

Supplement of

Historical trends and controlling factors of isoprene emissions in CMIP6 Earth system models

Ngoc Thi Nhu Do et al.

Correspondence to: Ngoc Thi Nhu Do (ngocdtn19@gmail.com)

The copyright of individual parts of the supplement might differ from the article licence.

18 Table S1. Descriptions of symbols and parameters in isoprene emission schemes.

Model (Scheme)	$\gamma_{_{TMP}}$	$\gamma_{_{PPFD}}$	γ_{A}	Υ _{SM}	$\gamma_{_{CO_2_inhi}}$	$\gamma_{_{CE}}$
				$\begin{aligned} \gamma_{SM} &= 1 \ (\theta > \theta_1) \\ \gamma_{SM} &= \frac{\theta - \theta_w}{\Delta \theta_1} (\theta_w < \theta < \theta_1) \end{aligned}$		
CESM2-WACCM/ NorESM2-LM(G2012)				$\gamma_{SM} = 0 \ (\theta < \theta_w)$ <i>Note:</i> $\gamma_{SM} = 1$ for CESM2- WACCM(G2012) in this study	$C_{CO_2} < 365 \ ppm: \ \gamma_{CO_2 \ inhi} = 1$ $C_{CO_2} \ge 365 \ ppm:$ $\gamma_{CO_2 \ inhi} = I_{Smax} - \frac{I_{Smax} \cdot (C_i)^h}{(C^*)^h + (C_i)^h}$	0.57
GFDL-ESM4 (G2006)	$E_{opt} \cdot \frac{C_{T2} \cdot exp(C_{T1}x)}{C_{T2} - C_{T1}(1 - exp(C_{T2}x))}$	$C_p \cdot \frac{\alpha PPFD}{\sqrt{1 + \alpha^2 PPFD^2}}$	$F_{new}A_{new} + F_{grow}A_{grow} + F_{mat}A_{mat} + F_{old}A_{old}$	-	-	$\frac{0.49 LAI_C}{[(1+0.2LAI_C^2)^{0.5}]}$
	$\frac{exp\left(\frac{c_{T1}(T_l - T_s)}{RT_sT_l}\right)}{c_{T2}(T_l - T_{t1})}$	$\alpha_1 c_L Q$	1) Evergreen: $\gamma_A = 0.05$ (leaf age < 1 month) ~ 1.2 (3 <leaf 24="" <="" age="" months)<br="">2) Deciduous $\gamma_A = 0.05$ (leaf age < 1 month) ~ 1.2</leaf>			
VISIT(G1997)	$0.961 + \exp\left(\frac{\sigma_{12}(r_l - r_{M2})}{RT_s T_l}\right))$	$\sqrt{1 + \alpha_1^2 Q^2}$	(2 <leaf 10="" <="" age="" months)<="" td=""><td>-</td><td>-</td><td>0.5</td></leaf>	-	-	0.5
GISS-E2.1-G(G1995)	$\frac{exp\left(\frac{c_{T1}(T_{l}-T_{s})}{RT_{s}T_{l}}\right)}{1+exp\left(\frac{c_{T2}(T_{l}-T_{M})}{RT_{s}T_{l}}\right)}$	$\frac{\alpha_1 c_L Q}{\sqrt{1 + \alpha_1^2 Q^2}}$	-	-	-	-
UKESM1-0-LL(P2011)	$(e^{0.1(T_a-T_{st})}; 2.3)$	$\frac{A_J + R_D}{\left(A_{J}\right)_{st} + \left(R_{D}\right)_{st}}$	_	-	$\frac{C_{i_{st}}}{C_i}$	-

 E_{opt} : the maximum normalized emission capacity (mol km⁻² h⁻¹)

x : Function of leaf temperature

 C_{T1}, C_{T2} : empirical coefficient (95, 230)

 $|c_{T1}, c_{T2}|$: empirical coefficient; 95000, 230000 J mol⁻¹)

 T_M : empirical coefficient (314 K)

R: Constant (8.314 J K⁻¹ mol⁻¹)

 T_a : air temperature

 T_{st} : temperature at a standard condition (303.15 K)

 C_p : function related to past PPFD

 α : empirical coefficients associated with past PPFD

PPFD: instantaneous photosynthesis photo flux density

 α_1, c_L : empirical coefficient (0.0027, 1.066)

Q: flux of PAR (μ mol m⁻² s⁻¹)

 A_I : leaf level net photosynthesis when RuBP is limiting

 R_D : Leaf level dark respiration

"st" indicates that the variables are measured at standard conditions

Fraction for four growth stages: new foliage (Fnew), growing foliage (Fgrow), mature foliage (Fmat), and old foliage (Fold).

