
Geosci. Model Dev., 18, 1895–1916, 2025
https://doi.org/10.5194/gmd-18-1895-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.

M
odeldescription

paperThe unicellular NUM v.0.91: a trait-based plankton model evaluated
in two contrasting biogeographic provinces
Trine Frisbæk Hansen1,a, Donald Eugene Canfield1,2,3, Ken Haste Andersen4, and Christian Jannik Bjerrum5

1Nordcee, Department of Biology, University of Southern Denmark, Odense M, Denmark
2Danish Institute of Advanced Studies (DIAS), Odense M, Denmark
3Petrochina, Beijing, China
4Center for Ocean Life, National Institute of Aquatic Resources, Technical University
of Denmark, Kongens Lyngby, Denmark
5Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
anow at: Center for Ocean Life, National Institute of Aquatic Resources,
Technical University of Denmark, Kongens Lyngby, Denmark

Correspondence: Trine Frisbæk Hansen (trfri@aqua.dtu.dk, trinefrisbaek@outlook.com)

Received: 20 March 2024 – Discussion started: 21 June 2024
Revised: 8 January 2025 – Accepted: 21 January 2025 – Published: 19 March 2025

Abstract. Trait-based models founded on biophysical prin-
ciples are becoming popular in planktonic ecological model-
ing, and justifiably so. They allow for slim, efficient models
with a significant reduction in parameters that are well-suited
to modeling past and future climate changes. In their ide-
alized forms, trait-based models describe the ecosystem in
one set of parameters defined by first principles and rooted
in physics, chemistry, geometry, and evolution. The result
is an emerging ecosystem defined by physical and chemi-
cal limitations at the cell level. At present, however, a sig-
nificant part of these parameters is not fully constrained,
which potentially introduces considerable uncertainty into
the model results. Here, we investigate how these parameters
influence the ecosystem structure of one of the simplest trait-
based models, the Nutrient-Unicellular-Multicellular (NUM)
model. We describe the unicellular module of the NUM
model and, through an extensive parameter sensitivity analy-
sis, we demonstrate that the model – with a large span in pa-
rameters – can capture the general features of the picoplank-
tonic, nanoplanktonic, and microplanktonic ecosystem in a
high-productivity upwelling system. We demonstrate that it
is possible to narrow the range of parameters to get a sta-
ble and acceptable solution. Finally, the model responds cor-
rectly in an oligotrophic downwelling system using parame-
ters fitted to the upwelling system. Our analysis demonstrates
that the unicellular module of the NUM model is broadly

accessible without detailed knowledge of the parameter set-
tings and that the first-principles approach is well-suited to
modeling poorly resolved regions and ecosystem evolution
during current and deep-time climate change.

1 Introduction

Trait-based models are becoming an important tool for un-
derstanding the spatial and temporal pattern of the planktonic
ecosystem structure (e.g., Follows et al., 2007; Dutkiewicz
et al., 2021; Ward et al., 2019; Eckford-Soper et al., 2022).
Rooted in first principles of biophysics and biochemistry,
trait-based models alleviate many of the caveats that confine
traditional functional planktonic ecosystem models: they al-
low for large-scale ocean domains without the need to add
increased complexity, they reduce the amount of parameter
tuning, and they allow for modeling of evolution in the past
and future under climate change where ecosystems were dif-
ferent from the ones we know today (Reinhard et al., 2020;
Sauterey et al., 2017; Wilson et al., 2018; Archibald et al.,
2022).

There are a variety of approaches to trait-based model-
ing. For most of the trait-based plankton ecosystem mod-
els, size is used as a master trait, as it scales with many
of the cell processes and rates (Ward et al., 2019; Sauterey
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Figure 1. Schematic of the unicellular module of the Nutrient-
Unicellular-Multicellular (NUM) model. The unicellular organisms
are represented here by seven size classes of organisms that can
all get their nutrients and carbon from osmotrophy, phototrophy,
and phagotrophy. The uptake rates depend on the biophysics of the
cell and the environmental availability of dissolved organic carbon
(DOC), nutrients (N), light, and food (smaller cells). Higher trophic
levels are parameterized here as feeding on a specific size range of
cells. Exudation, viral lysis, assimilation losses, and higher trophic
level losses replenish the nutrients and carbon. Losses from sloppy
feeding by phagotrophy and higher trophic levels are reintroduced
as particulate organic matter (POM) that sinks down through the
water column and is remineralized into DOC and N. The model for-
mulations are listed in Sect. S1.

et al., 2015; Andersen et al., 2015). One particularly sim-
ple size-based plankton model is the Nutrient-Unicellular-
Multicellular (NUM) model (Andersen and Visser, 2023;
Serra-Pompei et al., 2020; Serra-Pompei et al., 2022). The
NUM model is founded on the biophysical and chemical pro-
cesses of the cell scaled up to the community level (Fig. 1).
With the cell processes at the center, the result is a simple and
fast model where the size spectrum, rates of photosynthesis,
and uptakes of nutrients, dissolved organic carbon (DOC),
and food (phagotrophy) emerge from the specific physical
conditions of the oceanographic conditions (Andersen and
Visser, 2023; Serra-Pompei et al., 2020).

Despite the simplicity of the NUM model, it – like any
other model – relies on a set of parameters (Table 1). In prin-
ciple, these parameters are universal and common to all or-
ganisms; however, they are not all well-established. Some pa-
rameters are well-defined by cell physiology, e.g., the maxi-
mum diffusive nutrient affinity coefficient (αD) that is limited
by cell surface area, but many have a range of uncertainty

that emerges from natural cell variability or from a limited
understanding of a parameter. As with any model, the output
of the NUM model reflects the parameter choices. It is still,
however, unclear how much the parameters influence the re-
sult, how much tuning the model requires, and how well the
model transfers between sites with the current parameter un-
certainty.

In this article, we describe the unicellular module of
the NUM model and evaluate the model’s ability to cap-
ture well-established key ecosystem descriptors, its robust-
ness, its geographical transferability, and the relative impor-
tance of the underlying parameters. Specifically, we start
by evaluating the model’s ability to capture the size struc-
ture of the planktonic biomass of the California Current
Ecosystem (CCE) (California-Current-Ecosystem-LTER and
Landry, 2019; Taylor and Landry, 2018) using the default
model parameters. Hereafter we evaluate how the parame-
ter uncertainty affects the model sensitivity. We conclude by
applying the identified optimal parameter values for the CCE
to station ALOHA north of Oahu, Hawaii, in a test of the
model’s geographical transferability (Pasulka et al., 2013;
Taylor and Landry, 2018).

2 Model description

2.1 The Nutrient-Unicellular-Multicellular model
framework

The NUM model is built on an additive model frame-
work that relies on formulations of the fundamental prop-
erties of the organism (Andersen and Visser, 2023; Serra-
Pompei et al., 2020; Serra-Pompei et al., 2022). The NUM
model initially included copepods and protists as the unicel-
lular and multicellular components, along with nutrient (N)
and fecal pellets (Serra-Pompei et al., 2020). Serra-Pompei
et al. (2020) implemented the model in MATLAB with a
chemostat setup. Later, Serra-Pompei et al. (2022) coupled
the NUM model to a transport matrix, enabling both water
column and global simulations. A major update of the NUM
model resulted in the current version where the core NUM
model was translated from MATLAB to FORTRAN95. The
model can be run directly from FORTRAN but can also be
initialized from MATLAB and R, which makes the model ac-
cessible to users without FORTRAN experience. In this up-
date, the NUM framework was extended to include a DOC
module and a particulate organic carbon (POM) module.

The NUM model can be used in three different setups. It
can be used in a global simulation where it is coupled to a
transport matrix that provides the advection, diffusion, and
temperature for the simulation (Khatiwala, 2007). It can be
used in a chemostat setup with a constant mixing rate and
deep nutrient concentration. Finally, as we do here, it can be
used in a water column simulation where the temperature and
diffusion at a single location are extracted from the transport
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Table 1. Parameters used in this study. The reference values are based on arguments from Andersen and Visser (2023) and the standard
values used in the NUM model setup.

