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Abstract. When the nutrient level in the soil surpasses vege-
tation demand, nutrient losses due to surface runoff and sub-
surface leaching are the major reasons for the deterioration of
water quality. The lower Mississippi River basin (LMRB) is
one of the sub-basins that deliver the highest nitrogen loads
to the Gulf of Mexico. Potential changes in episodic events
induced by hurricanes may exacerbate water quality issue in
the future. However, uncertainties in modeling the hydro-
logic response to hurricanes may limit the modeling of nu-
trient losses during such events. Using a machine learning
approach, we calibrated the land component of the Energy
Exascale Earth System Model (E3SM), or ELM, version 2.1,
based on the water table depth (WTD) of a calibrated 3D
subsurface hydrology model. While the overall performance
of the calibrated ELM is satisfactory, some discrepancies in
WTD remain in slope areas with low precipitation due to
the missing lateral flow process in ELM. Simulations includ-
ing biogeochemistry performed using ELM with and without
model calibration showed important influences of soil hy-
drology, precipitation intensity, and runoff parameterization
on the magnitude of nitrogen runoff loss and the leaching
pathway. Despite such sensitivities, both ELM simulations
produced reduced WTD and increased runoff and acceler-
ated nitrate–nitrogen runoff loading during Hurricane Ida in
August 2021, consistent with the observations. With obser-
vations suggesting more pronounced effects of Hurricane Ida
on nitrogen runoff than the simulations, we identified factors
for model improvement to provide a useful tool for studying
hurricane-induced nutrient losses in the LMRB region.

1 Introduction

Tropical cyclones are projected to be more intense and poten-
tially make more frequent landfall in some coastal regions
in the future due to global warming (Knutson et al., 2020;
Pérez-Alarcón et al., 2023; Balaguru et al., 2023). Hurri-
canes can cause widespread, acute disturbances for coastal
aquatic and terrestrial ecosystems (Valiela et al., 1998). Be-
sides catastrophic flooding, enhanced nutrient input coupled
with increased runoff were often observed as a result of the
heavy precipitation associated with landfalling hurricanes in
coastal regions. For instance, 5 d after Hurricane Katrina
made landfall in August 2005, the mean bay-wide nitrate
concentration increased by 5.2-fold over the pre-hurricane
levels in Biscayne Bay, Florida (Zhang et al., 2009). In a
forested watershed draining into Chesapeake Bay, Hurricane
Irene in August 2011 caused an increase in total nitrogen on
the rising limb of the storm compared to the baseflow lev-
els (Vidon et al., 2018). High discharge due to Hurricane
Irene in 2011 also resulted in high nutrient loading to Newark
Bay in northern New Jersey (Nie et al., 2023). The loss of
vegetation, attributed to Hurricane Hugo, led to a 108 %–
154 % increase in exported nutrients primarily due to in-
creased outflow during the hurricane (Wilson et al., 2006). In
coastal North Carolina, nutrient loadings coincided with the
increases in freshwater discharge associated with recent trop-
ical storms (Paerl et al., 2020). Additionally, a model simu-
lation suggests that immediate surges of heavy precipitation
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associated with hurricanes accelerate nitrogen export more
than the long-term average (Sun et al., 2022).

Besides the episodic influence of hurricanes in coastal re-
gions, riverine nitrogen (N) loading from agricultural lands
upstream can lead to significant soil fertility depletion and
degradation of water quality in downstream aquatic ecosys-
tems (Li et al., 2022). Excessive nutrient loads can contribute
to eutrophication, leading to adverse effects on aquatic
ecosystems and water quality (Carpenter et al., 1998). For in-
stance, excessive nutrient loading from cropland in the Mis-
sissippi River basin is a significant contributing factor to
the formation of the hypoxic zone in the northern Gulf of
Mexico (Ritter and Chitikela, 2020). Assessing the immedi-
ate and long-term impact of hurricanes on water quality in
the affected ecosystems is challenging due to logistical con-
straints associated with sampling during these events (Filip-
pino et al., 2017). A thorough understanding of the mech-
anisms governing nutrient export from agricultural water-
sheds will be crucial in managing nutrient pollution, espe-
cially in light of the expected hydrological modifications due
to a shifting climate (Speir et al., 2021).

