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Abstract. Advances in Earth observation capabilities mean
that there is now a multitude of spatially resolved data sets
available that can support the quantification of water and car-
bon pools and fluxes at the land surface. However, such quan-
tification ideally requires efficient synergistic exploitation of
those data, which in turn requires carbon and water land-
surface models with the capability to simultaneously assim-
ilate several such data streams. The present article discusses
the requirements for such a model and presents one such
model based on the combination of the existing Data As-
similation Linked Ecosystem Carbon (DALEC) land vegeta-
tion carbon cycle model with the Biosphere Energy-Transfer

HYdrology (BETHY) land-surface and terrestrial vegetation
scheme. The resulting D&B model, made available as a com-
munity model, is presented together with a comprehensive
evaluation for two selected study sites of widely varying cli-
mate. We then demonstrate the concept of land-surface mod-
elling aided by data streams that are available from satellite
remote sensing. Here we present D&B with four observation
operators that translate model-derived variables into mea-
surements available from such data streams, namely frac-
tion of photosynthetically active radiation (FAPAR), solar-
induced chlorophyll fluorescence (SIF), vegetation optical
depth (VOD) at microwave frequencies and near-surface soil
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moisture (also available from microwave measurements). As
a first step, we evaluate the combined model system using lo-
cal observations and finally discuss the potential of the sys-
tem presented for multi-stream data assimilation in the con-
text of Earth observation systems.

1 Introduction

Monitoring the status of land-surface carbon pools has
gained significant attention following various climate-related
pledges to balance carbon sources and sinks (Heiskanen
et al., 2022). Indeed, even though anthropogenic carbon
fluxes are responsible for creating a large imbalance of the
global carbon cycle that has led to sustained and accelerating
greenhouse-gas forcing, the largest CO2 fluxes globally are
related to plant photosynthesis, plant respiration and the de-
cay of dead plant matter (Friedlingstein et al., 2022). These
carbon fluxes are determined by climatic factors, the pres-
ence and amount of photosynthesising vegetation, and soil
water availability, with the latter due to the intrinsic water
limitation of biological processes (Gerten et al., 2005).

A reliable characterisation of both carbon and water
fluxes and pools at a range of spatial scales is therefore of
paramount importance, as we currently lack a robust, spa-
tially and temporally explicit knowledge of the sources and
sinks of CO2 within the terrestrial biosphere or of the drivers
of those variations. Current climate predictions and climate
policy scenarios crucially depend on assumptions about the
future fate of the terrestrial carbon pools and their interaction
with future climate variations, but how variations in carbon
fluxes interact with various forcing factors (such as climate,
land use and CO2 fertilisation) is still only partially under-
stood (Arora et al., 2020). This makes policies that rely on
future climate scenarios intrinsically unreliable.

The lack of knowledge exists despite the availability of
products of net or gross carbon uptake by terrestrial vege-
tation, such as those from MODIS, with daily and down to
250 m resolution (Zhao et al., 2005), or from the Coperni-
cus Global Land Service, with a 300 m spatial resolution and
10 d temporal resolution (Swinnen et al., 2019). One issue
is that those products are not direct observations of carbon
fluxes but rather a combination of remotely sensed informa-
tion and a set of assumptions. They thus do not necessarily
agree with each other or with the results of ecosystem mod-
els (Turner et al., 2006; Sun et al., 2021). Another issue is
that these only refer to CO2 sinks, while we lack spatially
distributed data sets of terrestrial biosphere CO2 sources.

However, in order to identify the drivers of terrestrial car-
bon sources and sinks, such as vegetation state, soil carbon
content of different qualities, temperature, soil moisture, at-
mospheric humidity or light availability, we need models that
are both internally consistent – i.e. can be run without re-
motely sensed input – and at the same time thoroughly evalu-

ated against reliable observations. Those observations should
be as independent of specific model assumptions as possible
so that it is possible to clearly distinguish between model
predictions by themselves (when we run without using those
observations) and predictions resulting from the combination
of observations and model assumptions.

Furthermore, if we also want to identify existing carbon
sources and sinks and attribute those to certain drivers and
processes, we also need to be able to run and evaluate those
models at the spatial and temporal resolutions of interest.
Running models at high spatial and temporal resolution is
not an issue in principle. The problem lies in finding suitable
observations at high temporal and spatial resolution for ter-
restrial ecosystem model evaluation and in finding out which
model formulations, initial conditions and parameterisations
can reproduce those observations.

Earth observation technology offers a powerful tool for ob-
serving the land vegetation and soil water status in multiple
complementary ways across time and space. However, there
remain serious challenges for their exploitation, in particular
a lack of a direct link between the variable of interest and
remotely sensed information. In other words, remote sensing
regularly provides only an indirect measure (Disney et al.,
2016; Gao et al., 2021) – with widely varying accuracy – of
some underlying processes, such as photosynthetic activity,
rather than a quantification of carbon pools and fluxes. Or if
carbon fluxes or pools are estimated, those estimates heav-
ily rely on models and auxiliary inputs (Running and Zhao,
2015) or have so far been validated only locally (Liu et al.,
2022).

Data assimilation is a valuable method for automatically
finding the optimal combination of model initial values, pa-
rameters and even input quantities given the observations
assimilated, in a way that is pertinent to certain assump-
tions about prior values and uncertainties of models and data
within a Bayesian framework (Tarantola, 2005). While not
providing a ready-made answer (it always needs to be as-
sured that the thus optimised model simulations make sense),
data assimilation can be used to find the most reliable model
and data-based estimates of quantities of interest, e.g. carbon
fluxes, and can serve as a tool for evaluating assumptions
about the inherent processes driving changes in those fluxes.
What we want to avoid, however, is to assimilate data streams
that themselves rely substantially on model assumptions,
such as the global gross primary production (GPP) products
mentioned above, because this would make the results de-
pend on model assumptions outside of the core model used
for assimilation. Thus, we expect significant added value
if Earth observation data are used within a data assimila-
tion framework, allowing the synergistic use of multiple data
streams (Berger et al., 2012; Ciais et al., 2014; Scholze et al.,
2017). This is particularly relevant given that remote sensing
offers unparalleled data coverage at high temporal frequency
over large spatial scales, ranging from regional to global.
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In this study, we present a process-based modelling sys-
tem that is suitable for the assimilation of a wide range of
such data streams, enabling a synergistic multi-data-stream
land-surface carbon monitoring and prediction system. So
far, there have been a number of relevant studies, mostly us-
ing single data streams. For example, the Biosphere Energy-
Transfer HYdrology scheme (BETHY; Knorr, 2000) has a
long record of data assimilation studies using land-surface
temperature (Knorr and Lakshmi, 2001), atmospheric CO2
(Rayner et al., 2005), fraction of photosynthetically ac-
tive radiation (FAPAR; Knorr et al., 2010; Kaminski et al.,
2012), eddy flux measurements (Knorr and Kattge, 2005;
Kato et al., 2013), solar-induced fluorescence (SIF; Norton
et al., 2018, 2019), and the combination of CO2 and passive-
microwave-derived soil moisture (Scholze et al., 2016) as
well as the combination of CO2, L-band passive-microwave
soil moisture and vegetation optical depth (VOD; Scholze
et al., 2019). BETHY is a combined carbon and water land-
surface model that focuses on faster processes, such as en-
ergy and water exchanges, and carbon fluxes at timescales
from hours up to several years, coinciding with the typical
time span of satellite missions. BETHY is also the core of
the first Carbon Cycle Data Assimilation System (CCDAS;
Rayner et al., 2005; Kaminski et al., 2013). BETHY has
been developed specifically for the purpose of assimilating
both satellite and locally measured carbon and energy flux
data. The main limitation of the above studies, however, is
that BETHY does not account for plant growth and alloca-
tion; therefore, it cannot capture slow increases in living-
plant biomass over time.

Following up from the experiences gained from the studies
previously cited, we identify the following essential require-
ments for a process-based model at the centre of the envis-
aged land-surface carbon monitoring system:

– representation of internal processes affecting carbon,
water and energy fluxes at timescales of hours to sev-
eral years to permit spatial and temporal scaling;

– representation of specific variables that directly link to
remotely sensed information and, if needed, related ob-
servation operators, i.e. modules that simulate the same
variable as provided by the assimilated data stream (e.g.
FAPAR, VOD);

– computational efficiency, high degree of simplicity
while retaining sufficient realism, and ideally the avail-
ability of the adjoint model code to enable the use of
efficient variational assimilation approaches.

There are a number of models that could potentially fulfil
those requirements. They range from carbon models incor-
porated into routine weather forecasting, such as C-TESSEL
(Boussetta et al., 2013), to highly complex land-surface and
ecosystem models that can be operated within Earth system
models or independently, such as JULES (Best et al., 2011;

Harper et al., 2016) or ORCHIDEE (Traore et al., 2014). Of
these, C-TESSEL has probably the strongest track record for
assimilation of satellite data, mainly for the purpose of con-
straining soil moisture (Scipal et al., 2008). However, it does
not simulate the mass balance of carbon, despite simulating
photosynthesis and respiration, nor can it predict leaf area
index (LAI), which it requires as input data. C-TESSEL is
therefore of limited use when assimilating FAPAR or vari-
ables related to biomass.