Parameter Unit Reference value Parameter range Parameter
confidence4

Minimum Maximum

Carbon density ρ µg C µm−3 0.4× 10−6 0.3× 10−6 0.5× 10−6 1
C : N mass ratio ρC :N gC gN−1 5.68 2.7 8.7 1

Cell rate parameters

Diffusive affinity coefficient αD L µm2 d−1 (µgC)−1 0.972 0.75 1.3 1
Diffusive affinity crossover r∗D µm 0.4 0.1 5 1
Light affinity coefficient αL (d µmol m−2 s−1)−1 µm 0.3 0.05 1.5 2
Light affinity crossover r∗L µm 7.5 2.5 20 2
Light uptake efficiency εL Unitless 0.8 0.1 0.9 2
Clearance rate aF L d−1 µgC−1 1.8× 10−2 8.23× 10−4 0.4455 2
Maximum phagotrophic coefficient cF µm d−1 30 10 50 3
Assimilation efficiency εF Unitless 0.8 0.1 0.9 1
Passive losses coefficient cpassive Unitless 0.03 0.01 0.1 2
Maximum synthesis coefficient αmax d−1 1.5 0.1 2.1 2
Basal metabolism coefficient αR Unitless 0.1 0.045 0.22 2

Prey encounter

Predator–prey mass ratio β Unitless 500 300 700 2
Predator–prey width σ Unitless 1.3 0.9 1.7 2

Community model parameter

DOC remineralization of feeding γF Unitless 0.1 0.1 0.9 3
DOC remineralization of viral lysis γ2 Unitless 0.5 0.1 0.9 3
Viral lysis mortality coefficient µv0 Unitless 4.0× 10−3 4.0× 10−4 4.0× 10−2 3
Size of HTL mortality1 mHTL µgC 0.1 0.001 0.1 2
HTL mortality coefficient µhtl d−1 0.1 1.0× 10−2 0.25 3

Particulate organic matter (POM)

POM sinking coefficient3 v1 m d−1 100 1 200 2
Inverse solubilization length scale2 a m−1 0.004 0.002 0.006 2
Ratio of HTL mortality to POM γHTL Unitless 0.5 0.1 0.9 2

Fixed parameters

Membrane thickness δ nm 50 2
Light attenuation by water kw m−1 0.05 2
Light attenuation by POM3 kPOM m2 mg C−1 3× 10−5 2
POM sinking exponent3 v2 m d−1 0.2 2

1 The HTL mortality is between 100 and 10000 times smaller than the largest cell size. 2 Fennel et al. (2001). 3 POM was not included in previous versions of the NUM model, and
the parameters written in the reference value signify the values used in the initial evaluation of the model. Based on arguments in Sect. S1, a kPOM value of 3× 10−5 m2 mg C−1 is
used for all the simulations in this article. The choices of POM sinking coefficient and exponent result in sinking speeds of 0.01–3 m d−1 for the smallest POM size classes and
1–200 m d−1 for the largest ones using the formulation for POM sinking in Sect. S1. 4 Qualitative parameter uncertainty ranging from 1 (low) to 3 (high) (Andersen and Visser, 2023).
The parameter uncertainty stems from limited understanding of the processes and/or empirical evidence.

matrix. Here, we describe and evaluate the unicellular organ-
isms and the particulate matter, and we will therefore limit
the description of the NUM framework to these parts. The
model formulations are provided in Sect. S1 in the Supple-
ment. Section 2.2 describes the unicellular module and pa-
rameters, while Sect. 2.3 describes the new simple DOC and
POM modules and the associated parameters.

2.2 The unicellular module

The backbone of the NUM model is the unicellular module
that comprises the classic functional groups of phytoplank-
ton, osmotrophic bacteria, and zooplankton. While unicellu-
lar organisms span many orders of magnitude across all types
of trophic strategies (feeding mechanisms), they are all de-
scribed with one set of parameters in the unicellular subrou-
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tine of NUM. Here, the cell may be visualized as one type of
organism – we refer to this as a generalist – that is essentially
a mixotroph in the sense that it is able to perform osmotrophy
(diffusive uptake of DOC), photosynthesis, and phagotrophy
(food consumption) to gain nutrients and carbon. The gener-
alist can utilize all three trophic strategies at the same time.
However, the yield from each of these strategies depends on
the size of the generalist and the surrounding environmental
conditions (light level, nutrient and dissolved organic carbon
concentration, and food). The model contains several of these
generalists, with the only difference being the size of the or-
ganism, which is defined in logarithmic size bins of mass
m. The output of the generalist subroutine is the biomass
of each of the generalist size bins and the associated rates
of phototrophy (Jauto), osmotrophy (Josmo), and phagotro-
phy (Jphag). This approach makes the unicellular module es-
pecially well-adapted to handling mixotrophic organisms. In
the following subsections, we will go through the most im-
portant processes controlling the generalist growth and size
structure. The aim of this section is to give the reader an un-
derstanding of the mechanisms that control the organism and
a sense of the parameters that are evaluated in this study. The
important parameters are highlighted in bold in the text be-
low. The following sections summarize the more detailed de-
scriptions of the model given in Serra-Pompei et al. (2020)
and Andersen and Visser (2023).

2.2.1 Resource uptake

The organism’s affinity for (meaning its ability to take up)
dissolved organic matter and nutrients (aD), light (aL), and
food phagotrophy (aF) is dependent on its size. The affinities
for uptake of these resources are determined by the encounter
rate (how many resources the generalist is in contact with)
and the assimilation rate (how fast it can take up a resource
it encounters).

The affinity for diffusive uptake of nutrients and DOC is
modeled as a crossover between two size regimes: large and
small organism sizes. For large organisms, the limiting factor
is the rate of diffusion towards the outer cell membrane. In
contrast, for smaller organisms, it is the number of cell porter
channels that transport the resource across the cell membrane
(Eq. 1; all equations referred to are listed in Table 2). The pa-
rameter r∗D determines the organism size where the crossover
between the two regimes occurs, and the diffusive affinity
coefficient, αD, defines the upper limit of the diffusive en-
counter.

The affinity for uptake of carbon through photosynthe-
sis, aL, is also modeled as a crossover between two regimes
(Eq. 2). For small organisms, aL is dependent on an or-
ganism’s mass, while for larger organisms, where light-
harvesting complexes create internal shading, aL is depen-
dent on the cell surface area. The parameter r∗L determines
the crossover size between the two regimes. The parameter
αL is defined as αL = 3y/(4ρ), where y is the quantum yield

(describing the efficiency of the process relative to the avail-
able photons) and ρ is the carbon density of the individual
cell (Andersen and Visser, 2023). The light uptake efficiency
(εL) is a fraction that defines how efficient the organism is at
utilizing the available light.

Phagotrophy is modeled as a hyperbolic curve where the
amount of prey ingested increases with the prey density until
saturation of prey ingestion occurs. Such an ecological type-
II functional response has a constant affinity (the clearance
rate aF) and a maximum assimilated phagotrophic uptake
that are dependent on the assimilation efficiency (εF) and the
maximum phagotrophic coefficient (cF) (Eq. 3).

2.2.2 Synthesis, respiration, and losses

The generalist might be able to take up more nutrient and
carbon than it is able to synthesize. The rate of biosynthe-
sis is controlled by the maximum synthesis coefficient (αmax,
Eq. 4). Nutrients and excess carbon leak out of the cell. Be-
sides the resource uptake, the organism passively leaks car-
bon and nutrients through the cell membrane. This process is
modeled as a constant, cpassive, divided by the radius of the
organism (Eq. 5). Finally, the organism’s respiration rate is
modeled as a fraction of the maximum synthesis coefficient
(Eq. 6). This is called the basal metabolism coefficient, αR.

2.2.3 Prey–predator interactions

The generalist is potential prey for two groups: other larger
generalists and predators from higher trophic levels. The gen-
eralist’s internal prey–predator relationship is based on the
two parameters β and σ (Eq. 7). B defines the mean mass
ratio between the prey and the predator. The parameter σ de-
fines the wideness of the preferred size range that a predator
preys on. The mortality from higher trophic levels is like-
wise defined by two parameters, i.e.,mHTL, which defines the
lower limit (expressed as mass) of organisms that are preyed
on by higher trophic levels, and the higher trophic level mor-
tality coefficient, µHTL, which defines the rate of predation
by higher trophic levels. Lastly, the generalists undergo vi-
ral lysis. The rate is controlled by the parameter µv0 and is
dependent on the logarithmic size bin length (Eq. 8)

2.3 Dissolved organic carbon and particulate organic
matter

This version of NUM incorporates both dissolved and par-
ticulate matter into a simplified approach (Fig. 1). Dissolved
nutrients, both containing inorganic and organic N, are mod-
eled as one dissolved N pool, while DOC is modeled sep-
arately. The POM contains both C and N in a fixed ratio.
Dead cells, feeding losses, and higher trophic level mortal-
ity produce both POM and dissolved constituents (DOC and
N). Note that the choice of pooling inorganic and organic N
in a single pool means that the microbial consumption and
remineralization of N are not explicitly resolved as being de-
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Table 2. Equations used for the unicellular submodule. A full model description is given in Sect. S1.

Affinity for nutrients and dissolved organic matter aD = αDr
−2 1

1+( r
r∗D
)−2m Eq. (1)

Affinity for carbon uptake through photons aL =
αL
r (1− e

−
r

r∗L )(1− ν)m Eq. (2)

Rate of phagotrophy JF = εFcFr
−1 aFF

aFF+cF/r
m Eq. (3)

Maximum biosynthesis rate Jmax = αmax (1− ν)m Eq. (4)

Passive losses jpassive = cpassiver
−1 Eq. (5)

Respiration rate JR = αRαmaxm Eq. (6)

Size preference for predation ϕ = exp

[
−

ln2( m
βmprey )

2σ 2

]
Eq. (7)

Viral lysis∗ µv =
µv0

log(m
+

m−
)

Eq. (8)

Sinking of particulate organic matter wPOM = v1m
2 Eq. (9)

∗ m+ and m− are the masses of the upper and lower limits of the size bin.

pendent on osmotrophy. In contrast, consumption of DOC
as an energy source for heterotrophic osmotrophy is explic-
itly modeled as presented above (Sect. 2.2.1). The pool of
DOC in this model represents “labile” DOC. The divisions
between the particulate and dissolved fractions are deter-
mined by the γ parameters (γ2, γF, and γHTL), which de-
scribe how much of each flux (mortality, feeding losses, and
higher trophic level mortality) is routed to the dissolved frac-
tions, with the remaining losses transferred to POM. Particu-
late organic matter is divided here into two different size frac-
tions (a number that can readily be increased in future appli-
cations). POM derived from dead cells and feeding losses is
transferred to the largest POM size fraction, which is smaller
than the size of the original cell. POM from higher trophic
level mortality is transferred to the largest POM size frac-
tion. POM sinks with a size-dependent velocity, which is de-
scribed as a power function with parameter v1 and exponent
v2 (Eq. 9). POM is assumed to remineralize directly to the
dissolved N and DOC pools. This process of remineraliza-
tion is not explicitly microbial-cell-related in the model but
occurs at a constant rate determined by the inverse of the sol-
ubilization length scale (a) as remPOM = awPOM. The model
formulation of nutrients and the DOC and POM modules are
given in Sect. S1.

