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Abstract. Parameterizations in earth system models (ESMs)
are subject to biases and uncertainties arising from subjective
empirical assumptions and incomplete understanding of the
underlying physical processes. Recently, the growing repre-
sentational capability of machine learning (ML) in solving
complex problems has spawned immense interests in climate
science applications. Specifically, ML-based parameteriza-
tions have been developed to represent convection, radiation,
and microphysics processes in ESMs by learning from ob-
servations or high-resolution simulations, which have the po-
tential to improve the accuracies and alleviate the uncertain-
ties. Previous works have developed some surrogate models
for these processes using ML. These surrogate models need
to be coupled with the dynamical core of ESMs to investi-
gate the effectiveness and their performance in a coupled sys-
tem. In this study, we present a novel Fortran–Python inter-
face designed to seamlessly integrate ML parameterizations
into ESMs. This interface showcases high versatility by sup-
porting popular ML frameworks like PyTorch, TensorFlow,
and scikit-learn. We demonstrate the interface’s modularity
and reusability through two cases: an ML trigger function
for convection parameterization and an ML wildfire model.
We conduct a comprehensive evaluation of memory usage
and computational overhead resulting from the integration
of Python codes into the Fortran ESMs. By leveraging this

flexible interface, ML parameterizations can be effectively
developed, tested, and integrated into ESMs.

1 Introduction

Earth system models (ESMs) play a crucial role in under-
standing the mechanism of the climate system and pro-
jecting future changes. However, uncertainties arising from
parameterizations of subgrid processes pose challenges to
the reliability of model simulations (Hourdin et al., 2017).
Kilometer-scale high-resolution models (Schär et al., 2020)
can potentially mitigate the uncertainties by directly resolv-
ing some key subgrid-scale processes that need to be pa-
rameterized in conventional low-resolution ESMs. Another
promising method, superparameterization – a type of multi-
model framework (MMF) (Randall et al., 2003; Randall,
2013), explicitly resolves subgrid processes by embedding
high-resolution cloud-resolved models within the grid of
low-resolution models. Consequently, both high-resolution
models and superparameterization approaches have shown
promise in improving the representation of cloud formation
and precipitation. However, their implementation is chal-
lenged by exceedingly high computational costs.

In recent years, machine learning (ML) techniques have
emerged as a promising approach to improve parameteriza-
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tions in ESMs. They are capable of learning complex patterns
and relationships directly from observational data or high-
resolution simulations, enabling the capture of nonlinearities
and intricate interactions that may be challenging to repre-
sent with traditional parameterizations. For example, Zhang
et al. (2021) proposed an ML trigger function for a deep
convection parameterization by learning from field observa-
tions, demonstrating its superior accuracy compared to tra-
ditional convective available potential energy (CAPE)-based
trigger functions. Chen et al. (2023) developed a neural-
network-based cloud fraction parameterization, better pre-
dicting both the spatial distribution and the vertical struc-
ture of cloud fraction when compared to the traditional Xu–
Randall scheme (Xu and Randall, 1996). Krasnopolsky et al.
(2013) prototyped a system using a neural network to learn
the convective temperature and moisture tendencies from
cloud-resolving model (CRM) simulations. These tendencies
refer to the rates of change of various atmospheric variables
over one time step, diagnosed from particular parameteriza-
tion schemes. These studies lay the groundwork for integrat-
ing ML-based parameterization into ESMs.

However, the aforementioned studies primarily focus on
the offline ML of parameterizations that do not directly in-
teract with ESMs. Recently, there have been efforts to im-
plement ML parameterizations that can be directly coupled
with ESMs. Several studies have developed ML parame-
terizations in ESMs by hard coding custom neural network
modules, such as O’Gorman and Dwyer (2018), Rasp et al.
(2018), Han et al. (2020), and Gettelman et al. (2021). They
incorporated a Fortran-based ML inference module to allow
the loading of the pre-trained ML weights to reconstruct the
ML algorithm in ESMs. The hard-coding has limitations.
When a trained ML model is incorporated into ESMs, it
is frozen and cannot be updated during runtime. Recently,
Kochkov et al. (2024) introduced the NeuralGCM, an inno-
vative approach that enables the ML model to be updated
during runtime with a differentiable dynamical core. This al-
lows for end-to-end training and optimization of the interac-
tions with large-scale dynamics. However, the hard-coding
coupling method does not support such capability.

