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Abstract. Snow height measurements are still the backbone
of any snow cover monitoring, whether based on model-
ing or remote sensing. These ground-based measurements
are often realized using ultrasonic or laser technologies. In
challenging environments, such as high alpine regions, the
quality of sensor measurements deteriorates quickly, espe-
cially under extreme weather conditions or ephemeral snow
conditions. Moreover, the sensors by their nature measure
the height of an underlying object and are therefore prone
to returning other information, such as the height of veg-
etation, in snow-free periods. Quality assessment and real-
time classification of automated snow height measurements
are therefore desirable for providing high-quality data for re-
search and operational applications. To this end, we propose
CleanSnow, a machine learning approach to automated clas-
sification of snow height measurements into a snow cover
class and a class corresponding to everything else, which
takes into account both the temporal context and the de-
pendencies between snow height and other sensor measure-
ments. We created a new dataset of manually annotated snow
height measurements, which allowed us to train our models
in a supervised manner and quantitatively evaluate our re-
sults. Through a series of experiments and ablation studies
to evaluate feature importance and compare several different
models, we validated our design choices and demonstrated
the importance of using temporal information together with
information from auxiliary sensors. CleanSnow achieves a
high accuracy of almost 98% and represents a new baseline
for further research in the field. The presented approach to

snow height classification finds its use in various tasks, rang-
ing from snow modeling to climate science.

1 Introduction

Snow height measurements are key in many fields, such
as water resource management, avalanche forecasting, cli-
mate science, and even tourism. A variety of complex mod-
els simulating and calculating snowpack properties there-
fore exist. For example, they estimate snow water equiva-
lent (SWE) (e.g., Jonas et al., 2009) in order to assess wa-
ter resources. In addition, snow height is an important pa-
rameter for snow hydrological (e.g., Mott et al., 2023) and
snow cover (Lehning et al., 1999) modeling used in op-
erational avalanche forecasting (Morin et al., 2020; Pérez-
Guillén et al., 2022; Herla et al., 2024). In climate science,
snow cover is one of the key variables that strongly affect the
global energy balance and the atmospheric circulation, due
to its high albedo, high emissivity, and low thermal conduc-
tivity (e.g., Flanner et al., 2011). Snow height signals have
also been used to determine vegetation growth and plant phe-
nology (e.g., Jonas et al., 2008; Fontana et al., 2008; Vitasse
et al., 2017) and to monitor climate change (e.g., Matiu et al.,
2021). Finally, the snow cover directly influences tourism,
transportation, and recreational activities (e.g., Willibald
et al., 2021).

Snow height data are available nowadays, sometimes in
near real time, from airborne or satellite remote sensing and
ground-based automated weather stations (AWSs). One of
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the sensors often mounted at meteorological stations in high
alpine regions is an ultrasonic snow height sensor (Ryan
et al., 2008). Due to the measurement method, snow height
data come with a variety of errors that arise from the harsh
mountain conditions that the sensor is not originally designed
to operate under. In addition, ultrasonic sensors only measure
the distance to the underlying object, be it snow or anything
else. It is therefore important to validate whether the informa-
tion coming from the snow height sensor really corresponds
to snow or not.

Arguably the most precise way of assessing the quality of
snow height measurements is via visual inspection of the
data by a human expert (Robinson, 1989), which is how-
ever not easily transferable and does not scale well (Fiebrich
et al., 2010). A common practice in both manual and auto-
mated snow height quality assessment is to distinguish be-
tween snow and grass based on static climatological or min-
imum snow height thresholds. Random errors are typically
detected using a maximum snow height threshold or snow
height variance (Avanzi et al., 2014).

There are other sensors usually mounted at an AWS,
whose temporal structure can provide information on
whether the measured snow height relates to snow or not
and give some indications of the precision of snow height
measurement. Fusion of temporal information from multiple
sensors results in high-dimensional multivariate time series
signals, which increases the complexity of the problem. The
first attempts to leverage other sensor information included
the MeteoIO library developed by Bavay and Egger (2014)
and the thresholding method of Tilg et al. (2015). Both al-
gorithms are based on a series of thresholding rules that fol-
low the physical properties of snow. In particular, with the
presence of snow, the snow surface temperature (TSS) is ex-
pected to be ≤ 0°C. The ground temperature (TG) is ex-
pected to be constantly around 0°C, as snow insulates the
ground from atmospheric temperature variations (Domine,
2011). Reflected shortwave radiation (RSWR) is expected
to be high since snow has a much higher albedo than soil
or vegetation. When no snow is present, both TSS and TG
typically show diurnal variations, in line with the air temper-
ature (TA). However, it is rather difficult to capture corre-
lations between different features in high-dimensional space
by defining thresholding rules. Moreover, thresholding ap-
proaches are known to be rather cumbersome to modify and
generally do not transfer well to other station data.

Machine learning, instead, is an appropriate choice in such
cases and has already shown its power in other tasks con-
cerning weather and climate data (e.g., Vaughan et al., 2022;
Luković et al., 2022; Lam et al., 2023). Blandini et al. (2023)
addressed the high dimensionality of the data with a ran-
dom forest (RF) approach to snow height quality assess-
ment, solving both snow height classification and anomaly
detection at the same time. RF models (Breiman, 2001) are
amongst the most popular choices of machine learning al-
gorithms for tabular data (Grinsztajn et al., 2022). Multi-

variate time series signals contain both temporal dependen-
cies between different data points from the same sensor and
inter-sensor correlations between measurements from mul-
tiple different sensors. Apart from an attempt by Goehry
et al. (2023), simple models such as random forests or multi-
layer perceptron (MLP) neural networks (Rosenblatt, 1958;
Hornik et al., 1989; Cybenko, 1989) cannot explicitly ac-
count for the temporal nature of the data without engineer-
ing complex and artificial features, and therefore they are
a rather poor design choice. To correctly capture temporal
patterns in the data, we instead choose to work with neu-
ral network models specifically designed to operate on time
series data, e.g., recurrent neural networks (RNNs) (McCul-
loch and Pitts, 1943; Kleene, 1951), long short-term mem-
ory (LSTM) networks (Hochreiter and Schmidhuber, 1997),
temporal convolutional networks (TCNs) (Lea et al., 2016),
TimesNet (Wu et al., 2023), or transformers (Vaswani et al.,
2017).