By contrast, JULES includes a full set of carbon fluxes and
pools (Clark et al., 2011). An adjoint version of JULES has
been developed to optimise parameters at the site level using
eddy flux data (Raoult et al., 2016). ORCHIDEE includes not
only carbon but also nitrogen cycling (Vuichard et al., 2019).
A data assimilation framework for ORCHIDEE also exists,
which has been successfully employed at the site level for
the stepwise optimisation of model parameters using remote
sensing data (e.g. FAPAR), as well as water and carbon flux
observations from the eddy covariance flux networks (Peylin
et al., 2016).

We note that less complex models such as C-TESSEL
are often much better suited for data assimilation than com-
plex models, because a simpler structure with fewer param-
eters, omitting processes not relevant at the timescales of in-
terest, makes optimisation both computationally and math-
ematically much more feasible. For example, C-TESSEL
and BETHY lack representation of carbon pools (except for
leaf area in the case of BETHY) due to a focus on short
timescales of up to a few years. This is contrasted by an-
other model, DALEC (Data Assimilation Linked Ecosystem
Carbon; Williams et al., 2005), which focuses on carbon
pools and longer-term processes but is structurally also sim-
ple. DALEC has been developed specifically for assimilat-
ing information on C fluxes and pools from satellite observa-
tions (Bloom and Williams, 2015), eddy covariance systems
(Bloom and Williams, 2015; Famiglietti et al., 2021) and bio-
metric data including biomass (Smallman et al., 2017; Que-
gan et al., 2019).

In this study, we therefore address the above requirements
by the development of a new process model, which com-
bines the BETHY and DALEC models, both of which have
been specifically designed with data assimilation in mind
and have a corresponding track record. BETHY provides
a detailed representation of fast and intermediate timescale
(hours to months) processes, while DALEC provides a fo-
cus on slower processes of carbon allocation and turnover
(months to years). This combination opens up the possibil-
ity of retrieving variables such as biomass carbon stocks that
were not the focus of assimilation studies using BETHY.
DALEC is a mass-balance model that simulates the dynamics
of live and dead carbon pools and associated fluxes (Williams
et al., 2005; Bloom and Williams, 2015). Data assimilation is
used to assign parameter values and their uncertainty ranges,
as well as model initial conditions, at the pixel scale across
the modelled domain. DALEC requires input in the form of
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Figure 1. Structure of the DALEC–BETHY coupled model. State
variables are in filled boxes: green for carbon, pale blue for water
and orange for canopy states of stomatal conductance (gs) and leaf
temperature (Tv). Drivers are shown with white text in dark blue
boxes (T : air temperature, Tds: deep-soil temperature, Rsw: down-
welling shortwave radiation, RL↓: downwelling longwave radia-
tion; Ptot: total precipitation, Ca: CO2 concentration in air). Fluxes
are shown as solid arrows and annotated by open boxes (coloured
green for C fluxes and pale blue for water). GPP is gross primary
production, NPP is net primary production, RA is autotrophic respi-
ration, RH is heterotrophic respiration and Et is evapotranspiration.
Dashed arrows show influences – for example, T and Rsw influence
the modelling of phenology.

either gross or net primary production (NPP) from a separate
model – in this case BETHY. In return, DALEC provides in-
formation on leaf area back to BETHY.

In this contribution, we present the newly developed D&B
(DALEC and BETHY) model together with original mea-
surements from two study sites of widely varying climate and
vegetation. Both the model development and the field cam-
paign were carried out within the ESA-funded Land surface
Carbon Constellation (LCC) study. Due to the considerable
computational demands of data assimilation, D&B avoids
any complexity that cannot be justified by the need to im-
prove the realistic simulation of target variables. Coupling
of the two models together with their respective components
and state and driving variables is shown in Sect. 2 (Fig. 1).
D&B has been developed with the specific purpose of provid-
ing a modular and flexible modelling scheme for the assimi-
lation of multiple data streams. We present the various com-
ponents of the core model and a detailed evaluation of the
prior, uncalibrated model. We also present observation oper-
ators for FAPAR, SIF, VOD and near-surface soil moisture,
as well as a further evaluation of the model combined with
each observation operator against locally measured data, as
a precursor to the use of satellite-derived Earth observation
data.

Table 1. Parameter combinations are available for the following
plant functional types in D&B.

PFT no. Short name Description

1 TrEV Tropical broadleaf evergreen tree
2 TrDD Tropical broadleaf deciduous tree
3 TmEv Temperate broadleaf evergreen tree
4 TmSg Temperate broadleaf deciduous tree
5 EvCn Evergreen coniferous tree
6 SgCn Deciduous coniferous tree
7 EShr Evergreen shrub
8 DShr Deciduous shrub
9 C3Gr C3 grass
10 C4Gr C4 grass
11 TunV Tundra
12 WetV Wetland
13 ArbC Arable crop

2 Model description

The D&B model is comprised of three interconnected
components: (i) photosynthesis and autotrophic respiration,
(ii) energy and water balance, and (iii) carbon allocation and
cycling (Fig. 1). The first component comprises processes
that lead to the uptake of CO2 via plant photosynthetic activ-
ity (gross primary production, GPP), influenced by tempera-
ture, light absorption across the canopy and stomatal control,
as well as carbon loss from the respiration of live vegetation
(RA, autotrophic respiration). The remaining carbon flux is
then passed as net primary production (NPP=GPP−RA)
to the carbon allocation and cycling component. The energy
and water balance component determines the energy input
to and output from the canopy in the form of radiative heat,
latent and sensible heat transport, taking into account the wa-
ter balance of the canopy and soil, as well as the rate of water
uptake from the roots. Components (i) and (ii) are based on
BETHY, and component (iii) is based on DALEC.

Depending on the domain for which the model is set up,
D&B distinguishes between up to 13 plant functional types
(PFTs), as shown in Table 1. Each PFT is characterised by
a unique set of parameter values. All PFTs use the C3 pho-
tosynthetic pathway, except for PFT 10, for which a sepa-
rate module for C4 photosynthesis is used (see Sect. S1.1.1
in the Supplement). Management of arable crops is repre-
sented by appropriate parameters for leaf onset and fall, as
well as assumptions about a minimum level to which soil
moisture is allowed to fall, as an approximation of irrigation
(Sect. S1.2.7).

The fundamental model time step is 1 h. The following
components are, however, simulated at a daily time step in
order to decrease the computational effort:

– soil water balance,

– canopy water balance,
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– snow module,

– the observation operators for VOD and surface soil
moisture.

The model simulates several PFTs in sub-grid tiles. Each
PFT is simulated separately as if it would cover the full
grid cell, with the results rescaled by multiplying them with
the grid-cell fraction occupied by the specific tile. Inter-PFT
competition for light or water is neglected. A given grid cell
can thus comprise several PFTs each with its specific cover
fraction.

2.1 Photosynthesis and autotrophic respiration

The C3 photosynthesis module (Sect. S1.1.1) is based on
the biochemical model of photosynthesis by Farquhar et al.
(1980). It determines light absorption, light-limited electron
transport, CO2-limited carboxylation rate and the resulting
gas exchange of CO2. Light absorption in the photosyntheti-
cally active spectrum is calculated within a two-flux approxi-
mation (Sect. S1.1.3), following Sellers (1985). D&B divides
the canopy into several vertical layers of equal LAI, the sum
of which constitutes the total canopy LAI. In the standard
configuration, the number of layers is three. The amount of
light absorbed and thus available for photosynthesis is de-
pendent on LAI, statistical leaf orientation (assumed to be
isotropic) and leaf single-scattering albedo. Photosynthetic
capacity decreases from top to bottom of the canopy, as-
suming that decreasing levels of daily-average solar radiation
drive decreases in leaf nitrogen content and maximum rates
of light-limited photosynthesis.

The photosynthesis module further divides GPP into NPP
and RA (Sect. S1.1.2). RA is modelled as the sum of mainte-
nance and growth respiration (Knorr, 1997). While mainte-
nance respiration is proportional to photosynthetic capacity,
growth respiration is proportional to NPP, and it is zero when
NPP is negative. Both continually increase with temperature.
Negative NPP is also passed on to the C allocation and cy-
cling component, where it leads to the depletion of the labile
C pool.

The rate of photosynthesis is first computed under stan-
dard conditions without limitation by water availability. This
potential photosynthesis rate is translated into an equivalent
stomatal conductance, i.e. the stomatal conductance neces-
sary to provide the flow of CO2 to the leaf interior. This value
for stomatal conductance without water limitation is reduced
depending on the vapour pressure deficit of the surrounding
air and available soil moisture. This modified stomatal con-
ductance, or actual stomatal conductance, then determines
actual photosynthesis and, using information from the energy
and water balance component, the rate of transpiration.

