
Geosci. Model Dev., 18, 2005–2019, 2025
https://doi.org/10.5194/gmd-18-2005-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.

M
odelexperim

entdescription
paper

From weather data to river runoff: using spatiotemporal
convolutional networks for discharge forecasting
Florian Börgel, Sven Karsten, Karoline Rummel, and Ulf Gräwe
Leibniz Institute for Baltic Sea Research Warnemünde, Rostock, Germany

Correspondence: Florian Börgel (florian.boergel@io-warnemuende.de)

Received: 28 August 2024 – Discussion started: 11 October 2024
Revised: 21 January 2025 – Accepted: 2 February 2025 – Published: 27 March 2025

Abstract. The quality of river runoff determines the qual-
ity of regional climate projections for coastal oceans or
other estuaries. This study presents a novel approach to river
runoff forecasting using convolutional long short-term mem-
ory (ConvLSTM) networks. Our method accurately predicts
daily runoff for 97 rivers within the Baltic Sea catchment
by modeling runoff as a spatiotemporal sequence defined by
atmospheric forcing. The ConvLSTM model predicts river
runoff with an accuracy of ± 5 % when compared to the
hydrological model. Compared to more complex process-
based hydrological models, ConvLSTM networks offer fast
processing times and easy integration into climate models,
demonstrating their potential as a powerful tool for climate
simulation and water resource management.

1 Introduction

River runoff is a key component of the global water cycle as it
comprises about one-third of the precipitation over land areas
(Hagemann et al., 2020), making accurate runoff forecasting
essential for effective water resource management, particu-
larly over extended periods (Fang et al., 2019; Tan et al.,
2018). In addition to short-term forecasting, long-term pro-
jections of river runoff are vital for climate change studies,
projecting flooding and droughts over global and river basins
(Cook et al., 2020). These studies calculate river runoff us-
ing a land model incorporating a hydrological model within
a coupled Earth system model (ESM) (Wang et al., 2022). In
the absence of a fully coupled ESM, river runoff as input for
ocean models can be created using hydrological models such
as Hydrological Discharge (HD) (Hagemann et al., 2020)
or HYdrological Predictions for the Environment (HYPE)

(Lindström et al., 2010). Hydrological models represent a
process-based approach where the water balance is calcu-
lated using hydrological processes (e.g., snow, glaciers, soil
moisture, or groundwater contribution). These models are
complex forecasting tools that are widely utilized, such as
high-resolution multi-basin models applied across Europe
(Hundecha et al., 2016).

The second approach to projecting river runoff employs
data-driven models, such as when calculating river runoff
as the difference between precipitation and evaporation over
a catchment area, with an integrated statistical correction
(Meier et al., 2012). With the recent rise in machine learn-
ing in climate research, various data-driven model architec-
tures have been explored for river runoff forecasting. Com-
mon approaches include feed-forward artificial neural net-
works; support vector machines; adaptive neuro-fuzzy infer-
ence systems; and, notably, long short-term memory (LSTM)
neural networks. LSTM networks have gained traction for
long-term hydrological forecasting due to their excellent per-
formance (Humphrey et al., 2016; Huang et al., 2014; Ashrafi
et al., 2017; Liu et al., 2020; Fang and Shao, 2022; Kratzert
et al., 2018). LSTM networks, first introduced by Hochre-
iter and Schmidhuber (1997), are an evolution of classical
recurrent neural networks (Sherstinsky, 2020). A significant
advantage of an LSTM network’s architecture is the memory
cell’s ability to retain gradients. This mechanism addresses
the vanishing gradient problem, where, as input sequences
elongate, the influence of initial stages becomes harder to
capture, causing gradients of early input points to approach
zero. LSTM networks have shown stability and efficacy in
sequence-to-sequence predictions. However, a limitation of
LSTM networks is their inability to effectively capture two-
dimensional structures, which is an area where convolutional
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Figure 1. Map of the Baltic Sea region. The red dots represent the
locations of the major rivers that flow into the Baltic Sea, as rep-
resented in the E-HYPE hydrological model. The annotation BY15
marks the chosen validation station situated in the central Baltic
Sea, which is used for validating the regional ocean model. The
four remaining annotations (red) indicate the positions of the rivers
that will be evaluated in detail.

neural networks (CNNs) excel (Höhlein et al., 2020). Rec-
ognizing this limitation, Shi et al. (2015) proposed a convo-
lutional LSTM (ConvLSTM) architecture that combines the
strengths of both LSTM networks and CNNs. In practical
applications, the combination of LSTM networks and CNNs
in the form of ConvLSTM models allowed for improvement
of the accuracy of precipitation nowcasting (Shi et al., 2015),
flood forecasting (Moishin et al., 2021), and river runoff fore-
casting (Ha et al., 2021; Zhu et al., 2023).