We developed CleanSnow, a machine learning model for
automated classification of snow height signals into the Snow
and No Snow classes. To approach this binary classifica-
tion problem, we employed a temporal convolutional net-
work that explicitly accounts for the temporal relationships
between different points in snow height time series data. To
train our TCN, we created a new manually annotated snow
height dataset composed of 20 measurement stations with
around 20 years of data per station. This dataset also allows
us to validate our design choices and evaluate the model in
several different scenarios, including challenging cases such
as snow cover melt or plant growth periods.

2 Data

We used snow height data from the Swiss Intercantonal Mea-
surement and Information System (IMIS) (Lehning et al.,
1999; Liechti and Schweizer, 2024), a network of 131 AWSs
(as of May 2024) focused on snow measurements that are
distributed throughout the Swiss Alps and Jura (see Fig. 1)
and are mostly located above 2000 ma.s.l. The stations ac-
quire data regularly in 30 min intervals and provide meteo-
rological data in addition to snow height. To analyze snow
height (HS), we also leverage measurements of TA, TSS,
wind speed (WV), relative humidity (RH), and RSWR.

2.1 Data preparation

For model development and validation, we prepared a dataset
with reliable ground truth information. Manually annotating
snow height data is a tedious process, and doing so for the
whole IMIS network is intractable. Therefore, we identified
a subset of IMIS stations that we then manually annotated.

Annotating historical data is rather difficult, as there is no
way of checking whether there really was snow at a station
or not. This means that assessing the presence of snow with
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Figure 1. Map of IMIS stations in Switzerland. Stations marked as full gray circles were not part of the new annotated dataset. The yellow
squares are the stations that were used for training (14 stations), and the red triangles indicate stations used for testing (6 stations). The
background colors indicate the elevation (ma.s.l.).

the help of information from other sensors, such as TA, TSS,
TG, and RSWR, should be considered a best-effort approach.

2.1.1 Snow or No Snow dataset

A subset of 20 stations (see Appendix A) which span differ-
ent locations and elevations and vary in their underlying sur-
faces (e.g., vegetation, bare ground, and glacier) was selected
and manually annotated with binary ground truth information
regarding snow height data:

– Class 0 – No Snow: the surface is snow-free (e.g., veg-
etation, soil, and rocks).

– Class 1 – Snow: the surface is covered by snow.

The stations annotated with ground truth information are
depicted in yellow and red in Fig. 1. An example of this
data annotation is shown in Fig. 2, with two detailed views
that emphasize the differences in the behavior of TSS and
RSWR in the presence and absence of snow cover. The se-
lected stations mostly contain data between 2000 and 2023 at
a frequency of 30 min, with a few exceptions for stations that
were built later (BOR2, FLU2, LAG3, RNZ2, and SHE2; see
Appendix A).

2.1.2 Evaluation subset

We left some of the annotated data out during model devel-
opment, which we later used as an independent test set to
evaluate the generalization ability (e.g., Sect. 5.2 of Goodfel-
low et al., 2016) of our final approach at stations not seen at
training time. We selected six stations (SLF2, WFJ2, KLO2,

TRU2, STN2, and SHE2) that contain challenging scenarios
and are therefore suitable test cases. In particular, these sta-
tions are located at elevations where summer snowfall oc-
curs, the snow season duration is very different, or grass
grows during the summer periods.

3 Methodology

To clarify whether snow or another ground cover is under a
sensor, other sensor measurements can be used. To this end,
a combination of seven input variables can be selected, i.e.,
HS, TA, TSS, RSWR, VW, RH, and solar altitude. We omit-
ted TG, which was used during manual annotation, as it is
not available at all IMIS stations and the sensor is also prone
to defects. A detailed analysis of the input variable selection
is provided in Sect. 4.1.3.

Looking at a data point in the context of its temporal neigh-
borhood helps to determine whether there is snow or not at
a particular time step. In an operational setting, one would,
however, like to be able to make a prediction for each incom-
ing data point in real time. This means that we cannot access
data points in the future, and the context for each data point
has to be composed of itself and the preceding data points
(history). To reduce computational demands while still al-
lowing for a large enough context, we suggest working with
window sizes of between 8 and 192 time steps, where 1 time
step corresponds to 30 min. The effect of varying time win-
dow size on the results is summarized in Sect. 4.1.4.

To account for the multivariate temporal characteristics of
our data, we opted to use temporal convolutional networks,
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Figure 2. Examples of manually annotated data for the calendar year 2010 at station SLF2. Panel (a) shows the snow cover flag in green
(1 for snow cover and 0 otherwise) and the snow height flag in blue for the whole year. Panel (b) focuses on the end of the winter season
2009/10, illustrating the diurnal behavior of TSS and RSWR depending on whether there is snow or not. Panel (c) is the same as panel (b)
for the beginning of the winter season 2010/11.

which have proven useful in many applications concerning
time series (Wan et al., 2019; Pelletier et al., 2019; He and
Zhao, 2019; Hewage et al., 2020). Later, Sect. 4.2 provides a
comparison of CleanSnow with other popular models, such
as random forests, MLPs, a variation of an RNN called an
LSTM, transformers, and a recently released model for time
series processing called TimesNet, which yields state-of-the-
art results on various standard benchmarks.

3.1 TCNs

Based on well-known convolutional neural networks
(CNNs) (Fukushima, 1988; Waibel et al., 1989; Weng et al.,
1993; Lecun et al., 1998), TCNs are variations that consist
of dilated, causal 1D convolutional layers that have the same
input and output lengths. Dilation ensures that a specific en-
try in the output depends on all previous entries in the in-
put, while causal convolution means that the ith element of
the output sequence may only depend on input elements that
come before it (elements with indices {0, . . ., i}).

As shown by Lea et al. (2016), with dilations and causal
convolutions, TCNs can recover the behavior of RNNs while
not suffering from typical drawbacks of RNNs, such as the
vanishing gradient problem (Pascanu et al., 2013), and they

are therefore easier to train. The use of convolutions instead
of a recurrent mechanism also potentially leads to further per-
formance improvements due to the possibility of paralleliza-
tion of the convolution operation.