Earth system models have the capability of simulating the
coupled carbon and nitrogen cycles and river nitrogen (Nevi-
son et al., 2016). However, there remains a research gap re-
garding the Earth system model’s capability of accurately
predicting the impact of hurricanes on nitrogen river loading,
particularly considering the spatial heterogeneity and tempo-
ral variability of precipitation patterns associated with hurri-
canes. Understanding the driving mechanism behind exces-
sive riverine N loading during hurricanes, i.e., through sur-
face runoff or groundwater flow, is also lacking. Address-
ing these gaps is critical for improving our understanding of
nutrient transport dynamics and enhancing the capabilities
of Earth system models in regions affected by storms. This
study investigates the short-time effect of hurricanes on ni-
trogen loading in runoff, with an emphasis on how such an
effect is influenced by soil hydrology and its representations
in Earth system models. Using Hurricane Ida as an example,
we simulate its impact on nitrate–nitrogen runoff loading in
the lower Mississippi River basin (LMRB) using the Energy
Exascale Earth System Model (E3SM) Land Model (Golaz
et al., 2019). We will first describe the model and calibration
of the runoff parameterizations using a machine learning ap-
proach. The model is used to assess the transient effects of
Hurricane Ida on hydrological and nitrogen river loading in
the LMRB, which extends into the Gulf of Mexico. We will
not delve into the full dynamics of nitrogen cycling within
the stream due to the limitation of the model, as addressing
the limitation is beyond the scope of this study. Comparison
of model simulations with and without calibration provides
insights into the sensitivity of the hydrologic response and
nutrient losses to soil hydrology and its representations in
models to inform future development needs.

2 Methods

2.1 Study area

The LMRB, with almost 4× 106 ha of irrigated cropland
spanning six southern US states, plays a crucial role in the
economic landscape. The LMRB is characterized by a hu-
mid subtropical climate and significant soil and precipitation
variations (Reba and Massey, 2020). For example, the LMRB
experiences varying annual average rainfall ranging from ap-
proximately 1143 mm in the north to about 1524 mm in the
southern coastal region (Nelson et al., 2022). Cropland is the
dominant land cover type in the LMRB. Agriculture relies
heavily on the Mississippi River valley alluvial aquifer to
provide over 90 % of the irrigation water because a major-
ity of precipitation falls during the winter and spring (Reba
and Massey, 2020). Furthermore, within the last 20 years, the
LMRB has been subjected to cyclical flooding events and de-
clines in groundwater levels due to extreme climate events,
leading to the degradation of surface water quality during
flooding (Ouyang et al., 2020). The strongest hurricane to hit
the LMRB on record is Hurricane Ida, which formed on 26
August 2021 and made landfall on 29 August 2021 (Fig. 1).
Ida had a weak post-landfall decay rate, retaining hurricane
intensity even 12 h after landfall, potentially due to high soil
moisture content ahead of Ida that provided a source of at-
mospheric moisture and latent energy to fuel the storm (Zhu
et al., 2022).

2.2 Data from measurements and the model simulation

In the LMRB, hydrologic data (streamflow, groundwater
level) are provided by the U.S. Geological Survey (USGS)
National Water Information System (NWIS), while water
quality data are obtained from the Water Quality Portal
(WQP). The WQP currently houses data from the USGS, En-
vironmental Protection Agency (EPA), and U.S. Department
of Agriculture (USDA).

Groundwater levels are from monitoring wells including
stations 302614091083001 and 302642091083401 in East
Baton Rouge Parish and station 305519090481801 in St. He-
lena Parish, Louisiana. Water quality monitoring locations
include station 07374000, which is associated with a stream
in West Baton Rouge Parish, Louisiana; 07381600, which
is associated with a stream in St. Mary Parish, Louisiana;
292800090060000, which is associated with an impound-
ment in Jefferson Parish, Louisiana; 07380255, which is as-
sociated with a stream in Jefferson Parish, Louisiana; and
07380330, which is associated with an estuary in Lafourche
Parish, Louisiana. The locations of these monitoring stations
are shown in Fig. 1.

We also make use of groundwater level simulated by an in-
tegrated surface–subsurface hydrologic model from our pre-
vious effort to investigate the impacts of land cover change
on the hydrologic response to Hurricane Ida in the LMRB
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Figure 1. (a) Average precipitation rate in August 2021 in the lower Mississippi River basin and the locations of observation stations along
the path of Hurricane Ida (blue line). The red numbers along the path represent the timing of the 6-hourly locations of Ida along its track. Dots
are water table stations, and stars are stream water quality stations. Note that stations 302614091083001, 302642091083401, and 07374000
are in close proximity to each other as shown in (b), a zoomed-in view of the southeastern subregion in (a). Please note that the date format
in this figure is month-day-hour.

(Tran et al., 2024). The integrated surface–subsurface hydro-
logic model, ELM–ParFlow, couples the Energy Exascale
Earth System Model (E3SM) Land Model (ELM) and the
3D subsurface hydrology model ParFlow (Fang et al., 2022).
ParFlow integrates 3D subsurface flow with overland flow
using physics-based equations (Kollet and Maxwell, 2006;
Maxwell, 2013; Maxwell and Miller, 2005). ELM–ParFlow
was developed to address the subsurface lateral flow, or the
movement of water through soils and bedrock on hillslopes,
which is often missing in Earth system models that adopt
1D land surface models. The study conducted by Tran et al.
(2024) employed ELM–ParFlow to investigate the relative
influence of the changes in surface runoff versus evapotran-
spiration due to land cover change on streamflow in inland
areas during hurricane events. Changes in soil hydrology due
to land cover change, as examined by Tran et al. (2024), or
due to model representations of soil hydrology, as to be in-
vestigated below, can lead to significant alterations in soil
water, with important implications for soil biogeochemistry
and nitrogen river loading.