We use the Baltic Sea catchment as an example to illustrate
our approach. Although the methodology we propose is uni-
versally applicable across various geographical regions, the
Baltic Sea is a challenging region due to its unique hydro-
logical characteristics, which are nearly decoupled from the
open ocean (see Fig. 1) (Meier and Döscher, 2002). Fresh-
water enters the Baltic Sea through river runoff or positive
net precipitation (precipitation minus evaporation) over the
sea surface. The net precipitation accounts for 11 % and the
river input for 89 % of the total freshwater input (Meier and
Döscher, 2002). Consequently, the Baltic’s sea surface salin-
ity (SSS) is largely driven by freshwater supply from rivers.

SSS is an essential variable for the marine ecosystem in
the Baltic Sea, as most species are adapted to either ma-
rine or freshwater conditions. Therefore, biases in the SSS’s
spatial and temporal variability significantly impact primary
production and fish biomass (Kniebusch et al., 2019). Accu-
rate modeling of the Baltic Sea relies heavily on the qual-
ity of the river input data used in the simulations. Analyz-
ing nearly 100 years of observations, Winsor et al. (2001)

found that variations in freshwater storage are closely cor-
related with accumulated changes in river runoff. From
1902 to 1998, the average freshwater inflow into the Baltic
amounted to 16 115 m3 s−1, with contributions from river
runoff (14 085 m3 s−1) and net precipitation over the Baltic
Sea (2030 m3 s−1) (Meier and Kauker, 2003). This freshwa-
ter inflow results in a residence time of about 35 years for
freshwater in the Baltic Sea (Omstedt and Hansson, 2006;
Winsor et al., 2001; Meier and Kauker, 2003).

In this work, we demonstrate that ConvLSTM networks
are a reliable method for predicting multiple rivers simulta-
neously, using only atmospheric forcing as input data, which
allows us to emulate a hydrological model. The main focus of
this work is on presenting a ConvLSTM architecture capable
of predicting daily river runoff for 97 rivers across the Baltic
Sea catchment. To train the network, we use data from the
E-HYPE model (Väli et al., 2019) as reference output data
and data from the UERRA project (Uncertainties in Ensem-
bles of Regional Reanalyses, http://www.uerra.eu/, last ac-
cess: 25 March 2025) as atmospheric forcing (Sect. 3). The
quality of the model is evaluated in Sect. 4. The obtained re-
sults are discussed further and evaluated in Sect. 5.

2 Implemented model architecture

2.1 The main idea

We assume that the runoff at a specific point in time t for all
Nr considered rivers collected in the vector Rt

∈ RNr can be
accurately approximated by a functional M({Xtk [x,y,τ ]})

of k = 1, . . .,Nk atmospheric fields Xtk [x,y,τ ] which are
known for the past τ = 1, . . .,Nτ time instances. This rela-
tionship is expressed as

Rt
=M({Xtk[x,y,τ ]}). (1)

The atmospheric fields are evaluated over a spatial do-
main x = 1, . . .,Nx and y = 1, . . .,Ny , which is sufficiently
large to capture all significant local and non-local contri-
butions of the atmospheric fields to the river runoff. Typi-
cally, such mapping is realized using a hydrological model
that simulates all relevant physical processes, transforming
variables like precipitation and evaporation into river runoff.
This process relies heavily on domain knowledge to tune all
parameters to reasonable values. As an alternative, combin-
ing a ConvLSTM model with a subsequent fully connected
(FC) neural network can adequately represent this functional.
This approach eliminates the need for detailed knowledge of
the involved processes and their modeling. Instead, these fea-
tures can be “learned” by the network in an automated man-
ner; i.e., all free parameters are optimized such that the net-
work’s output reproduces the data of the hydrological model
with given atmospheric input fields. Our proposed network
architecture is visualized in Fig. 2 and is described in detail
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in the following sections. To provide an overview, we will
discuss the main components of this architecture one by one.

2.2 The ConvLSTM network

2.2.1 The LSTM approach

Before turning directly to the ConvLSTM, the simpler archi-
tecture of the plain LSTM model is examined. This serves
as a foundation for understanding the more complex Con-
vLSTM. The LSTM network, a specialized form of a re-
current neural network (RNN), is specifically designed to
model temporal sequences Xt

[1], . . .Xt
[τ ], . . .Xt

[Nτ ] of Nτ
input quantities Xt

[τ ] = (Xtk[τ ]) ∈ R
Nk . This sequence is

taken from a dataset given in the form of a time series {Xt
},

with the endpoint coinciding with the specific element in
the time series connected to time t , i.e., Xt

[Nτ ] ≡Xt ; see
Fig. 2. Here, Nk represents the number of input “channels”,
which can correspond to different measurable quantities. The
LSTM’s unique design allows it to adeptly handle long-range
dependencies, setting it apart from traditional RNNs in terms
of accuracy (see Fig. 3).