We chose a four-layer TCN architecture as shown in Fig. 3,
which has 4D time series with 48 time steps as its input. The
number of layers and filter sizes were selected so that the out-
put representation of the last point in the input time series is
an aggregation of all the previous time steps. In other words,
the TCN produces an output representation of the last point
in the input time series by aggregating information from the
entire history that is available at input. This representation
is fed into an MLP classifier, which first produces a series
representation and then uses this representation to produce
output class probabilities.

3.2 Training

Snow height classification is a binary problem. Binary clas-
sification problems are typically optimized using the cross-
entropy loss function (Good, 1952), which did not yield
good results in our case. Many of the stations included in
the dataset are located in places where snow is present for
much of the year, resulting in considerable class imbalance
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Figure 3. Flowchart of the proposed TCN-based architecture with a drawing of an IMIS station on the left. A time window of four input
signals of length 48 (1 d) coming from an IMIS station is fed into the TCN, which causally aggregates information from all the time steps
into a 128D latent vector. This information is subsequently fed into the classification network, which applies a sequence of MLPs to classify
the input signal into two classes – Snow and No Snow. Each dilated 1D convolutional block has filters described in the format input_features
× output_features @ kernel_size. The composition of each MLP is described as input_features, hidden_features_1, . . ., output_features.

in our data. Moreover, we would like our model to perform
well in the challenging marginal cases. Therefore, we chose
to drive the optimization using the so-called focal loss (Lin
et al., 2017), which allows the model to preferentially focus
and train on examples that it has difficulty in classifying cor-
rectly while downweighting the simple cases throughout the
training process.

The focal cross-entropy loss is defined as

FL=−
N−1∑
i=0

αi(i−pi)
γ logb(pi), (1)

where αi is the so-called balancing factor for class i, fur-
ther contributing to class balancing; γ is the focus parameter
which controls the downweighting of the easy examples; pi
is the probability of the sample belonging to the ith class;
N = 2 is the number of classes in the classification problem;
and b is the logarithm base, which is typically b = 10.

We run the training for a maximum of 300 epochs, feeding
the model with a batch of 128 samples in each iteration. We
allow for the possibility of early stopping if the validation
loss has not improved for more than 50 epochs. The opti-
mization process was governed by the AdamW (Loshchilov
and Hutter, 2019) optimizer with an initial learning rate of
10−3. The learning rate was subject to step decay with a fac-
tor of 0.1, three times, after 50, 100, and 150 epochs.

3.3 Dataset

In all the experiments, we used the Snow and No Snow
dataset described in Sect. 2.1.1. This dataset was split into
training and evaluation subsets (see Sect. 2.1.2). For model
training, we further (randomly) divided the training subset
into two parts using a 90 : 10 split: 90 % used for training
CleanSnow and 10 % for validation. The validation set was
used to monitor CleanSnow’s performance during training

and hyperparameter tuning and enabled early stopping to pre-
vent overfitting of the training data (Ying, 2019).

The whole training dataset contained approximately 7 mil-
lion data samples, which would be rather impractical for
experimentation, as it would yield extremely long training
times and high computational demands that might not always
be available. To make our experiments more tractable, we
selected roughly 30% of the data from every station in the
training set using filtering by year (Table B1 shows which
years were used from each station).

3.4 Hyperparameter tuning

We performed 5-fold cross-validation with random training–
validation splits in order to perform hyperparameter tun-
ing using a grid search for the following model archi-
tecture variables: dropout and output_activation for the
TCN, batch_norm and activation_function for the MLP, and
gamma and alpha for the focal loss and the optimizer learn-
ing rate.

For all of the remaining experiments, we have fixed a ran-
dom seed for the training–validation split in order to ensure
easy and full reproducibility of our results. Random splitting
inherently takes care of having samples from different sta-
tions and different time periods throughout the whole train-
ing subset.

We opt for a batch size of 128 samples as this is suffi-
ciently large while still fitting into the GPU memory we had
available. Due to limited computing resources, we do not op-
timize the remaining hyperparameters, and we instead select
them based on similar architectures available in other works
and our experience with designing machine learning models.
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4 Results

In this section, we summarize experiments performed to
evaluate CleanSnow. With a series of ablation studies, we
clarify various design choices and then compare our TCN,
the model of choice, to other available options. We continue
with a thorough evaluation of the TCN in different periods of
the year, pointing out its strengths and weaknesses. The ex-
periments are concluded with a case study that demonstrates
the use of CleanSnow in vegetation science.

4.1 Experiments with the CleanSnow setup

In the following sections, different experiments with the
CleanSnow configuration and model comparisons are shown
to explain our design choices and their contributions to ob-
taining the best results. All the experiments were performed
using a TCN with seven input features, i.e., HS, TSS, TA,
RSWR, RH, WV, and solar altitude (which encodes informa-
tion about the date and time of day).

The models were compared using the F1 score and the
receiver operating characteristic (ROC) curve (Egan, 1975),
which is a plot showing the performance in terms of the true
positive rate (TPR), the false positive rate (FPR).

4.1.1 Synthetic ground truth experiments

To demonstrate the need for annotated data, we trained a
model using a synthetic ground truth based on empirical rules
developed according to human expert knowledge (see Ap-
pendix C). We compared the model trained with the syn-
thetic ground truth information to the model trained with
the manually annotated data. The results in Fig. 4a demon-
strate the inability of thresholding rules to generate reliable
ground truth information that could be leveraged for train-
ing. This resulted in the TCN synthetic ground truth model
not learning the correct relationships between different input
variables, yielding an F1 score of 93% and therefore having a
lower performance than the TCN manual ground truth model,
which was trained with our manually annotated dataset and
achieved an F1 score of 97%.

4.1.2 Class balancing

Our training dataset included roughly twice as many snow-
covered samples as snow-free samples. We applied class bal-
ancing by adjusting the class weights of the focal cross-
entropy loss and observed how that affected the performance
of CleanSnow. We assigned a weight of 1.0 to the class rep-
resenting snow and a weight of 0.5 to the class representing
bare ground, as there are approximately twice as many data
samples from the snow-covered period. Figure 4b shows that
class balancing improved the performance from an F1 score
of 95.2% to one of 96.7% and was therefore a valid design
choice in our pipeline.

4.1.3 Feature importance

We conducted an ablation study training CleanSnow with a
leave-one-out strategy for input features in order to validate
their importance for model decision-making (Fig. 4c).