2.3 Energy Exascale Earth System Model (E3SM)
Land Model (ELM) (v2.1)

Derived from CLM4.5 (Community Land Model; Oleson
et al., 2013), ELM has been enhanced with additional fea-
tures, specifically addressing soil hydrology and biogeo-
chemistry, as described in Golaz et al. (2019) and Burrows
et al. (2020). Operating at the grid-cell level, ELM delin-
eates the land surface into multiple soil layers and plant func-
tional types. Relevant hydrological processes in ELM for
this study include changes in surface water, canopy water,

soil water, and snow water through interception, throughfall,
canopy drip, snow accumulation and melt, infiltration, evap-
otranspiration, runoff, redistribution of water within the soil
column, and groundwater discharge and recharge. Similar to
other global land surface and Earth system models, soil hy-
drology in ELM is simulated through 1D columns, with no
interaction between grid cells. The runoff generation in ELM
is based on the simple TOPMODEL-based runoff parameter-
ization (Niu et al., 2005).

The biogeochemical configuration of ELM, or ELM-BGC,
is designed to simulate various biogeochemical processes
(Burrows et al., 2020). The model simulates active plant
phenology and incorporates nutrient controls on vegetation
photosynthesis and includes multiple prognostic pools for
carbon, nitrogen, and phosphorus within vegetation, litter,
and soil organic matter. Two representations of terrestrial
carbon–nitrogen–phosphorus coupling are incorporated into
the model: the conceptual convergent trophic cascade (CTC)
approach (Yang et al., 2016; Duarte et al., 2017) and the
mechanistic equilibrium chemistry approximation (ECA) ap-
proach (Tang, 2015; Medvigy et al., 2019). Details of the ap-
proaches can be found in Burrows et al. (2020) and the cita-
tions therein. The CTC representation is the default option in
the model, which is used in this study.

In ELM-BGC, mineral nitrogen transformations include
competition among plant uptake for growth, nitrogen min-
eralization, microbial immobilization (nitrogen taken up by
soil organisms, limited by the availability of mineral ni-
trogen), and denitrification and nitrification (Oleson et al.,
2013). Mineral nitrogen that remained in the soil is subject
to loss due to leaching from land to rivers and oceans. The
leaching is assumed to act only on nitrate–nitrogen pools.
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Total nitrogen leaching includes soil nitrogen loss by surface
runoff and leaching by subsurface drainage, which is repre-
sented by the equation below in a general form:

FN =
QNsminn

WSsoil
, (1)

where FN is the soil nitrogen runoff or leaching, Q is the sur-
face runoff or subsurface drainage, Nsminn is the soil mineral
nitrogen, and WSsoil is the water storage in soil. The sub-
surface nitrogen leaching is limited on each time step to not
exceed that in the soil.

2.4 ELM calibration

Because groundwater depths can significantly influence soil
nutrient concentrations in various ecosystems (Hefting et al.,
2004; Miao et al., 2013; Jasinski et al., 2022; Zhang et al.,
2022), we first calibrated ELM based on the (ground)water
table depth (WTD) simulated by ELM–ParFlow (Fang et al.,
2022; Tran et al., 2024) in which lateral hydrological flow
was simulated explicitly by the 3D subsurface flow and over-
land flow. The ELM–ParFlow simulation at 90 m grid reso-
lution was reported in Tran et al. (2024; hence referred to as
Tran2024 hereafter) and corresponds to the simulation with
current land cover which has been evaluated using observed
streamflow data. To capture the ELM grid-level groundwa-
ter table dynamics due to both vertical and lateral hydro-
logical flow processes represented in Tran2024 using ELM–
ParFlow, we calibrated the parameter values of the ELM pa-
rameterizations of surface and subsurface runoff as shown in
the equations below.

Rover = qliqfmaxe
(−0.5foverz∇ ), (2)

where Rover is the surface runoff, qliq is the flux of water
reaching the soil surface from the top, fmax is the maximum
saturation fraction at a given grid cell, fover is a decay factor,
and z∇ is the groundwater table depth.

Rdrain = qdrain,maxe
(−0.5fdraiz∇ ), (3)

where Rdrain is the subsurface runoff, qdrain,max is the maxi-
mum drainage rate, and fdrai is the decay factor. For a given
z∇ , the larger fdrai results in lower Rdrain and vice versa. By
default, fmax ranges from 0.23 to 0.58 and fdrai = 2.5.