3 Modeling approach

In this article, we use the water column setup of the NUM
model to simulate the conditions at the southern CCE and
station ALOHA. We initially perform a general validation of
the model with default parameters against the mean biomass
size spectrum and nutrient profile for the two locations. The
subsequent analysis is aimed at understanding the model’s

performance, robustness, transferability, and parameter sen-
sitivity.

The investigation has two levels: an overall broad random
parameter evaluation followed by three more detailed statis-
tical sub-analyses. The first-level parameter study is com-
prised of 100 000 simulations with quasi-random input pa-
rameters in the range defined in Table 1. Of the 23 free pa-
rameters, several are assigned a span of several orders of
magnitude, which is computationally demanding but enables
a genuine investigation of the solution space and variability
for the model. We use a Latin hypercube sampling scheme
for all 23 parameters to ensure an even spread in the entire
parameter space (McKay et al., 1979; Stein, 1987) and eval-
uate the model performance by comparing the results with
observations, using a set of statistical matrices that will be
described below. We moreover use this first-level parameter
study and evaluation to identify optimized parameter com-
binations that result in a good model fit to the CCE obser-
vations. These optimized parameter combinations define a
restricted parameter span that permits us to perform three
additional statistical sub-analyses for CCE. The first sub-
analysis is a set of 10 000 simulations where the input pa-
rameters are quasi-randomly sampled with the Latin hyper-
cube sampling scheme within the restricted parameter span.
This sub-analysis allows us to determine whether only a very
specific combination of parameters results in a good model
fit or whether the model performance is increased by sim-
ply reducing the parameter span. The second sub-analysis is
a set of local sensitivity analyses where the model’s sensi-
tivity to each of the parameters is evaluated separately with
the outset in an initial parameter combination (Zhou and Lin,
2008). The local sensitivity analysis is done with the out-
set and the initial parameter combinations that perform best
for CCE. Each of the parameters is varied successively in

https://doi.org/10.5194/gmd-18-1895-2025 Geosci. Model Dev., 18, 1895–1916, 2025



1900 T. F. Hansen et al.: The unicellular NUM v.0.91

50 evenly distributed intervals within the restricted param-
eter span. This sub-analysis showed that several of the pa-
rameters result in system bifurcation points where the model
solution changes abruptly. While extremely interesting, de-
tailed analysis of such bifurcation points is beyond our cur-
rent scope and remains a prospect for future analyses. The
sub-analysis also showed that most parameters are highly
coupled in terms of ecosystem sensitivity, where the effects
of individual parameters are intertwined and result in a highly
nonlinear system. The sensitivity analysis with a specific pa-
rameter outset yielded nearly equal sensitivities for almost all
of the parameters, whereas, with a different parameter outset,
εF was the absolute most important parameter. Because of
these highly nonlinear parameter interactions, local sensitiv-
ity studies give little added information about model perfor-
mance. We have added two of these seven tests in Sect. S4.
The third sub-analysis is a global variance-based sensitivity
analysis using Sobol’s method and a sensitivity index (Bilal,
2014; Sobol, 1993, 2001). The global variance-based sensi-
tivity analysis accounts not only for the effect of each indi-
vidual parameter on the modeled result (the first-order ef-
fect), but also, more interestingly, the effect of a parame-
ter through its interactions with other parameters (total ef-
fect) (Bilal, 2014; Zhou and Lin, 2008). The global sensi-
tivity analysis is done following Bilal (2014) with a set of
20 000 simulations with parameter combinations based on
random sampling of the restricted parameter span. Then, for
each of the 20 000 simulations, we step through the parame-
ters and perform two simulations: (1) the parameter in ques-
tion is kept at its value while the other 22 parameters are se-
lected quasi-randomly within the restricted parameter span,
and (2) the parameter in question is randomly selected in the
parameter span while all the other parameters are kept at their
values (Bilal, 2014; Sobol, 2001). A step-by-step description
of the process for setting up the global sensitivity analysis is
included in Sect. S5.

The model evaluation and statistical test against the CCE
permit us to identify seven optimized parameter combina-
tions that result in a good model fit to observations for CCE.
We then finally evaluate how the model performs within the
restricted parameter spans at station ALOHA that, with its
different physical and chemical conditions, represent an olig-
otrophic downwelling system. These results are evaluated
against a first-level parameter study at ALOHA with 100 000
quasi-random parameter combinations.

3.1 Observational data

Compilations of the compositions of phytoplanktonic com-
munities have illuminated some systematic trends in the
size distribution of planktonic organisms as a function of
chlorophyll and autotrophic biomass concentration (ACbio)
(Taylor and Landry, 2018; Maranon et al., 2012; Ward et
al., 2014). Analyses across various provinces in the At-
lantic and North Pacific broadly reveal that, when chloro-

phyll a (chl a) or primary production is low, ∼ 40 % of the
biomass is dominated by picophytoplankton (0.2–2 µm), ir-
respective of temperature. As chl a increases, microphyto-
plankton (> 20 µm) increase in biomass and dominate when
chl a is high. Nanophytoplankton (2–20 µm) are intermedi-
ate between picoplankton and microphytoplankton at both
low and high chl a. Similar trends are present at the subre-
gional or local scale in detailed work that is described be-
low (Taylor and Landry, 2018; Taylor et al., 2015; Goer-
icke, 2011) (Fig. 2). Because of the apparent pervasiveness
of these trends and characteristics of the planktonic commu-
nity in marine ecosystems, size structure represents an excel-
lent test for the model’s adaptability across oceanographic
regimes.

Here, we compare the model result to size spectrum data
gathered from the southern CCE as part of the California
Current Ecosystem Long Term Ecological Research (CCE-
LTER) and from station ALOHA, which is the long-term
Hawaii Ocean Time (HOT) series (Taylor and Landry, 2018;
Pasulka et al., 2013; California-Current-Ecosystem-LTER
and Landry, 2019) (Fig. 2). These two sites reflect dis-
tinctly different oceanographic regimes: coastal upwelling
with eutrophic conditions at CCE and downwelling olig-
otrophic open-ocean waters at station ALOHA. Both sites
have been regularly sampled for epifluorescence microscopy
and flow cytometry in the years 2004 to 2011, resulting
in large datasets of biomass abundance, size structure, and
planktonic composition. The phytoplanktonic size structures
of the two sites show many of the same features as the large-
scale compilations of the planktonic size distribution: pi-
coautotrophic and nanoautotrophic organisms dominate the
size spectrum at low autotrophic carbon biomass (ACbio),
where the concentrations of microautotrophic organisms are
very low (Fig. 2a, b) (Taylor and Landry, 2018; Maranon
et al., 2012; Ward et al., 2014). The concentrations of all
three size classes increase with increasing ACbio. However,
the autotrophic microplankton concentration increases more
quickly than the smaller size groups and becomes dominant
at intermediate levels of ACbio (approximately 20 µg C L−1).
Microautotrophic plankton continues to increase in a power
law fashion for both observational datasets. In contrast, the
picoautotroph and nanoautotroph increases as a function
of ACbio are different at the two sites. The CCE-LTER
dataset follows the global tendency of a continued increase in
nanoautotrophs, while the picoautotrophs decrease towards
high ACbio. The HOT observations show steadier concentra-
tions for both picoautotrophs and nanoautotrophs across the
ACbio concentrations but with a small decrease in nanoau-
totrophs at high ACbio. While the two sites show many of the
same features, we note that high autotrophic biomass con-
centrations are much more frequently observed at CCE than
at station ALOHA (Fig. 2c, d). However, it is only in approx-
imately 2 % of the observations from the CCE-LTER dataset
that an autotrophic biomass as high as 100 µg C L−1 has been
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Figure 2. Observed plankton biomass as a function of total au-
totrophic biomass (ACbio). (a, b) Mean biomass of picoautotrophs
(< 2 µm, BA-pico), nanoautotrophs (2–20 µm, BA-nano), and mi-
croautotrophs (> 20 µm, BA-micro) at (a) CCE with upwelling and
(b) HOT with downwelling. The data have been compiled from
depths of 0 to 200 m from 2004 to 2011 and placed in logarith-
mically distributed bins. (c, d) Number of observations per bin
at the respective sites. (e, f) The total picoplankton (BT-pico) and
nanoplankton (BT-nano) biomass at CCE and HOT is the sum of
the autotrophic and heterotrophic biomasses. The data and binning
method are from Taylor and Landry (2018) and the references in
the text. Note that CCE relative to HOT is more eutrophic, which is
reflected in the higher amount of data in the higher ACbio bins (c
vs. d).

measured. At station ALOHA, only 4 % of the observations
have an autotrophic biomass concentration of 30 µg C L−1.

Table 3. Notations used for the different biomass size classes.