Fortran–Keras bridge (FKB; Ott et al., 2020) and C for-
eign function interface (CFFI; https://cffi.readthedocs.io, last
access: 18 March 2025) are two packages that support two-
way coupling between Fortran-based ESMs and Python-
based ML parameterizations. FKB enables tight integration
of Keras deep learning models but is specifically bound to
the Keras library, limiting its compatibility with other frame-
works like PyTorch and scikit-learn. On the other hand, CFFI
provides a more flexible solution that in principle supports
coupling various ML packages due to its language-agnostic
design. Brenowitz and Bretherton (2018) utilized it to enable
the calling of Python ML algorithms within ESMs. However,
the CFFI has several limitations. When utilizing CFFI to in-
terface Fortran and Python, it uses global data structures to
pass variables between the two languages. This approach re-

sults in additional memory overhead as variable values need
to be copied between languages instead of being passed by
reference. Additionally, CFFI lacks automatic garbage col-
lection for the unused memory within these data structures
and copies. Consequently, the memory usage of the program
gradually increases over its lifetime. In addition, when using
CFFI to call Python functions from a Fortran program, the
process involves several steps such as registering variables
into a global data structure, calling the Python function, and
retrieving the calculated result. These multiple steps can in-
troduce computational overhead due to the additional opera-
tions required.

Additionally, Wang et al. (2022b) developed a coupler to
facilitate two-way communication between ML parameteri-
zations and host ESMs. The coupler gathers state variables
from the ESM using the message passing interface (MPI)
and transfers them to a Python-based ML module. It then
receives the output from the Python code and returns them
to the ESM. While this approach effectively bridges Fortran
and Python, its use of file-based data-passing to exchange in-
formation between modules carries some performance over-
head relative to tighter coupling techniques. Optimizing the
data transfer, such as via shared memory, remains an area
for improvement to fully leverage this coupler’s ability to in-
tegrate online-adaptive ML parameterizations within large-
scale ESM simulations, which is the main goal for this study.

In this study, we investigate the integration of ML param-
eterizations into Fortran-based ESM models by establishing
a flexible interface that enables the invocation of ML algo-
rithms in Python from Fortran. This integration offers ac-
cess to any Python codes from Fortran, including a diverse
range of ML frameworks, such as PyTorch, TensorFlow, and
scikit-learn, which can effectively be utilized for parame-
terizing intricate atmospheric and other climate system pro-
cesses. The coupling of the Fortran model and the Python
ML code needs to be performed for thousands of model
columns and over thousands of time steps for a typical model
simulation. Therefore, it is crucial for the coupling interface
to be both robust and efficient. We showcase the feasibility
and benefits of this approach through case studies that in-
volve the parameterization of deep convection and wildfire
processes in ESMs. The two cases demonstrate the robust-
ness and efficiency of the coupling interface. The focus of
this paper is on documenting the coupling between the For-
tran ESM and the ML algorithms and systematically evalu-
ating the computational efficiency and memory usage of dif-
ferent ML frameworks (such as PyTorch and TensorFlow),
different ML algorithms, and different configuration of a cli-
mate model. The assessment of the scientific performance of
the ML emulators will be addressed in follow-on papers. The
showcase examples emphasize the potential for high modu-
larity and reusability by separating the ML components into
Python modules. This modular design facilitates indepen-
dent development and testing of ML-based parameterizations
by researchers. It enables easier code maintenance, updates,
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Figure 1. The interface of the ML bridge for two-way communication via memory between the Fortran ESM and the Python ML module.

and the adoption of state-of-the-art ML techniques with only
minimal disruption to the existing Fortran infrastructure. Ul-
timately, this advancement will contribute to enhanced pre-
dictions and a deeper comprehension of the evolving climate
of our planet. It is important to note that the current interface
only supports executing deep learning algorithms on CPUs
and does not support running them on GPUs.