Figure 2. Energy and water balance of the D&B model. as: soil
absorption of shortwave radiation, av: canopy absorption of short-
wave radiation,Ei: intercepted-water (canopy) evaporation,Es: soil
evaporation; Esn: snow evaporation, Et: transpiration, G: ground
heat flux, Pi: intercepted rainfall; Pr: rainfall; Ps rainfall on soil;
Psn: snowfall, Ptot: total precipitation; Pv : throughfall, Qb: base-
flow, Qd: horizontal drainage, Qs: surface runoff, RL,↑: upwelling
longwave radiation, RL,↓: downwelling longwave radiation, Rsw:
downwelling shortwave radiation, Sm: snowmelt, tl,v : longwave
canopy transmission, Wi: intercepted water amount, Wr: root-zone
soil moisture, Ws: surface-layer soil moisture, Wsn: snow amount,
and ρS: surface reflectance.

2.2 Energy and water balance

The energy and water balance component requires the rate
of transpiration from the photosynthesis module, due to the
tight coupling between water loss through transpiration and
CO2 uptake by leaves. Transpiration (Sect. S1.2.4) is subse-
quently combined with other evaporative fluxes, namely of
intercepted water (canopy evaporation, Fig. 2, Sect. S1.2.3)
and from the soil surface (soil evaporation, Sect. S1.2.5), in-
cluding snow sublimation (Sect. S1.2.7), to derive total evap-
otranspiration and latent heat flux. Latent heat flux is con-
strained by the available net radiative energy input, which the
model computes separately for the vegetation canopy and the
soil (Sect. S1.2.6). Sensible heat flux is computed from the
assumption of energy closure from net radiation, latent heat
flux and soil heat flux. The model uses incoming shortwave
(solar) and longwave (thermal) radiation as input, but it sim-
ulates both outgoing radiation components internally, using
information on the albedo of the soil background and vege-
tation (Sect. S1.2.8).

Soil evaporation proceeds at the equilibrium rate driven
by the soil net radiation from a thin surface layer. This cor-
responds to a typical depth for which microwave remote
sensing can provide soil moisture estimates (Babaeian et al.,
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2019). Evapotranspiration from the canopy happens as either
canopy evaporation from leaf surfaces at the equilibrium rate
(Jarvis and McNaughton, 1986) or as transpiration through
leaf pores. Precipitation enters either the leaf interception
pool or the soil pool (Sect. S1.2.1). Precipitation happens
as either snow (Sect. S1.2.7) or rainfall, partitioned into a
canopy-interception part, soil infiltration and surface runoff.
Soil water drains as subsurface runoff or base flow. Infiltra-
tion into the soil (Sect. S1.2.2), runoff, drainage and baseflow
(Sect. S1.2.5) are simulated following a new implementation
of the variable infiltration capacity approach (Wood et al.,
1992), where a thin surface layer has been added to a sin-
gle root-zone layer (Scholze et al., 2016). The surface soil
moisture layer overlaps with the root-zone layer so that the
near-surface soil water pool forms part of the root-zone soil
water pool (Fig. 2). The former has a nominal depth of 4 cm,
the latter has a depth equal to a PFT-specific root depth, dr
(Table S1 in Sect. S1.1.2). Both depths are limited by depth
to bedrock. Soil water exiting the root zone downwards is
considered subsurface drainage, while there is no upwards
water movement from below the root zone. The root-zone
soil moisture pool contains all simulated soil water, while
the surface layer is added in order to be able to calculate soil
evaporation, as well as for diagnostic purposes, accounting
for the impact of surface soil moisture on microwave remote
sensing.

Once per day around the time of maximum evaporative de-
mand, assumed to be at the hourly time step closest to 13:00
local solar time (Knorr, 1997), the parameters determining
actual stomatal conductance are reset to reflect soil water sta-
tus. To do this, transpiration is simulated as the minimum of
a root water supply rate, which increases linearly as soon as
soil water exceeds the permanent wilting point, reaching a
maximum with soil water at field capacity, and the demand
for transpiration. This rate of demand is determined by the
potential rate of photosynthesis without water stress com-
puted previously at each time step. Potential photosynthesis
is assumed as the rate at a fixed ratio of leaf CO2 content to
atmosphere CO2 content (0.87 for C3 and 0.67 for C4 photo-
synthesis). Actual photosynthesis and stomatal conductance
are then set such that transpiration is downregulated from its
potential rate to the rate of maximum root water supply. A
supply–demand calculation then determines the rate at which
leaf stomata close in response to the water vapour deficit of
the surrounding air (See Sect. S1.2.4, Eq. S67).

Finally, the surface reflectance, or background albedo (ρS),
is affected by soil brightness, surface soil water content and
the presence of snow. Vegetation albedo as a function of ab-
sorption in the photosynthetically active spectrum, computed
in the photosynthesis module, and snow albedo is modelled
depending on snow age (Loth et al., 1996; Knorr, 1997).

2.3 Carbon allocation and cycling

The carbon cycle in D&B is expressed as a series of six equa-
tions describing the dynamics of six carbon pools. Other than
the original DALEC model, D&B employs an hourly time
step for allocation, i.e. the same as the time step used by the
photosynthesis module. There are four live C pools, namely
foliage (fol), wood (wd), fine roots (fr) and a labile (lab) pool
which supports foliage expansion. There are two dead or-
ganic matter pools, namely litter (lit) and soil organic matter
(SOM). The state equations describe the change over time in
pool sizes on the basis of C fluxes in and out of the pool.
Carbon inputs are all derived originally from NPP. NPP is al-
located to each of the four live biomass pools based on fixed
site or PFT-specific fractions.

The labile C pool in D&B represents the stored C used to
initiate accelerated leaf development at the start of the grow-
ing season (Sect. S1.3.1). The phenology scheme parame-
terises the timing of local bud burst via allocation to leaves
from the labile pool based on calibrated climate sensitivity.
Leaf development thus depends on the allocation of labile
carbon, replenished from NPP, to the leaf carbon pool in ad-
dition to direct allocation from NPP. The leaf area index is
determined by the conversion of leaf carbon pool size to leaf
area by way of fixed values of leaf mass per area.

Losses from fine root (fr) and wood pools (wd) are de-
termined by first-order differential equations, using a decay
constant. Biomass dynamics of plant pools are the outcome
of NPP allocation and these mortality losses (Sect. S1.3.2).
Parameters for the C cycle in D&B use PFT calibrations de-
rived for DALEC using the CARDAMOM model–data fu-
sion approach (Bloom and Williams, 2015). CARDAMOM
uses ecological and dynamical constraints to ensure that al-
lometric relationships arising from parameter selection (like
emergent root / shoot ratios) are kept within ecologically re-
alistic bounds. By calibrating DALEC using both LAI and
woody biomass data, a constraint is placed on relevant model
parameters to match the measured biomass of these plant or-
gans.

Losses from the fine-root pool replenish the litter pool,
added by strongly periodic inputs linked to leaf senescence,
while wood directly feeds SOM. The litter pool either decays
to CO2 via heterotrophic respiration or is decomposed to the
SOM pool. Mineralisation of both SOM and litter C pools by
heterotrophic respiration thus results in further CO2 fluxes.
Total ecosystem respiration (TER) is determined by the sum
of autotrophic growth and maintenance respiration and min-
eralisation of dead organic matter (lit or SOM), creating a
flux of heterotrophic respiration. Following the procedure
used for DALEC, the prior parameter values of the carbon
allocation and cycling component are set through a regional-
scale calibration procedure, as described in Sect. S1.3.3.
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3 Observation operators

The task of an observation operator is to simulate the equiv-
alent of an observation from the model’s state variables. This
includes the simulation of the variable that is retrieved at
the time when it was observed and over the footprint of
the observations, i.e. the source area of the signal measured
by the respective instrument (Kaminski and Mathieu, 2017).
In this paper, we will present the simulation of four data
streams, namely FAPAR, SIF, L-band VOD and near-surface
soil moisture, and then confront model simulations with local
measurements. Of the four data streams, FAPAR and surface
soil moisture are internally calculated.

3.1 Fraction of absorbed photosynthetically active
radiation (FAPAR)

FAPAR is a measure of the capacity of terrestrial vegetation
to absorb sunlight in the visible spectrum, i.e. that part that
can be utilised for photosynthesis. It is defined as the amount
of photosynthetically active radiation (PAR) absorbed by
functioning green leaves divided by the total incoming PAR.
FAPAR is calculated within the two-flux canopy radiative
transfer scheme (Sect. S1.1.3) required for the calculation of
GPP (Sect. 2.1). However, due to the dependence of FAPAR
on solar zenith angle, it is necessary to take into account the
solar zenith angle at time of observation. Therefore, the ob-
servation operator for FAPAR utilises FAPAR calculations
performed within the model’s photosynthesis component at
the times and dates when model and observations solar zenith
angles match.

3.2 Solar-induced fluorescence (SIF)

Strictly speaking, the canopy-level solar-induced chlorophyll
fluorescence, or SIF, is a measure not of the photosynthetic
rate as such but of the amount of radiation absorbed by the
leaf and not used for the purpose of photosynthesis. Some of
that surplus radiation is re-emitted as fluorescent light as part
of a coping mechanism of the photosynthetic system. Under
normal field conditions, however, SIF can often be used as
an indication of photosynthetic activity, as opposed to FA-
PAR, which only characterises the photosynthetically active
light that is potentially available (Porcar-Castell et al., 2014;
Mohammed et al., 2019).