Anew, Agrow, Amat, and Aold are the relative emission rates assigned to each canopy fraction depending on PFTs.

The only update of equation parameters from G2006 is the relative emission rates assigned to each compound class in G2012.

 θ : soil moisture (m³ m⁻³)

 θ_w : soil moisture threshold below which plants cannot extract water from soil (wilting point, m³ m⁻³)

 $\Delta \theta_1$ (=0.06): parameter from Pegoraro et al. (2004) for G2006 and $\Delta \theta_1$ (=0.04) for G2012.

I_{smax} : empirically coefficient (1.344)

 C_i : Leaf internal CO₂ concentration, which is estimated as 70% of the ambient CO₂ concentration (C_{CO_2})

 C^* : empirically coefficient (585)

h: empirically coefficient (1.4614)

 $C_{i_{st}}$: Leaf internal CO₂ concentration at standard conditions

Table S2. Summary of emulated sensitivity simulations using random forest regressors for CESM2-WACCM(G2012), NorESM2-LM(G2012) and UKESM1-0-LL(P2011).

Simulation No.	CO: some		Climate			
Simulation No.	CO ₂ conc.	LULCC	Temperature	Shortwave radiation	Precipitation	
SO	S0 Fixed in 1850 S1 -					
S 1			Climate fixed in 1850			
S2	-	Fixed in 1850	-	-	-	
S3	-	-	-	-	-	
S4	-	-	Fixed in 1850	-	-	
S5	-	-	-	Fixed in 1850	-	
S 6	-	-	-	-	Fixed in 1850	

"-" denotes the variable that varied annually during the simulation period.

Table S3. Summary of emulated sensitivity simulations using random forest regressors for GFDL-ESM4(G2006) and GISS-E2.1-G(G1995).

Simulation No.		Climate				
Simulation No.	LULCC	Temperature	Shortwave radiation	Precipitation		
S1′	Fixed in 1850	Climate fixed in 1850				
S2'	Fixed in 1850	-	-	-		
S3′	-	-	-	-		
S4	-	Fixed in 1850	-	-		
S5	-	-	Fixed in 1850	-		
S6	-	-	-	Fixed in 1850		
"-" denotes the variable that varied annually during the simulation period.						

