; Kumar and Ganguly, 2018), which
accounts for more than half of the inter-model spread in near-
term climate projections (Deser et al., 2012). Such differ-
ences also contribute to their respective carbon cycle pro-
jections. The different initial carbon–nitrogen cycle state
among different ESMs further complicates their compari-
son (Spafford and MacDougall, 2021). The standard devi-
ation of initial land carbon pool sizes is different for the
1pctCO2 (699 GtC) and historical (720 GtC) scenarios. Four
of the studied ESMs have used nearly the same starting land
carbon pool size for both scenarios (difference< 1.5 GtC),
while UKESM1-0-LL and NorESM2-LM have a large dif-
ference of 9 and 184 GtC (out of a total of roughly 2300 GtC
in UKESM1-0-LL and 3000 GtC in NorESM2-LM), respec-
tively. The varying initial pool sizes can pose significant chal-
lenges for emulators employing first-order decay for pool
turnovers as the turnover time predominantly influences the
magnitude of the “base” turnover flux (e.g., without any feed-
back scalers). Since MAGICC emulation has used the same
set of parameters (including the turnover times) to emulate
all the experiments, it explains the jump in the emulated soil
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Figure A6. Comparison of net primary production (NPP), plant carbon pool size (CP), litter carbon pool size (CL), soil carbon pool size (CS),
land carbon pool size (CLAND), net land carbon flux (fCNetLAND), nitrogen plant uptake (PU), plant nitrogen pool size (NP), litter nitrogen
pool size (NL), soil nitrogen pool size (NS), mineral nitrogen pool size (NM), land organic nitrogen pool size (NLANDo, sum of nitrogen in
plant, litter, and soil pools), and net land nitrogen flux (fNNetLAND) between CMIP6 ESM outputs (blue lines) and CNit emulations (orange
lines).
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Figure A7. Global average surface temperature change over land (dTLAND, delta annual mean tas over land) from CMIP6 ESMs across
different scenarios (over the common experimental period).

Figure A8. Diversity of land carbon pool size (CLAND), land organic nitrogen pool size (NLANDo, sum of nitrogen in plant, litter, and soil
pools), carbon : nitrogen ratio (CN ratio), and mineral nitrogen pool size (NM) from CMIP6 ESM outputs.
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carbon pool sizes in the 1pctCO2 experiment for these two
models (Fig. A6).

Figure A9. Correlation of turnover times and feedback-related parameters from the CMIP6 ESMs. The numbers indicate Spearman’s cor-
relation coefficients (r) between pairs of parameters, with ∗ denoting p values< 0.001. Correlations between temperature sensitivities and
plant nitrogen uptake sensitivities are highlighted in yellow, while correlations between turnover times and plant nitrogen uptake sensitivities
are shown in bold. Missing values for UKESM1-0-LL are due to the absence of a litter pool in this model, resulting in no turnover time or
feedback-related parameters for the litter pool.
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Figure A10. The emulated overall and temperature effect on carbon pool turnovers, including litter production (εdT&CN(LPc) and εdT (LPc),
litter decomposition (εdT&CN(LDc) and εdT (LDc)), and soil respiration (εdT&CN(SRc) and εdT (SRc)) from CMIP6 ESMs across different
scenarios.
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Code and data availability. The CNit model code is available at
https://doi.org/10.5281/zenodo.12204421 (Tang et al., 2024). The
Python code provided is intended primarily to facilitate the review
of its functionality. Comprehensive documentation for the code will
be made available in the future, either as part of a standalone Python
package or integrated with the MAGICC Fortran code (available
at https://gitlab.com/magicc/magicc, MAGICC Development Team,
2025). The calibration data are accessible either from the original
publications (for CABLE, Fleischer et al., 2019, and for OCN, Mey-
erholt et al., 2020) or through the Earth System Grid Federation
(ESGF, for CMIP6 ESMs), with details provided in Sect. 3.2, “Data
acquisition and processing”.
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