The rest of this paper is organized as follows: Sect. 2
presents the detailed interface that integrates ML into
Fortran-based ESM models. Section 3 discusses the perfor-
mance of the interface and presents its application in two case
studies. Finally, Sect. 4 provides a summary of the findings
and a discussion of their implications.

2 General design of the ML interface

2.1 Architecture of the ML interface

We developed an interface using shared memory to enable
two-way coupling between Fortran and Python (Fig. 1). The
ESM used in the demonstration in Fig. 1 is the U.S. De-
partment of Energy (DOE) Energy Exascale Earth System
Model (E3SM; Golaz et al., 2019, 2022). Because Fortran
cannot directly call Python, we utilized C as an intermedi-
ary since Fortran can call C functions. This approach lever-
ages C as a data hub to exchange information without requir-
ing a framework-specific binding like KFB. As a result, our
interface supports invoking any Python-based ML package
such as PyTorch, TensorFlow, and scikit-learn from Fortran.
While C can access Python scalar values through the built-
in PyObject_CallObject function from the Python C API, we
employed Cython for its ability to transfer array data between
the languages. Using Cython, multidimensional data struc-
tures can be efficiently passed between Fortran and Python
modules via C, allowing for flexible training of ML algo-
rithms within ESMs.

2.2 Code structure

Figure 2 illustrates how the framework operates using a
toy code example. The Fortran–Python interface comprises
a Fortran wrapper and C wrapper files, which are bound
together. The Fortran-based ESM first imports the Fortran
wrapper, allowing it to call wrapper functions with input and
output memory addresses. The interface then passes these
memory addresses to the Python-based ML module, which
performs the ML predictions and returns the output address
to the Fortran model.

When coupling the Python ML module with the Fortran
model using the interface, additional steps should be con-
sidered: (1) the ML module should remain active through-
out the model simulations, without any Python finalization
calls, ensuring it is continuously available. (2) The Python
module should load the trained ML model and any required
global data only once rather than at each simulation step.
This one-time initialization process improves efficiency and
prevents unnecessary repetition. On the Fortran ESM side,
the init_ml() function is called within the atm_init_mct mod-
ule to load the ML model and global data (shown in Fig. 3).
Then, similar to the toy code, we call the wrapper func-
tion, pass input variables to Python for ML predictions, and
return the results to the Fortran side. (3) When compiling
the complex system, which includes Python, C, Cython, and
Fortran code, the Python path should be specified in the
CFLAGS and LDFLAGS. It is important to note that without
the position-independent compiling flag (-fPIC), the hybrid
system will only work on a single node and may cause seg-
mentation faults on multiple nodes. Including it can resolve
this issue, allowing multi-node compatibility.

In traditional ESMs, subgrid-scale parameterization rou-
tines such as convection parameterizations are often cal-
culated separately for each vertical column of the model
domain. Meanwhile, the domain is typically decomposed
horizontally into 2D chunks that can be solved in parallel
using MPI processes. Each CPU core/MPI process is as-
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Figure 2. Toy code illustrating the Fortran–Python interface. It is noted that a fleshed-out, compliable version of this toy example exists in
the linked GitHub repository.

Figure 3. The code structure of the ML bridge interface using the ML closure in deep convection as an example.

signed a number of chunks of model columns to update
asynchronously (Fig. 4). Our interface takes advantage of
this existing parallel decomposition by designing the ML
calls to operate over all columns simultaneously within each
chunk rather than invoking the ML scheme individually for
each column. This allows the coupled model–ML system
to leverage parallelism in the neural network computations.
If the ML were called separately for every column, paral-
lel efficiencies would not be realized. By aggregating inputs
over the chunk-scale prior to interfacing with Python, per-
formance is improved through better utilization of multi-core
and GPU-based ML capabilities during parameterization cal-
culations.

