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Abstract. This work presents the first step in the develop-
ment of the VISION toolkit, a set of Python tools that allows
easy, efficient, and more meaningful comparison between
global atmospheric models and observational data. Whilst
observational data and modelling capabilities are expanding
in parallel, there are still barriers preventing these two data
sources from being used in synergy. This arises from differ-
ences in spatial and temporal sampling between models and
observational platforms: observational data from a research
aircraft, for example, are sampled on specified flight trajecto-
ries at very high temporal resolution. Proper comparison with
model data requires generating, storing, and handling a large
number of highly temporally resolved model files, result-
ing in a process which is data-, labour-, and time-intensive.
In this paper we focus on comparison between model data
and in situ observations (from aircraft, ships, buoys, sondes,
etc.). A standalone code, In-Situ Observations Simulator,
or ISO_simulator for short, is described here: this software
reads modelled variables and observational data files and out-
puts model data interpolated in space and time to match ob-
servations. These model data are then written to NetCDF files
that can be efficiently archived due to their small sizes and
directly compared to observations. This method achieves a
large reduction in the size of model data being produced for
comparison with flight and other in situ data. By interpolat-

ing global gridded hourly files onto observation locations, we
reduce data output for a typical climate resolution run, from
∼ 3 Gb per model variable per month to ∼ 15 Mb per model
variable per month (a 200-times reduction in data volume).
The VISION toolkit is relatively fast to run and can be auto-
mated to process large volumes of data at once, allowing ef-
ficient data analysis over a large number of years. Although
this code was initially tested within the Unified Model (UM)
framework, which is shared by the UK Earth System Model
(UKESM), it was written as a flexible tool and it can be ex-
tended to work with other models.

1 Introduction

The importance of atmospheric observations from both in
situ and remote sensing platforms has been growing in the
last few decades, with data archives, such as the new Nat-
ural Environment Research Council (NERC) Environmental
Data Service (EDS; https://eds.ukri.org, last access: 8 Jan-
uary 2025), becoming a key infrastructure for the storage,
exchange, and exploitation of data. The strategic importance
of in situ measurements was also highlighted by the recent
GBP 49 million NERC funding to maintain and re-equip the
BAe-146 research aircraft of the FAAM Airborne Laboratory
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out to 2040 (https://www.faam.ac.uk/mid-life-upgrade/, last
access: 8 January 2025).

Advances in geophysical model developments and exas-
cale computing have similarly led to an increase in the com-
plexity of models used for climate projections in interna-
tional modelling projects, such as CMIP6; chemistry and
aerosol components are now routinely being included in a
number of climate model simulations (Stevenson et al., 2020;
Thornhill et al., 2021; Griffiths et al., 2021). Comparing all
these models with observations is vital to increase our confi-
dence in their ability to reproduce historical observations, to
understand existing biases, and ultimately to improve their
representation of the atmosphere.

A wide variety of observational datasets can be used for
model evaluation; what makes such comparisons with model
data inherently difficult is the difference between the orderly
model data, defined on the model grid at regular time in-
tervals, and the unstructured observational data, with vari-
able coverage in space and time. A large computational ef-
fort is required for the handling and processing of gridded
model data files into a format suitable for direct comparison
with observations, especially when the measurement loca-
tion varies with time (e.g. aircraft, ships, sondes). In order to
compare this to observational data with varying coordinates,
model output must include hourly (or higher-frequency) vari-
ables over a large atmospheric domain. As well as being
data-intensive, extracting hourly data from a tape archive is
also time-intensive. This leads to orders of magnitude more
data being stored and processed than is actually required, and
a significant number of labour and computer resources are
spent to extract, read, and interpolate model data in space
and time onto desired observation coordinates. Because of
these issues, previous studies of comparison between models
and in situ observations from aircraft are generally restricted
to case studies over a limited number of campaigns (e.g. Kim
et al., 2015; Anderson et al., 2021), or they compare model
data with observed data independently of the time or location
of measurement (e.g. Wang et al., 2020).

A previous attempt at producing Unified Model data on
flight tracks was made several years ago, by embedding a
flight_track routine (using Fortran programming language)
within the UM-UKCA source code (Telford et al., 2013).
However, using this approach added a computational burden
to the running of the UM-UKCA model, and it was mainly
intended for the output of chemical fields (model diagnos-
tics related to some UM dynamical fields were not avail-
able within the UM-UKCA subroutines). As a result, the
flight_track routine used in Telford et al. (2013) was never
ported to further versions of UM-UKCA.