Notation Biomass class Size range

BT-pico Biomass of total picoplankton < 2 µm
BT-nano Biomass of total nanoplankton 2–20 µm
BA-pico Biomass of autotrophic picoplankton < 2 µm
BA-nano Biomass of autotrophic nanoplankton 2–20 µm
BA-micro Biomass of autotrophic microplankton 20–200 µm

As explained above, the unicellular subroutine of the
NUM framework calculates the rates of nutrient and carbon
uptake Jauto, Josmo, and Jphago for each generalist size bin,
while the specific trophic strategy is not explicitly calculated.
The observations of autotrophic organisms in the CCE-LTER
and HOT datasets are on the other hand based on the pres-
ence of chlorophyll a in epifluorescence microscopy as well
as on DNA and photosynthetic pigments in flow cytometry.
In these types of analysis, an organism is classified as an au-
totroph or a heterotroph, with no room for distinguishing de-
grees of mixotrophy. This therefore requires postprocessing
of our model result in order to be able to compare it with
observations. Our processing approach is described below.
To minimize the significance of the uncertain distinction of
mixotrophy in comparison with observations, we also cal-
culate the total biomass (heterotrophic plus autotrophic car-
bon) of the pico- and nano-sized classes (Fig. 2e, f). The ad-
dition of the heterotrophic component increases the overall
biomass of picoplankton and nanoplankton, especially in the
CCE-LTER observations, but it has very little influence on
the overall size distribution of the plankton. Finally, we do
not calculate the total biomass in the micro-sized bin, as ob-
servations in this size class are significantly underestimated
(Taylor et al., 2011). Taylor et al. (2011) found that micro-
sized heterotrophic ciliates are poorly preserved in the epi-
fluorescence slide-making protocol.

3.2 Evaluation metrics

The model result size spectrum is recalculated into different
pools of biomass carbon (Table 3): the sum of heterotrophic
and autotrophic biomass size classes is referred to as total
picoplankton (BT-pico) and total nanoplankton (BT-nano). The
autotrophic biomass in the size classes is referred to as au-
totrophic picoplankton (BA-pico), autotrophic nanoplankton
(BA-nano), and autotrophic microplankton (BA-micro). These
different biomass classes are calculated for each autotrophic
biomass bin (AC bin) in the same way that Taylor and Landry
(2018) processed their observations (Fig. 2).

To calculate how much of the model biomass should be
classified as autotrophic, we first define two ratios, γA :F =

Jauto/(Jauto+Jphago) and γA :O = Jauto/(Jauto+Josmo), where
the J values are the different rates of carbon synthesis de-
fined above. If the ratio γA :F is above 0.1, we classify the
generalist in that size bin as a fully photoautotrophic or-
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ganism for comparison with observations (Stoecker et al.,
1996; Stukel et al., 2011). We then calculate the autotrophic
biomass in that size bin (i) based on the combined rates of
autotrophic and phagotrophic biosynthesis as

Bauto,i = Bi
Jauto,i + Jphago,i

Jauto,i + Jphago,i + Josmo,i
.

If γA :F is below 0.1, we instead define the generalist in that
size bin as both autotrophic and phagotrophic, and the au-
totrophic biomass is calculated as

Bauto,i = Bi
Jauto,i

Jauto,i + Jphago,i + Josmo,i
.

The same philosophy is used for the osmotrophic–
autotrophic ratios.

While the use of γA :F is inspired by the red / green
fluorescence ratio (∼ 0.08) used to partition mixotrophic
nanoplankton into functional phototrophs or heterotrophs in
observational datasets (Stukel et al., 2011), we test our re-
sults for a range of values (0.1–0.9) and find that it does not
change our results quantitatively.

When evaluating our model against the observations, we
use oceanographic statistical practices as described in Tay-
lor (2001). For each of the 14 AC bins, we first calculate the
mean and standard deviation (SD) for the model and obser-
vations over the years 2004–2011. Based on these means and
SDs, we then calculate the model–observation correlation co-
efficient (CORm-o), root-mean-square difference (RMSdm-o),
and centered root-mean-square error (cRMSm-o) for the 14
AC bins (Table 4). Statistical comparisons are only made be-
tween model and observation AC bins if there are more than
two observations in an AC bin. The model–observation com-
parison is based on the upper 100 m of the water columns be-
cause this increases the total number of observations through
the year. Taylor and Landry (2018) evaluated only the upper
30 m of their observations. Our reanalysis of their data shows
no significant change in the observed size distribution of the
organisms relative to their results when we also include ob-
servations between 30 and 100 m.

The statistical measures are objective, but we need to de-
fine what acceptable model results are. We work on the
premise that we cannot expect to have a better fit to the mean
observation (mean of 2004–2011) than the year-to-year vari-
ation that is observed at the specific site. For each year be-
tween 2004 and 2011, we therefore calculate the annual mean
and standard deviation for each AC bin based on the ob-
servations (SDia, Table 4). We refer to the differences from
year to year as the interannual variation in the observations.
We then evaluate the correlation coefficient and root-mean-
square difference between the annual mean observation and
the total mean observation for all 14 AC bins (abbreviated
as CORiao and RMSdiao, respectively. Note the difference
from the subscripts above). These statistics inform us how
much natural variation occurs around the mean observation.

The minimum CORiao and maximum RMSdiao of the inter-
annual variation are used to determine whether a model re-
sult is successful (CORiao and RMSdiao values are available
in Sect. S2). For example, if the correlation coefficient of
the model average versus the observed total mean is higher
than the correlation coefficient of the interannual variation
(CORm-o>CORiao), the model result for a given parameter
set is considered successful in terms of the correlation coef-
ficient. Ideally, the optimal successful model simultaneously
has CORm-o>CORiao and RMSdm-o<RMSdiao for all of
the biomass size categories. As is clear below, no model re-
sults fulfill both criteria for all of the biomass size categories.
Instead, we isolate the model results that fit the COR and
RMSd criteria for at least 8 out of 10 size categories and that
have biomasses in the ACbio bin of up to at least 40 µg C L−1

for CCE and 15 µg C L−1 for HOT. For the solutions that ful-
fill these criteria, we sort them according to their CORm-o
and RMSdm-o and make a visual qualitative assessment in
comparison with the observations (Fig. 2).

3.3 Initial and boundary conditions

The analyses are performed in a water column setup of the
NUM model with vertical diffusion and temperature pro-
files for the two sites extracted from the global 1° transport
matrix MITgcm_ECCO (Stammer et al., 2004). Light, ex-
pressed as photosynthetically active radiation (PAR), is mod-
eled according to daily insolation, depending on the spe-
cific latitude, day of the year, and time of day. The NUM
model uses nitrate as its nutrient and is initialized with annual
mean observations of nitrate concentrations based on data
from CCE-LTER and HOT (CalCOFI-Scripps-Institution-of-
Oceanography and Wilkinson, 2022; Pasulka et al., 2013;
Karl and Lukas, 1996) The nitrate observations have been
smoothed with a Gaussian filter to reduce noise. The obser-
vations from station ALOHA only include nutrient measure-
ments to a depth of 175 m. Mean nitrogen values from the
World Ocean Atlas 2018 are used below this depth (Garcia
et al., 2018, 2019).

The model is simulated with 10 logarithmically distributed
size classes of generalists in the range from 3 pg C to 10 µg C,
which is equivalent to a spherical cell diameter of approxi-
mately 0.25 to 363 µm. In addition to the 10 size classes of
generalists, the model has small and large detritus of partic-
ulate organic carbon with different sinking velocities. The
model is run for 15 years with daily output. The last 5 years
are averaged and evaluated to smooth out interannual differ-
ences in the model results. DOC is initialized with a value of
60 µmol kg−1 (Zakem and Levine, 2019; Sarmiento and Gru-
ber, 2006; Letscher and Moore, 2015). It rapidly decreases
to a dynamic steady state with an annual mean value of
∼ 1± 0.5 µmol kg−1.
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Table 4. Definitions of the biomass metrics and their calculations.

Metric Description Formula

SD1
o Standard deviation of the observed biomass (o) across

ACbio bins (N ), calculated from the mean biomass (o)
values

SDo =

√∑N
n=1(on−o)

2

N

SD2
ia Standard deviation of the biomass for a given year (oia)

for each ACbio bin (N ), showing interannual variability
SDia =

√∑N
n=1(oia.n−o)2

N

SDm Standard deviation of the modeled biomass (m) across
ACbio bins (N ), calculated from the mean modeled
biomass (m) values

SDm =

√∑N
n=1(mn−m)

2

N

CORm-o Correlation coefficient between the modeled biomass
and mean observed biomass for each ACbio bin (N )

CORmo =
∑N
n=1(on−o)(mn−m)

N
1

SDoSDm

CORiao Correlation coefficient between the yearly observed
biomass and mean observed biomass for each ACbio
bin (N )

CORiao =
∑N
n=1(on−o)(oia.n−o)

N
1

SDoSDia

cRMSm-o Centered root-mean-square difference between the
modeled biomass and mean observed biomass for each
ACbio bin (N )

cRMSmo =

√∑N
n=1((mn−m)−(on−o))

2

N

RMSdm-o Root-mean-square difference between the modeled
biomass and mean observed biomass for each ACbio
bin (N )

RMSmo =

√∑N
n=1(mn−on)

2

N

RMSdiao Root-mean-square difference between the yearly
observed biomass and mean observed biomass for each
ACbio bin (N )

RMSiao =

√∑N
n=1(oia.n−on)

2

N

1 SDo represents the variability of biomass among the size classes within the dataset averaged across the years 2004–2011. This is a mean of all the
data within the upper 100 m for all the sampling data and locations, and interannual variability is thus not present here. 2 SDia captures how the
biomass in each size class for a given year deviates from the dataset averaged across the years 2004–2011.