The HS, TSS, TA, and RSWR signals were found to be
important (i.e., their removal resulted in a reduction in model
performance with a decrease in the F1 score of up to 4%), in
line with what was discussed above for manual data anno-
tation. On the other hand, removing WV and RH from the
input features only marginally improved the model perfor-
mance, suggesting that they have no positive effect. Hence,
neither feature provided any additional information that was
useful for classification. However, for other tasks, e.g., snow
height anomaly detection, WV might very well be an impor-
tant signal carrying information on snow transport by wind
and related phenomena. Interestingly, removing solar alti-
tude, which encodes information about the date and time,
improved the performance of the model (increasing the F1
score by 1.5%). We attribute this to the fact that solar altitude
information potentially makes the model decide based on the
date and time of the year, which is undesirable. As much as
date and time data are generally valid indicators of the sea-
son and therefore have a strong influence on the presence of
snow, they might hamper decision-making, especially at the
beginning and end of the snow season and in the case of sum-
mer snowfall, whose occurrence varies from year to year.

Therefore, we chose our final model to have four input
features, i.e., HS, TSS, TA, and RSWR.

4.1.4 Sequence length selection

One of the key parameters to choose is the length of the
history the model can use to predict the current time step.
Figure 4d shows the relationship between history length and
model performance. The best results were obtained with a
history length of 48 time steps (24 h), achieving an F1 score
of 97%. Very similar results were obtained with a history of
length 32 (18 h) and an F1 score of 96%. A history length
shorter than 24 time steps deteriorated the performance, as
did history lengths longer than 96 time steps. Accordingly,
we set the history length to 48 time steps as a compromise
between sufficient and not too much context for the model.

4.2 Model selection

To choose the right architecture for the task at hand, we
experimented with several state-of-the-art machine learning
models for single time step and time series processing, com-
pared their performance, and finally selected the one that per-
formed the best overall. Our model of choice was the TCN.
A short description of the other models we evaluated is pro-
vided in Appendix D.

To have a balanced model that does not favor one of the
classes, we selected the decision threshold as the point where
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Figure 4. ROC curves for the various ablation studies. Every plot additionally shows the macro-F1 score for the threshold where TPR=FPR
(the point on each curve). (a) Importance of manually annotated ground truth data. (b) Effect of class balancing. (c) Importance of input
features. (d) Influence of sequence length on model performance.

TPR=FPR. We evaluated each model for two scenarios: one
with all seven input features and one with only the four rele-
vant features.

Figure 5 shows the overall best performance of the TCN
with an F1 score of 97.8%. Removing RH, WV, and solar
altitude, which were identified as irrelevant features, resulted
in a significant improvement of the LSTM model, equaling
the performance of the TCN with an F1 score of 97.7%.
Nevertheless, we opted for the TCN, as it was on par with
the LSTM, and the results in Fig. 5a suggest that the TCN

is more resilient to unimportant features in the input. In ad-
dition, the TCN is known to be easier to train than LSTM.
Interestingly, for RF the performance is less dependent on
the selection of input features, suggesting its ability to deal
with uninformative inputs.

4.3 Performance analysis per station

To better understand the generalization capabilities of the
model, we evaluated its performance separately for each test
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Figure 5. Model comparison shown as ROC curves for two different versions of the six models (LSTM, TCN, TimesNet, transformer, MLP,
and RF): model performance with (a) all seven input features (HS, TSS, TA, RSWR, RH, WV, and solar altitude) and (b) the four relevant
input features (HS, TSS, TA, and RSWR). Every plot additionally shows the macro-F1 score for the threshold where TPR=FPR (the point
on the curve).

station. The results in terms of confusion matrices are pre-
sented in Fig. 6 and suggest a good generalization capabil-
ity of the model for most of the stations, except for SLF2
and STN2. Stations SLF2 (1563 m) and STN2 (2914 m) were
considerably outside the elevation range that was available
during the training. Moreover, these two stations are rather
special cases compared to most of the other stations and can
be considered out-of-distribution samples. Station SLF2 is
located in a meadow in the village of Davos, which seems
to have a positive effect on the classification as class No
Snow, as it was the only station with an F1 score for class
No Snow that was higher than for class Snow. Station STN2,
by contrast, stands on a glacier, which results in very differ-
ent ground properties compared to any other station in the
dataset. This is reflected in a lower F1 score for class No
Snow, especially as STN2 reached an F1 score of only 94.5%
(which is 2% less than any other station in the test set). In ad-
dition, from Figs. 6 and 7, one can further conclude that the
model generally classifies the presence of snow slightly bet-
ter than the absence of snow.

It is also important to understand whether CleanSnow gen-
eralizes to stations at different locations with different eleva-
tions. The results presented in Fig. 7 suggest that the model
performance was very stable for stations at elevations be-
tween about 2100 and 2700 ma.s.l., while it decreased for
stations located either below or above this range. This cor-
responds to the fact that 80% of the stations in our training
set were in this range, only two were below 2000 m, and one
was at 2800 m.

The seemingly good performance of the model should
however be analyzed in detail. There are periods for which
it is rather easy to correctly classify snow as Snow and snow-
free ground as No Snow, together with other times of the year
when the problem becomes much harder. This is discussed in
detail later in Sect. 4.4.

4.4 Performance for different times of the year

Classification of snow height measurements into snow and
snow-free ground can be both a simple and rather challenging
task, depending on the location and time of year. We provide
a per-month performance analysis in Fig. 8, which shows that
the model mostly had trouble predicting snow-free ground in
the winter months. This is because very few training data for
that class were available during December, January, Febru-
ary, and March. Furthermore, we had no snow-free samples
in the test set for February and March. In summer, instead,
the results suggest that CleanSnow was able to detect most
of the summer snowfall (with a performance drop of approx-
imately 20% compared to the full winter) while maintain-
ing very good performance in predicting snow-free ground.
At the end of winter, in May and June, the model perfor-
mance was also very good, suggesting that CleanSnow can
be used to accurately predict the snow disappearance date (as
a longer snow-free period after a long period with constant
snow cover).

In addition, we analyzed the model performance for each
season. To this end, we split the test dataset into four different
seasonal clusters:
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Figure 6. Performance evaluation of each test station separately, shown in terms of confusion matrices ordered by elevation (a–f): SFL2
(1536 m), SHE2 (1852 m), KLO2 (2147 m), TRU2 (2459 m), WFJ2 (2536 m), and STN2 (2914 m). Each confusion matrix has targets as
rows and predictions as columns.