3 Results

The framework explained in the previous section provides
seamless support for various ML parameterizations and var-
ious ML frameworks, such as PyTorch, TensorFlow, and
scikit-learn. To demonstrate the versatility of this framework,
we applied it in two distinct case applications. The first appli-
cation replaces the conventional CAPE-based trigger func-
tion in a deep convection parameterization with a machine-
learned trigger function. The second application involves an
ML-based wildfire model that interacts bidirectionally with
the ESM. We provide a brief introduction to these two cases.
Detailed descriptions and evaluations will be presented in
separate papers.

The framework’s performance is influenced by two pri-
mary factors: increasing memory usage and increasing com-
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Figure 4. Data and system structure. The model domain is decomposed into chunks of columns. pver refers to number of pressure vertical
levels. A chunk contains multiple columns (up to pcol). Multiple chunks can be assigned to each CPU core.

putational overhead. Firstly, maintaining the Python environ-
ment fully persistent in memory throughout model simula-
tions can impact memory usage, especially for large ML al-
gorithms. This elevated memory footprint increases the risk
of leaks or crashes as simulations progress. Secondly, execut-
ing ML components within the Python interpreter inevitably
introduces some overhead compared to the original ESMs.
The increased memory requirements and decreased compu-
tational efficiency associated with these considerations can
impact the framework’s usability, flexibility, and scalability
for different applications.

To comprehensively assess performance, we conducted a
systematic evaluation of various ML frameworks, ML algo-
rithms, and physical models. This evaluation is built upon the
foundations established for evaluating the ML trigger func-
tion in the deep convection parameterization.

3.1 Application cases

3.1.1 ML trigger function in deep convection
parameterization

In general circulation models, uncertainties in convection pa-
rameterizations are recognized to be closely linked to the
convection trigger function used in these schemes (Bechtold
et al., 2004; Lee et al., 2007; Xie et al., 2004; Xie and Zhang,
2000). The convective trigger in a convective parameteriza-
tion determines when and where model convection should
be triggered as the simulation advances. In many convection
parameterizations, the trigger function consists of a simple,
arbitrary threshold for a physical quantity, such as convec-
tive available potential energy (CAPE). Convection will be
triggered if the CAPE value exceeds a threshold value.

In this work, we use this interface to test a newly devel-
oped ML trigger function in E3SM. The ML trigger function
was developed with the training data originating from simu-
lations performed using the kilometer-resolution (1.5 km grid
spacing) Met Office Unified Model Regional Atmosphere 1.0
configuration (Bush et al., 2020). Each simulation consists of

a limited area model (LAM) nested within a global forecast
model providing boundary conditions (Walters et al., 2017;
Webster et al., 2008). In total 80 LAM simulations were run
located so as to sample different geographical regions world-
wide. Each LAM was run for 1 month, with 2-hourly output,
using a grid length of 1.5 km, a 512× domain, and a model
physics package used for operational weather forecasting.
The 1.5 km data are coarse-grained to several scales from 15
to 144 km.

A two-stream neural network architecture is used for the
ML model. The first stream takes profiles of temperature,
specific humidity, and pressure across 72 levels at each scale
as inputs and passes them through a 4-layer convolutional
neural network (CNN) with kernel sizes of 3 to extract large-
scale features. The second stream takes mean orographic
height, standard deviation of orographic height, land fraction,
and the size of the grid box as inputs. The outputs of the two
streams are then combined and fed into a two-layer fully con-
nected network to allow the ML model to leverage both at-
mospheric and surface features when making its predictions.
The output is a binary variable indicating whether the con-
vection happens, based on the condition of buoyant cloudy
updrafts (BCUs; e.g., Hartmann et al., 2019; Swann, 2001).
If there are three contiguous levels where the predicted BCU
is larger than 0.05, the convection scheme is triggered. Once
trained, the CNN is coupled to E3SM, and thermodynamic
information from E3SM is passed to it to predict the trigger
condition. Then, the predicted result is returned to E3SM.