4 Results

4.1 Model validation

Initial simulations have shown that 15 years are sufficient to
produce a dynamic steady state with a steady annual cyclic-
ity. Of the 100 000 simulations for CCE, less than 1 % ter-
minated due to instability generated by the combinations of
parameters. Random sampling of the simulations that inte-
grated properly (completed) showed that the results were re-
producible in the reruns and that the model had reached a
dynamic steady state.

To validate the model’s first-order response, we simulated
conditions for CCE and station ALOHA using the reference
parameters from Table 1. The results were then compared to
the observed biomass spectra and nitrogen depth profiles for
the two sites (Fig. 3). The contrasting oceanographic regimes
between the sites are evident from their nitrogen profiles

(Fig. 3a, b). The California Current Ecosystem, character-
ized by coastal upwelling, shows a nitricline at a depth of
approximately 100 m. In contrast, station ALOHA, an olig-
otrophic open-ocean site with downwelling, exhibits lower
nitrogen levels and a deeper nitricline. The model responds
correctly to the difference in circulation at the two sites, re-
sulting in a higher nitrogen concentration at CCE compared
to station ALOHA. Although the model’s results generally
align with the observations, there is a depressed nitricline at
CCE, leading to lower-than-expected nitrogen values in the
upper 200 m of the water column and slightly elevated nitro-
gen concentrations at station ALOHA.

Despite these differences in the nitrogen profiles, the
biomass size distributions at both sites are remarkably sim-
ilar (Fig. 3c, d). Both sites display a relatively flat Shel-
don biomass spectrum, with mean biomasses of approxi-
mately 1 µg C L−1 at CCE and approximately 0.5 µg C L−1

at station ALOHA. These biomasses are within the ex-
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Figure 3. Nutrient profile and Sheldon biomass comparison be-
tween the observations and reference model simulation for (a) CCE
and (b) station ALOHA. The Sheldon biomass spectrum illustrates
the biomass in each cell mass bin normalized by the bin width.

The Sheldon biomass spectrum is defined as Bs (m)= Bi/ log(
m+i
m−i

)

(Andersen and Visser, 2023).

pected range of the observations, although the mean observed
biomass is slightly higher, averaging 1.5 µg C L−1 at CCE
and 0.5 µg C L−1 at station ALOHA. Notably, the largest dis-
crepancy between the model and observations occurs in the
small size classes at station ALOHA, where the model un-
derestimates the biomass. The larger standard deviations ob-
served at CCE indicate a more variable environment com-
pared to station ALOHA.

In the following, we describe the results of the first-level
randomized parameter studies and the subsequent detailed
studies. The shared aim of these investigations is to better un-
derstand NUM model behavior, performance relative to ob-
servations, and how much parameter choice influences model
results.

4.2 First-level random parameter study: can the model
reproduce the planktonic community biomass
structure?

We initially tested the model’s ability to reproduce the
biomass spectrum and the community size spectrum of CCE.
Just as importantly, this is also a test of the variable ef-
fects that parameter choices have on model results. The re-
sults of the simulations are illustrated in Taylor diagrams
(Fig. 4). The Taylor diagrams provide a visual representa-
tion of the normalized standard deviation (SDm / SDo, radial
distance from the origin shown as the solid grey line), cor-
relation (CORm-o, azimuthal positions), and centered root-
mean-square difference (cRMSm-o, black circles extending
out from the grey dot) of the 100 000 model simulations com-
pared to the annual averaged observations from CCE (repre-
sented by the grey dot). The bright yellow color in the first
quadrants of all five diagrams shows that the model simu-
lations generally result in a positive correlation coefficient
with the CCE-LTER observations in all the biomass size cat-
egories. The smallest effect of the parameter variations is
seen in the autotrophic microplankton (BA-micro, Fig. 4e),
where the solutions are centered in a smaller area than the
other four size categories. On the other end of the scale, au-
totrophic picoplankton show the largest spread in solutions
from randomizing the parameters (BA-pico, Fig. 4c). On aver-
age, the smallest difference between the model result and the
mean observations (determined as abs(1−mean(cRMS))) is
found for BT-nano, which, despite some simulations with a
negative correlation, generally shows the closest fit to the ob-
servations. The other four categories have a larger deviation
from the observations due to either lower pattern agreement
(CORm-o) or overestimation or underestimation of the am-
plitude of variation (SDm / SDo). The amplitude of variation
in the size spectrum is overestimated for all the size groups
of picoplankton and nanoplankton, while the model under-
estimates the amplitude of variation in the autotrophic mi-
croplankton. The pattern agreement is overall best for BT-pico
and BA-nano, with mean correlations of 0.87 and 0.80. Inter-
estingly, the result of the simulations falls within three dis-
tinct groups for BA-pico, where some parameter combinations
produce a much better correlation with the observations than
others. That BA-pico falls into three groups may be related to
the biomass quantization also found in the observations and
other size-structured planktonic ecosystem models (Moscoso
et al., 2022; Schartau et al., 2010).

An alternative way of getting an overview of the model’s
capabilities and parameter effect is to visualize the overall
trend in simulations compared to the observation data as a
density plot (Fig. 5). The coloring in the figure shows that
most of the simulations for the five size categories have
a power law increase in the biomass with increasing AC
bins. Generally, the model does not capture the occurrences
of high ACbio concentrations (ACbio above approximately
100 µg C L−1), which is consistent with the observation that
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Figure 4. Taylor diagrams for 100 000 random parameter combina-
tions at CCE, displaying the standard deviation (SD) of the model
result relative to the observations (Obs.) as well as the correla-
tion coefficient (COR) and centered root-mean-square difference
(cRMS) between the model and observations. The blue to yellow
colors reflect the increasing number of realizations in each area. BT
and BA are defined in Fig. 2.

only 2 % of the samples have autotrophic biomass concentra-
tions of 100 µg C L−1 or above, illustrated here by the sizes of
the white dots. The trend in the simulations corresponds rel-
atively well to the observations for BT-nano (compared to the
mean observations given as white dots), which also proved
to be the size category with the lowest cRMS (Fig. 4). The
trend in BA-nano simulations also aligns reasonably well with
the observations, though the correlation is slightly weaker
due to a larger discrepancy between the modeled increase
in biomass and the observed increase in biomass. Both
size groups of nanoplankton do however underestimate the
biomass in low-ACbio bins (ACbio< 10 µg C L−1) and over-
estimate the biomass at higher ACbio, which corresponds to
the higher-than-observed amplitude of variations in the Tay-
lor diagrams. The picoplanktonic size groups also exhibit a
gradual increase in biomass with increasing ACbio rather than
the plateau at intermediate to high ACbio seen for observa-
tions of BT-pico and the decrease in biomass for BA-pico. Ad-
ditionally, the model underestimates biomass at low ACbio
for both picoplanktonic size groups. The modeled amplitude
of variation forBA-micro is lower than the observations, which
manifest as an overly high biomass at low ACbio and a lower-
than-observed increase in biomass with increasing ACbio.

Figure 5. Model mean and total biomass of the size groups as a
function of the total biomass for 100 000 random parameter combi-
nations at CCE. The white dots are observations in ACbio bins. The
abbreviations are as in Fig. 2. Blue to yellow reflect an increasing
number of realizations in each area. The sizes of the white observa-
tion dots indicate the relative number of observations in that ACbio
bin. Note the tendency of NUM to underestimate picoplanktonic (a,
c) and nanoplanktonic (b, d) biomass at low ACbio while overesti-
mating the biomass at intermediate to high ACbio. The autotrophic
microplanktonic biomass (e) is generally overestimated.

Of the completed model calculations, the ideal param-
eter combinations should result in CORm-o>CORiao and
RMSdm-o<RMSdiao for all the size groups. Evaluating
these conditions shows that none of the model results fulfills
both criteria for all the size groups. A detailed examination
of the simulations in terms of CORm-o and RMSdm-o, how-
ever, reveals a subset of seven simulations that results in a
planktonic size variability that corresponds particularly well
to the observations (Fig. 6).

In these seven simulations the picoplanktonic size groups
align with the mean observations, showing a plateau at in-
termediate to high ACbio for BT-pico and a tendency for
biomass to decrease for BA-pico at ACbio above 30 µg C L−1
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Figure 6. Model mean and total biomass of the size groups as a
function of total biomass for the seven statistically most optimal
parameter combinations at CCE. The black dots are observations in
ACbio bins, and the sizes of the black observation dots indicate the
relative number of observations in that ACbio bin. The abbreviations
are as in Fig. 2. Note the tendency of NUM to underestimate pi-
coautotrophic and nanoautotrophic biomass at very low ACbio and
to overestimate microautotrophic biomass.