Figure 7. Model performance for the six stations in the test subset as a function of elevation. The F1 score is shown separately for the
classifications Snow (red line) and No Snow (green line). The blue columns indicate the elevation distribution in the training subset (14
stations).

– The winter season was defined as the period with mostly
continuous snow cover (December, January, February,
March, and April).

– The summer season was the part of the year typically
without snow (July, August, and September).

– The end of the winter season was defined as the
snowmelt period resulting in snow-free ground (May,
June, and July).

– The start of the winter season included the months when
it starts snowing more often and at some point a contin-
uous snow cover forms on the ground (September, Oc-
tober, and November).

In the following sections we describe the model performance
for each of the four seasonal clusters in detail and point out
some season-specific challenges.

4.4.1 Winter season

For snow classification, the middle of winter is presum-
ably the easiest time of the year. Besides some low-
elevation stations and some exceptional seasons with a
very late onset of winter or very early snowmelt, the task
should be rather trivial, as the snow cover is continuous
in time. Figure 9a demonstrates that the model confidently
classified snow (TPR= 99.4 %), in contrast to snow-free
ground (TPR= 88.4 %).
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Figure 8. Performance of the model for each month of the year. The F1 score is shown separately for the classifications Snow (red line) and
No Snow (yellow line). The blue columns indicate the distribution of the Snow samples, while the yellow columns indicate the distribution
of the No Snow samples.

Figure 9. Confusion matrices for each of the four seasonal clusters: (a) winter season (December–April), (b) summer season (July–
September), (c) end of the winter season (May–July), and (d) start of the winter season (October–December). Each confusion matrix has
targets as rows and predictions as columns.

4.4.2 Summer season

In contrast to the full winter, the classification of snow
in summer is more challenging. Besides snow-free ground,
there were many stations where vegetation grew (approx-
imately 20% of the data in the test set). This resulted in
nonzero snow height sensor measurements, which do not cor-
respond to snow. Exceptions were stations at high elevations
(e.g., on a glacier) and winters when the snow did not melt
until the beginning of summer.

The snow height signal for snow-free ground typically os-
cillates with high frequency and either stays around zero or
grows in the presence of vegetation under the sensor. The sur-
face temperature and air temperature will most of the time
oscillate high above 0°C, showing a diurnal cycle. During
overcast periods or in the presence of precipitation, TA and
TSS will show the same value. Due to the lower albedo of
snow-free ground, smaller amounts of RSWR are measured.
Based on the above assumptions, summer snowfall can be de-
tected when TA equals TSS, which is followed by larger val-
ues of RSWR with a simultaneous decrease in TSS. If there
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is vegetation growing under the station, the HS signal coun-
terintuitively decreases as the plants are pressed down by the
snow. In the case of snow-free ground under the sensor, the
HS signal will increase as expected during snowfall.

Figure 9b demonstrates that the model accurately detected
snow-free ground with 99% accuracy. The effect of summer
vegetation is shown in Fig. 10a. On the other hand, detecting
snowfall in the summer proved to be difficult, and even more
so when vegetation was present. In this very difficult setting,
CleanSnow achieved a performance of 81%. A partial detec-
tion of summer snowfall is shown in Fig. 10c. CleanSnow
succeeded in detecting the main event but failed to correctly
classify a few hours at both the start and end of the summer
snowfall.

4.4.3 Start and end of the winter season

The transition periods between winter and summer and vice
versa are key periods for the detection of the first snow and
its disappearance, which are both dates of interest in climate
science. These two seasonal clusters contain both data with
rather continuous snow cover and data with bare ground or
vegetation growth. Such data are therefore a perfect test case
for CleanSnow.

In our experiments, the end of the winter season was
the easier case to classify, achieving very competitive
performances of 98% for snow and 99% for snow-free
ground (Figs. 9c and 10). We attribute this high accuracy
to the fact that the transition from snow-covered to snow-
free ground was often rather smooth, and once the snowpack
melted there were not many periods with snow persisting on
the ground. The beginning of summer was typically repre-
sented by high air temperatures, which caused TSS to oscil-
late with the daily cycle, indicating snow-free ground. Simul-
taneously, RSWR noticeably decreased once the snow had
completely melted.

On the other hand, classification at the start of the
winter season was more challenging: the model achieved
accuracies of 95 % for snow and 93% for snow-free
ground (Figs. 9d and 10). There were multiple cases of snow-
fall at the beginning of the season, after which the snow
melted again completely. In addition, in late fall and at the
beginning of winter, temperatures occasionally dropped and
the ground froze overnight. This resulted in TSS being con-
stantly less than or equal to 0°C even without snow, which
might force the model to focus more on RSWR and HS
during decision-making, potentially decreasing its decision-
making power.

4.5 Comparison with manual observations

Perfect test cases are stations with concurrent manual obser-
vations, i.e., measurements performed manually by human
observers. Such measurements were available for the two sta-
tions WFJ2 and SLF2 located in the region of Davos.

Since the manual measurements were taken only once a
day, we resampled our predictions from 30 min intervals into
24 h intervals. We averaged probability scores over the 24 h
(48 automatic measurements) to obtain the per-day probabil-
ity score.

The performance comparison of annotated automatic mea-
surements and manual observations in Fig. 11 confirms that
we produced high-quality annotations for the historical data.
Some days with snow were erroneously annotated as snow-
free ground. This can be related to both short snowfall which
disappears in daily aggregation and the fact that manual ob-
servations were performed around 08:00 CET in the morn-
ing, while our data were daily averaged values. Such mis-
alignment might produce additional disagreements between
manual observations and our annotations.

The results also show that CleanSnow achieved a very
good performance when evaluated against daily manual ob-
servations. The differences in performance between the two
ground truth sources (approximately 2% in TPR and 1.5%
in TNR) were attributed to the inconsistencies between the
manual annotations of automatic measurements and manual
observations.

4.6 Comparison with other approaches

To further demonstrate the added value of our machine learn-
ing approach, we compared it with other state-of-the-art
methods such as filtering used in the physics-based snow
cover model SNOWPACK (Lehning et al., 1999). In partic-
ular, we considered SWE provided by SNOWPACK since
the HS signal is filtered to calculate SWE. Therefore, SWE
should be a good indicator of whether the HS signal relates
to snow or not. If the HS signal does not represent snow,
one would expect SWE to be 0. In addition, we compared
CleanSnow to thresholding-based filters implemented in the
MeteoIO library, which were mainly designed to filter vege-
tation growth measurements in summer.