The critical component of the LSTM’s innovation is its
cell state, Ct

[τ ] = (Cth[τ ]) ∈ R
Nh , which stores state infor-

mation also referred to as long-term memory. This state
information complements the so-called hidden state vector
H t
[τ ] = (H t

h[τ ]) ∈ R
Nh , which is also known from simpler

neural network architectures. In the case of the LSTM, the
hidden state vector plays the role of short-term memory. The
cell state and the hidden state are vectors where each element
is associated with one of the Nh hidden layers labeled by h.
These internal, artificial degrees of freedom enable the high
adaptability of neural networks. The two state vectors are de-
termined through several self-parameterized gates, all in the
same vector space as Ct

[τ ]; see Fig. 3 for a visualization.
In particular, the forget gate F t

[τ ] defines the portion of
the previous (long-term memory) cell state Ct

[τ − 1] that
should be kept (see the dashed cyan box therein). The in-
put gate I t [τ ] controls the contribution of the current input
used to update the long-term memory Ct

[τ ] (magenta and
yellow boxes). The output gate, O t

[τ ], then determines how
much this updated long-term memory contributes to the new
(short-term memory) hidden state H t

[τ ] (dashed black box).
For a fixed point τ in the sequence, the action of an LSTM

cell, i.e., the connection between the input Xt
[τ ], the vari-

ous gates, and the state vectors, is given mathematically as
follows. First, the elements of the input sequence together
with the hidden state are mapped onto auxiliary gate vectors,
collectively denoted by gt [τ ] = (gth[τ ]) ∈ R

Nh , via

gth[τ ] =Mg
hkX

t
k[τ ] +N g

hh′
H t
h′ [τ − 1] +Bgh, (2)

where g ∈ i,f,o,c stands for the input, forget, output, and
cell state gates, respectively, and Einstein’s summation con-
vention is employed; i.e., indices that appear twice are
summed over. The calligraphic symbols Mg

hk,N
g

hh′
, and Bgh

are the free parameters of the network that are optimized
for the given problem during the training, which is at the
heart of any machine learning approach. The matrix Mg

=

(Mg
hk) ∈ R

Nh×Nk can be interpreted as a Markovian-like
contribution of the current input Xt

[τ ] to the gates, whereas
N g
= (N g

hh′
) ∈ RNh×Nh scales a non-Markovian part deter-

mined by the hidden state of the last sequence point τ − 1.
The vector Bg = (Bgh) ∈ R

Nh is a learnable bias. It should be
stressed that these parameters do not depend on t or τ and
are thus optimized once for the complete dataset {Xt

}.
Note that this mapping is sometimes extended by a contri-

bution to gth[τ ] from the past cell state Ct
[τ − 1]. Neverthe-

less, this “peeping” mechanism is not considered further in
this work. For the sake of brevity, we can write the mapping
more compactly in matrix vector form as

gt [τ ] =MgXt
[τ ] +N gH t

[τ − 1] +Bg. (3)

Second, the actual gate vectors are computed by the core
equations of the LSTM as proposed by Hochreiter and
Schmidhuber (1997):

I t [τ ] = σ(it [τ ]),

F t
[τ ] = σ(f t [τ ]),

O t
[τ ] = σ(ot [τ ]),

Ct
[τ ] = F t

[τ ] ◦Ct
[τ − 1] + I t [τ ] ◦ tanh(ct [τ ]),

H t
[τ ] =O t

[τ ] ◦ tanh(Ct
[τ ]), (4)

where σ denotes the logistic sigmoid function, tanh is the
hyperbolic tangent, and ◦ stands for the Hadamard product
(all applied in an element-wise fashion to the vectors). In the
last two equations, the roles of the input, forget, and output
gates as described above become apparent.

The third step in a single-layer LSTM (as employed for the
work presented here) is to provide the outputs of the current
LSTM cell, i.e., H t

[τ ] and Ct
[τ ], to the subsequent LSTM

cell that processes the next element Xt
[τ + 1] of the input

sequence.
The full action of the LSTM network up to the end of the

sequence can be written as a nested function call:(
H t
[Nτ ],C

t
[Nτ ]

)
= L

(
Xt
[Nτ ],L

(
Xt
[Nτ − 1], . . .

L
(
Xt
[1], (H t

[0],Ct
[0])

)
. . .