Parion	Abbr	CESM2- WACCM	NorESM2 -LM	GFDL- ESM4 (G2006)	GISS- E2.1-G	UKESM1- 0-LL (P2011)	VISIT-S3	Ensemble	Inter- model	Relative inter- model spreads
Alasha NW Carada	AUUI.	0.44	0.20	0.28	1.54	(F2011)	1.20	0.95	osi	(%) 500/
Canada/ Greenl /Icel	ALA	0.44	0.29	0.38	2.73	2.55	2 20	1.64	0.51	59%
W North America	WNA	1.83	1.85	2.17	8 34	9.34	3 32	4 48	3.14	70%
C North America	CNA	3.04	3 57	9.46	18.07	10.83	5.72	8 45	5.14	61%
E. North America	ENA	5.41	5.40	5.05	6.66	5.82	5.26	5.60	0.53	9%
Central America/ Mexico	CAM	18.49	22.84	22.39	12.15	13.94	26.59	19.40	5.09	26%
Amazon	AMZ	175.13	175.74	107.26	98.98	116.55	132.90	134.43	30.77	23%
N.E. Brazil Coast South	NEB	13.22	8.65	19.94	19.61	27.67	30.86	19.99	7.66	38%
America	WSA	4.97	6.41	2.91	2.45	7.34	5.33	4.90	1.75	36%
S.E. South America	SSA	12.29	10.97	18.22	23.51	22.25	16.82	17.34	4.64	27%
N. Europe	NEU	0.51	0.39	0.77	1.32	1.04	1.80	0.97	0.48	50%
C. Europe S. Europe/	CEU	1.59	1.55	5.03	6.16	2.63	3.23	3.36	1.71	51%
Mediterranean	MED	1.40	1.07	5.12	2.53	3.66	4.62	3.07	1.53	50%
Sahara	SAH	0.10	0.08	0.34	24.89	0.16	0.47	4.34	9.19	212%
W. Africa	WAF	58.40	58.86	45.53	56.15	59.83	68.61	57.90	6.78	12%
E. Africa	EAF	17.04	14.57	20.01	37.82	32.61	32.24	25.71	8.84	34%
S. Africa	SAF	14.69	13.14	14.45	23.55	36.18	23.88	20.98	8.06	38%
N. Asia	NAS	3.13	2.75	5.22	9.92	7.64	6.98	5.94	2.53	43%
W. Asia	WAS	0.87	0.43	2.76	6.12	3.53	1.66	2.56	1.91	75%
C. Asia	CAS	0.71	0.47	2.68	3.36	4.50	1.86	2.26	1.42	63%
Tibetan Plateau	TIB	1.16	1.12	1.29	3.06	5.31	1.83	2.30	1.51	66%
E. Asia	EAS	15.15	16.79	15.17	19.85	21.65	17.50	17.69	2.38	13%
S. Asia	SAS	15.20	14.84	29.41	23.55	15.33	17.82	19.36	5.40	28%
S.E. Asia	SEA	71.68	87.83	79.53	14.69	43.16	64.78	60.28	24.67	41%
N. Australia	NAU	9.71	6.41	12.95	49.75	20.86	27.53	21.20	14.57	69%
S. Australia	SAU	5.27	5.18	5.24	5.55	2.12	4.39	4.63	1.18	25%
	Global	452	462	434	482	478	510	470	24	5%

Note: The ensemble mean is calculated by averaging the isoprene emissions values from the *historical* simulation of CMIP6 models and VISIT-S3(G1997). For each region, inter-model spread is defined as the standard deviation of the values across these models. The relative inter-model 39

spread is then calculated by dividing the standard deviation by the ensemble mean and multiplying by 100%, expressed as a percentage.

Table S5. Global trends and in	nterannual variation of climate variables ov	er three periods (1850-2014), (1850–1979) and (1980–
2014). Bold values represent t	that a trend is significant, with $p < 0.05$.		

	Trend			Interannual Variability		
	1850–2014	1850–1979	1980–2014	1850-2014	1850–1979	1980–2014
Temperature		$^{\circ}C$ w^{-l}			°C	
VIET \$2(C1007)	0.005	L 0 002	0.024	0.257	0.177	0.204
(01997)	+0.005	+0.002	+0.024	0.337	0.177	0.294
CESM2-WACCM(G2012)	+0.005	+0.002	+0.041	0.388	0.218	0.449
NorESM2-LM(G2012)	+0.002	0.000	+0.037	0.322	0.217	0.427
GFDL-ESM4(G2006)	+0.003	+0.002	+0.031	0.293	0.208	0.396
GISS-E2.1-G(G1995)	+0.005	+0.002	+0.026	0.406	0.316	0.396
UKESM1-0-LL(P2011)	+0.002	0.000	+0.034	0.333	0.224	0.395
Radiation						
		$W m^{-2} yr^{-1}$			$W m^{-2}$	
VISIT-S3(G1997)	-0.002	-0.001	+0.161	1.281	0.974	1.870
CESM2-WACCM(G2012)	-0.043	-0.037	-0.012	2.238	1.602	0.821
NorESM2-LM(G2012)	-0.034	-0.029	+0.004	1.836	1.366	0.613
GFDL-ESM4(G2006)	-0.034	-0.022	-0.042	1.908	1.107	0.774
GISS-E2.1-G(G1995)	-0.044	-0.033	-0.041	2.323	1.511	0.938
UKESM1-0-LL(P2011)	-0.030	-0.026	+0.006	1.651	1.245	0.713
Precipitation						
		$mm day^{-1} yr^{-1}$			$mm \ day^{-1}$	
VISIT-S3(G1997)	+0.001	+0.001	0.001	0.046	0.044	0.046
CESM2-WACCM(G2012)	0.000	0.000	0.001	0.077	0.076	0.084
NorESM2-LM(G2012)	0.000	0.000	0.000	0.065	0.064	0.069
GFDL-ESM4(G2006)	-0.001	-0.001	0.000	0.076	0.068	0.068
GISS-E2.1-G(G1995)	0.000	0.000	0.000	0.047	0.047	0.047
UKESM1-0-LL(P2011)	-0.001	-0.001	+0.002	0.056	0.054	0.054

Note: Interannual variation is defined as the standard deviation calculated from the global annual mean values over the given period.