(Fig. 6a, c). The parameter combinations do however result in
a BT-pico that is lower than 1 standard deviation for the small-
est ACbio bin. Both nanoplanktonic size groups closely fol-
low the observations, though still with lower-than-observed
biomass at low ACbio (Fig. 5b, d). The trend in microau-
totrophic biomass aligns with most of the model results,
which generally show higher-than-observed biomass. These
results are at the lower end of the 100 000 simulations but are
still too high at low to intermediate autotrophic biomass lev-
els (approximately 4–30 µg C L−1), forming a “humpback”
shape (Fig. 5e). While these seven simulations correlate re-
markably well with the observations, they generally have a
slightly too low correlation coefficient for BA-micro (0.79–
0.95 for the model results versus 0.96 for the observations)

and overly high root-mean-square differences for BT-pico
(0.48–0.64 versus 0.4) and BT-nano (0.37–0.71 versus 0.3)
(the statistic is available in Sect. S3).

With the goal of identifying a parameter range that yields
robust optimal solutions, in further sensitivity analyses of the
parameters we will focus on this subset of seven simulations
that perform especially well. We use the seven identified sets
of parameters to define a restricted parameter span based on
the minimum and maximum of each parameter in the set
group (Fig. 7, blue lines).

4.3 Restricted parameter span and sensitivity

We will now aim to evaluate the importance of the parameter
uncertainties and to establish a stable parameter space for the
23 free parameters where the simulations yield a reasonable
result. The range of each free parameter is based on the range
defined by the seven solutions with optimal fits (Fig. 6). An
initial local parameter sensitivity assessment revealed a high
degree of nonlinearity in the model that makes it difficult to
draw any global conclusions about parameter influence based
on local studies. To gain more insight into how the parame-
ters influence the sensitivity of the entire nonlinear ecosys-
tem, we instead perform a global sensitivity analysis (Bilal,
2014; Sobol, 2001; Zhou and Lin, 2008).

Figure 8 displays the parameters ranked by Sobol’s total
sensitivity index (STi) based on the root-mean-square differ-
ence for the five size groups. The corresponding figure based
on correlation is available in Sect. S6, but its conclusions are
consistent with Fig. 8. The value of the index cannot be com-
pared across the different categories, but the span in values
gives an indication of the variability in the sensitivity across
the parameters. For example, while BT-pico seems to be espe-
cially sensitive to approximately half of the parameters, there
is little difference in parameter sensitivity for BA-micro. The
global sensitivity analysis reveals that all of the size groups
are sensitive to the choice of parameters that control mor-
tality (red dots): phagotrophy (the phagotrophic assimilation
rate εF, clearance rate aF, predator–prey ratio β, and width
σ ), higher trophic level mortality (HTL pressure µHTL), and
viral lysis (µv0). All of the size groups are also sensitive to
the value of the maximum rate of biosynthesis (αmax) and, to
a lesser degree, respiration (αR) (grey dots). Parameters such
as the remineralization rate of dead organisms (γ2, purple),
diffusive affinity crossover (r∗D except for BA-micro, blue), and
C : N ratio of the cell are among the moderately sensitive pa-
rameters. The parameters mentioned above are ones that con-
trol the predation pressure, biosynthesis, and nutrient avail-
ability and uptake. Finally, the analysis shows that the pi-
coautotrophic biomass is more sensitive to the light uptake
efficiency (εL, yellow) parameter than the other size groups.
The analysis shows that other parameters are less important
and therefore allows for higher uncertainties. These param-
eters include the carbon density of the cell (ρ), the passive
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Figure 7. Span of all the free model parameters for the seven
most optimal parameter combinations at either CCE (blue) or sta-
tion ALOHA (yellow). The seven CCE model results are shown in
Fig. 6. Note how the parameter spans for CCE and station ALOHA
generally follow the same trend, except for γ2 and cF, where higher
values are needed to fit the data at station ALOHA than at CCE. The
most optimal parameter combination is estimated simultaneously
by the highest correlation coefficient and the lowest root-mean-
square difference between the model and observations for BT-pico,
BT-nano, BA-pico, BA-nano, and BA-micro. The parameter definitions
are in Table 1, and the other abbreviations are in Fig. 2.

losses coefficient (cpassive), remineralization of feeding losses
(γF), and higher trophic levels (γHTL).

Figure 8. Global parameter sensitivity ranked based on the sensitiv-
ity index calculated by Sobol’s variance-based sensitivity method
for nonlinear models. Sensitivity is calculated for RMSd. The pa-
rameters that the NUM model is most sensitive to have been col-
ored according to categories: predation and mortality (red), syn-
thesis (grey), cell remineralization (purple), light uptake efficiency
(yellow), and diffusive affinity crossover (blue). Note how all of
the biomass sizes are especially sensitive to parameters controlling
predation (red dots) and synthesis (grey dots). The parameter defi-
nitions are in Table 1, and the other abbreviations are in Fig. 2.

While the model sensitivity to parameters is complex and
nonlinear, a final set of 10 000 random parameter simula-
tions demonstrates that the model result space can be reduced
by confining the parameter space to the restricted parameter
span in Fig. 7. Using the restricted parameter span, we see
a tighter fit of the model results to the observations (Fig. 9),
in contrast to the full randomized parameter spans (Fig. 5).
The parameter restrictions have removed the simulations that
produced excess pico- and nano-sized biomass at high ACbio,
and the simulations now follow the observed trend with an
onset of a plateau at ACbio of 20 µg C L−1 for BT-pico and
BA-pico. The restriction has had less impact on the nanoplank-
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tonic biomass but has narrowed the range of results, lead-
ing to a slight overestimation of nanoplanktonic biomass in
most of the simulations, particularly at ACbio levels above
30 µg C L−1. Overall, the model results in Fig. 9 demonstrate
a notable improvement in model performance for the iden-
tified parameter spans in comparison to the full parameter
space. While this improvement may seem intuitive, it is not
necessarily a priori given, considering the model parameters’
nonlinear response to parameter change. The local sensitiv-
ity analysis showed that, even within the restricted param-
eter space, the impact of varying a parameter is highly de-
pendent on the other parameters (Fig. S2). The restricted pa-
rameter space could therefore, in theory, have resulted in the
same degree of model misfit as the full parameter span, with
only a few acceptable solutions generated by very specific
parameter combinations. That the model performance is en-
hanced by restricting the parameter span suggests that further
detailed parameter tuning may not be necessary to achieve
reliable results from the NUM model. While a better per-
formance is encouraging, it is important to evaluate whether
the identified parameter spans are applicable to other biogeo-
graphic provinces.

4.4 Results for station ALOHA

The heart of the trait-based approach is its potential uni-
versality, the principle that a single set of parameters can
describe organisms and ecosystems across time and place.
An important test is therefore whether the parameter sets
that performed best at CCE are suited to different oceano-
graphic settings. Figure 10 shows the result of 10 000 sim-
ulations, with the conditions mimicking station ALOHA
with quasi-random parameters from within the restricted
parameter span defined for CCE. The model reacts to the
shift in oceanographic regime by lowering the overall au-
totrophic biomass. Most simulations only reach a biomass
of 20 µg C L−1, which is consistent with observations. The
biomass of the picoplanktonic size groups is lower than the
mean observation but is generally within 1 standard deviation
(Fig. 10a, c; see Fig. 2b for comparison). Both nanoplank-
tonic size groups exhibit elevated biomass relative to the ob-
servations, with the discrepancy being larger than that ob-
served for the nanoplanktonic size groups in the CCE sim-
ulations (Fig. 10b, c; see Fig. 9b, c for comparison). The
microautotrophic size group exhibits the poorest correlation
with the mean observations, displaying excessive biomass at
low ACbin (< 9 µg C L−1) and variable but lower biomass at
ACbin above 9 µg C L−1. This pattern is inconsistent with the
observed sigmoidal trend, although the biomass falls within
the standard deviation of the observations (Fig. 10e; see
Fig. 2b for comparison). A comparison to the first-level ran-
dom parameter simulation with 100 000 simulations within
the full parameter space (not illustrated here but available in
Sect. S7) shows that restricting the parameters based on the
solutions from CCE has removed a set of simulations that

Figure 9. Model mean and total biomass of the size groups as a
function of the total biomass for 10 000 random parameter combi-
nations sampled within the restricted span of parameters at CCE.
The random parameter spans are based on the parameter range of
the seven statistically optimal parameter combinations at CCE (see
the text). The white dots are observations in ACbio bins, and the
sizes of the white observation dots indicate the relative number of
observations in that ACbio bin. The abbreviations are as in Fig. 2.
Blue to yellow reflects an increasing number of realizations in each
area. Note how the solution space has been restricted, especially for
picoplankton (a, c), compared to the full parameter span (Fig. 5).

produced overly large biomasses for all the size categories
at intermediate AC bins. However, it also eliminates a set
of simulations with better-fitting biomass concentrations at
low-ACbio bins. Figure 11 shows a set of simulations from
the first-level random parameter study that performs partic-
ularly well for station ALOHA. In these simulations, both
picoplankton and nanoplankton follow the trend of the ob-
servations and exhibit the correct amount of biomass. Inter-
estingly, most of the parameters for these four simulations
fully overlap with the parameters for the best solutions at
CCE (Fig. 7). While some parameters such as aF and αmax
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only partly overlap, the only parameters that differ signifi-
cantly between the two sites are γ2 and cF, which both have
higher values at station ALOHA than at CCE. The parame-
ter γ2 controls the fraction of dead matter directly remineral-
ized back to nutrients, and it is therefore an important pa-
rameter for controlling the amount of osmotrophy for the
smallest planktonic size group. cF and aF are two impor-
tant components of the rate of phagotrophy. It is noteworthy
that the parameters for successful solutions at the two differ-
ent sites exhibit trends that in many cases are correlated; for
both stations, the successful simulations have relatively high
αL,αmax, ρC :N, εL, and a values and a low εF value.