In this paper we describe the first tool in the VISION
toolkit: ISO_simulator.py. This code can be embedded into
the model workflow, or it can optionally be used as a stan-
dalone code with existing model data (e.g. to process vari-
ables from existing simulations). When ISO_simulator is em-
bedded in the model workflow, it produces much smaller data

files which can easily be archived and are ready to be used
for direct comparison with observations.

This new tool allows the routine production of model data
interpolated at the time and location of in situ observational
data. This can enable the exploitation of large observational
datasets, potentially spanning decades, to be used for large-
scale model evaluation. Another possible application of the
VISION toolkit is for improving model comparison with ob-
servations when conducting Observing System Simulation
Experiments (OSSEs) (Zeng et al., 2020). These experiments
are typically performed using models with a high spatial
and time resolution; integrating the VISION tools into the
workflow of such high-resolution nature runs (NRs) would
allow us to efficiently sample data at the model time step
with much-reduced data storage requirements. Whilst the
UM/UKESM has been used as a test model and the current
version of the tool is designed to work with UM output, the
next version of the VISION toolkit (currently under develop-
ment) will be model-independent. Since VISION is designed
to work with CF-compliant data, including CMIP CMORised
output, it could provide a valuable tool for supporting ex-
panded diagnostics in upcoming CMIP7 experiments.

In Sect. 2 we describe the ISO_simulator code, including
command line arguments, input–output files, and code op-
timisation. In Sect. 3 we show how ISO_simulator is em-
bedded within the Unified Model workflow. In Sect. 4 we
provide some example plots showing comparisons of UM–
UKESM-modelled ozone to measurements from the Cape
Verde Atmospheric Observatory (CVAO) (Carpenter et al.,
2024), ozone measurements from the Tropospheric Ozone
Assessment Report (TOAR) ocean surface database (includ-
ing data from cruise ships and buoys, similar to Lelieveld et
al., 2004, and Kanaya et al., 2019), and ozone measurements
from the FAAM Airborne Laboratory (Smith et al., 2024)
and the NASA DC-8 Atmospheric Tomography (ATom) mis-
sion (Thompson et al., 2022).

2 Description of ISO_simulator.py

In order to run ISO_simulator.py v1.0, the user will need
access to Python 3.8 or higher, including CIS v1.7.4
(Watson-Parris et al., 2016), cf-python v3.13.0 (Hassell and
Bartholomew, 2020), and Iris v3.1.0 (Hattersley et al., 2023)
APIs. Iris libraries are used in some CIS functions to read
gridded model data.

ISO_simulator.py performs the following steps:

1. Reading time and coordinates from observational files
using CIS Python libraries,

2. Reading all model variables from hourly files using cf-
python libraries,

3. Co-locating model variables in space and time to
the same time/location as the observations using CIS
Python libraries,
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4. Writing monthly NetCDF files (Rew et al., 1989) con-
taining model variables co-located onto flight tracks.

2.1 Input arguments

ISO_simulator.py requires a number of command line argu-
ments which are shown in Table 1. The current version of
ISO_simulator was developed for use within the UM mod-
elling framework; therefore some of the current command
line arguments are UM-specific. However, when interfacing
ISO_simulator to different models, these command line argu-
ments can be changed to reflect output data that are specific
to each model.

A subparser argument, “jobtype”, is used to indicate
whether the code is running within a model runtime work-
flow (if “batch” is selected) or as a standalone postprocess-
ing tool, e.g. on existing model data (if “postprocessing” is
selected). These subparser arguments also unlock specific
conditional arguments: –archive_hourly can be used only if
“batch” is selected, and –select_stash can only be used if
“postprocessing” is selected. By default, when running in
batch mode, all fields present in the output file being pro-
cessed will be co-located to the observational locations.

2.2 Required input files

Model input files can be supplied in NetCDF, UM pp, and
UM fieldsfile formats and must have a date tag in the file-
name (YYYYMMDD) to identify the date in the file. The
ability to read different formats of model input files gives ex-
tra flexibility to the code, as it allows one to read both other
model data and UM data.