))
, (5)

where L
(
Xt
[τ ],

(
H t
[τ − 1],Ct

[τ − 1]
))

represents Eqs. (3)
and (4). For the present work, the initial conditions are cho-
sen as H t

[0] = Ct
[0] = 0, which means that there is no

memory longer than Nτ time steps.
The final outputs of the ConvLSTM chain, H t

[Nτ ] and
Ct
[Nτ ], encode information on the entire input sequence,

ending at time t . This information must be decoded via an
appropriate subsequent network, as described in Sect. 2.4.
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Figure 2. Combined ConvLSTM and FC network architecture. The starting point is the continuous time series of input data {Xt } (upper
white block). From this series, a contiguous sequence of Nτ elements (yellow block) is used to feed a chain of Nτ connected ConvLSTM
cells (light-blue block) building the ConvLSTM network (grey block). The input sequence is mapped via weighting matrices Mg (green
blocks) onto gate vectors gt [τ ]. The gate vectors are then used to update the cell state Ct [τ − 1] and the hidden state H t

[τ − 1] of the last
ConvLSTM cell to the current values Ct [τ ] and H t

[τ ], respectively. The update is performed with the LSTM core equations collectively
described by the mapping L; see Eq. (4). The weighting matrices N g (green blocks) control how much of the last hidden state enters the
updated state. The final output of the ConvLSTM H t

[τ ] is then propagated to a FC network, which itself is a chain of three FC layers
consisting of weighting matrices W and connected via ReLU functions; see Sect. 2.4. The final result is the river runoff Rt for all rivers
considered at the current time instance t (white block in the lower left corner). Note that all the bias vectors are omitted for the sake of clarity.
See the text for more information.

Figure 3. Inner structure of a long short-term memory cell. See
Fig. 2 and the text for information.

2.3 Combining the LSTM with spatial convolution

Although the plain LSTM performs well in handling tempo-
ral sequences of point-like quantities, it is not designed to
recognize spatial features in sequences of two-dimensional
maps as atmosphere–ocean interface fields. To address this
limitation, we employ a ConvLSTM architecture as de-
scribed below.

In this type of network, the elements of the input sequence
are given as spatially varying fields Xt

[τ ] = (Xtk[x,y,τ ]) ∈

RNk×(Nx×Ny ), where x ∈ [1,Nx] and y ∈ [1,Ny] run over
the horizontal and vertical dimensions of the map. To en-
able the “learning” of spatial patterns, the free parameters of
the network are replaced with two-dimensional convolution
kernels Mg

= (Mg
hk[ξ,η]) ∈ R

(Nh×Nk)×(Nξ×Nη) and N g
=

(N g

hh′
[ξ,η]) ∈ R(Nh×Nh)×(Nξ×Nη). The width and height of

the kernels are given by Nξ and Nη, respectively, and ξ ∈
[−(Nξ − 1)/2, (Nξ − 1)/2],η ∈ [−(Nη− 1)/2, (Nη− 1)/2].
Without loss of generality, we assume odd numbers for the
kernel sizes.
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A convolution with these kernels then gives the mapping
from the input quantities to the gates:

gth[x,y,τ ] =Mg
hk[ξ,η]X

t
k[x− ξ,y− η,τ ]

+N g

hh′
[ξ,η]H t

h′ [x− ξ,y− η,τ − 1] +Bgh, (6)

again with Einstein’s convention imposed.
It immediately becomes apparent that, in the case of the

ConvLSTM, the gate and state vectors must become vector
fields (∈ RNh×(Nx×Ny )) as well. We can write this mapping in
the same way as Eq. (3) but by replacing the standard matrix
vector multiplication with a convolution (denoted with ∗),
i.e.,

gt [τ ] =Mg
∗Xt
[τ ] +N g

∗H t
[τ − 1] +Bg. (7)

The subsequent processing of gt [τ ] remains symbolically
the same as presented in Eq. (4) but with all appearing quan-
tities now meaning vector fields instead of simple vectors.

In summary, the ConvLSTM is designed to process tasks
that require a combined understanding of spatial patterns and
temporal sequences in data. It merges the image-processing
capabilities of CNNs with the time series modeling of LSTM
networks.

2.4 Fully connected layer

As stated in Sect. 2.2.1, the final outputs H t
[Nτ ] and Ct

[Nτ ]

of the ConvLSTM encode information on the full input se-
quence. To contract this information to obtain the runoff vec-
tor Rt representing the Nr rivers, we propose subjecting the
final short-term memory (i.e., the hidden state H t

[Nτ ]) to an
additional FC network.

In particular, the dimensionality of the vector field H t
[Nτ ]

is reduced sequentially by three nested FC layers, each con-
nected to the other by the rectified linear unit (ReLU); see
Fig. 2. Integrating out artificial degrees of freedom in a step-
wise fashion has turned out to be beneficial.

The runoff of the rth river is then obtained via (using Ein-
stein’s convention)

Rtr =W3
rbReLU

(
W2
baReLU

(
W1
ah[x,y]H

t
h[x,y,Nτ ]

+B1
a

)
+B2

b

)
+B3

r , (8)

where a = 1, . . .,Na , b = 1, . . .,Nb, and the hyperparameters
Na andNb are chosen such thatNh·Nx ·Ny >Na >Nb >Nr
in order to achieve the aforementioned step-by-step reduc-
tion in dimensionality. The weights W and biases B stand
for parameters that are optimized during the training of the
network.