To match the (ground)water table depth (WTD) in
Tran2024, the total runoff is adjusted by estimating the max-
imum saturation fraction, fmax, and the decay factor, fdrai,
for each ELM grid cell. The parameter estimation can be
achieved by running multiple ELM simulations with varied
fmax and fdrai parameter values to train an emulator which
can then be used to find the optimal parameter values. While
this could be an effective method for closely matching the
observed WTD values from Tran2024, it needs a substantial
number of simulations to produce the training data, which
can be computationally expensive. Instead, we explored an

alternative approach using machine learning, in particular,
neural networks, where atmospheric forcing, topography,
and the grid-level average of the WTD of Tran2024 are the
predictors and fmax and fdrai are the targets. The initial train-
ing dataset of WTD was from an ELM simulation in which
the values of fmax and fdrai are randomly assigned to each
grid, assuming uniform distributions of fmax within the range
of 0 to 1 and fdrai within the range of 1×10−5 to 100. To es-
timate fmax and fdrai given the grid-level temporal average
of the WTD of Tran2024 at each ELM grid, the following
procedures are taken to iteratively improve the parameter es-
timation by updating the training dataset at each iteration:

1. Construct a neural network using the initial training
dataset of the ELM WTD, atmospheric forcing, and to-
pography as the predictors to train the model to predict
fmax and fdrai corresponding to the ELM WTD as the
targets. The root mean square error (RMSE) between
the predicted and randomly prescribed values of fmax
and fdrai within the simulation domain serves as the loss
function in this training process.

2. Use the trained neural network model by replacing the
ELM WTD with the Tran2024 WTD as the predictors
to predict new fmax and fdrai values and use the pre-
dicted fmax and fdrai to update the ELM WTD by run-
ning ELM with the new fmax and fdrai.

3. Combine the updated ELM WTD values with the at-
mospheric forcing and topography as predictors and the
new fmax and fdrain predicted in step (2) as targets.
Merge this combined dataset with the previous dataset
in steps (1) and (2) and retrain the neural network model
using the updated dataset. Combining the improved data
from the previous iterations can increase the model’s
training dataset size, enabling the model to learn and
adapt to the more complex patterns to better represent
the underlying relationship in the data.

4. Continuously refine the neural network model by re-
peating steps (2) and (3) iteratively until the predicted
fmax and fdrai converge to a point where the correlation
between the ELM WTD and Tran2024 WTD cannot
be significantly improved from the previous iteration.
When the iterations steps exceed four, only the newest
five datasets are included to refine the model.

The neural network model includes two hidden layers with
128 neurons each and an output layer with 2 neurons. The
ReLU (rectified linear unit) activation function is used to in-
troduce nonlinearity. A dropout layer with a dropout rate of
25 % is inserted to mitigate overfitting by randomly deacti-
vating neurons during training. The Adam (adaptive moment
estimation) optimizer with a learning rate of 1×10−5 is used
for optimization; 80 % of the dataset is used as training data
and processed in batches with a size of 128 over 3000 epochs.
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Figure 2. Scatter plot of the estimated and prescribed decay factor: (a) fdrai and the maximum saturation fraction and (b) fmax in the last
iteration.

2.5 ELM-BGC simulations

The atmospheric forcing, including precipitation, air temper-
ature, shortwave and longwave radiation, wind speed, spe-
cific humidity, and atmospheric pressure, used to drive the
ELM simulations is from the North American Land Data
Assimilation System (NLDAS) project at 1/8° grid spac-
ing. The resolution of the ELM simulation domain is also
set to 1/8°. The ELM hydrology simulation was driven by
forcing data spanning from 1980 to 2022. The forcing from
the year 1980 was used repeatedly for the 600-year spin-up
of ELM-BGC for the default model. Transient simulation of
ELM-BGC was then conducted from 1980 to 2020. The re-
sult at the end of 2019 was used as an initial condition for the
model comparison between the default and calibrated ELM.
Land cover information was derived from the Land-Use Har-
monization (LUH2) project (Hurtt et al., 2021).

In this study, we only consider nitrate–nitrogen loading in
runoff due to natural terrestrial N inputs during Hurricane
Ida, and crop management (e.g., fertilization and irrigation)
is not considered. The impacted regions from Hurricane Ida
will be examined. The selection criteria of the impacted re-
gions include grids with accumulated precipitation exceeding
17.3 mmd−1 in the eastern part of the domain from the time
of Ida’s landfall until the end of August.

3 Results

3.1 Calibration of ELM parameter values

When running the uncalibrated ELM, the simulated WTD
ranged between 3 and 5 m, with an R2 value of −1.66 when
compared to Tran2024, indicating poor performance in sim-
ulating the spatial distribution of WTD. Using the proce-
dure described in Sect. 2.4, a satisfactory match between the
WTD from the ELM simulation and Tran2024 is achieved
within 10 iterations of parameter estimation using the ma-
chine learning and ELM simulations. Figure 2 shows a com-

parison of the fmax and fdrai used to perform the ELM simu-
lation before the last iteration and those estimated using ma-
chine learning during the last iteration to match the WTD
from the ELM simulation with the WTD from Tran2024,
with R2 values of 0.87 and 0.93, respectively. The machine
learning model has decent performance considering the het-
erogeneity in topography and precipitation (Fig. 3a and d)
within the simulated domain.