Figure 12 shows a comparison of the snow height classifi-
cation by our TCN model with classification based on SWE
calculated by SNOWPACK and the MeteoIO filter. The re-
sults suggest that the machine learning approach is superior
in most cases. This might be due to the fact that both SNOW-
PACK and MeteoIO use thresholding-based rules based on
TSS and TG to filter HS similarly to the approach described
by Tilg et al. (2015). The optimal threshold values vary
across different stations, which requires per-station calibra-
tion of the thresholds. Moreover, TG-based filtering is prob-
lematic since, as already mentioned, the TG sensor is prone
to failures and the signal is therefore often missing at some
stations.

4.7 Case study: vegetation growth

Besides obvious applications in snow science, reliable sep-
aration of snowfall from plant growth has benefits for bio-
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Figure 10. Examples of CleanSnow classification results. The snow height signal is depicted in blue. The model predictions in terms of
probability (0–1) are shown in green. The dashed horizontal line denotes the decision threshold selected to balance the model performance
in predictions for both classes. The red-shaded areas mark regions with classification errors (i.e., samples assigned to the wrong class). (a)
SLF2 (1563 m), year 2020 shows a correct classification of summer vegetation growth (the nonzero blue curve is classified with a probability
lower than that of the decision threshold and therefore is assigned to class No Snow). (b) SHE2 (1852 m), year 2022 is an example of early
October snowfall that has been classified partially correctly. (c) TRU2 (2459 m), year 2005 demonstrates the model’s ability to detect summer
snowfall and scattered snowfall at the beginning of winter. (d) STN2 (2914 m), year 2013 is evidence that the model does not always perform
well, here making mistakes at the beginning of the next winter season.

logical research. Removing HS measurements classified as
snow allows for the extraction of a clean vegetation signal
and the pinning down of reoccurring events in the life cy-
cle of alpine vegetation – referred to as vegetation phenol-
ogy. Since snow and plant heights have been recorded for a
very long time, it is possible to relate the timing of green-

up (i.e., the start of vegetation growth) or other phenolog-
ical phases to snow climate parameters and study pheno-
logical shifts over time – an excellent indicator of climate
change (e.g., Inouye, 2022). We extracted 25 years of vege-
tation growth data from HS measurement data at TUJ2 (Cul-
matsch, 2262 ma.s.l.), an IMIS station characterized by tall
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Figure 11. Confusion matrices for comparison of model performance evaluated against our annotations (left) and against human observer
measurements (right). The results for station WFJ2 are in (a) annotations and (b) observations, followed by the results for SLF2 in (c)
annotations and (d) observations.

Figure 12. Comparison to other approaches shown as performance (F1 score) per station for CleanSnow (blue), the filter based on the SWE
from SNOWPACK (red) and the thresholding filter from MeteoIO (yellow).

plant growth. Within the 20 years of data, the algorithm
flagged all snow days during the vegetation period, which
were then removed. Snow disappearance and snowmelt dates
were defined as the first and last days of continuous winter
snow cover. We fitted a logistic growth curve (Kong et al.,
2022) to the clean plant growth measurements and defined
the start of growth as a 10% threshold of maximum plant
height (Fig. 13). Vegetation green-up was directly linked to
the timing of snowmelt, consistent with other studies (Jerome
et al., 2021; Jonas et al., 2008), while late snowfall events
shifted the start of growth towards later calendar days. Lin-
ear regression analysis revealed an earlier occurrence of
green-up over the study period, coinciding with an increase

in spring temperatures measured at the station. Despite in-
significant changes in snowmelt timing, the shorter lag be-
tween snowmelt and the initiation of plant growth suggests a
warming-driven advancement in phenology at the study site.
This case study highlights the importance of long-term moni-
toring and automated machine learning approaches in under-
standing climate-induced phenological shifts, with implica-
tions for ecosystem dynamics in remote alpine regions.

5 Discussion

We proposed a deep-learning-based approach to snow height
signal classification, which is a crucial step in automating

https://doi.org/10.5194/gmd-18-1829-2025 Geosci. Model Dev., 18, 1829–1849, 2025



1842 J. Svoboda et al.: Deep-learning solutions for snow height classification

Figure 13. An example of a logistic growth curve (in dark green) fitted to height measurement data from TUJ2 in the vegetation season of
the year 2019. Snow height data corresponding to snow are shown with blue stars, while the plant signal is shown with green diamonds. The
red cross marks the snowmelt date, while the orange diamond marks the start of plant growth.

the snow height signal quality-checking process. In addition
to selecting an appropriate model, we provided some good
practices to develop machine learning models for automated
snow height classification.

5.1 Best practices for snow height classification using
machine learning

In our analysis, we aimed to establish best practices for fur-
ther development of machine learning methods for snow
height classification and quality assessment. We showed
that learning from synthetic ground truth data generated us-
ing thresholding rules proposed in the past did not work
well, as the predefined thresholds did not generalize to all
stations without modifications. This emphasizes the need
for well-annotated data for training. Next, we pointed out
the importance of addressing the class imbalance prob-
lem to achieve the best possible performance. Furthermore,
we demonstrated the superiority of sequence-based models
(TCNs, LSTM, TimesNet, and transformers) to single time-
step-based models (RF and MLP), which confirms the need
for temporal context to achieve a high classification perfor-
mance. We acknowledge the existence of techniques that al-
low one to feed RF and MLP models with sequences of data,
e.g., lagged features (i.e., adding data from previous time
steps as extra input features). Nevertheless, we argue that
such techniques do not treat sequential data as a causal se-
quence, which is conceptually nonideal and might potentially
lead to the resulting model becoming less explainable in how
it treats temporal information. Another important aspect to
consider is the sequence length. We performed an analysis
of the performance for the length of the time window (i.e.,
the size of the temporal context), which revealed that the
ideal length was around 48 time steps, as shorter and longer
time windows resulted in a deterioration of the model per-
formance. Subsequently, we showed that it was important to
evaluate the model performance during the critical times of

the year (the start and end of the winter season) to reveal the
true performance.