To calculate SIF, we use the formulation of Gu et al.
(2019). This choice is motivated by the direct link to the
photosynthesis routines and the relatively parsimonious im-
plementation, which fits with the modelling strategy adopted
here. The canopy layer SIF, Sn, is given by

Sn = sSIFJn
1−ψPSIImax

qLψPSIImax(1+ kDF)
, (1)

where Jn is the electron transport in canopy layer n (Eq. S8),
ψPSIImax is the maximum photochemical quantum yield of

photosystem II, qL is the fraction of open photosystem II
reaction centres and kDF is the ratio of the first-order rate
constants for heat dissipation and fluorescence. We take the
values prescribed by Gu et al. (2019). Note that the original
equation in that paper also has a term for the photon escape
probability from the canopy. In D&B, this is calculated ex-
plicitly by the layered two-stream model (Sect. S2) and hence
is not required here. As an extension to the model by Gu et al.
(2019) in view of the anticipated calibration in a data assim-
ilation scheme, we further introduce the scaling factor sSIF,
which compensates for large uncertainties in (1) the values of
the three constants (ψPSIImax, qL and kDF) and (2) the spec-
tral conversion that is described below. We set the prior value
of sSIF to 1.

SIF produced by the D&B model via the layered two-
stream model described in Sect. S2 has native units of
mol m−2 s−1. It represents the total flux of photons into the
hemisphere above the canopy for all wavelengths. Satellite
measurements and in situ observations, however, are typi-
cally recorded in energy flux units per steradian per nanome-
tre of the SIF spectra, e.g. W m−2 s−1 nm−1 sr−1. To con-
vert from molar to energy units, we apply the molar form of
the Planck equation, providing energy per mole of photons:
e = ahc/λφ , where a is Avogadro’s number, 6.023× 1023;
h is the Planck constant, 6.626× 10−34 m2 kg s−1; c is the
speed of light, 3.0× 108 m s−1; and λφ is the wavelength of
the SIF photons in metres.

We convert to steradians by using a constant factor of 1
2π ,

which assumes that the emittance of SIF from the top of
the canopy is isotropic, and finally we weight by the rela-
tive strength of emissions at λφ compared to a reference SIF
spectrum:

w =
E(λφ)∑
iE(λφ,i)

, (2)

where E is the SIF emission spectrum of arbitrary units.
Hence,

SIF′ = SIF
ew

2π
, (3)

where SIF has units of mol m−2 s−1, and SIF′ has units of
W m−2 s−1 sr−1 nm−1.

For the present study, we use a SIF emission spectrum ob-
served at the Hyytiälä site in Finland (Magney et al., 2019).
The SIF spectrum was measured for four Scots pine trees at
a light level of 1200 µmol m−2 s−1 and then averaged.

3.3 Vegetation optical depth (VOD)

VOD is essentially a parameter describing the attenuation of
microwave radiation at some wavelength due to the presence
of vegetation. It depends on the dielectric properties (due
to water content, temperature and chemical composition) as
well as the structure and geometry of the vegetation and sen-
sor properties (e.g. wavelength, polarisation). Due to the rela-
tively static nature of vegetation structure, dynamics of VOD
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are generally attributed to changes in aboveground biomass
and water content (Ulaby and Wilson, 1985; Konings et al.,
2019). It is measured within the microwave spectrum with
passive instruments, using the black-body radiation of the
surface in the microwave domain, or active instruments such
as scatterometers or synthetic aperture radars.

Common retrieval methods may extract both the surface
soil moisture and VOD simultaneously from satellite remote
sensing data, provided enough measurements are performed.
For example, the SMOS (Kerr et al., 2010) retrieval algo-
rithm (Kerr et al., 2012) is based on the so-called τ −ω for-
mulation for the vegetation contribution (Kirdiashev et al.,
1979; Mo et al., 1982) of the microwave signal, where VOD
is denoted by τ , the perpendicular vegetation optical depth
(Wigneron et al., 2007, 2010).

Here, however, we compare simulations to locally mea-
sured L-band passive VOD measurements. Due to the local
setup where separate sensors are placed above and below the
canopy (see Sect. S3.6), it is possible to measure VOD di-
rectly without having to solve for soil moisture simultane-
ously.

We use a semi-empirical formulation for L-band VOD, ex-
pressed as

τλ = f (T )(lwdCwd+ lfolCfol)(lsfsoil+ lffE+ l0), (4)

where the subscript λ denotes its wavelength dependence;
Cfol and Cwd are the leaf and woody biomass pools, respec-
tively (see Sect. S1.3.2); fsoil (Eq. S92) is fractional plant-
available soil water content; and

fE = Et/Et,max, (5)

i.e. the ratio of actual to potential transpiration (see Eq. S61).
fsoil describes slow changes in the plant’s hydrological sta-
tus, hence multiplied by parameter ls, and fE describes fast
changes, hence multiplied by parameter lf. The other empiri-
cal parameters are l0, lwd for dependence on woody biomass
and lfol for dependence on leaf biomass. We note that the five
empirical parameters are wavelength-dependent; for conve-
nience, we refrain from adding an additional subscript λ.

Following Schwank et al. (2021), we include an explicit
temperature dependency in the form of

f (T )= 0.25+ 0.75/(1+ e−0.5(T+3)), (6)

which approximates the theoretically derived behaviour
around the freezing point, with T being 2 m air temperature.
This formulation can be used across a range of microwave
wavelengths, using different parameter values in each case.
The second multiplicative factor in Eq. (4) is an empirical lin-
ear expression using both woody and foliar biomass with the
assumption that VOD will be zero if no biomass is present.
The third multiplicative factor describes how the water status
of the vegetation modifies this expression. This last one also
contains a constant factor, l0 > 0, because we expect positive
VOD even if vegetation water stress is at its maximum.

Table 2. Parameters for the empirical observation operator for L-
band VOD.

Parameter Unit Value

lwd m2 (gC)−1 2.0× 10−4

lfol m2 (gC)−1 2.0× 10−4

ls – 1.20
lf – 4.0
l0 – 0.4

In this contribution, we apply it to passive L-band mi-
crowave measurements. The values of the parameters for the
empirical VOD observation operator, shown in Table 2, were
selected such that the model reproduces a reasonable fit to L-
band observations from SMOS over the Sodankylä and the
Majadas de Tiétar sites.

3.4 Near-surface soil moisture

In the D&B model, near-surface soil moisture is represented
by an explicitly modelled thin surface soil moisture layer,
with a depth of 4 cm, unless the depth to bedrock indicates a
lower value. It is therefore a state variable in the model’s soil
water component and is described in detail in Sect. 2.2. This
surface layer therefore serves a dual purpose: first to simulate
soil evaporation and second to diagnose a variable that can be
retrieved from satellite observations. Near-surface soil mois-
ture is usually available from passive microwave measure-
ments when retrieved simultaneously with VOD (Sect. 5.3).
These retrieval algorithms explicitly separate the contribu-
tions to the microwave signal that come either from the veg-
etation (VOD) or from the soil (surface soil moisture).

4 Model evaluation

We first present an evaluation of the D&B model on its own,
followed by an evaluation of the model together with the ob-
servation operators for the four data streams of FAPAR, SIF,
L-VOD and surface soil moisture. The methods used to de-
rive the driving data for the model as well as those of the mea-
surements undertaken for driving and evaluating the model
are described in Sect. S3.

4.1 Study sites

The D&B model is run for two study sites with widely
varying climate, one representing a boreal forest – So-
dankylä in Finland, a class 1 site of the Integrated Carbon
Observation System (ICOS) network (Rebmann et al., 2018)
– and the other representing a temperate-savannah ecosys-
tem – Majadas de Tiétar in Spain, also an ICOS network
site. The Sodankylä Scots pine forest site (67°21′44.6′′ N,
26°38′18.9′′ E) is situated 100 km north of the Arctic Circle
(Thum et al., 2007; Honkanen et al., 2023). It also has an un-
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derstorey of evergreen ericaceous shrub (mostly blueberry)
as well as lichen and mosses. The soil is characterised as
predominantly sand (clay / silt / sand / stone ratios for differ-
ent depths are given; 0–10 cm: 0.5 % / 6.0 % / 88.1 % / 5.4 %,
10–20 cm: 0.3 % / 4.1 % / 93.5 % / 2.1 %, 20–40 cm:
0.2 % / 2.8 % / 91.9 % / 5.1 %).

The Majadas de Tiétar site is a Mediterranean open
woodland of evergreen holm oak in western Spain
(39°56′24.68′′ N, 5°45′50.27′′ E; Wang et al., 2016; El-
Madany et al., 2018). The soil (Nair et al., 2020) contains
an upper sandy layer (5 % clay, 20 % silt, 75 % sand, 20 cm
deep) underlain by a clay layer (30 to 60 cm depth, no infor-
mation for 20 to 30 cm).