Figure 5 shows the comparison of annual mean precipi-
tation between the control run using the traditional CAPE-
based trigger function and the run using the ML BCU trig-
ger function. The ML BCU scheme demonstrates reasonable
spatial patterns of precipitation, similar to the control run,
with comparable root-mean-square error and spatial correla-
tion. Additional experiments exploring the definition of BCU
and varying the thresholds along with an in-depth analysis
will be presented in a follow-up paper.
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Figure 5. Comparison of annual mean precipitation between the control run using the CAPE-based trigger function (a, c) and the run using
the ML BCU trigger function (b, d).

3.1.2 ML learning fire model

Predicting wildfire burned area is challenging due to the
complex interrelationships between fires, climate, weather,
vegetation, topography, and human activities (Huang et al.,
2020). Traditionally, statistical methods like multiple linear
regression have been applied but are limited in the num-
ber and diversity of predictors considered (Yue et al., 2013).
In this study, we develop a coupled fire–land–atmosphere
framework that uses machine learning to predict wildfire
area, enhancing long-term burned area projections and as-
sessing fire impacts by enabling simulations of interactions
among fire, atmosphere, land cover, and vegetation.

The ML algorithm is trained using a monthly dataset,
which includes the target variable of burned area, as well as
various predictor variables. These predictors encompass lo-
cal meteorological data (e.g., surface temperature, precipita-
tion), land surface properties (e.g., monthly mean evapotran-
spiration and surface soil moisture), and socioeconomic vari-
ables (e.g., gross domestic product, population density), as
described by Wang et al. (2022a). In the coupled fire–land–
atmosphere framework, meteorology variables and land sur-
face properties are provided by the E3SM. We use the eX-
treme Gradient Boosting (XGBoost) algorithm implemented
in scikit-learn to train the ML fire model. Figure 6 demon-
strates that the ML4Fire model exhibits superior perfor-
mance in terms of spatial distribution compared to process-
based fire models, particularly in the southern US region.
Detailed analysis will be presented in a separate paper. The
ML4Fire model has proven to be a valuable tool for studying

vegetation–fire interactions, enabling seamless exploration
of climate–fire feedbacks.

3.2 Performance of different ML frameworks

The Fortran–Python bridge ML interface supports various
ML frameworks, including PyTorch, TensorFlow, and scikit-
learn. These ML frameworks can be trained offline using
kilometer-scale high-resolution models (such as the ML trig-
ger function) or observations (ML fire model). Once trained,
they can be plugged into the ML bridge interface through
different API interfaces specific to each framework. The cou-
pled ML algorithms are persistently resident in memory, just
like the other ESM components. During each step of the pro-
cess, the performance of the full system is significantly af-
fected by memory usage. If memory consumption increases
substantially, it may lead to memory leaks as the number of
time step iterations increases. In addition, Python, being an
interpreted language, is typically considered to have slower
performance compared to compiled languages like C/C++
and Fortran. Therefore, incorporating Python may decrease
computational performance. We examine the memory usage
and computational performance across various ML frame-
works based on implementing the ML trigger function in
E3SM. The ML algorithm is implemented as a two-stream
CNN model using Pytorch and TensorFlow frameworks, as
well as XGBoost using the scikit-learn package. It should be
noted that XGBoost, a boosting tree-based model, is a com-
pletely different type of ML model compared to the CNNs,
whose type is deep neural network.
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Figure 6. Comparison between the ML4Fire model and the process-
based fire model against the historical burned area from Global Fire
Emissions Database 5 from 2001–2020. R and BIAS are the spatial
pattern correlation and difference against the observation, respec-
tively.

Figure 7 illustrates the computational and memory over-
head associated with the ML parameterization using different
ML frameworks. It shows that XGBoost only exhibits a 20 %
increase in the simulation time required for simulating 1 d
due to its simpler algorithm. For more complex neural net-
works, PyTorch incurs a 52 % overhead, while TensorFlow’s
overhead is almost 100 % – about 2 times as much as the
overhead of PyTorch. In terms of memory usage, we use the
high-water memory metric (Gerber, 2013), which represents
the total memory footprint of a process. PyTorch and scikit-
learn do not show any significant increase in memory usage.
However, TensorFlow shows a considerable increase up to
50 MB per simulation day per MPI process element. This is
significant because for a node with 48 cores, it would equate
to an increase of around 2 GB per simulated day on that node.
This rapid memory growth could quickly lead to a simula-
tion crash due to insufficient memory during continuous in-
tegrations, preventing the use in practical simulations. Our
findings show that the TensorFlow prediction function does
not release memory after each call. Therefore, we recom-
mend using PyTorch for complex deep learning algorithms
and scikit-learn for simpler ML algorithms to avoid these po-
tential memory-related issues when using TensorFlow.