46 Table S6. Plant functional types (PFTs) are estimated in CMIP6 models and VISIT(G1997).

	CESM2-WACCM,				
	NorESM2-LM	GFDL-ESM4	GISS-E2.1-G	UKESM1-0-LL	VISIT
Abbreviation	(G2012)	(G2006)	(G1995)	(P2011)	(G1997)
	Needleleaf deciduous	Needleleaf deciduous	Needleleaf deciduous	Needleleaf deciduous	Boreal deciduous
NeDeBo	boreal trees	trees	trees	trees	forest
	Needleleaf evergreen				Temperate needleleaf
NeEvTe	temperate trees	_			evergreen forest
	Needleleaf evergreen	Needleleaf evergreen	Needleleaf evergreen	Needleleaf evergreen	Boreal evergreen
NeEvBo	boreal trees	trees	trees	trees	forest
	Broadleaf evergreen			Broadleaf evergreen	Tropical evergreen
BrEvTr	tropical trees	-		tropical trees	forest
	Broadleaf evergreen	Broadleaf evergreen	Broadleaf evergreen	Broadleaf evergreen	Temperate broadleaf
BrEvTe	temperate trees	trees	trees	temperate trees	evergreen forest
	Broadleaf deciduous				Tropical deciduous
BrDeTr	tropical trees	_			forest
	Broadleaf deciduous				Temperate deciduous
BrDeTe	temperate trees	_	Cold/Drought		forest
	Broadleaf deciduous	Broadleaf deciduous	broadleaf deciduous	Broadleaf deciduous	Evergreen/Deciduous
BrDeBo	boreal trees	trees	trees	trees	mixed forest ^a
	Broadleaf evergreen				
EvTeSb	temperate shrub	_		Evergreen shrub	Dense shrubland
	Broadleaf deciduous				
DeTeSb	temperate shrub	-			Open shrubland
	Broadleaf deciduous		Cold/Arid adapted		
DeBoSb	boreal shrub	Shrubs	shrubs	Deciduous shrub	Tundra
C4Gr	Warm C4 grass	_	C4 grass	C4 grass	Desert/Savanna
C3Gr	Cool C3 grass	_	C3 grass	C3 grass	Grassland/Steppe
					Polar
ArcticC3Gr	Arctic C3 grass	Grass and others	Arctic C3 grass		Desert/Rock/Ice
				C3 crop, C3 pasture,	
Crop	Crops	Crops	C3 crops	C4 crop, C4 pasture	Crops

47 ^a temperate/boreal broadleaf and needleleaf trees

Abbreviation	CESM2-WACCM, NorESM2-LM (G2012)	GFDL-ESM4 (G2006)	GISS-E2.1-G (G1995)	UKESM1-0-LL (P2011)	VISIT (G1997)
NeDeBo	0.003	0.0	8.0	8.0	8.0
NeEvTe	1.2	2.0	8.0	8.0	8.0
NeEvBo	4.6	4.0			8.0
BrEvTr	20.6		24.0	24.0	24.0
BrEvTe	29.4	_		16.0	16.0
BrDeTr	33.3				24.0
BrDeTe	47.6				45.0
BrDeBo	52.4	24.0	24.0/45.0	35.0	8.0
EvTeSb	5.6			20.0	16.0
DeTeSb	19.0	_			24.0
DeBoSb	19.0	24.0	16.0/24.0	10.0	16.0
C4Gr	1.2	_	24.0	24.0	24.0
C3Gr	5.0		16.0		16.0
ArcticC3Gr	9.9	0.0	16.0	16.0	16.0
Crop	0.01	0.0	5.0	5.0	5.0