5.2 Deep-learning models for snow height classification

We studied the suitability of state-of-the-art deep-learning
models for the snow height classification task. Several
cutting-edge deep-learning architectures have been evaluated
against each other, resulting in the superiority of a TCN to
the other compared methods. CleanSnow reached an accu-
racy of 97.7% in the independent test set when we used a
decision threshold that balanced the model performance of
predictions for both classes – Snow and No Snow. Hence,
the results indicate that the approach generalizes well to un-
seen stations that are within the distribution of the training
set. A detailed performance evaluation for each station in the
test set showed that the model performed very well, except
for the data of stations SLF2 and STN2, which are two par-
ticular cases that were not represented well in the training
data. Station SLF2 is located low in a valley, and STN2 is on
a glacier. In addition to being out-of-distribution, such spe-
cial environments, compared to those of most other stations
in the dataset, might cause slightly different behavior of the
auxiliary variables used during HS analysis and result in a
performance decrease.

5.3 Generalization

The generalization ability of CleanSnow to elevations that
are within the range included in the training set is good.
These elevations represent the Alps, which is the region
of interest for us. Generalization to out-of-distribution sam-
ples (stations located at elevations that are not represented
well in the training data) is rather poor. Out-of-distribution
generalization, however, remains an open problem in the
machine learning community. One possibility for improv-
ing out-of-distribution generalization is to explicitly express
some known behavior (e.g., physical constraints) in a neu-
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ral network. Such models are known as physics-informed
neural networks (PINNs) (Raissi et al., 2019) and can be
implemented by either adding a regularization term to the
loss function or incorporating the constraints directly into
the model architecture. In both cases, such constraints help
the model to correctly extrapolate to situations that were not
represented in the training data.

5.4 Limitations

One of the known limitations of CleanSnow is the fact that
it operates on raw data, meaning that the inputs may con-
tain both anomalies (e.g., spikes) and missing values. Even
though CleanSnow seems to be resilient to anomalies, it
would be good practice to perform anomaly detection and
filtering before running the proposed snow height classifi-
cation models. We argue that filtering obvious spikes in the
snow height signal is a rather trivial procedure and can be
solved by employing statistical methods such as Hampel fil-
tering (Pearson, 1999) or an exponential moving average fil-
ter (Kendall and Stuart, 1966). However, other, more subtle
variations are very challenging to detect by both the human
eye and automated methods.

CleanSnow can only be applied in cases where the full
history needed to make a prediction is available. At the mo-
ment, in the case of missing samples in the context of 48 time
steps, the samples are discarded without being run through
the model. Dealing with missing data is far more complicated
than filtering anomalies. A simple solution for periods of up
to several time steps would be linear interpolation. However,
as the size of the interpolated interval increases, this fails to
produce an accurate reconstruction of the missing data. To
impute longer periods of missing data, methods that take into
consideration both spatial and temporal contexts should be
employed. This is, however, beyond the scope of this work,
and we therefore leave it as a possible future research direc-
tion.

6 Conclusions

Automated snow height measurements are key input data
for many modeling approaches in climate science, snow hy-
drology, and avalanche forecasting. Erroneous snow height
measurements deteriorate the performance of these models.
We demonstrated how to mitigate the aforementioned is-
sues through the use of deep-learning methods for automated
snow height classification. Our contributions can be summa-
rized as being three-fold. First, we created a novel machine
learning approach to snow height signal classification that
operates directly on time series data. Second, we provided
an in-depth comparison of several machine learning models
applied to snow height classification. Third, we introduced
a new benchmark dataset with annotated snow height data,
which sets a baseline and can be used for further research in
the field. The proposed approach achieved a high accuracy
of 97.7% and generalized well to previously unseen stations.
CleanSnow can be implemented as a component of an ar-
bitrary snow height quality assessment pipeline without the
need for any special hardware.
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Appendix A: List of stations in the Snow and No Snow
dataset

This section provides a list of IMIS stations used in our Snow
and No Snow dataset (see Sect. 2.1.1), together with their
metadata. Table A1 shows the stations ordered by increasing
elevation. The column “Subset” indicates whether a station
was used for training or testing.

Table A1. List of stations that are part of the Snow and No Snow dataset, together with their auxiliary information, ordered by elevation. The
column “Subset” denotes whether a station belongs to the training set or test set.

Station ID Latitude (° N) Longitude (° E) Elevation (m) Available since Subset

SLF2 46.8127 9.8482 1563 November 1997 Test
AMD2 47.1708 9.1468 1610 October 1997 Training
GLA2 46.9966 9.0375 1632 November 2000 Training
SHE2 46.7488 7.8124 1852 October 2001 Test
ILI2 46.1913 6.8277 2022 March 2000 Training
GUT2 46.6793 8.2896 2115 November 1999 Training
KLO2 46.9091 9.8738 2147 November 1996 Test
TUM2 46.7810 9.0214 2191 October 2002 Training
FNH2 46.1007 6.9641 2252 September 1997 Training
KLO3 46.8412 9.9316 2299 November 1996 Training
LAG3 46.4245 9.6977 2300 November 2009 Training
FLU2 46.7527 9.9464 2394 October 2003 Training
RNZ2 46.6855 8.6267 2400 December 2008 Training
TRU2 46.3709 7.5855 2459 November 1996 Test
BOR2 46.2905 8.1093 2517 September 2001 Training
WFJ2 46.8296 9.8092 2536 January 1996 Test
ARO3 46.0874 7.5620 2602 September 1996 Training
SPN2 46.2294 8.1176 2620 November 1996 Training
FOU2 45.9717 7.0672 2800 October 1999 Training
STN2 46.1678 7.7505 2914 October 1998 Test

Appendix B: Subsampling of the training data

Table B1. List of years for each station that were selected as part of the subsampled training dataset.