4.5 Nutrient profiles

As an indirect way of evaluating the model performance and
response to the different environmental conditions, we also
evaluate the depth profile of model nutrients for the two sites
(Fig. 12). Importantly, the nutrient profile was not part of the
initial statistical measures used to identify the model parame-
ters. The nutrient profiles for CCE are remarkably consistent
across the solutions. Nutrient concentrations are low in the
upper photic zone and increase with depth. While the mod-
eled profiles generally align with the observed data, there is
a tendency to underestimate nitrate concentrations at depths
ranging from 50 to 200 m. For station ALOHA, the modeled
profiles also align well with the measured concentrations,
with a slight tendency to overestimate nutrient concentrations
at depth. The model is generally able to respond correctly to
the shift from eutrophic to oligotrophic conditions.

5 Discussion and perspectives

5.1 Summary of the model performance

We have validated the generalist unicellular NUM ecosys-
tem model for two quite different biogeographic provinces:
the high-productivity upwelling conditions of the California
Current Ecosystem and the oligotrophic downwelling condi-
tions at station ALOHA. For the California Current Ecosys-
tem, out of 100 000 random combinations of the 23 free pa-
rameters, a large majority of the model results have corre-
lation coefficients for observations (CORm-o) greater than
0.7. This demonstrates that the generalist unicellular NUM
model, despite its simplicity, can capture the size distribution
of the planktonic ecosystem and its nutrient profile over a
broad range of parameter values. Out of the random simula-
tions we find only seven optimal, but quite different, parame-
ter combinations that reproduce results for CCE. These seven
optimal simulations almost perfectly match the distribution
of each of the size groups as a function of increasing ACbio
(Fig. 6). The seven optimal parameter combinations have a
mean CORm-o of 0.94 and an RMSdm-o of 0.4 for the five
size groups considered in comparison with the observations.
In particular, we find a BA-pico peak and a BT-pico plateau

Figure 10. Model mean and total biomass of the size groups as a
function of the total biomass for 10 000 random parameter combi-
nations at station ALOHA. The simulations have random param-
eter combinations within the restricted parameter space based on
the successful simulations from CCE (Fig. 7). The white dots are
observations in the ACbio bins, and the sizes of the white observa-
tion dots indicate the relative number of observations in each ACbio
bin. The abbreviations are as in Fig. 2. The blue to yellow colors
reflect an increasing number of realizations in a given area. Note
how the biomass of picoplankton (a, c) is underestimated, while
nanoplankton (b, d) is generally overestimated. Microautotrophic
plankton (e) have the lowest correlation of the five size classes, with
decreasing biomass as a function of ACbio.

at intermediate levels of autotrophic biomass, in agreement
with the observations (Taylor and Landry, 2018) (Fig. 6a, c).
We also find a power law increase in BT-nano and BA-nano as a
function of ACbio, as in the observations (Fig. 6b, d). Finally,
we observe a humpback increase in BA-micro that has the low-
est correlation with the observations but that is still within 1
standard deviation of the observed total mean (Fig. 6e).

Moving to the oligotrophic station ALOHA, we find that
the seven optimal model parameter combinations from CCE
give model results that capture many important aspects of
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Figure 11. Model mean and total biomass of the size groups as a
function of the total biomass for the four statistically most optimal
parameter combinations at station ALOHA. The black dots are ob-
servations in ACbio bins, and the sizes of the black observation dots
indicate the relative number of observations in that ACbio bin. The
abbreviations are as in Fig. 2.

the observational data. NUM qualitatively models a reduc-
tion in biomass at station ALOHA relative to CCE and gen-
erally reproduces the overall size structure. That the NUM
model produces less biomass at ALOHA is consistent with
observational differences between CCE and ALOHA (Tay-
lor and Landry, 2018). The seven simulations do however
produce overly low picoplankton biomasses and overly high
nanoplankton biomasses compared to the observations. A
detailed analysis shows that another set of parameter com-
binations was better at reproducing the picoplankton and
nanoplankton biomasses in terms of both correlation and
overall biomass values. The parameter spaces for these sim-
ulations were only significantly different from the restricted
parameter span for CCE in their range of a few parameters
(discussed below). Our validation against ALOHA indicates
overall that, by restricting the parameters based on the seven

Figure 12. Model nutrient profiles at CCE (a) and station
ALOHA (b). The white dots are observations based on CalCOFI-
Scripps-Institution-of-Oceanography and Wilkinson (2022), Pa-
sulka et al. (2013), and Garcia et al. (2018). Note the model ten-
dency to underestimate N in the thermocline at CCE but overesti-
mate it at station ALOHA.

optimal models at CCE and focusing on this small set of pa-
rameters, it is possible to match the overall increase and de-
crease in biomass for the different size classes to a degree
that would be satisfactory for applications where site-by-site
calibration is not possible.

5.2 Parameter sensitivity

Our sensitivity analysis shows that the model parameter sen-
sitivity is dependent on the specific parameter combinations
and that the ecosystem response is nonlinear. Local sensitiv-
ity analysis revealed that, while one of the good solutions was
nearly equally sensitive to almost all of the parameters, an-
other was mainly sensitive to only one parameter (εF, Fig. S2
in Sect. S4). Through a global sensitivity analysis, we iden-
tified the parameters that are especially controlling (Fig. 8).
Parameters regulating predation, mortality, biosynthesis, and
respiration are generally important among all the size groups.
Changes in these parameters create the largest shifts in the
model output. Interestingly, many of the parameters that pro-
duce the largest shifts in biomass are also among the least
constrained (Table 1; Andersen and Visser, 2023). In the fol-
lowing discussion, we focus on the parameters that are the
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least constrained but that also result in the highest sensi-
tivity. Higher trophic level mortality (µhtl) is important for
all the size groups. µhtl is an extrinsic parameter that gov-
erns predation rates at higher trophic levels. This parame-
ter serves as a closure term in the model and plays a criti-
cal role in shaping the biomass distribution. Specifically, µhtl
determines the size and biomass of microplankton, initiating
cascading effects on smaller size classes. While µhtl signif-
icantly impacts biomass partitioning across the size groups,
its influence on the total biomass is limited because reduc-
tions in microplankton result in corresponding increases in
nanoplankton (see Fig. 15b in Andersen and Visser, 2023).
The value of µhtl depends on the biomass and efficiency of
the higher trophic levels, which can vary significantly be-
tween eutrophic and oligotrophic environments. Our results
indicate that the optimal µhtl is larger at CCE than at sta-
tion ALOHA, although there is a significant overlap (Fig. 7).
The importance of µhtl suggests that including higher trophic
levels, such as copepods, could reduce model uncertainties.
However, that only shifts the problem towards determin-
ing the higher trophic level mortality pressure on copepods,
which is equally uncertain. Another highly uncertain param-
eter that creates a large shift in the biomass distribution is
the viral lysis mortality coefficient µv0. This parameter intro-
duces a density-dependent control of the population in each
size group. It has the effect of increasing the mortality pres-
sure on groups with high biomass and prevents all biomass
from ending up in one or a few size groups. The principle
of abundance-controlled viral lysis is an important aspect of
the “killing the winner” principle (Thingstad, 2000; Winter
et al., 2010). The default parameter used in the NUM model
is adjusted such that the effect of viral lysis is smaller than
that of other mortalities, in order to prevent this process from
determining the result despite the value of the parameter be-
ing largely unknown. Based on the global sensitivity study,
it will be an important future priority to get a better mecha-
nistic understanding of the viral lysis mortality process. Two
other important parameters, cF and εF, are involved in het-
erotrophic phagotrophy and are partly multiplicative, so one
influences the other (Eq. 3, Table 2). While the assimilation
efficiency (εF) is relatively well-constrained, the maximum
phagotrophic coefficient (cF) is not. The parameter cF is
unique to the NUM model and determines the phagotrophic
assimilation limit for large cells. While cF only directly influ-
ences the largest cells, it causes a cascading effect down the
size spectrum. The default value used here is fitted against
the maximum growth rates for different types of plankton
(see Fig. 5 in Andersen and Visser, 2023). Interestingly, cF is
one of the only parameters that show significantly different
optimal values for CCE and station ALOHA (11–25 µg d−1

for CCE and 35–45 µg d−1 for station ALOHA). The differ-
ence is likely related to a tradeoff between food acquisition
and predation, which is an important aspect of the slow–fast
tradeoff (Salguero-Gómez et al., 2016; Kiørboe and Thomas,
2020). High rates of predation induce higher food acquisition

but come with a higher predation risk (Kiørboe and Thomas,
2020). The difference between CCE and station ALOHA
can therefore be seen as a difference between a more stable
environment with high population densities (CCE) and var-
ied conditions with strong environmental gradients (station
ALOHA). The same argument is valid for the phagotrophic
clearance rate (aF), where the good fit for station ALOHA
has higher values compared to CCE. The mechanistic ar-
gument for phagotrophic clearance rates relates to the fluid
dynamics of a beating flagellate cell (Nielsen and Kiørboe,
2021; Andersen and Visser, 2023). This mechanistic under-
pinning means that the value of aF is relatively well-known,
with however a scatter of 1 order of magnitude due to differ-
ences in flagella arrangements that generate differences in the
predation risk. Future investigations into patterns of flagella
arrangements in different nutrient environments can maybe
give some valuable insight into the tradeoff between forag-
ing and predation risk.