The interpolation code can use either air_pressure or al-
titude as the vertical coordinate for interpolation. If this is
not specified, it will use altitude by default. When using
air_pressure as a vertical coordinate, model variables are out-
put on selected pressure levels. Since the UM has a terrain-
following, hybrid-height vertical coordinate system, we ad-
ditionally need to output a Heaviside function that accounts
for missing model data where a pressure level near the sur-
face falls below the surface height for that grid box. Where
data are valid, the Heaviside function has a value of 1, and
it has a value of 0 otherwise. By dividing the model field
on pressure levels by this Heaviside function, the model data
are correctly masked and missing data are assigned to invalid
grid points.

When using altitude as a vertical coordinate, because of
the UM hybrid height coordinates, model variables are de-
fined at specified heights above the model surface; therefore,
the model orography field has to be provided to correctly
convert the model hybrid height to altitude above sea level.
The name and path of the orography file can be defined using
the -e command line argument.

For observational data which are defined at the surface
(ground measurements or ship/buoy data), a vertical coor-

dinate is generally not provided. In this case, ISO_simulator
will use the model lowest level and interpolate in time, lati-
tude, and longitude only.

Along with model files, input files containing information
on the observational data coordinates are also required. These
input files should be in NetCDF format (Rew et al., 1989),
all data should be organised into daily files, and each file
must have a date tag in the filename (YYYYMMDD) to iden-
tify the date of the measurement. Along with time and posi-
tional coordinates, an optional string variable can be added
to the observational input files to identify data belonging to
a specific dataset or campaign; this can help during anal-
ysis to subset-relevant data, which is useful when compar-
ing to several datasets/campaigns over a number of decades.
Existing observational data might require a degree of pre-
processing to ensure files are in the right format to be used
by ISO_simulator; the extent and type of processing will vary
depending on the format and structure of each observational
dataset.

2.3 Output files

The model data, co-located to the observational coordinates,
are generated in NetCDF-format files. ISO_simulator pro-
duces one file per model variable per month. The size of these
output files depends on the number and size of the observa-
tional files on which the model data are co-located and can
therefore vary each month.

2.4 Code optimisation

There are several Python libraries that can deal with read-
ing and writing of large gridded data files. The choice to use
CIS Python libraries in ISO_simulator.py stems from their
ability to handle ungridded data (such as data from ships
and aircraft) and the ease of performing co-location from
gridded to ungridded data. Initial timing tests using the VI-
SION toolkit identified reading the model data as the single
most time-consuming step compared to reading the observa-
tional data, extracting the values along a trajectory, and writ-
ing the output. Therefore, the time required to read model
data using different Python libraries was investigated. How-
ever, these tests showed that reading UM model input files
using CIS was significantly slower than reading the same file
with Iris or cf-python; Table 2 shows reading times for load-
ing files in UM fieldsfile, UM pp, and NetCDF format us-
ing different libraries. Note that, unlike the current release of
ISO_simulator, which uses older versions of CIS, Iris, and
cf-python, the tests in Table 2 were performed using the lat-
est versions of CIS (v1.7.9), Iris (v3.10.0), and cf-python
(v3.16.2).

Given that potentially many such large files would need
to be read in each model month, cf-python was chosen to
read the model data. In practical tests, when run over a large
number of years, ISO_simulator takes around 2–3 min to pro-
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Table 1. Description of command line arguments used to run ISO_simulator.py.

Argument Description

-i –inputdir Directory_in Directory_in is the full path to the directory containing hourly files (pp, fieldsfile, or nc format).

-t –obsdir Directory_obs Directory_obs is the full path to the directory containing observational files (nc format).

-d –cycle_date YearMonth YearMonth is a six-digit tag to identify the start time of the analysis (YYYYMM).

-n –n_months N N is the number of months to process, including YearMonth (optional; default 1).

-r –runid UM_jobid UM_jobid is the unique identifier associated to a UM integration.

-p –ppstream Single_char Single_char is a single character identifying the hourly UM data ppstream as defined in Rose,
e.g. k.

-v –vertical_coord coord coord is the coordinate for vertical interpolation: air_pressure or altitude (optional;
default=altitude).

-e –extra_file extra_file is the filename (including full path) of the model orography file (op-
tional, only required for hybrid theta height coordinated if vertical_coord=altitude;
default=Directory_ft/orography.pp).

-o –outdir Directory_out Directory_out is the location to write output NetCDF files (optional). If batch is selected, output
files are always written to Directory_in and additionally copied to Directory_out if present. If
postprocessing is selected, output files are written to the current directory (./) or to Directory_out
if present).

batch Indicates the Python script is running within the model workflow
-a –archive_hourly True to keep model hourly files instead of deleting them (optional; default True).

postprocessing Indicates the Python script is running with existing model files;
-s –select_stash Code Code is a list of space-separated UM stash codes (an integer) to be interpolated (optional; default

= interpolate all variables in the file).