In matrix vector notation, this can be compressed to

Rt
=W3ReLU

(
W2ReLU

(
W1H t

[Nτ ] +B1
)
+B2

)
+B3. (9)

Combining Eq. (9) with Eq. (5) finally provides an explicit
formula for the initial assumption of modeling the runoff for

time t as a function of a sequence of atmospheric fields; i.e.,

Rt
=M({Xtk[x,y,τ ]})

=W3ReLU
(
W2ReLU

(
W1LH

(
Xt
[Nτ ],

L
(
Xt
[Nτ − 1], . . .L

(
Xt
[1], (0,0)

)
. . .

))
+B1)

+B2)
+B3, (10)

where LH means that only the hidden state vector of the final
ConvLSTM call is forwarded to the FC layer.

3 Technical details

3.1 Runoff data used for training

The non-stationary daily runoff data covering the period
1979 to 2011 are based on an E-HYPE hindcast simulation
that was forced by a regional downscaling of ERA-Interim
(Dee et al., 2011) with RCA3 (Samuelsson et al., 2011) and
implemented in NEMO-Nordic (Hordoir et al., 2019) as a
mass flux. The BMIP project (Gröger et al., 2022) played
a crucial role in addressing the lack of consistent river dis-
charge data for the entire study period (1961–2018). On this
point, no comparable long-term dataset with daily resolu-
tion was available. In other studies multiple datasets have
been merged but offer only monthly resolution (see, e.g.,
Fig. 3, Meier et al., 2019). Hence, a new homogeneous runoff
dataset was created. The 1961–1978 runoff data are based
on Bergström and Carlsson (1994), with values interpolated
from monthly to daily scales. The 2012–2018 data are de-
rived from an E-HYPE forecast product. To ensure consis-
tency for the analysis, the periods before (1961 to 1978) and
after (2012 to 2018) have been neglected. Notably, the Neva
River is an exception, as its discharge data originate from
observational records (1961–2016) provided by the Russian
State Hydrological Institute rather than E-HYPE hindcasts.

It should be noted that, for this study, we used an interme-
diate dataset of river runoff developed during BMIP that was
employed to run the ocean model. In this dataset, some rivers
had not yet been merged, resulting in discrepancies between
the totals of freshwater input locations of 97 in this study and
91 rivers in the final version of Väli et al. (2019). The qual-
ity of the runoff was extensively evaluated. The dataset was
found to closely align with historical observations for various
rivers and with the Bergström and Carlsson (1994) dataset,
showing a difference of under 1 % for the total Baltic Sea
runoff (Väli et al., 2019). For more information, see Gröger
et al. (2022) and Väli et al. (2019).

3.2 Atmospheric forcing

The UERRA-HARMONIE regional reanalysis dataset
was developed as part of the FP7 UERRA project
(http://www.uerra.eu/). The UERRA-HARMONIE sys-
tem represents a comprehensive, high-resolution reanalysis
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covering a wide range of essential climate variables. This
dataset includes data on air temperature, pressure, humidity,
wind speed and direction, cloud cover, precipitation, albedo,
surface heat fluxes, and radiation fluxes from January 1961 to
July 2019. With a horizontal resolution of 11 km and analy-
ses conducted at 00:00, 06:00, 12:00, and 18:00 UTC, it also
provides hourly resolution forecast model data. UERRA-
HARMONIE is accessible through the Copernicus Climate
Data Store (CDS, https://cds.climate.copernicus.eu/#!/home,
last access: 25 March 2025) initially produced during
the UERRA project and later changed to the Copernicus
Climate Change Service (C3S, https://climate.copernicus.
eu/copernicus-regional-reanalysis-europe, last access:
25 March 2025). For the training of the neural network, the
hourly data were remapped to daily values.

Lastly, it should be noted that UERRA is not the atmo-
spheric dataset that was used to drive the original E-HYPE
model.

3.3 Ocean model

We use a coupled three-dimensional ocean model, called the
Modular Ocean Model (MOM) (Griffies, 2012), to simulate
the Baltic Sea. It has a horizontal resolution of 3 nautical
miles, roughly corresponding to 5.556 km, and 152 vertical
z∗ levels with a first layer thickness of 0.5 m and a total depth
of 264 m. This model uses a finite-difference method to solve
the full set of primitive equations to calculate the motion of
water and the transport of heat and salt. The K-profile param-
eterization (KPP) was used as a turbulence closure scheme.
The model’s western boundary opens into the Skagerrak and
connects the Baltic Sea to the North Sea. A more detailed
description of the setup can be found in Gröger et al. (2022).