4.2 Model setup

We use locally observed data to drive the model (see
Sect. S3.1). Ca is set to a uniform value of 405 ppm, i.e. Ca =

405×10−6 mol(CO2) mol(air)−1, which is approximately the
annual mean value at Mauna Loa, Hawaii, centred around the
beginning of 2017 (NOAA, 2024). Model runs are with a pri-
ori values of the parameters for all modules and observation
operators. Initial water content of the soil was set to 50 %
of field capacity. Simulations for the first 2 calendar years
were discarded to avoid model biases due to initial condi-
tions of the water balance and short-lived carbon pools. The
fractional vegetation cover is set to fc = 1 for both sites.

For Sodankylä, the model simulation was run for the pe-
riod 1 January 2009 to 31 December 2021, with two PFTs:
evergreen coniferous forest (PFT 5, 67 % of ground area) and
evergreen shrub (PFT 7, 33 %). Measured soil temperature as
model input is for 1 m depth. The soil texture class is “medi-
um/coarse” (cf. Sect. S1.2.5, Table S4), following the classi-
fication of the global soil texture data set by Zobler (1986).
Parameter and initial values related to carbon turnover are set
according to Table S6 (Sect. S1.4).

For Majadas de Tiétar, the simulation is for 1 April 2014 to
31 December 2021. We assume the site area to comprise C3
grass (PFT 9, 80 % of ground area) and temperate evergreen
trees (PFT 3, 20%). The model is driven by soil temperature
measured at 80 cm depth averaged between four locations,
two in open grassland and two under a tree canopy. The soil
texture class is medium. Parameters and initial values related
to carbon turnover are set according to Table S7.

4.3 Evaluation approach

The D&B model is compared against eddy covariance data of
carbon and energy fluxes, locally observed radiation balance,
and (in the case of the boreal site) snow depth. This is a first
evaluation of the model with its prior parameterisation, and
its purpose is to assess whether the model is able to repro-
duce measurements with a reasonable degree of realism. The
role of the in situ observations is to serve as an independent
evaluation data set.

We compare multi-year time series by showing the fol-
lowing values for both observations and model simulations:
fj ,f

min
j ,fmax

j , where

fj =
1
n

n∑
i=1

f (i,j), (7)

and f is the flux of interest, i counts the n simulation years
used for this analysis, and j is the day within the year (1 Jan-
uary to 31 December). fmin

j and fmax
j denote the minimum

and maximum across the n values {f (1,j), . . .,f (n,j)}, re-
spectively. We also show the multi-year mean for both obser-
vations and models as

f =
1
nm

n∑
i=1

m∑
j=1

f (i,j), (8)

where m is the number of days per year. In addition, we pro-
vide the following metrics: root-mean-square error (RMSE)
of daily,

RMSEdaily =
1
nm

√√√√ n∑
i=1

m∑
j=1

[
fmod(i,j)− fobs(i,j)

]2
, (9)

and annual values,

RMSEannual =
1
n

√√√√ n∑
i=1

(
f i,mod− f i,obs

)2
, (10)

with f i denoting annual average fluxes for year i for either
simulations (mod) or observations (obs), as well as explained
variance (r2) at daily and annual timescales:

r2
daily =

∑n
i=1
∑m
i=j

(
fmod(i,j)− f obs

)2∑n
i=1
∑m
i=j

(
fobs(i,j)− f obs

)2 , (11)

and

r2
annual =

∑n
i=1
(
f i,mod− f obs

)2∑n
i=1
(
f i,obs− f obs

)2 . (12)

Carbon fluxes are gross primary production (GPP), total
ecosystem respiration (TER) and net ecosystem exchange
(NEE=TER−GPP). NEE is defined as going from the veg-
etation to the atmosphere, i.e. positive values denote a flux of
CO2 towards the atmosphere. Energy fluxes are latent heat
flux (LHF) and sensible heat flux (SHF), with the addition of
net radiation, which is the balance of incoming minus out-
going solar and thermal radiation fluxes. Both carbon and
energy fluxes as well as net radiation are measured over a
representative area of each ecosystem, consisting of different
PFTs.

For the purpose of calculating the above statistics, we used
the 6-year period from 2016 to 2021 for both sites. We addi-
tionally use snow depth measurements from the period 2011
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to 2021 for validation at the Sodankylä site. Biomass and
soil carbon measurements, also at the Sodankylä site, were
taken in 2011 and are compared to mean values of the simu-
lations from 2011 to 2021 (Sodankylä) or from 2016 to 2021
(Majadas de Tiétar). See Sect. S3 for details of measurement
methods.

4.4 Evaluation at a boreal-forest site: Sodankylä

At the boreal-forest site (Fig. 3), measurements show a
markedly smaller amplitude of the annual cycle of carbon
fluxes (NEE) than the model. While in the springtime there
is a reasonable agreement with an initial rapid increase in the
magnitude of NEE, carbon loss during the winter as well as
carbon uptake during summer and early autumn are clearly
larger for the model. Between day of year (DOY) 200 and
260 (mid-July to mid-September), the discrepancy in NEE
is associated with an underestimation by the model of respi-
ration (TER) and an overestimate of GPP. Not surprisingly,
GPP agrees well during the winter as it is well constrained
due to the lack of light and low temperatures, but TER is
generally higher for the model. There is also a conspicuous
phase shift of TER between the two curves, with measure-
ments showing TER peaking much later, while the phases of
GPP agree reasonably.

For the energy flux evaluation (Fig. 4), what stands out is
the good agreement between modelled and simulated SHF,
except for the spring (ca. DOY 50 to 100), where obser-
vations exceed simulations. LHF is also well matched dur-
ing the summer (ca. DOY 120–260). Since in the model en-
ergy balance is exactly fulfilled, we would expect an equally
good match for the net energy input (i.e. net radiation mi-
nus ground heat flux; cf. Eqs. S124, S127) if the energy bal-
ance is also fulfilled for the observations. However, obser-
vations during the summer period are systematically lower
than simulations. Therefore, we attribute the mismatch in net
radiation during the summer to a lack of energy closure of
the eddy covariance measurements. However, for the winter
months, SHF is in good agreement, but both net energy input
and LHF show systematically higher values for the model;
hence, there is no evidence of a lack of energy closure for the
measurements. The difference might thus be mostly due to
an overestimate by the model.

Another noteworthy period is the wintertime, where the
model produces slightly negative SHF and at the same time
overestimates LHF compared to observations. Both devia-
tions just about cancel each other, and there does not seem
to be an issue with energy closure for the observations.

Snow depth observations taken from within the forest and
simulated snow depth for the evergreen conifer tree PFT
agree generally very well (Fig. 5). The model tends to some-
what underestimate the observations, especially at the time
of snowmelt, where snow depth is receding, but the differ-
ences are small and the comparison favourable, in particular
when noting the good agreement in interannual variations.

Figure 3. Annual cycles of daily (a) GPP, (b) TER and (c) NEE
at Sodankylä, averaged over the years 2016 to 2021. Black line is
observation based on eddy covariance data; the red line is D&B.
The shaded areas represent the ranges of the observed and simulated
daily cycles over the period.

The peak winters with the highest values (e.g. the winter
2019/2020) are also well reproduced.

On an annual average basis, modelled NEE shows a small
carbon sink with NEE equal to −197 gC m−2 yr−1, against
a smaller source in magnitude for the measurements of
+34 gC m−2 yr−1 (values given in Table 3 converted from
molar units). GPP is 534 gC m−2 yr−1 when observation-
derived against 927 gC m−2 yr−1 for the model. In contrast
to the mean, the explained variance, r2, is not sensitive to the
absolute magnitude of the fluxes, and since the phases agree
well (Fig. 3), it is not surprising that it shows a very high
value of 0.87 for GPP at the daily time step. For TER, how-
ever, due to the phase shift previously discussed, we find a
lower value (r2

= 0.69). The value of r2 for NEE is smaller
than for GPP and TER, as we would expect, because NEE is
the difference of two larger fluxes and has therefore a much
smaller magnitude. Let us assume that the true temporal aver-
age of NEE is zero, while each (the model and the measure-
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Figure 4. Annual cycles of daily (a) sensible heat flux, (b) latent
heat flux and (c) net radiation minus ground heat flux at Sodankylä,
averaged over the years 2016 to 2021. The shaded areas represent
the ranges of the observed and simulated daily cycles over the pe-
riod.

Figure 5. Daily observed (black) and simulated (red) snow depth
at Sodankylä for the years 2011–2021. Simulated snow depth is for
the evergreen conifer PFT only.

ments) reproduce a temporal average of GPP equal to tem-
poral average of TER but with some temporal noise added.
This noise might be due to measurement or model error, but

it is uncorrelated between model and measurements. In this
case, we would expect the model–measurement correlation
for NEE to be zero. However, correlation between modelled
and measured GPP or TER could still be substantial due to
coinciding temporal variations shorter than the averaging pe-
riod.