Station ID Selected years

AMD2 1998, 2001, 2004, 2007, 2010, 2013, 2016, 2019, 2022
GLA2 2001, 2004, 2007, 2010, 2013, 2016, 2019, 2022
ILI2 2002, 2005, 2008, 2011, 2014, 2017, 2020, 2023
GUT2 2000, 2003, 2006, 2009, 2012, 2015, 2018, 2021
TUM2 2004, 2007, 2010, 2013, 2016, 2019, 2022
FNH2 2000, 2003, 2006, 2009, 2012, 2015, 2018, 2021
KLO3 1999, 2002, 2005, 2008, 2011, 2014, 2017, 2020, 2023
LAG3 2011, 2014, 2017, 2020, 2023
FLU2 2005, 2008, 2011, 2014, 2017, 2020, 2023
RNZ2 2010, 2013, 2016, 2019, 2022
BOR2 2002, 2005, 2008, 2011, 2014, 2017, 2020, 2023
ARO3 1998, 2000, 2003, 2006, 2009, 2012, 2015, 2018, 2021
SPN2 1999, 2002, 2005, 2008, 2011, 2014, 2017, 2020, 2023
FOU2 2001, 2004, 2007, 2010, 2013, 2016, 2019, 2022
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To run experiments in a reasonable time and make sure
that they were computationally tractable, we subsampled the
training dataset to reduce the number of training samples. In
Table B1, we list which years were selected for each station
for the training set.

Appendix C: Synthetic ground truth generation

We generated synthetic ground truth data by applying thresh-
olding rules inspired by the works of Bavay and Egger (2014)
and Tilg et al. (2015) to the HS measurements. In order for a
sample to correspond to snow cover, the following condition
had to be met:((

1
N

∑N−1
n=0

TSSn

)
≤ 0.0

)
∧((

1
N

∑N−1
n=0

RSWRn

)
≥ 300.0

)
,

(C1)

where N is the length of the time window.

Appendix D: Machine learning models

For completeness, we provide a short description of every
machine learning model that was used in our performance
comparison.

D1 RF

Implemented in many data science libraries and easy to use,
RF is a popular choice of machine learning algorithm that
can provide satisfactory predictions in both classification and
regression tasks. In practice, RF is an ensemble approach,
which produces a final prediction as a combination of out-
puts of many decision trees. It often works well on tabular
data, but there are no mechanisms that would allow for a
more principled representation of temporal, spatial, or graph
structures.

In our experiments we used the RF classifier implemen-
tation from the scikit-learn library (Pedregosa et al., 2011),
setting the number of decision trees to 1000 and the maxi-
mum depth of each tree to 50. We left the other parameters
at their default settings and trained the RFs using the Gini
criterion (Gini, 1921).

D2 MLP models

Being one of the first neural network models that can learn
nonlinear functions, MLPs have shown their power in natural
language processing (NLP) and serve as a foundational com-
ponent of many other current neural network models. Find-
ing their applications in both regression and classification
tasks, MLPs can serve as an alternative to the RFs presented
above. Putting them in comparison with RFs, MLPs can be
generally more difficult to train for a given task and often

exhibit lower performance, especially with tabular data. This
is due to their nature of learning smooth (sometimes overly
smooth) solutions, thereby causing them to not perform well
for problems with a non-smooth decision boundary. Grinsz-
tajn et al. (2022) argue that this is due to the gradient descent
approach to MLP optimization. They also show that MLPs
are more affected by, e.g., uninformative features compared
to RFs.

We designed an MLP composed of an input layer with
seven input dimensions and 32 output features, followed by
three hidden layers with 64, 128, and 256 output features, re-
spectively. Each hidden layer had batch normalization (Ioffe
and Szegedy, 2015) and rectified linear unit (ReLU) activa-
tion functions (Fukushima, 1969; Nair and Hinton, 2010) ap-
pended to it. The MLP was concluded with an output layer
which takes a 256-feature representation and produces the
final class probability score.

D3 LSTM

Belonging to the family of RNNs, the original models de-
veloped for time series processing, GRU (Cho et al., 2014)
and LSTM (Hochreiter and Schmidhuber, 1997) are varia-
tions that allow models to better capture long-term depen-
dencies compared to RNNs, which tend to forget inputs that
came much earlier in the history. We chose to use LSTM in
our experiments, as it is one of the gold standards in deep
learning for time series processing.

The LSTM model we used in our experiments took an in-
put with seven dimensions and was composed of three re-
current layers with hidden dimensions of 64, 128, and 256,
followed by an output MLP classifier that produced the final
probability scores.

D4 TimesNet

Recently released and setting the new state-of-the-art perfor-
mance for many standard benchmarks, TimesNet (Wu et al.,
2023) has become one of the models of choice for time series
processing in general. Its main characteristic is the transfor-
mation of a 1D time series signal into a 2D one, which al-
lows it to capture complex temporal variations in the signal.
The conversion of a time series into a 2D signal is based on
detecting signal periods using amplitude information from a
fast Fourier transform (FFT) and ordering the signal chunks
into a 2D array. Applying 2D convolutions to this array al-
lows it to capture both inter- and intra-period variations in
the signal.

In our experiments we used a modification where the def-
inition of signal periods is fixed and not determined by the
FFT. We used five periods to split the signal, i.e., 48, 32, 24,
16, and 8. The model was then composed of three layers,
with each layer having two blocks and 128 hidden features.
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D5 Transformers

Since they were published in 2017, transformers have revo-
lutionized many areas of deep learning, achieving new state-
of-the-art results, mostly in natural language processing and
computer vision. Transformers are models based on an atten-
tion mechanism (Vaswani et al., 2017) and were originally
proposed for sequence-to-sequence tasks.

Here we employed a modification of the traditional trans-
former. In particular, we took the classical transformer en-
coder in order to produce a latent representation for the in-
put sequence, where each point is conditioned on the past
context. The encoder was composed of two layers with hid-
den dimensions of 128 and four attention heads. Both the
input positional encoding and the encoder have a dropout of
0.1 applied. The latent representation produced by the trans-
former encoder was average-pooled and passed to an MLP
readout network, which produced the classification probabil-
ity scores.

Code availability. The exact version of the software
used to produce the results in this paper is available at
https://doi.org/10.5281/zenodo.14587841 (Svoboda et al.,
2025b), while current and future versions of it can be found
at https://gitlabext.wsl.ch/jan.svoboda/snow-height-classification
(last access: 2 January 2025) (Svoboda et al., 2025a).

Data availability. The manually annotated dataset that we used
to both train and evaluate CleanSnow is publicly available
for research under a CC BY-NC (https://creativecommons.org/
licenses/by-nc/4.0/, last access: 2 January 2025) license at
https://doi.org/10.5281/zenodo.13324736 (Svoboda et al., 2024).
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