3.4 Neural network hyperparameters

Our architecture is implemented as a sequential model,
which allows for testing of multiple ConvLSTM layers –
a concatenation of multiple ConvLSTM cells. The follow-
ing ConvLSTM output is then mapped by three fully con-
nected linear layers, where the final layers map the output to
97 rivers. We used a custom loss function similar to a mean
squared error loss that penalizes outliers more severely. For
the training, we use the AdamW optimizer, which is an im-
proved version of Adam that decouples weight decay (reg-
ularization) from the gradient update, likely leading to bet-
ter generalization. The optimizer is configured with a learn-
ing rate and a weight decay to prevent overfitting. To adapt
the learning rate during training, we employ the ReduceL-
ROnPlateau scheduler. This scheduler monitors the valida-
tion mean squared error (MSE) and reduces the learning rate
by a factor of 10 if no improvement is observed over 10
epochs. This dynamic adjustment helped the model converge
more efficiently and avoid getting stuck in local minima.

Table 1. Final set of parameters for the ConvLSTM model.

Parameter name Parameter size

Channel size 4
No. of hidden layers 9
No. of time steps 30
Convolutional kernel size (7,7)
No. of ConvLSTM layers 1
Batch size 50

The best set of hyperparameters has been defined by iterat-
ing over a pre-defined selection of possible parameters. The
set of hyperparameters that has been chosen for the present
study is given in Table 1. The model’s performance can be
described as relatively robust when changing the set of hy-
perparameters (see Fig. A3). Interestingly, smaller input sizes
of 10 d also perform really well. However, we still decided to
use longer timescales, as we assume that larger input sizes
increase the stability of the model needed for long-term cli-
mate simulations.

River runoff is influenced not only by the current day’s at-
mospheric conditions, but also by the cumulative and lagged
effects of prior days’ weather patterns. The choice of atmo-
spheric fields was based on the assumption that the runoff
should be mainly given by the net precipitation (precipitation
minus evaporation). The evaporation flux is often calculated
as a function of wind speed, the air’s humidity and density,
and the involved turbulent exchange coefficients (Karsten
et al., 2024), where the air temperature influences the latter
two. Hence, as input, the model receives Nτ = 30 d of the at-
mospheric surface fields temperature, precipitation, specific
humidity, and wind speed, with a daily resolution to predict
daily river runoff R (see Fig. 4). This window size allows the
model to “remember” key atmospheric conditions leading up
to a given day, enabling it to accurately predict runoff.

4 Results

4.1 ConvLSTM model evaluation

The model was trained and evaluated with daily data from
1979 to 2011, as this period represents the only period of E-
HYPE without further bias correction applied to the runoff
to match the observations. The complete dataset was divided
into randomly chosen splits of 80 % training data, 10 % vali-
dation data to evaluate the model’s performance during train-
ing, and 10 % test data which are finally used to assess the
model’s performance after training. The model was trained
for 400 epochs, and the model weights with the lowest mean
squared validation error have been stored. The model’s ac-
curacy for the combined daily predicted runoff from all 97
rivers flowing into the Baltic Sea is displayed in Fig. 5. For
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Figure 4. Schematic structure of the ConvLSTM implementation for river runoff forecasting.

this evaluation, the model’s output is compared to the test
data, which the model has not seen during the training phase.

Panel (a) illustrates the relative prediction error in relation
to the E-HYPE data, indicating that, on daily timescales, the
model can predict river runoff with an accuracy of±5 %. The
overall correlation is 0.997, with the resulting error metrics
yielding a root mean square error (RMSE) of 323.99 m3 s−1

and a mean absolute error (MAE) of 249.51 m3 s−1. While
the model’s performance is already satisfactory, the discrep-
ancies between the actual values and the predictions can
partly be attributed to the use of a different atmospheric
dataset than the one originally used to drive the E-HYPE
model. However, by applying a rolling mean with a 5 d win-
dow, the prediction error is reduced to less than 1 %, which
is acceptable for climate modeling purposes. Panel (b) dis-
plays the distribution of residuals as a density plot. The fig-
ure shows that the distribution of residuals follows a Gaus-
sian shape. The bell-shaped curve is approximately centered
around zero, indicating that the model does not exhibit a sys-
tematic bias and meaning that it does not consistently overes-
timate or underestimate the river runoff values. Most resid-
uals lie within a narrow range around zero, suggesting that
large prediction errors are relatively rare.

For individual rivers, the distribution of the residuals still
follows a Gaussian shape. However, on daily timescales the
errors are larger, reaching ±30 % during individual peaks
(Fig. A4 in the Appendix).

In the following, the model’s performance in reproducing
the total river runoff and the discharges of four individual
rivers into the Baltic Sea is addressed. Using the test dataset,
Fig. 6 shows the predicted river runoff and E-HYPE data.