The value of the annual r2 in Table 3 captures exclusively
interannual variations, and the values are much smaller than
derived on the basis of daily averages. It appears that the
model only partially reproduces the observation-derived in-
terannual variability, especially for NEE. Note, however, that
the number of data points is only six. RMSE for GPP and
NEE on a daily basis is similar to the annual mean GPP,
likely due to day-to-day variations in the measurements not
being captured by the model.

Over all seasons, the model shows much higher LHF than
the measurements but much lower SHF (Table 3). The differ-
ence comes almost entirely from the winter and spring sea-
sons, as noted when discussing Fig. 4. The r2 values are also
significantly smaller for energy than for carbon fluxes (Ta-
ble 3) due to the seasonally varying model–observation dif-
ferences, which create differing seasonal cycles between the
two. By contrast, snow depth shows a very high r2 at both
the daily and annual timescales, as is apparent from Fig. 5.

Modelled carbon pools differ substantially from locally
derived values: the mean and standard deviation of total soil
organic carbon found was 3.70± 0.16 kgC m−2, against a
model-based estimate of 38.7 kgC m−2. It appears that the
model underestimates the turnover time of the slowest soil
carbon pool. The observed aboveground biomass at the site
was 37.3 t ha−1 against a model estimate of 62.5 t ha−1, as-
suming 50 % carbon content of dry mass and 85 % of woody
biomass above ground (Helmisaari et al., 2002).

4.5 Evaluation at a temperate-savannah site: Majadas
de Tiétar

The seasonal course of carbon exchanges at the temperate-
savannah site (Fig. 6) is characterised by a pronounced
springtime net carbon uptake and a prolonged period of
carbon loss during the summer and autumn. However, the
strength of the spring draw-down (ca. DOY 50 to 150) de-
rived from the observations is much lower than the model-
derived one. For the remaining seasons, model and observed
NEE largely agree in terms of magnitude and timing, except
for pronounced fluctuations in the measured NEE flux during
summer and autumn that are not reproduced by the model.
Such fluctuations are also found in the observation-derived
TER flux. The discrepancy in the spring draw-down appears
to be the result of a model overestimate of GPP combined
with an underestimate of TER.
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Table 3. Metrics for the different variables simulated at Sodankylä for the period January 2016 to December 2021. RMSE: root-mean-square
error. Units: µmol m−2 s−1 (gross primary production, GPP; total ecosystem respiration, TER; net ecosystem exchange, NEE), W m−2

(latent heat flux, LHF; sensitive heat flux, SHF) and centimetre (cm, snow depth).

Metric GPP TER NEE LHF SHF Snow depth

r2 daily 0.87 0.69 0.51 0.39 0.50 0.78
r2 annual 0.49 0.26 0.12 0.36 0.55 0.84
RMSE daily 1.86 0.89 1.55 26.97 41.57 14.57
RMSE annual 1.09 0.52 0.63 16.00 9.63 6.88
Observed mean 1.38 1.46 0.09 22.74 28.87 21.82
Model mean 2.45 1.92 −0.52 34.64 19.23 15.22

Figure 6. Annual cycles of daily (a) GPP, (b) TER and (c) NEE at
Majadas de Tiétar, averaged over the years 2016 to 2021. Black line
is observations based on eddy covariance data, and the red line is
D&B. The shaded areas represent the ranges of the observed and
simulated daily cycles over the period.

If we consider the climate of the site, with hot and dry
summers, cool winters, and a winter rainfall maximum, we
can assume that the most favourable growth conditions hap-
pen in the spring, where we indeed find the largest net CO2
uptake rate in both model and observations. Under those
springtime conditions, however, the model predicts a higher

GPP than the observation-based value but a lower GPP value
for the remaining seasons where growth is limited in either
temperature and light (winter/autumn) or water (summer/au-
tumn). In other words, compared to the observations, the
model overpredicts GPP under favourable conditions but un-
derpredicts GPP under conditions of GPP limitations – by
way of dry conditions in the summer, low light levels in the
autumn and temperature during winter. We thus find that the
model likely overestimates moisture limitation, as well as
other GPP limiting factors, while overestimating photosyn-
thetic capacity.

On an annual basis (Table 4), simulated GPP
(844 gC m−2 yr−1) is generally smaller compared to
the observation-derived estimate (1283 gC m−2 yr−1).
The same also applies to TER (814 gC m−2 yr−1 vs.
1264 gC m−2 yr−1 derived from eddy covariance measure-
ments). Net flux (mean NEE) is small and agrees well
(−30 vs. −19 gC m−2 yr−1 for model vs. observations).
In contrast to Sodankylä, r2 for the annual values shows
that the interannual variability of NEE is reproduced well,
in fact better than that for the components GPP and TER.
However, daily r2 is much lower for NEE than for GPP or
TER, due to the different shape of the seasonal cycle of
the model, showing a pronounced spring draw-down, as
already discussed. RMSE values of GPP and TER on a daily
basis are similar in magnitude to the modelled ones but less
than the observed mean, while annual RMSE for NEE is
remarkably low. While the high r2 suggests that the model
reproduces the interannual variability of the net carbon
fluxes well for this site, the combination of rather high
RMSE and similar observed means suggests that day-to-day
variations are less well captured.

As far as the energy balance is concerned, we find a similar
result for Majadas de Tiétar (Fig. 7) compared to the boreal-
forest site: net energy input (net radiation minus ground heat
flux) agrees very well between model and observations, but
there is a rather large overestimate by the model of the sensi-
ble heat flux, albeit with a very similar shape of the seasonal
cycle (r2

= 0.81, SHF daily, Table 4). For most of the year,
except for a pronounced summer decline for the model but
not for the observations, LHF agrees well. This is likely re-
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Table 4. Metrics for the different variables simulated at Majadas de
Tiétar for the period January 2016 to December 2021. RMSE: root-
mean-square error. Units: µmol m−2 s−1 (gross primary production,
GPP; total ecosystem respiration, TER; net ecosystem exchange,
NEE), W m−2 (latent heat flux, LHF; sensitive heat flux, SHF).

Metric GPP TER NEE LHF SHF

r2 daily 0.61 0.47 0.27 0.31 0.81
r2 annual 0.16 0.26 0.54 0.56 0.66
RMSE daily 2.11 1.56 1.88 30.12 54.37
RMSE annual 1.19 1.23 0.16 7.35 40.49
Observed mean 3.39 3.34 −0.05 39.87 40.10
Model mean 2.25 2.16 −0.09 32.87 80.49

lated to the model’s pronounced underprediction, compared
to the observations, of GPP, resulting in a lower transpiration
flux through more pronounced stomatal closure and thus also
lower LHF. Given the strict energy closure for the model, if
net energy input and LHF agree between model and mea-
surements, then SHF should also agree. However, while the
model has an exact energy closure, the data apparently do
not. For instance, at the start of the years until ca. DOY 130,
net radiation and LHF agreement suggests an imbalance in
the observations starting close to zero at the start of the year
and increasing to around 40 W m−2. During the summer sea-
son, the model overestimates SHF by around 100 W m−2, but
underestimates LHF by only around 60 W m−2, while net ra-
diation agrees, which also suggests a deviation from energy
closure of around 40 W m−2. This has again to be taken into
account when evaluating the model.

On average (Table 4), the model slightly underestimates
LHF but overestimates SHF by close to a factor of 2. For
both LHF and SHF, we find high values for r2 based on an-
nual averages, and a very small value for annual RMSE for
LHF, which suggests that the model, apart from a general
overestimate of LHF, simulates interannual variability of en-
ergy fluxes reasonably well, with the caveat that only 6 full
years are being considered here.

5 Evaluation of observation operators

5.1 Evaluation of FAPAR simulations

The simulations at the Sodankylä site showed larger FAPAR
values during the summer than the observations (Fig. 8), with
a pronounced seasonal cycle. We find this to be a robust fea-
ture of the simulations (not shown). By contrast, observed
values stay at approximately the same level during the ob-
servation period, with some larger values during the autumn.
The values of the observed FAPAR match the expected be-
haviour of the largely aseasonal evergreen canopies of the
PFTs for the boreal region. The pronounced seasonal cycle
of FAPAR in the model runs corresponds to a seasonal cycle

Figure 7. Annual cycles of daily (a) sensible heat flux, (b) latent
heat flux and (c) net radiation minus ground heat flux at Majadas
de Tiétar, averaged over the years 2016 to 2021. The shaded areas
represent the ranges of the observed and simulated daily cycles over
the period.

in the LAI of the model. The modelled LAI behaviour results
from calibration using Copernicus LAI time series which
have a strong (and unexpected) seasonality. By contrast, mea-
sured FAPAR shows only weak signs of seasonality, such as
a very slight increase between DOY 170 and 200. There is,
however, a cluster of elevated measured FAPAR values to-
wards late summer/autumn, alternating with lower values in
line with those measured earlier. Here we must take into ac-
count that maximum solar elevation towards the end of the
measurement period (22 October) did not exceed 12°. There-
fore, rays of direct sunshine have a longer path through the
canopy, increasing FAPAR. The effect is also seen to a lesser
extent in the simulations but with an LAI-driven seasonality
dominating the time course of the data.