Previous work, such as Brenowitz and Bretherton (2018,
2019), has utilized the CFFI package to establish communi-
cation between Fortran ESM and ML Python. As described
in the Introduction, while CFFI offers flexibility in support-
ing various ML packages, it does have certain limitations. To
pass variables from Fortran to Python, the approach relies on
global data structures to store all variables, including both
the input from Fortran to Python and the output returning
to Fortran. Consequently, this package results in additional
memory copy operations and increasing overall memory us-
age. In contrast, our interface takes a different approach by
utilizing memory references to transfer data between Fortran
and Python, avoiding the need for global data structures and
the associated overhead. This allows for a more efficient data
transfer process.

In Fig. 8, we present a comparison between the two frame-
works by testing the different number of elements passed
from Fortran to Python. The evaluation is based on a demo
example that focuses solely on declaring arrays and transfer-
ring them from Fortran to Python rather than a real E3SM
simulation. Figure 8a illustrates the impact of the number of
passing elements on the overhead of the two interfaces. As
the number of elements exceeds 104, the overhead of CFFI
becomes significant. When the number surpasses 106, the
overhead of CFFI is nearly 10 times greater than that of our
interface. Regarding memory usage, our interface maintains
a stable memory footprint of approximately 60 MB. Even as
the number of elements increases, the memory usage only
shows minimal growth. However, for CFFI, the memory us-
age starts at 80 MB, which is 33 % higher than our interface.
As the number of elements reaches 106, the memory over-
head for CFFI dramatically rises to 180 MB, twice as much
as our interface.

3.3 Performance of ML algorithms of different
complexities

ML parameterizations can be implemented using various
deep learning algorithms with different levels of complexity.
The computational performance and memory usage can be
influenced by the complexity of these algorithms. In the case
of the ML trigger function, a two-stream four-layer CNN
structure is employed. We compare this structure with other
ML algorithms such as artificial neural network (ANN) and
residual network (ResNet), whose structures are detailed in
Table 1. We selected these three ML algorithms because they
have commonly been used in previous ML parameterization
approaches, such as Brenowitz and Bretherton (2019), Han
et al. (2020), and Wang et al. (2022b). Systematically eval-
uating the hybrid system with these ML methods using our
interface can help identify bottlenecks and improve the sys-
tem computational performance. These algorithms are imple-
mented in PyTorch. The algorithm’s complexity is measured
by the number of parameters, with the CNN having approxi-
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Figure 7. Computational and memory overhead as the simulation progresses for coupling the ML trigger function with the E3SM model.
The x axis represents the simulated time step. The y axis of (a) represents the simulation speed measured in seconds per day (indicating
the number of seconds required to simulate one day). The y axis of (b) represents the relative increase in memory usage for scikit-learn,
TensorFlow, and PyTorch compared with CNTL. CNTL represents the original simulation without using the ML framework.

Figure 8. Comparison of our framework and the CFFI framework in terms of computational time and memory usage. The x axis represents
the number of elements transferred from Fortran to Python, while the y axis displays the total time (a) and total memory usage (b) for a
demonstration example. The evaluations presented are based on the average results obtained from five separate tests.

Table 1. The structure and number of parameters of each ML algo-
rithm. Linear is a fully connected layer that applies a linear transfor-
mation to the input. Conv2d is a 2D convolution layer in PyTorch.