Table 2. Comparison of file-reading times using CIS library (version: 1.7.9), Iris library (version: 3.10.0), and cf-python library (version:
3.16.2). The “structured UM loading” (https://scitools-iris.readthedocs.io/en/stable/generated/api/iris.fileformats.um.html#iris.fileformats.
um.structured_um_loading, last access: 8 January 2025) method in Iris is a context manager which enables an alternative loading mech-
anism for “structured” UM files, providing much faster load times. The times in the table include reading the file and accessing the data
NumPy array (via a simple print statement) to avoid lazy loading. The numbers in the table are averages, plus or minus the standard error,
for reading each file 10 times on a local cluster (2× 32 core Intel Xeon Gold 6338 2.00 GHz and 384 GB of memory).

N of fields in file 36 36 36 36 1 1
N of fields read 36 1 36 1 1 1
File format UM fieldsfile UM fieldsfile UM pp file UM pp file UM pp file NetCDF file
Field dimension 192, 144, 52, 24 192, 144, 52, 24 192, 144, 52, 24 192, 144, 52, 24 192, 144, 52, 24 192, 144, 52, 24

CIS (2539± 8)* 276.5± 0.5 s 10.6± 0.2 s 1.5± 0.8 s
Iris 109.7± 0.3 s 59.5± 0.2 s 66.4± 0.2 s 64.3± 0.3 s 4.8± 0.2 s 0.56± 0.02 s
Iris+ structured UM loading 27.3± 0.2 s 26.3± 0.2 s 30.7± 0.3 s 29.1± 0.2 s 2.64± 0.02 s 0.54± 0.02 s
cf-python 5.9± 0.2 s 4.4± 0.1 s 5.3± 0.2 s 3.5± 0.1 s 1.96± 0.03 s 0.66± 0.02 s

* Note that we were unable to read 36 fields from the UM pp file using CIS; therefore the numbers in parentheses show the time required to read only 9 fields from the file. Additionally, CIS
does not support the reading of UM fieldsfiles.

cess one variable for 1 model year. However, CIS and cf-
python use very different data structures for the gridded vari-
ables they read. In order to overcome this problem, a Python
function was developed to convert the cf-python gridded data
structure to the CIS gridded data structure.

Since reading model data is the slowest step in
ISO_simulator, we further optimised the code by only read-

ing model output files for days for which an observational
input file exists.

Geosci. Model Dev., 18, 181–191, 2025 https://doi.org/10.5194/gmd-18-181-2025

https://scitools-iris.readthedocs.io/en/stable/generated/api/iris.fileformats.um.html#iris.fileformats.um.structured_um_loading
https://scitools-iris.readthedocs.io/en/stable/generated/api/iris.fileformats.um.html#iris.fileformats.um.structured_um_loading


M. R. Russo et al.: VISION v1.0 185

Figure 1. A sketch of the UM runtime workflow, showing where
the VISION toolkit is included.

3 Embedding ISO_simulator within the UM model
workflow

This section describes how our code is interfaced within
the UM framework. The UM uses Rose configuration edi-
tor (Shin et al., 2018) and the Cylc workflow engine (Oliver
et al., 2018), respectively, as a graphical user interface (GUI)
and to control the model simulation workflow. Rose is a sys-
tem for creating, editing, and running application configu-
rations, and it is used as the GUI for the UM to configure
input namelists. Cylc is a workflow engine that is used to
schedule the various tasks needed to run an instance of the
UM in the correct sequence: for example, atmos_main runs
the main UM code, postproc deals with data formatting and
archiving, and housekeeping deletes unnecessary files from
the user workspace.

A new Rose application, VISION_iso, was created and
inserted into the Cylc workflow between the model in-
tegration step (atmos_main) and the postproc step (see
Fig. 1). This new application includes an input namelist and
calls ISO_simulator.py; the NetCDF output files, containing
model data co-located to the observations, are then sent to
the MASS tape archive during the postproc step.

Since this software can be embedded into the UM runtime
workflow and operates on UM output files (rather than being
part of the UM source code), it has the following advantages
compared to the approach in Telford et al. (2013):

1. Model data interpolated to the measurement times and
locations is output using the internationally recognised
NetCDF format, thus providing any required metadata
information and making handling and analysis quicker
and easier for users.