In a majority of the domain, the estimated fmax values
are nearly 0 (Fig. 3b) and fdrai (Fig. 3c) follows the pat-
tern of the elevation (Fig. 3a). In the midwestern part of the
domain, high elevation and precipitation lead to large fmax
and low fdrai values and consequently large runoff based on
Eqs. (2) and (3) in those grid cells. In the western slope area
with low precipitation (indicated by the red colored area in
Fig. 3d), the ELM WTD is deeper than that in Tran2024
(Fig. 3e). This occurs even when fmax is approximately 0 and
fdrai is high, favoring nearly no runoff. This result suggests
that these areas receive water from wetter areas at high el-
evations through lateral flow represented by ELM–ParFlow
in Tran2024, which cannot be represented in the 1D ELM
through simple calibration of the parameters related to the
runoff parameterizations. The overpredictions of the WTD
in other areas (Fig. 3e and f) are primarily due to the same
reason.

3.2 Observation from the measurements

To examine the impact of Hurricane Ida on the soil hydrology
and nitrogen in the LMRB region, we first analyze observa-
tions from measurements that are available within the region.
There are significant differences in the observed WTD at
stations 302614091083001 and 302642091083401, although
they are in close proximity to each other. However, Hurricane
Ida influenced the observed water table depth at all selected
monitoring stations (Fig. 4a), albeit with a weak signal. The
river stage increased by more than 3 m after Ida made land-
fall at stations 07374000, 07380330, and 07380255 (Fig. 4b).
The nearshore stations 07381600 and 292800090060000 ex-
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Figure 3. Spatial distribution of (a) surface elevation, (b) fmax, (c) fdrai, (d) precipitation, and (e, f) ELM-simulated water table depth
compared to Tran2024 in the year 2015. Orange in (d) represents less precipitation.

perienced less impact from Ida at the river stage. Water qual-
ity was also affected, with an increase in nitrogen concen-
tration observed after Ida’s landfall at both the inland station
(07374000) and the nearshore station (07381600) (Fig. 4c).
The diurnal variation in the nitrogen concentration at station
07381600 disappeared during Ida, indicating a direct impact
from the elevated loss of nitrogen due to inland runoff. The
rise in total N runoff at station 07374000 intensified follow-
ing the landfall of Hurricane Ida (Fig. 4d) but gradually di-
minished as Ida progressed northeastward. The rise in to-
tal N runoff at 07381600 is weak. An increase in chloro-
phyll fluorescence was also observed during Ida near the es-
tuary (Fig. 4e), which peaked at station 2928000090060000
shortly after Ida formed on 26 August and peaked at station
07380255 during Ida’s landfall on 29 August. Overall, obser-
vations revealed that Hurricane Ida reduced the water table
depth and increased the river stage, nitrogen concentration in
the stream, nitrogen runoff loading, and chlorophyll fluores-
cence in the estuary.

3.3 Hurricane impact on modeled nitrogen loading in
runoff

We examined water and nitrogen runoff loading related to
Hurricane Ida simulated by ELM with the default and cali-
brated parameters (fmax and fdrai) in the area affected by Ida.
After Ida formed, lower temperatures happened concurrently
with abundant precipitation (Fig. 5a and b). The WTD from
the calibrated model shows more pronounced response to
changes in precipitation than the WTD from the model with
default parameter values (Fig. 5c). By the end of August, af-
ter Hurricane Ida’s landfall, WTD is reduced by 0.05 and
0.31 m for the default model and calibrated model, respec-
tively (Fig. 5c). As crop irrigation from groundwater pump-
ing is not considered in the modeling, the simulated WTD
shown in Fig. 5c is much shallower compared to the obser-
vations at the USGS stations (Fig. 4a) within the domain.
Consistent with the rising water table, there is a notable in-
crease in topsoil moisture evident in both models induced by
the precipitation 2 d before and following the landfall of Hur-
ricane Ida (Fig. 5d).

During the whole period of August, the calibrated model
has a shallower water table and higher soil moisture com-
pared to the default model, which results in higher to-
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Figure 4. Observed (a) water table depth, (b) river stage, (c) nitrogen concentration, (d) nitrogen runoff loading, and (e) chlorophyll fluores-
cence (fChl) at selected station locations shown in Fig. 1. The numbers in the parentheses in (a) are the minimum and maximum values of
WTD at each location in August 2021. The colors match station colors in Fig. 1 for convenience. The three y axes in (a) display the range of
WTD at each station, with a corresponding legend color. The vertical dashed grey line represents the time Hurricane Ida formed. The vertical
dashed black line represents the time Hurricane Ida made landfall. Please note that the date format in this figure is year-month-day.