Extensive LAI sampling during summer 2022 from hemi-
spherical photographs gives an average value of 1.37, and
measurements using LI-COR LAI-2200 give an average
value of 1.32. These agree rather well with a simulated
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Figure 8. Observed (black) and simulated (red) FAPAR at So-
dankylä between 19 June and 22 October 2021. Simulated FAPAR
is for the evergreen conifer PFT only, in accordance with the vege-
tation within the field of view of the FAPAR sensor.

annual-average LAI of 1.3 for the tree PFT; however, there
is a pronounced seasonality of simulated LAI correspond-
ing to the seasonality of FAPAR seen in Fig. 8, with signif-
icantly lower values for September (DOY 244 to 273: 1.37)
than for mid-June to the end of August (from DOY 166 to
243: 2.96). The across-plot average at different dates from
the hemispheric photographs show no such seasonality, with
a June-to-August average (measured on DOYs 166, 192, 207,
212 and 217) of 1.39 vs. a September average of 1.34 (mea-
sured on DOYs 254 and 271).

5.2 Evaluation of SIF simulations

SIF measurements provide an opportunity to document the
presence of photosynthetically active plant material and are
therefore an interesting quantity for model validation. At the
Sodankylä site, the observations started in spring 2021 as part
of the LCC campaign activities. The measurement angle was
adjusted in early June; therefore, we show comparisons to the
simulations starting only from 3 June onwards.

Simulated SIF values are shown here (Figs. 9 to 11) with
a multiplication factor of 10, i.e. with the scaling factor sSIF
in the SIF source term, Eq. (1), set to 10. While the prior
value of sSIF was 1, this change reflects the high uncertainty
regarding the absolute magnitude of the measured SIF. Ob-
servations are shown for two methods of retrieving SIF from
the actual measurements, namely Fraunhofer line discrimi-
nation and spectral fitting (see Sect. S3.5).

The difference in magnitude between the modelled and ob-
served SIF is likely due to the choice of prior parameters for
the SIF model, taken from Gu et al. (2019), and the specific
spectral conversion used (Eq. 2). Although it has not been
done here, there is scope within D&B to adjust these param-
eters in the assimilation. This is achieved through calibra-
tion of the scaling factor sSIF in the observation operator for
SIF (Eq. 1). Given that the model with its prior parameter set
can already track the seasonal and diurnal cycle of the obser-

Figure 9. Average diurnal cycle by month of far-red (a) and red
SIF (b) for pine forest (PFT 5) at Sodankylä for the months of June
to October in 2021. D&B simulations (red) against measurements
with the fluorescence box (FloX): retrievals made with the Fraun-
hofer line discrimination (black) and retrievals made with the spec-
tral fitting method (blue).

vations reasonably well, we expect that SIF measurements
will be able to provide constraints on processes that affect
the temporal evolution of photosynthetic rates, such as leaf
phenology, or timing of stomatal closure.

At the Sodankylä site, the simulations are able to track
both the diurnal and seasonal cycles of the observations rea-
sonably well (Fig. 9). However, there are indications of wa-
ter stress in the measured diurnal cycles in June, July and
August. These are shown as a dip in the far-red SIF during
midday (Fig. 9a) and also for June in the red SIF (Fig. 9b).
The decline in SIF is likely due to a midday depression of
photosynthesis (Lin et al., 2024). The model reproduces this
behaviour only for June and to a much lesser extent. Also, the
model shows larger SIF signals for June compared to July but
not the measurements. Since the midday depression is ob-
served as a response to stomatal closure due to water stress,
the comparison indicates that the model underestimates wa-
ter stress at the boreal site. The simulations also show an
earlier increase and later decrease during the day during the
summer months. This may partly be attributed to retrieval
problems for high sun zenith angles.

The measured far-red SIF (760 nm) of the trees at the Ma-
jadas de Tiétar site (PFT 3, Fig. 10a) shows a clear sea-
sonal cycle of SIF peaking in July. For the red SIF (687 nm,
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Figure 10. Average hourly diurnal cycle by month of SIF in the far-
red (a) and red (b) for evergreen trees (PFT 3) at Majadas de Tiétar
for the months of April to December in 2021. D&B simulations
(red) against measurements: retrievals made with Fraunhofer line
discrimination (black) and the spectral fitting method (blue).

Fig. 10b), there is no clear seasonal maximum. This is in-
dependent of the retrieval method. The model by contrast
shows a clear peak in May. The diurnal cycle of SIF in the
model peaks later, usually around 14:00 LT (local time) and
extends further into the afternoon compared to the measure-
ments, which peak around 11:00 to 12:00 LT (central vertical
line).

By contrast, the SIF measurements for grass (PFT 9) show
almost complete senescence of the grass during June and July
when using the spectral fitting method, but there is some re-
maining activity when using Fraunhofer line discrimination
of the red-spectrum signal (Fig. 11). For this combination
(red SIF with Fraunhofer line discrimination), model simu-
lations are in good agreement with the measurements, with
a suitable scaling factor sSIF in the SIF source term (Eq. 1).
However, judging from the other spectral bands or retrieval
methods, the results suggest that the model may underesti-
mate the water stress of the grasses.

5.3 Evaluation of VOD simulations

Figure 12 shows the comparison between observed and sim-
ulated L-VOD for the period after the first change in mea-
surement geometry (for all three elevation angles) for the So-
dankylä site. Observations only include the trees; therefore,
simulated L-band VOD is for the tree PFT only. The tempo-

Figure 11. Average hourly diurnal cycle by month of SIF in the
far-red (a) and red (b) for C3 grass (PFT 9) at Majadas de Tiétar
for the months of April to December in 2021. D&B simulations
(red) against measurements: retrievals made with Fraunhofer line
discrimination (black) and the spectral fitting method (blue).

Figure 12. L-band VOD from Elbara II over a pine stand (PFT 5)
for different elevation angles compared to D&B simulated L-band
VOD for PFT 5 only. Time axis starts on 18 September 2021 when
the azimuth angle of the Elbara II instrument was changed for the
first time.

ral variations of the measurements are well captured by the
simulation, in particular after the second change in viewing
geometry after DOY 280.

The increase in biomass in the field of view through
the first change in measurement geometry on 17 September
(DOY 260) was estimated to be a factor of 3 (see Sect. S3.6).
The revised field of view was also found to better represent
typical conditions of the wider area, with the initial field of
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Figure 13. L-band VOD from Elbara II over a pine stand (PFT 5)
for different elevation angles compared to D&B-simulated L-band
VOD, for PFT 5 only, before first change in view geometry, with
biomass reduced to 1/3 of default simulated values.

view capturing the signal from much sparser vegetation. To
simulate L-VOD for the period before DOY 260, we there-
fore reduced assumed biomass entering the VOD observa-
tion operator (Cwd, Cfol in Eq. 4) to one-third of their default
modelled values.

With this provision, the simulations match both the tempo-
ral variations and the magnitude of the locally measured L-
VOD rather well (Fig. 13; see Sect. S3.6 for the default sim-
ulations). This includes the rise in spring, including a peak
around DOY 60, and also temporal variations between DOYs
90 and 130. Only the period ca. DOYs 130 to 180 shows a
systematic overestimate compared to measurements. A slow
decline after DOY 220 is also reproduced by the model. We
thus find a very satisfactory performance of the empirical L-
VOD observation operator together with D&B.

5.4 Evaluation of surface soil moisture

Measured soil moisture at Sodankylä (Fig. 14) shows very
similar temporal variations between different depths. The
temporal variations of the D&B simulations are also simi-
lar, only that the overall magnitude differs, even though the
magnitude of the shallowest measured depth (5 cm) is closest
to the model. We point out that the depth of the surface layer
in D&B is 4 cm. Both measurements and simulations also
indicate significant interannual variability, with some years
(e.g. 2019, 2020) exhibiting some pronounced summer dry-
ing, of which only some is captured by the measurements due
to data gaps.

At Majadas de Tiétar, variations in soil moisture measured
between different depths are again relatively small, showing
that the exact depth for which these are simulated is of lesser
importance (Fig. 15). In fact, the two depths closest to the
surface (5 and 10 cm depth) show an almost identical tem-
poral profile, including the magnitude of the maximum soil
moisture depletion during the summer (July, August). The
main characteristics of the observed seasonal cycle are also

well reproduced by the D&B model. The timing of individ-
ual rain events can be traced in the measurements and is well
reproduced by the simulations, including the lack of such
events during the summer months. However, in the simula-
tions, soil moisture decreases to near zero, whereas accord-
ing to the measurements some soil moisture remains even at
the peak of the summer.

6 Discussion

6.1 Implications of study results

The comparison of the model simulations at the two sites
against local data indicates that D&B does a reasonable job
at representing energy and carbon fluxes between the atmo-
sphere and terrestrial vegetation, albeit with the seasonal am-
plitude of the net carbon exchange overestimated at the bo-
real site. The comparison shows that carbon fluxes in par-
ticular are simulated reasonably well, with lesser agreement
for energy fluxes but also significant imbalances between the
measured energy fluxes and the net radiation available to the
canopy; i.e. there is a significant deviation from energy clo-
sure. We conclude that there is a need for multi-stream data
sources to be used for evaluating carbon and water flux mod-
els of terrestrial ecosystems, as opposed to relying chiefly on
eddy covariance data.