2. The code runs in parallel to the atmosphere model and
does not affect the model run time.

Figure 2. Probability distribution of ozone concentration at CVAO
between 2007 and 2022. The black line shows observed ozone, and
the red line is model data co-located using ISO_simulator.

3. The code can easily be customised to process any model
data (not just UM data), therefore making it useful to the
wider atmospheric science community.

Model data interpolated to the measurement times and loca-
tions can then be archived for long-term storage. When em-
bedded into the UM workflow, data can either be transferred
to the MASS tape archiving system or to the JASMIN data
analysis facility (Lawrence et al., 2012). Further savings in
data storage can be made by optionally deleting the hourly
model output files used by the VISION toolkit.

4 Test cases

Model simulations of UKESM were performed with a hor-
izontal grid of 1.875°× 1.25° and 85 vertical levels with a
model top at 85 km, and ERA reanalysis data were used to
constrain the model meteorology (Telford et al., 2008) to al-
low better comparison with observations. For more informa-
tion on the model configuration and details of the simula-
tions, the reader is referred to the model description in Russo
et al. (2023) and Archibald et al. (2024).

The aim of the plots in this section is not to answer specific
science questions but to illustrate the way ISO_simulator can
be used to co-locate model data onto different sets of in situ
observations, namely ground-based stations, ships/buoys,
sondes/flights, and unmanned aerial vehicles (UAVs).

All model data are output hourly from UKESM at a hor-
izontal resolution of ∼ 150 km and then co-located, using
ISO_simulator, to the same time and geographical coor-
dinates as the observational data; the resulting data have
the same time and spatial resolution as the observational
data, making model data directly comparable to observa-
tional data. Furthermore, since the model and observational
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Figure 3. Map plot difference between UKESM ozone and observed ozone for the period January 1986 to May 2022. Model data are
co-located using ISO_simulator.

datasets can be compared over a long period of time, span-
ning several years, it is possible to sample seasonal and inter-
annual variability, with better statistical sampling of extreme
values. This type of comparison can greatly help to identify
and improve model biases and to use models and observa-
tions in synergy to better understand atmospheric processes.

4.1 Cape Verde Atmospheric Observatory

The Cape Verde Atmospheric Observatory (CVAO) provides
long-term ground-based observations in the tropical North
Atlantic Ocean region (16°51′49′′ N, 24°52′02′′W). The
CVAO is a Global Atmospheric Watch (GAW) station of the
World Meteorological Organisation (WMO); measurements
from CVAO are available in the UK Centre for Environmen-
tal Data Analysis (CEDA) data archives (http://catalogue.
ceda.ac.uk/uuid/81693aad69409100b1b9a247b9ae75d5, last
access: 8 January 2025; Carpenter et al., 2024). The Univer-
sity of York provides the CVAO trace gas measurements,
supported by the Natural Environment Research Council
(NERC) through the National Centre for Atmospheric Sci-
ence (NCAS) Atmospheric Measurement and Observation
Facility (AMOF). Data from CVAO were chosen as an exam-
ple of surface station data because the ozone measurements
are provided at a higher temporal resolution than the hourly
model output; ISO_simulator can therefore be useful to in-
terpolate model data in time to match the time of the obser-
vations.

4.2 Ships and buoys dataset

The Tropospheric Ozone Assessment Report (TOAR;
https://igacproject.org/activities/TOAR/TOAR-II, last ac-
cess: 8 January 2025) is an international activity under the
International Global Atmospheric Chemistry project. It aims
to assess the global distribution and trends of tropospheric
ozone and to provide data that are useful for the analysis of
ozone impacts on health, vegetation, and climate. A novel
dataset has been produced by the TOAR “Ozone over the
Oceans” working group. This dataset is an extension of pre-
vious similar datasets (Lelieveld et al., 2004; Kanaya et al.,
2019), and it combines ship and buoy data from the 1970s
to the present day. This dataset will be released later this
year as part of the TOAR-II assessment; given the large tem-
poral span, this dataset constitutes a great example of using
ISO_simulator to compare model and observational data over
a large number of years.

UKESM data were co-located to the same times and loca-
tions as observations. The plot in Fig. 3 shows the difference
between modelled and observed ozone.

4.3 Aircraft data: comparison to FAAM and ATom

The FAAM Airborne Laboratory is a state-of-the-art research
facility dedicated to the advancement of atmospheric science.