tal runoff consistently in August except after Ida’s landfall
(Fig. 5e). The two models noticeably respond differently to
the heavy rainfall produced by Ida – the default model pro-
duced a larger increase in soil moisture and higher runoff,
while the calibrated model produced a larger response in
WTD and a more muted response in soil moisture and runoff.
These differences are also reflected in a change in the surface
runoff ratio before and after Ida’s landfall (Fig. 5f). The cal-
ibrated model generally shows a higher surface runoff ratio
than that of the default model in August until 28 August with
the arrival of the first heavy rainfall event related to Ida; this
ratio drastically drops in the calibrated model, while it re-
mains about the same in the default model. Combining the

changes in the total runoff and the surface runoff ratio sug-
gest that the much smaller total runoff in the calibrated model
compared to the default model shortly before and after Ida’s
landfall is mainly due to a much smaller surface runoff re-
sponse to heavy rainfall in the calibrated model. Notably, the
calibrated model has much smaller fmax values compared to
the default model, which limit the surface runoff response to
heavy rainfall, while for smaller rain events, the calibrated
model can still produce more surface runoff than the default
model despite the smaller fmax values due to its shallower
groundwater table.

Differences in the soil hydrology response between the
calibrated and default models may result in differences in
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Figure 5. Model inputs and comparison of simulations with default and calibrated parameters in August 2021 averaged within the Ida-
affected area, including (a) precipitation, (b) air temperature, (c) water table depth (WTD), (d) average soil moisture of the topsoil layers,
(e) total runoff, and (f) fraction of surface runoff in total runoff. The vertical dashed grey line represents the time Hurricane Ida formed. The
vertical dashed black line represents the time Hurricane Ida made landfall. Please note that the date format in this figure is year-month-day.

the nitrogen response to Hurricane Ida. Corresponding to the
increase in soil moisture (Fig. 5d) and the total runoff gen-
eration (Fig. 5e) 2 d before Ida’s landfall, the cumulative ni-
trogen (N) loss increased sharply on 28 August, followed by
smaller increases as rainfall continued in the next few days
(Fig. 6a). The larger increase in cumulative N loss in the de-
fault model is consistent with its higher total runoff compared
to the calibrated model (Fig. 5e). Overall, nitrogen loss due
to surface runoff constitutes a dominant portion of the total
nitrogen loss in both models (Fig. 6b) in majority of the time
in August, especially between 28–30 August under the in-
fluence of rainfall associated with Ida. Although the surface
runoff ratio drops significantly in the calibrated model after
28 August, the fraction of surface N loss does not drop until
after 30 August, indicating a delayed N loss response relative
to the runoff changes.

During low-precipitation periods, nitrogen loss due to sur-
face runoff constitutes a more dominant portion of total nitro-
gen leaching in the default model compared to the calibrated
model (Fig. 6b) because of more concentrated surface soil
mineral nitrogen due to drier soil in the default model. The
total nitrogen leaching in August in the calibrated model is
80 % of that in the default model, largely because the cali-
brated model has smaller N loss during Ida’s heavy rainfall
events as limited by the smaller surface runoff response. Ni-
trogen leaching during Ida accounts for 38 % and 31 % of
total nitrogen leaching in August for the default model and
calibrated model, respectively.

Compared to the calibrated model, plant nitrogen uptake
(Fig. 6c) and denitrification (occurs only in the anoxic frac-
tion of soils) (Fig. 6d) in the default model are limited more
by soil water, as reflected by the drier soil in the default
model (Fig. 5d), resulting in a higher accumulation rate of
nitrate in the soil (Fig. 6e), even though the default model
simulates more runoff N loss (Fig. 6b). Denitrification de-
clines more rapidly in the calibrated model than in the de-
fault model during Ida due to increased soil saturation. This
results in a reduction in the anoxic fraction of soil, leading
to a faster decrease in denitrification rates. As the cumulative
nitrogen lost to runoff exhibits a notable increase 2 d after Ida
formed on 26 August, the soil mineral nitrate–nitrogen drops
sharply after 26 August (Fig. 6e).

The total nitrogen leaching (Fig. 6a) does not strongly cor-
relate with precipitation (Fig. 5a) or runoff (Fig. 5e). There
is a high leaching spike on 24 August in the calibrated model
2 d before Ida formed (Fig. 5e). On the previous day (23 Au-
gust), the air temperature reached a maximum in August after
a relatively dry period (Fig. 5b and d). Compared to the cali-
brated model prior to Ida forming, the dry stress (Figs. 5d and
6f) simulated by the default model caused a relatively faster
increase in soil mineral nitrate–nitrogen (Fig. 6e) mainly due
to lower plant nitrogen uptake and denitrification under stress
(Fig. 6c).

A notable increase in nitrogen leaching loss from the sim-
ulations was observed on 24 August (Fig. 6a). A spatial ex-
amination of the variables for the calibrated model on 23 and
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Figure 6. Comparison between the default (blue) and calibrated (red) model results in August 2021 averaged within the Ida-affected area:
(a) cumulative sum of total nitrogen loss; (b) fraction of surface runoff; (c) total plant nitrogen uptake; (d) total denitrification flux; (e) soil
mineral nitrogen; and (f) soil water stress factor, BTRAN (non-stressed when BTRAN= 1). The vertical dashed grey line represents the time
Hurricane Ida formed. The vertical dashed black line represents the time Hurricane Ida made landfall.