The addition of dedicated observation operators led to fur-
ther insights regarding model performance. In particular, lo-
cal SIF measurements further revealed the power of those
measurements to detect limitations on photosynthesis, such
as water stress, beyond the capability of FAPAR measure-
ments, despite remaining uncertainties regarding the absolute
magnitude of the simulated SIF signal (see Fig. 9). We were
able to identify a possible underestimate of soil water limita-
tion of the Scots pine forest at Sodankylä during the summer,
which may partly explain why the model overestimates GPP
at this site.

At the Majadas de Tiétar temperate-savannah site, we
clearly identified that the model underestimates latent heat
flux during the summer months, while it also underestimated
the site’s overall photosynthetic uptake (GPP). This under-
estimation appears to be a result, in particular, of the model
overestimating moisture limitations of the savannah ecosys-
tems during the summer, possibly due to non-matching pa-
rameterisation of the stomatal model. This matched the in-
sights provided by the SIF measurements that the trees of the
ecosystem continue transpiring and photosynthesising across
the summer without major limitations due to water stress.
Surface soil moisture data also indicated too much soil dry-
ing during the summer months. Possibly, the model fails to
represent the strongly heterogeneous soil texture at Majadas
de Tiétar, with a sandy top and deeper clay soil, underesti-
mating the soil water holding capacity of the deeper soil lay-
ers to which only the trees have access. These considerations
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Figure 14. Daily in situ observed soil moisture at 5, 10 and 20 cm depth and simulated near-surface soil moisture, Ws, at Sodankylä for
DOYs 140–330 in the years 2018–2021. Winter months not shown to avoid impact of frost on soil moisture sensors.

demonstrate the added value of the dedicated observation op-
erators for the evaluation of D&B at the local scale.

6.2 Potential for further applications

The process model in combination with its observation op-
erators presented here has been designed to be used within a
variational data assimilation framework, planned to be set up
following the existing CCDAS (Rayner et al., 2005). This
means that D&B will be complemented with tangent and
adjoint versions, which efficiently provide derivative infor-
mation for variational assimilation. The anticipated default
setup in data assimilation mode is for combined calibration
and initialisation, i.e. adjustment of parameters of the process
model and its observation operators and of the initial state of
the carbon pools. Assimilated data streams are planned to
come chiefly from Earth observation sources. This setup will
provide both capabilities for assimilating more data streams
than previous studies (e.g. Scholze et al., 2019) while also in-
cluding a full description of biomass pools as so far provided
by other, more complex process models, e.g. LPJ-GUESS
(Smith et al., 2001), albeit with lesser data assimilation capa-
bilities.

In anticipation of such an application, we have in this
contribution refrained from adjusting individual parameters
by hand in order to improve the match to any of the validation
data sets used in Sects. 4 and 5. However, we can already as-
sess, to an initial degree, the potential of the system to obtain
a superior fit to measurements by way of optimising its pa-
rameters. As an example, comparing measured and simulated
surface soil moisture (Sect. 5.4) and taking into account the
model’s functional dependencies, we can infer that changing
the assumed texture of the soil near its surface will immedi-
ately change the absolute magnitude of the simulated signal

but have only a negligible impact (via soil evaporation) on its
temporal course.

In particular, the good match between simulated and lo-
cally measured L-VOD, which includes details of most tem-
poral variations, offers considerable opportunities for the as-
similation of widely available satellite-derived L-VOD over
larger regions.

6.3 Limitations

While the initial task to match and compare modelled and
observed data streams was successfully demonstrated, the re-
sults of this study also point at the need to further investigate
the representation of the seasonal cycle of LAI in northern
evergreen conifer forests and shrubs. Earth observation prod-
ucts for the boreal region show seasonality in LAI that is
not consistent with ecological expectation and FAPAR data.
The phenology scheme of D&B has the flexibility to simulate
vegetation with a small amount of seasonal variation in LAI
if corresponding information is provided for the prior calibra-
tion of the parameters in the phenology scheme. Such infor-
mation could come from field observations of LAI time series
in boreal regions or improved satellite products.

Another issue that occurred is that the scaling factor sSIF
in the SIF source term (Eq. 1) is highly uncertain. In a data
assimilation mode, it would be included (possibly in a PFT-
specific form) in the list of parameters to be adjusted. This
would effectively allow for scaling the simulated SIF time
series shown in Figs. 9, 10 and 11. Similarly, the parameters
in the empirical observation operator for VOD would also be
included in the set of parameters to be adjusted in assimila-
tion mode. We also note that many of the model’s parameters
are not very well constrained and could therefore change sub-
stantially. For example, an adjustment of the turnover times
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Figure 15. Daily in situ observed soil moisture at 5, 10 and 20 cm depth and simulated near-surface soil moisture, Ws, at Majadas de Tiétar
for the years 2016–2018 (a) and 2019–2021 (b).

for the litter and soil organic matter pools will change het-
erotrophic respiration, and, according to Eq. (S153), the fit
to simulated TER shown in Figs. 3 and 6. This could hap-
pen in the framework of either a local-scale assimilation of
eddy flux measurements as used here for evaluation or on a
regional or global scale with the assimilation of atmospheric
CO2 data, including those from space-based remote sensing
(Buchwitz et al., 2017).

A further limitation we found is that the model overesti-
mates soil water limitation at the savannah site. This may be
linked to the parameterisation of soil hydrological properties
or to the parameterisation of rooting depth and root penetra-
tion of the soil, both of which warrant further investigation.

We also find that the model may overestimate soil evapora-
tion for very dry soils.

A principal advantage of the process-based modelling ap-
proach presented here is that the system can be used to iden-
tify, better investigate and quantify specific processes – a fun-
damental and often decisive advantage over machine learn-
ing or complex statistical modelling systems (Thessen, 2016;
Lary et al., 2018). The advantage translates into a princi-
pal limitation in that if a given process contributes to the
measured signal, it has to be represented. Otherwise, miss-
ing process representation can lead to misleading parame-
ter choices that use processes included within the system to
compensate for the missing process – also known as “match-
ing observations for the wrong reasons”. Therefore, process
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modelling requires significant expert knowledge on ecosys-
tem functioning as well as experience with or direct contact
to experimental teams, compared to statistical interference
methods, including machine learning – which by definition
can never be right for the wrong reasons, as they are used es-
sentially as black boxes. The potential advantage of D&B
coupled to multiple observation operators is that it allows
for model testing via multiple data streams, thus providing
a more comprehensive model evaluation which makes it less
likely that the model matches observations while misrepre-
senting important processes.

6.4 Outlook

In this study, we have shown the value of the four data
streams (FAPAR, SIF, VOD and surface soil moisture), as
opposed to the intrinsically local measurements used for the
initial evaluation, which lies in their availability over large
spatial scales. Therefore, such data streams derived from
Earth observation sources will make it possible to evaluate
the model across larger regional scales. The immediate next
step would therefore be to evaluate D&B with regional rather
than local observations and see if in such a setup the noted
model–observation differences are reduced. The advantage
of regional comparisons is that substantial uncertainties aris-
ing from small-scale conditions are averaged out, and the
scale of comparison may by more appropriate for a typical
application of the model.

At such a regional scale, it will further be possible to
assimilate those data streams using the principal setup de-
scribed above. Here, it will be possible to adjust parameters
either spatially grouped by PFT, following CCDAS (Kamin-
ski et al., 2013), or independently at each pixel, following
DALEC (Quaife et al., 2007). A further approach that has
not yet been tested would be a combination of the two, where
parameters are adjusted at every grid cell independently but
with a partial constraint on parameter values assuming that
those values co-vary depending on closeness of geographical
location, altitude, land use, PFT or soil type.

A significant advantage of such a data assimilation system
will be the possibility to investigate if the process model is
capable of matching the observations not only for a specific
parameter set but also within reasonable bounds of the entire
model parameter space. Only if that is not possible can we
rigorously conclude that the remaining model–observation
mismatch is caused by a missing or unsuitable process rep-
resentation. We consider such investigations the next logical
step of development of the D&B modelling system, besides
any inclusion of further Earth observation data streams. The
further goal would then be to apply it to the task of routinely
producing data products on carbon and energy fluxes.

Code and data availability. The D&B code in Fortran 90 is
hosted, with simulation results, at the Zenodo repository under the

GNU Affero General Public License (AGPL), available from The
Inversion Lab (2024c, https://doi.org/10.5281/zenodo.12686822),
and is also available, with updates, from its repository at
https://gitlab.gwdg.de/tccas-team/TCCAS.git (The Inversion
Lab, 2024a). The observations are available on the TCCAS
home page https://tccas.inversion-lab.com/database.html (The
Inversion Lab, 2024b) and have been permanently archived at
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