Algorithms Structure No. of parameters

ANN 3× linear 121 601
CNN 4×Conv2d+ 2× linear 7 466 753
ResNet 17×Conv2d+ 1× linear 11 177 025

mately 60 times more parameters than ANN and ResNet hav-
ing roughly 1.5 times more parameters than CNN.

Figure 9 presents a comparison of the memory and compu-
tational costs between the CNTL run without deep learning
parameterization and the hybrid run with various deep learn-
ing algorithms. The same specific process–element layout
(placement of ESM component models on distributed CPU
cores) is used for all the simulations. Deep learning algo-
rithms incur a significant yet affordable increase in mem-
ory overhead, with at least a 20 % increase compared to
the CNTL run (Fig. 9a). This is primarily due to the in-
tegration of ML algorithms into the ESM, which persists

throughout the simulations. Although there is a notable in-
crease in complexity among the deep learning algorithms,
their memory usage only shows a slight rise. This is be-
cause the memory increment resulting from the ML param-
eters is relatively small. Specifically, the ANN algorithm re-
quires 1 MB of memory, CNN requires 60 MB, and ResNet
requires 85 MB, which are calculated based on the number of
parameters in each algorithm. When comparing these values
to the memory consumption of the CNTL run, which is ap-
proximately 3000 MB, the additional parameters’ incremen-
tal memory consumption is not substantial. However, when
we use 128 MPI processes per node, it could bring the total
memory requirement to approximately 460 GB per node. If
the available hardware memory is less than this, the process
layout must be adjusted accordingly.

In terms of computational performance, the Python-based
ML calls inevitably introduce some overhead. However, as
shown in Fig. 9b, the performance decrease is not substantial.
The simple ANN model reduces performance by only about
10 % compared to the CNTL run, while even the more com-
plex ResNet model results in a 35 % decrease. In contrast,
Wang et al. (2022b) reported a 100 % overhead in their inter-
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Figure 9. Comparison of CNTL and the hybrid model using various ML algorithms in terms of memory and computation. CNTL is the
default run without ML parameterizations. In (b), the left y axis represents the actual number of simulated years per day, while the right
y axis shows the relative performance compared to the CNTL run (orange line). The gray line illustrates the regression between the number
of ML parameters (x) and the relative performance of the hybrid system (y).

face when using the ResNet model as well, which transfers
parameters via files. It is worth noting that in this study, the
deep learning algorithms are executed on CPUs. To enhance
computational performance, future work could consider uti-
lizing GPUs for acceleration.

In addition, we develop a performance model to estimate
computational performance for the hybrid model using dif-
ferent ML model sizes and complexities. This performance
model, based on linear regression, predicts the ratio of the
simulated years per day of the ML-augmented run to that of
the CNTL run as a function of the number of ML parameters,
shown in Fig. 9b. It provides a simple yet effective way to
capture this relationship and serves as a valuable tool for per-
formance prediction when incorporating more complicated
ML models.

3.4 Performance for physical models of different
complexities

ML parameterization can be applied to various ESM config-
urations. In the E3SM Atmosphere Model (EAM), we exper-
iment with configurations involving a single-column model
(SCM), the ultra-low-resolution model of EAM (ne4), and
the nominal low-resolution model of EAM (ne30). The SCM
consists of one single atmosphere column of a global EAM
(Bogenschutz et al., 2020; Gettelman et al., 2019). ne4 has
384 columns, with each column representing the horizontal
resolution of 7.5°. ne30 is the default resolution for EAM and
comprises 21 600 columns, with each column representing
the horizontal resolution of 1°. In the case of the ML trigger
function, the memory overhead is approximately 500 MB for
all configurations due to the loading of the ML algorithm,
which does not vary with the configuration of the ESM.

Regarding computational performance, SCM utilizes
1 process, ne4 employs 1 node with 64 processes, and ne30
utilizes 10 nodes with each node using 128 processes. In the
case of SCM, the overhead attributed to the ML parameter-

ization is approximately 9 % due to the utilization of only
one process. However, for ne4 and ne30, the overhead is
23 % and 28 %, respectively (Fig. 10). The increasing com-
putational overhead is primarily due to resource competition
when multiple processes are used within a single node. It is
noted that although there is a significant computational gap
between ML and CNTL for ne4, the relative performance be-
tween ML and CNTL for ne4 is approximately 76.7 %, which
is close to ne30 at 71.4 %.