Panel (a) illustrates the total river runoff into the Baltic
Sea, with both the predicted runoff (ConvLSTM) and the
river runoff of the hydrological model E-HYPE smoothed
using a 5 d rolling mean. The predicted river runoff closely
matches the original data, demonstrating the model’s accu-
racy in predicting the overall river runoff into the Baltic Sea.
Panel (b) focuses on the Neva River (see Fig. 1), one of the
largest rivers flowing into the Baltic Sea. The residual plot

illustrates the prediction errors relative to the E-HYPE river
runoff data over time. The ConvLSTM model predicts the
Neva River runoff within a ± 2.5 % range.

Panels (c)–(e) show the prediction residuals for the Oder
River, the Ume River, and the Neman River (see Fig. 1).
Compared to the Neva River, the prediction errors are larger,
which may be attributed to the training dataset, as the runoff
for the Neva River is based on measurements, whereas that
of the other rivers is based solely on E-HYPE. Still, all of
the results lie within the error margin of E-HYPE itself com-
pared to the observations (Fig. A1), with the average error
on daily timescales for individual rivers mostly under 10 %,
showcasing the model’s ability to forecast runoff for this river
accurately.

The residuals were calculated as the relative difference be-
tween the predicted runoff and runoff data used for training
and were finally normalized by the runoff data used for train-
ing.

An overview of the individual error metrics is given in Ta-
ble A1.

4.2 Application of the ConvLSTM in combination with
an ocean model

Lastly, we evaluate the performance of the ConvLSTM by in-
corporating the predicted river runoff as hydrological forcing
into MOM5. This provides a robust validation of the runoff
model against more complex real-world conditions and en-
sures that the predictions accurately reflect the impact of the
river discharge on the ocean dynamics. This, in turn, confirms
that the ConvLSTM captures the temporal and spatial vari-
ability of river runoff and that the residuals shown in Fig. 5
are indeed insignificant when it comes to realistic applica-
tions.

Figure 7 shows the salinity comparison between E-HYPE
and the predicted river runoff at BY15 – a central station
in the Baltic Sea east of Gotland. The ocean model sim-
ulation using the river runoff predicted by the ConvLSTM
closely mirrors the control simulation that is forced with the
E-HYPE runoff. Panel (a) shows the surface salinity, repre-
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Figure 5. Model accuracy for predicted river runoff. (a) Relative prediction error over time in relation to the E-HYPE data. (b) Density plot
of the residuals.

senting the high-frequency variations in salinity heavily af-
fected by river runoff. The predicted salinity using ConvL-
STM river runoff matches the control simulation well, cap-
turing the short-term fluctuations effectively. Panel (b) shows
the bottom salinity, representing low-frequency variations in
the Baltic Sea, which is also reproduced well with the Con-
vLSTM predictions. It should be noted that the discrepan-
cies between the simulated salinity and the observed values
at BY15 are not directly linked to the performance of the
ConvLSTM river runoff model. Instead, they are attributed
to MOM5’s representation of physical processes, particularly
the treatment of mixing, advection, and stratification in the
Baltic Sea. Several factors may contribute to these discrep-
ancies. The Baltic Sea is known for its strong vertical stratifi-
cation due to the input of freshwater from rivers. MOM5 uses
the KPP scheme for turbulence, which may not perfectly re-
solve small-scale mixing processes and vertical salinity gra-
dients. This can result in an overestimation of salinity vari-
ability at the surface. Moreover, while MOM5 captures the
large-scale dynamics of the Baltic Sea, the lateral transport of
saltwater from the Skagerrak into the central Baltic Sea may
not be represented perfectly. This can introduce variability
in surface and bottom salinity that is not observed in real-
ity. However, all in all, the long-term trends and larger salin-
ity changes are captured accurately, indicating the model’s
robustness in predicting high-frequency and low-frequency
variations.

The final evaluation of the ConvLSTM model focuses on
the spatial accuracy of river runoff predictions as visualized
in Fig. 8. Panel (a) exhibits the vertically averaged salin-
ity from 1981 to 2011 in the reference simulation. It high-
lights the Baltic Sea’s strong horizontal gradients and com-
plex topographic features, as evidenced by salinity varia-
tions in deeper waters captured by the vertical integration.

In panel (b), these reference results are compared to the Con-
vLSTM simulation by showing the percentage difference in
vertically averaged salinity. Overall, the differences remain
below 1 %, except in the Gulf of Riga (22–24° E, 56.5–
58.5° N for orientation), where the Daugava River dominates
the runoff. The difference is approximately 1 %.

5 Conclusions

With the increasing demand from decision-makers for re-
gional climate projections to quantify regional climate
change impacts, the availability of precise hydrological fore-
casting becomes invaluable. In this work, we describe the im-
plementation of a ConvLSTM network for predicting river
runoff in a regional climate model, highlighting its potential
to enhance river runoff forecasting across different coastal
seas. Our model not only reproduces the total river runoff
entering the Baltic Sea but also performs exceptionally well
for individual rivers.