52 Note:

58

EFs in CESM2-WACCM(G2012), NorESM2-LM(G2012) are given in units of mass of species per unit area of land surface per unit time (e.g. $\mu g_{isoprene} m^{-2} h^{-1}$), as opposed to $\mu gC g_{mass}^{-1} h^{-1}$ used in other models and are denoted hereafter as EF_{area}. Therefore, a conversion must be applied to make these values comparable to the EFs used by other models, which are denoted as EF_{mass} ($\mu gC g_{mass}^{-1} h^{-1}$). To convert EF_{area} to EF_{mass}, we applied Eq. (1) of Weber et al. (2023) as shown below:

(S1)

57
$$EF_{mass} = EF_{area} \times \frac{1}{LAI_{ref}} \times \frac{1}{SLW} \times \frac{m_{Carbon}}{m_{species}} \times \frac{1}{Y_{CE}}$$

In that equation, LAI_{ref} is the reference leaf area index used by G2012 scheme (5 $m_{leaf}^2 m_{surface}^{-2}$), SLW is the specific leaf weight (g_{mass} $m_{surface}^{-2}$), the factor $\frac{m_{Carbon}}{m_{species}}$ accounts for the fact that G2012 scheme considers the mass flux of a given species

and other land models (e.g., P2011 and VISIT) use the mass flux of carbon, and γ_{cE} is the G2012 canopy environment coefficient (0.57).

As CLM5 land model is incorporated in CESM2-WACCM(G2012), NorESM2-LM(G2012), we use SLW dataset with the

64 CLM5. SLW is inverse from specific leaf area (SLA; $gC m_{leaf}^{-2}$) (Ali et al., 2016), and apply a scaling of 2 to convert the mass 65 of carbon to foliar mass.

66 Emission factors for UKESM1-0-LL(P2011) are derived from Weber et al. (2023), while for G2006 they are derived from the

67 technical description of CLM3 (Oleson et al., 2004). Emission factors in GISS-E2.1-G(G1995) are assigned from Guenther et

al. (1995) for corresponding PFTs, while values for VISIT(G1997) were derived from Lathiere et al. (2006).

Figure S1. Three-fold cross-validation of random forest regressor applied for each CMIP6 model's data. R² is coefficient of determination, RMSE is Root Mean Squared Error, and MAE is Mean Absolute Error.

Figure S3. The 26 SREX regions are defined by the IPCC Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (Seneviratne et al., 2012).

Figure S4. Annual fraction (%) of four plant functional types (PFTs): tree, grass, shrub/pasture, and crop during 1850–2014. Panels (a–f) show changes at (a) the global scale and in regions: (b) Amazon (AMZ), (c) Southeastern South America (SSA), (d) Southeast Asia (SEA), (e) Sahara (SAH), and (f) North Australia (NAU). Data from CESM2-WACCM(G2012), GFDL-ESM4(G2006), GISS-E2.1-G(G1995), and UKESM1-0-LL(P2011). NorESM2-LM(G2012) uses the same land component as CESM2-WACCM(G2012).

89 90 91 Figure S5. Global annual anomalies of (a) temperature; (b) shortwave radiation and (c) precipitation in CMIP6 models and VISIT-S3 during 1850–2014. Anomalies are deviation from baseline (1850–2014 average).

Figure S6. Global annual GPP of UKESM1-0-LL(P2011) and LAI of: (a) CESM2-WACM(G2012), (b) NorESM2-LM(G2012), (c)
 VISIT-S3(G1997) over land areas during 1850–2014. *r* is Pearson correlation.

97 Figure S7. Spatial distribution of annual trends in (a) temperature, (b) shortwave radiation, and (c) precipitation over land areas during 1850–2014. Only significant trends (with p < 0.05) are presented.

104Figure S8. Mean annual fraction (%) in the present day (2000–2014) of four plant functional types (PFTs): (a) tree, (b) grass, (c)105shrub, and (d) crop. Data from CESM2-WACCM(G2012), GFDL-ESM4(G2006), GISS-E2.1-G(G1995), and UKESM1-0-106LL(P2011). NorESM2-LM(G2012) uses the same land component as CESM2-WACCM (G2012).