It operates a specially adapted BAe 146-301 research air-
craft and is based at Cranfield University. The FAAM Air-
borne Laboratory is funded by the Natural Environment Re-
search Council and managed through the National Centre for
Atmospheric Science (NCAS).
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Figure 4. FAAM and UKESM ozone concentrations (a, b); UKESM carbon monoxide and temperature (c, d). UKESM data are co-located
in space and time to match the data collected during all FAAM flights in August 2019.

FAAM data from 2010 to 2020 were processed to ex-
tract ozone, time, latitude, longitude, air pressure, and alti-
tude and to ensure variable names were consistent through-
out this time period (Russo et al., 2024). Figures 4 and 5
show comparisons of modelled data and ozone observed by
the FAAM aircraft. Figure 4 shows FAAM ozone from all
individual flights from a specific campaign occurring in Au-
gust 2019 and a number of model variables interpolated on
the FAAM flight tracks (ozone, carbon monoxide, and tem-

perature). Figure 5 shows the difference between modelled
and observed ozone for all flight points between the sur-
face and ∼ 6 km and for all FAAM flights between 2010 and
2020.

The NASA Atmospheric Tomography (ATom) mission
was a global-scale airborne campaign, funded through the
NASA Earth Venture Suborbital-2 (EVS-2) programme,
to study the impact of human-produced air pollution
on greenhouse gases and on chemically reactive gases
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Figure 5. Difference between UKESM and FAAM ozone concentrations (ppbv) in the lower troposphere (0–6 km) for all FAAM flights
which measured ozone between 2010 and 2020.

Figure 6. ATom and UKESM ozone concentrations (ppbv) for the
ATom flight on 3 February 2017 from Hawaii to Fiji.

in the atmosphere. ATom utilised the fully instrumented
NASA DC-8 research aircraft to measure a wide range
of chemical and meteorological parameters in the re-
mote troposphere (Thompson et al., 2022). Data from the
ATom mission are available in the NASA data archive
(https://doi.org/10.3334/ORNLDAAC/1925, Wofsy et al.,
2021).

Figure 6 shows ozone concentrations from ATom and
UKESM, as a function of time and altitude, for a specific
flight on 3 February 2017.

5 Conclusions

The ability to sample atmospheric model output at the same
time and location as in situ observations allows better syn-
ergy between model and observational data, resulting in bet-
ter understanding of atmospheric processes and more effec-
tive model evaluation. However, doing this usually requires
the processing of large volumes of high-frequency gridded
model data. By interfacing with the CIS and cf-python li-
braries, we are able to efficiently automate this step, greatly
reducing manual post-processing time and the volume of data
that needs to be saved following a model simulation. This
method is also transferable to many different atmospheric
models, and the code is provided on GitHub under an open-
source licence.

The use of the cf-python library to read-in the UM-format
files significantly decreases the time taken to read these files
when compared to the Iris or CIS libraries. This further re-
duces the time required for the HPC batch system to post-
process the files from the global model to the times and loca-
tions of the in situ observations. An extension to this work is
currently being carried out to be able to output model data on
satellite swaths for better comparison between atmospheric
models and satellite data.

Code and data availability. The current version of the code pre-
sented in the article is available on GitHub (https://github.com/
NCAS-VISION/VISION-toolkit, last access: 8 January 2025)
and archived on Zenodo (https://doi.org/10.5281/zenodo.10927302,
Russo and Bartholomew, 2024) under a BSD-3 licence.

Input data are available as follows:

Geosci. Model Dev., 18, 181–191, 2025 https://doi.org/10.5194/gmd-18-181-2025
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– Modelled ozone, https://catalogue.ceda.ac.uk/uuid/
300046500aeb4af080337ff86ae8e776 (Abraham and Russo,
2024);

– FAAM ozone dataset, https://catalogue.ceda.ac.uk/uuid/
8df2e81dbfc2499983aa87781fb3fd5a (Facility for Airborne
Atmospheric Measurements et al., 2024);

– CVAO ozone dataset, https://catalogue.ceda.ac.uk/uuid/
81693aad69409100b1b9a247b9ae75d5 (Carpenter et al.,
2024);

– ATom: Merged Atmospheric Chemistry,
Trace Gases, and Aerosols, Version 2,
https://doi.org/10.3334/ORNLDAAC/1925 (Wofsy et al.,
2021).
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