All of the results lie within the error margin of the hydro-
logical model itself when compared to the observations, with
the average error on daily timescales for individual rivers
mostly under 10 %. Hence, our results confirm the excellent
performance of LSTM networks in predicting river runoff
(Humphrey et al., 2016; Huang et al., 2014; Ashrafi et al.,
2017; Liu et al., 2020; Fang and Shao, 2022; Kratzert et al.,
2018). In addition, our results align well with the observed
performance of ConvLSTM networks in similar applications
for predicting individual rivers (Ha et al., 2021), basin-wide
runoff (Zhu et al., 2023), and precipitation nowcasting (Shi
et al., 2015). In our study, we further extend the use of Con-
vLSTM networks by predicting multiple (n= 97) rivers at
once while maintaining high accuracy for the entire Baltic
Sea as well as individual rivers. Moreover, the predicted river
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Figure 6. Model performance in predicting river runoff: (a) total river runoff to the Baltic Sea with a 5 d rolling mean for both the predicted
and original data of the E-HYPE hydrological model. (b–e) Residuals of runoff prediction for individual rivers showing the prediction error
over time. The residuals were calculated as the relative difference between the predicted and observed values, normalized by the observed
values.

runoff proved robust when using the river runoff in a compre-
hensive ocean model setup of the Baltic Sea. Extending the
simulation beyond the known period also provided robust re-
sults (Fig. A2).

The transition from traditional hydrological models to ma-
chine learning approaches, such as the implementation of
the ConvLSTM model, offers significant advantages as the
model can be integrated seamlessly into regional climate
models, allowing for real-time computation of river runoff
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Figure 7. Salinity comparison at BY15 in the Baltic Sea: (a) surface salinity showing high-frequency variations and (b) bottom salinity show-
ing low-frequency trends. The ConvLSTM predictions follow the E-HYPE data closely, demonstrating the model’s accuracy in reproducing
salinity levels affected by river runoff.

Figure 8. Spatial accuracy of river runoff predictions using the Con-
vLSTM model. (a) Vertically averaged salinity for the period 1981
to 2011 in the reference simulation, highlighting the sharp horizon-
tal gradients and complex topographic features in the Baltic Sea.
(b) Percentage difference in vertically averaged salinity between the
reference simulation and the ConvLSTM simulation.

while making climate projections. While the initial training
of the model requires substantial computational resources,
this remains significantly less intensive than running compre-
hensive hydrological models. Furthermore, once trained, the
ConvLSTM model is computationally efficient during infer-
ence, ensuring enhanced forecasting capabilities without sig-
nificantly increasing computational demands. The achieved
speedup (depending on the complexity of the hydrological
model) is within the range of 30 to 90 times faster.

Nevertheless, the quality of the ConvLSTM model still de-
pends on the performance of the hydrological model, which
provides a comprehensive, homogeneous dataset that is es-
sential for effective training. While different in their archi-
tectures, both the hydrological model and the ConvLSTM
model provide a mapping from atmospheric variables to river
runoff. This training approach contrasts with using measure-
ment data for training, which is significantly more challeng-
ing due to the data sparsity over larger regions and potentially
varying measurement techniques. Thus, rather than render-
ing traditional methods obsolete, the integration of machine
learning models builds upon and enhances the foundational
data provided by hydrological model methods.

The robust performance of the ConvLSTM model in sim-
ulating river runoff and its possible effective integration
into coupled regional climate models, as in the IOW ESM
(Karsten et al., 2024), pave the way for a multitude of new
storyline simulations. Importantly, this can now be achieved
without any expert domain knowledge on hydrological mod-
eling. Hence, we can now explore various “what if” scenarios
more reliably, under the assumption that the model weights
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attained during the training are robust. Such scenario testing
is crucial for crafting effective water resource management
strategies and adapting to a changing climate, and it therefore
represents a significant step forward in our ability to under-
stand and predict the complex dynamics of river systems and
their impact on regional climate systems.

Appendix A

Figure A1. Residual for the hydrological model E-HYPE as well as for the prediction by the ConvLSTM model. The residuals were calcu-
lated as the relative differences between the predicted and observed values, normalized by the observed values.
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Figure A2. Extended regional ocean model simulation for the period 1961–2009. Station BY15 is validated.

Figure A3. Model accuracy for predicted river runoff for 10 different hyperparameters. (a) Relative prediction error over time in relation to
the E-HYPE data. (b) Density plot of the residuals.
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Table A1. Model performance in predicting river runoff, together with the error metrics.

River RMSE (m3 s−1) MAE (m3 s−1) Correlation

All rivers 323.99 249.51 0.997
Neva 65.41 48.36 0.995
Oder 49.93 38.79 0.994
Ume 23.73 17.92 0.994
Neman 55.65 41.63 0.996

Figure A4. Model accuracy for predicted river runoff for individual rivers. (a) Relative prediction error over time in relation to the E-HYPE
data. (b) Density plots of the residuals.
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