The last highly unknown parameter that can create large
shifts in the biomass is γ2, which determines how large a
fraction of the background mortality is remineralized directly
into N and DOC instead of becoming POM. Increasing γ2 in-
creases the amount of dissolved nutrients and carbon in the
system, which increases the osmotrophic efficiency for pi-
coplankton. However, this value of γ2 is highly uncertain,
and cell mortality is treated quite simply here because of lim-
ited mechanistic understanding (Andersen and Visser, 2023).
Apart from cF, γ2 is the only other parameter where values
are significantly different between the two sites. Values for
γ2 are larger at station ALOHA than at CCE, indicating that
faster remineralization of organic matter is required at sta-
tion ALOHA. It is clear from the global sensitivity study that
developing a clear mechanistic understanding of the fate of
cell mortality should be an important priority. Fortunately, a
mechanistic model for organic matter accumulation has been
developed recently and may be a way to improve the NUM
model accuracy in future versions (Zakem et al., 2021).

Apart from the parameters described above, the model in-
cludes better-established parameters that result in a relatively
high sensitivity while also influencing the entire size spec-
trum. Of these, σ , β defines the shape of the prey–predator
size distribution, and αmax, αR controls the biosynthesis. In
contrast, the effect of εL (light uptake efficiency) mainly in-
fluences picoplankton’s affinity for photosynthesis.

Despite the model’s sensitivity to parameter changes, non-
linearity, and system bifurcation, it appears to be relatively
stable within the optimized restricted parameter spans iden-
tified based on comparison with CCE observations. Within
the restricted spans, no parameter combinations seem to per-
form significantly better than others for the chosen metrics.
We recognize however that further local parameter sensitiv-
ity investigation can be useful with our current knowledge
about the most important parameters gained from the global
sensitivity study.

https://doi.org/10.5194/gmd-18-1895-2025 Geosci. Model Dev., 18, 1895–1916, 2025



1912 T. F. Hansen et al.: The unicellular NUM v.0.91

An underlying premise in our validation is that we com-
pared the model results of a water column setup with annual
mean observations averaging nearly 700 km by 400 km, in-
cluding the shelf and open ocean. This means that any param-
eter combination that performs well compared to the mean
dataset will surely be less than optimal at some of the individ-
ual stations or at specific times of the year. Ongoing work is
evaluating the NUM model in a regional ocean model where
smaller variations along the shelf and especially across the
shelf can be resolved, as well as in settings where the data
permit resolution of seasonal variability.

5.3 Areas for improvement

We note that the optimal parameter spans have been de-
termined with a water column model without vertical ad-
vection. CCE is particularly influenced by upwelling advec-
tion, while station ALOHA is influenced by convergence and
downwelling advection. This difference is likely a significant
factor contributing to the model deficiencies at ALOHA. In-
deed, the 100 000 random simulations at CCE tend to pro-
duce overly low nitrate concentrations at depths of 50 to
200 m. This indicates that the model is missing additional
upwelling that could push the nutricline up. It may be rea-
soned that, if there had been more physical upwelling in the
model, the higher nutrient loading and presumably growth
would mean that a new set of optimal parameter combina-
tions would need to result in less biomass production to fit the
observed biomass. The implication of more efficient biomass
downregulation by perhaps more export would mean that,
for ALOHA, there would be more export, making the sys-
tem more oligotrophic, further enhancing the picoplanktonic
biomass, and lessening the nanoplankton and microplankton.
In fact, we see in the nutrient profiles that ALOHA has overly
high nutrient levels from 100 m and deeper. More down-
welling advection in the model setup for ALOHA would
push the nutricline down and result in a more oligotrophic
system, perhaps shifting the ecosystem towards more pi-
coplankton. Regardless, future investigations including a full
two-way cross-validation should explore NUM in a 3D cir-
culation mode to alleviate the model physics deficiencies of
the current water column setup.

In the NUM model, there is only one generalist functional
group where small and large are defined by the same param-
eter combination. This means that the smallest sizes, which
are essentially bacterial, are modeled with the same set of pa-
rameters as larger eukaryotic phototrophs. It is well-known
that there is a myriad of different species of bacteria opti-
mized with different metabolic strategies, optimized with dif-
ferent cell membranes, and without mitochondria. For exam-
ple, while the prokaryotes Synechococcus and Prochlorococ-
cus have similar sizes, the former inhabit the surface waters
at station ALOHA and the latter live under low-light con-
ditions near the nutricline (Wu et al., 2022). Furthermore,
while having quite different modes of life, their resource up-

take and growth are significantly different from, e.g., those
of picoeukaryotes or nanoeukaryotes. In fact, large meta-
data analyses show very different allometric scalings of the
metabolic rate as a function of body mass (size) (DeLong
et al., 2010). Prokaryotes show super-linear scaling with a
power of 1.7, while eukaryote protists have linear scaling
with a power of 1. Thus, empirical observations seem to
suggest that the parameters regulating biosynthesis in NUM
may need to respond more strongly to size at the picoplank-
ton end of the spectrum (DeLong et al., 2010). In fact, our
global sensitivity study revealed that the parameter regulat-
ing biosynthesis (αmax) is one of the most important parame-
ters (Fig. 8). We furthermore found that the model in general
could not capture picoplankton biomass in the oligotrophic
system. However, the best fit between the model and obser-
vations is with low r∗D, which increases the efficiency of the
picoplanktonic community. If biosynthesis in the picoplank-
ton range is modeled as more efficient than for larger sizes,
it potentially would up-regulate the microbial loop and result
in more picoplankton biomass.

Another aspect related to too little pico-biomass under
oligotrophic conditions may be the model treatment of DON
(dissolved organic nitrogen). Currently the model uses DOC
that only contributes to osmotrophic heterotrophy. However,
labile DOM has a DOC : DON ratio of ∼ 5–15 (Zakem and
Levine, 2019). This means that under oligotrophic condi-
tions the model osmotrophic bacteria are potentially nutrient-
limited, missing an important source of nutrients that could
boost the pico-microbial loop and thereby increase BT-pico.
Adding an explicit or implicit treatment of labile DON
would likely result in better performance (Zakem and Levine,
2019). Other recent studies have shown that the picoplankton
Prochlorococcus, while predominantly phototrophic, is capa-
ble of osmotrophic mixotrophy under low-light conditions,
and labile DOM additions under low light boost the growth
significantly (Wu et al., 2022). The experiments reveal that
significant Prochlorococcus growth and biomass in the deep
chlorophyll maximum are likely sustained by both light and
DOM. Such an additive substrate would increase the model
picoplankton growth rate and boost BA-pico to better match
the observations.

The simplicity of the NUM model places some limita-
tions on its use in some environments. The model does not
yet include oxygen or reduction-oxidation reactions as in
some trait-based models (Zakem et al., 2020b; Zakem et al.,
2020a). This has implications for the large phagotrophs or
higher trophic levels that are not restricted in their respira-
tion if for example oxygen is low. Using the model below
the photic zone in upwelling systems and to investigate low-
oxygen environments would require implementation of oxy-
gen, a development that is under way. The model ecosys-
tem is not currently limited by nutrients other than nitrate,
e.g., iron or phosphate (Serra-Pompei et al., 2022; Serra-
Pompei et al., 2020). It might also be possible to capture
more details of the ecosystem by parameterizing or adding
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additional functional groups such as diatoms and bacteria,
but these refinements come with a computational cost. Over-
all, the NUM model is fast and has the benefits of being able
to resolve mixotrophy in organisms and shared predation, as-
pects attracting increasing attention in trait modeling (Wu et
al., 2022; Casey et al., 2022; Follett et al., 2022). Our analy-
sis shows that the model – overall and despite its simplicity
– is remarkably stable within a wide range of parameters and
is usable for someone without intimate knowledge of the pa-
rameter settings.

6 Conclusion

We have validated the generalist unicellular component of
the NUM ecosystem model framework in a water column
setup for two sites – a high-productivity upwelling system
and an oligotrophic downwelling system. With optimization
of the range of 23 free parameters, the unicellular component
of NUM, despite its simplicity, can capture the size distribu-
tion of the planktonic ecosystem and its nutrient profile over
a broad range of parameter values. The model reproduces
the nutrient profile reasonably despite its simple POM and
degradation formulation. For CCE we find seven optimal pa-
rameter combinations that are quite different but almost per-
fectly match the distribution of each of the size groups as a
function of increasing ACbio. Validation against ALOHA in-
dicates overall that, by restricting the parameters based on
the optimal parameters for CCE, increasing the microbial
loop (increasing γ2), and focusing on predation, there is a
reasonable match to the overall trends in biomass for the dif-
ferent size classes and the nutrient profile. We find that there
is a tendency for NUM to underestimate picoplankton and
nanoplankton biomass at both sites, indicating that osmotro-
phy, nutrient uptake, and/or mixotrophy in the lower range of
the picoplankton group require further development.

Despite its simplicity, the NUM framework is remarkably
stable within the identified restricted parameter ranges and
likely well-suited to modeling poorly known regions and
evolutionary scenarios where first principles trump details.
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