24 August revealed a shift in abundant precipitation towards
the southeastern region near the Gulf Coast on 24 August
(Fig. 7a and b). The increased runoff on 24 August (Fig. 7e),
triggered by heavy precipitation, mobilized the accumulated
nitrate (Fig. 7d) in the previously dry soil (Fig. 7c). This
led to concentrated leaching in that area (Fig. 7f), explain-
ing the spike in total nitrogen loss on 24 August shown in
Fig. 6a. Although this event occurred before Hurricane Ida,
these findings underscore the significance of considering pre-
ceding environmental conditions in understanding the hurri-
cane impact on nitrogen leaching loss.

To understand the driving mechanism of nitrogen leach-
ing loss under different soil water conditions, we selected a
nearshore grid in the subdomain affected by Ida from the two
simulations which have different levels of soil water as an ex-
ample. At this selected grid, unlike the conditions averaged
over the Ida-affected area discussed in Figs. 5 and 6, the cal-
ibrated model happens to have drier soil (Fig. 8b) compared
to the default model (Fig. 8a). As a result of the smaller rate
of denitrification and plant uptake as a soil nitrate–nitrogen
sink and the reduced source from nitrogen fixation due to wa-
ter stress, there is more soil nitrate accumulation in the cali-
brated model (Fig. 8d). Soil water affects not only the com-
petition for nitrogen between the plant and soil microbes but
also the vertical transport of soil mineral nitrogen. Compared
to the default model, drier soil from the calibrated model due
to a larger fmax at this grid favors higher surface runoff be-
fore Hurricane Ida formed. Drier soil also causes a slightly

warmer temperature. It is not shown because the contrast is
not visually discernible. This warmer temperature can par-
tially offset the deceleration of soil organic matter decompo-
sition caused by dry soil conditions. After Ida-induced pre-
cipitation in the area, infiltration pushed the accumulated ni-
trogen further down to the deeper soil layers (Fig. 8d). More
nitrogen from the calibrated model leached through the path-
way of subsurface runoff (Fig. 8f) during Ida, even though
the subsurface runoff is far less than that of the default model.

4 Discussion

4.1 Potential applications of the iterative
parameterization approach

The iterative parameterization approach presented in this
study demonstrates a promising method for improving sub-
surface hydrological simulations and can be easily extended
to other watersheds. The use of a surrogate model to esti-
mate model parameters reduces computational costs while
maintaining accuracy, allowing for efficient iterative refine-
ment of the simulation results. This approach can be particu-
larly beneficial for watersheds with complex hydrogeological
characteristics, where traditional calibration methods may be
computationally prohibitive or require extensive datasets.

Successful application of this method relies on prior
knowledge of the most sensitive and important parameters
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Figure 7. Comparison of variables between 23 and 24 August for the calibrated model: (a) precipitation (mmd−1) on 23 August, (b) precipi-
tation (mmd−1) on 24 August, (c) positive increase in soil moisture (m3 m−3), (d) soil nitrate–nitrogen (gNm−2) on 23 August, (e) positive
increase in runoff (mmd−1), and (f) positive increase in nitrate–nitrogen leaching loss (gNm−2 d−1) from 23 August.

to include in the parameterization process. Without a clear
understanding of which parameters have the greatest impact
on model predictions, the iterative approach may not effec-
tively reduce uncertainty or improve simulation accuracy.
Additionally, identifying key parameters can help to avoid
over-parameterization, where the inclusion of too many pa-
rameters can lead to overfitting and degradation of predictive
performance.

4.2 Importance of soil hydrology on nitrogen leaching

By conducting two simulations with ELM using default and
calibrated parameters that influence surface and subsurface
runoff processes, our results revealed that soil hydrology
can have a large impact on nitrate–nitrogen riverine loading
through surface and subsurface runoff when there is a sig-
nificant concentration of nitrogen in soil water and sufficient
recharge through rainfall or irrigation (Meisinger and Del-
gado, 2002). The dynamics of nitrogen riverine loading is
linked to the movement of water through the soil profile. Ad-
equate soil moisture levels promote microbial decomposition
of organic matter and subsequent release of nitrogen into the
soil. Different parameterizations of subsurface and surface
runoff can have a significant impact on the nitrogen dynam-
ics in the soil and consequently loss through the runoff.

The interplay between soil moisture dynamics and nitro-
gen transport is critical for understanding riverine nitrogen
loading, especially in the context of short-term impacts from
hurricane events when soil moisture can experience high-
frequency variability. When surface runoff dominates, ni-
trogen can be rapidly transported to surface water, leading
to spikes in the riverine level. On the other hand, nitrogen
is slowly leached through the soil profile and into ground-
water systems before eventually reaching rivers, showing a
delayed response compared to the surface runoff loss. Both
model simulations in this study suggest dominant nitrogen
loss through surface runoff, and the response to hurricanes in
WTD and nitrogen runoff loading is approximately consis-
tent with the observations. This suggests ELM can provide
some valuable insights into the mechanisms driving nitrogen
runoff loading during hurricanes, such as the significant role
of surface runoff and changes in water table depth.