4 Discussion and conclusion

ML algorithms can learn detailed information about cloud
processes and atmospheric dynamics from kilometer-scale
models and observations and serves as an approximate sur-
rogate for the kilometer-scale model. Instead of explicitly
simulating kilometer-scale processes, the ML algorithms can
be designed to capture the essential features and relation-
ships between atmospheric variables by training on available
kilometer-scale data. The trained algorithms can then be used
to develop parameterizations for use in models at coarser res-
olutions, reducing the computational and memory costs. By
using ML parameterizations, scientists can effectively incor-
porate the insights gained from kilometer-scale models for
coarser-resolution simulations. Through learning the com-
plex relationships and patterns present in the high-resolution
data, the ML-based parameterizations have the potentials to
more accurately represent cloud processes and atmospheric
dynamics in the ESMs. This approach strikes a balance be-
tween computational efficiency and capturing critical pro-
cesses, enabling more realistic simulations and predictions
while minimizing computational resources. All these poten-
tial benefits in turn promote innovative developments to fa-
cilitate increasing and more efficient use of ML parameteri-
zations.
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Figure 10. Comparison of CNTL and ML for various ESMs in terms of memory and computation. The ESM configuration includes SCM,
ultra-low-resolution model (ne4), and nominal low-resolution model (ne30).

In this study, we develop a novel Fortran–Python interface
for developing ML parameterizations. This interface demon-
strates feasibility in supporting various ML frameworks, such
as PyTorch, TensorFlow, and scikit-learn, and enables the
effective development of new ML-based parameterizations
to explore ML-based applications in ESMs. Through two
cases – an ML trigger function in convection parameteriza-
tion and an ML wildfire model – we highlight high modular-
ity and reusability of the framework. We conduct a system-
atic evaluation of memory usage and computational overhead
from the integrated Python codes.

Based on our performance evaluation, we observe that
coupling ML algorithms using TensorFlow into ESMs can
lead to memory leaks. As a recommendation, we suggest us-
ing PyTorch for complex deep learning algorithms and scikit-
learn for simple ML algorithms for the Fortran–Python ML
interface.

The memory overhead primarily arises from loading ML
algorithms into ESMs. If the ML algorithms are implemented
using PyTorch or scikit-learn, the memory usage will not
increase significantly. The computational overhead is influ-
enced by the complexity of the neural network and the num-
ber of processes running on a single node. As the complexity
of the neural network increases, more parameters in the neu-
ral network require forward computation. Similarly, when
there are more processes running on a single node, the in-
tegrated Python codes introduce more resource competition.

Although this interface provides a flexible tool for ML pa-
rameterizations, it does not currently utilize GPUs for ML al-
gorithms. In Fig. 3, it is shown that each chunk is assigned to
a CPU core. However, to effectively leverage GPUs, it is nec-
essary to gather the variables from multiple chunks and pass
them to the GPUs. Additionally, if an ESM calls the Python
ML module multiple times in each time step, the computa-
tional overhead becomes significant. It is crucial to gather
the variables and minimize the number of calls. In the future,
we will enhance the framework to support this mechanism,

enabling GPU utilization and overall performance improve-
ment.

Code and data availability. The Fortran–Python interface
for developing ML parameterizations has been archived at
https://doi.org/10.5281/zenodo.11005103 (Zhang, 2024) and can
also be accessed at https://github.com/tzhang-ccs/ML4ESM (last
access: 18 March 2025). The E3SM model can be accessed at
https://doi.org/10.11578/E3SM/dc.20230110.5 (E3SM Project,
2023). The dataset for the machine learning trigger function can be
accessed at https://doi.org/10.5281/zenodo.12205917 (Morcrette,
2024). The dataset for the machine learning wild fire can be
accessed at https://doi.org/10.5281/zenodo.12212258 (Liu, 2024).
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