While the focus of this study is primarily analyzing the re-
sponse of nitrogen runoff loading during Hurricane Ida using
ELM, it is also important to consider the pre-existing con-
ditions of soil water for water quality management. This is
particularly crucial for nearshore areas which are dry prior to
hurricane landfall, as the potential harm to water quality can
be particularly acute. By understanding both aspects (prior to
and during the hurricane), we can better anticipate and mit-
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Figure 8. Heatmap comparison of soil moisture and soil mineral nitrate–nitrogen between (a, c) the default model, (b, d) the calibrated
model, (e) subsurface runoff, and (f) nitrogen leaching loss at a selected nearshore grid.

igate the adverse effects of a hurricane in the vulnerable re-
gions.

4.3 Model limitations

Although the models successfully captured the groundwater
table response to Hurricane Ida’s landfall, consistent with ob-
servations from the monitoring wells that show a rising water
table, our findings revealed a faster diminishing of nitrogen
runoff after Ida’s landfall on 29 August in the area affected
by Hurricane Ida. The model indicated significantly higher
nitrogen leaching before Ida’s landfall, earlier than the water
quality observations at monitoring stations. The early nitro-
gen runoff was attributed to the abundant precipitation in the
southern LMRB in late August 2021 before and after Hurri-
cane Ida formed on 26 August, leading to elevated soil mois-
ture levels prior to Ida’s landfall. This precipitation mobilized
nitrogen in the previously dry and warm soil, as indicated by
the model results, leaving a lower soil mineral concentration
for leaching after Ida’s landfall.

Apart from the heterogeneity in precipitation both in time
and space, the discrepancy in WTD and nitrogen leaching
between the simulations and observations largely stem from
the omission of crop management factors in the model. As
one of the largest agricultural crop-producing areas in the
US (Tiwari et al., 2023), the LMRB experiences signifi-
cant agricultural activities that contribute to nitrogen dy-
namics. Over 90 % of the groundwater used for irrigation in
the LMRB comes from the Mississippi River valley alluvial
aquifer (Reba and Massey, 2020). The absence of accounting
for these agricultural practices could be a factor influencing
the observation–model inconsistencies in nitrogen leaching
patterns, as evidenced by the results between our two model
simulations with distinct WTDs.

Another important overlooked process in the model is the
lateral transport of nitrogen by advection and diffusion in-
duced by hydrologic connectivity and a strong nitrogen gra-
dient between neighboring grid cells. The timing of hydro-
logic connectivity and nutrient gradients may affect a range
of downslope nutrient transport and biogeochemical transfor-
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mation along the topographic sequence (Stieglitz et al., 2003;
Kelly et al., 2021).

Note that the current version of ELM does not include
an in-stream nitrogen model, which is under active devel-
opment. Consequently, while our study successfully exam-
ines the impact of hurricanes on runoff nitrogen loading, it
does not fully capture the complete dynamics of nitrogen in
stream before and after the hurricane, and hence it cannot be
used to explain the observed N loading dynamics before Ida.
Future improvements to ELM, including the integration of
an in-stream N model, will enable more detailed and accu-
rate simulations of nitrogen and runoff loading dynamics in
rivers.

5 Conclusions

In conclusion, we calibrated two parameters associated with
surface and subsurface runoff in ELM using the water table
depth (WTD) obtained from a previous 3D hydrology simu-
lation in the lower Mississippi River basin (LMRB). We then
compared the nitrogen runoff leaching results from the cal-
ibrated ELM with those from the default ELM. Our analy-
sis of the WTD in the calibrated model and the 3D model
revealed that despite model calibration to match the ELM
WTD with that simulated by the 3D model, neglecting lat-
eral flow in ELM can still result in noticeable differences be-
tween the WTD in the two models, particularly in slope areas
with limited precipitation. The calibrated ELM was able to
simulate the increased nitrate–nitrogen runoff leaching dur-
ing Hurricane Ida, as evidenced by water quality and hydro-
logic observations within the affected region. However, the
timing of peak leaching and the leaching pathways can be
influenced by factors such as soil moisture, soil temperature,
precipitation, and lateral transport. Thus differences between
the calibrated and default models as well as differences be-
tween the models and observations (e.g., WTD, crop man-
agement) can result in differences between the observed and
simulated nitrogen response to Hurricane Ida. Even though
the model captures the N runoff loading signal in the area af-
fected by Hurricane Ida, the current lack of lateral transport
of nitrogen within the soil and in the river in ELM hinders
the realistic prediction of nitrogen runoff loading in response
to hurricanes.
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