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Abstract. The direct interactions of atmospheric aerosols
with radiation significantly impact the Earth’s climate and
weather and are important to represent accurately in simu-
lations of the atmosphere. This work introduces two contri-
butions to enable a more accurate representation of aerosol
optics in atmosphere models: (1) NeuralMie, a neural net-
work Mie scattering emulator that can directly compute the
bulk optical properties of a diverse range of aerosol pop-
ulations and is appropriate for use in atmosphere simula-
tions where aerosol optical properties are parameterized, and
(2) TAMie, a fast Python-based Mie scattering code based
on the Toon and Ackerman (1981) Mie scattering algorithm
that can represent both homogeneous and coated particles.
TAMie achieves speed and accuracy comparable to estab-
lished Fortran Mie codes and is used to produce training data
for NeuralMie. NeuralMie is highly flexible and can be used
for a wide range of particle types, wavelengths, and mix-
ing assumptions. It can represent core-shell scattering and,
by directly estimating bulk optical properties, is more effi-
cient than existing Mie code and Mie code emulators while
incurring negligible error compared to existing aerosol optics
parameterization schemes (0.08 % mean absolute percentage
error).

1 Introduction

Aerosols have a substantial impact on atmospheric radia-
tion. They influence the Earth’s radiative budget both di-
rectly (Hansen et al., 2005; Johnson et al., 2018) and through
their impacts on clouds (Twomey, 1977; Albrecht, 1989; Fan
et al., 2016). Consequently, accurately simulating aerosols
and their interactions with the Earth system is critically im-
portant for weather and climate modeling. This is challeng-
ing to do, and direct and indirect aerosol effects are among
the largest sources of internal uncertainty in current climate

projections (Bellouin et al., 2020; Boucher et al., 2013). Al-
though some difficulties modeling aerosol radiative effects
stem from a lack of knowledge (e.g., the limits of observa-
tional constraints and our understanding of aerosol–cloud in-
teractions), even the components of the problem that might
be considered “solved” from a knowledge standpoint often
cannot be adequately simulated due to computational con-
straints. Physics at the scale of aerosol particles simply can-
not be resolved in a global-scale atmosphere simulation, and
the representation of aerosols in these simulations, along
with a host of other physical processes, is usually enabled by
a suite of parameterizations and simplified physical models
(Neale et al., 2012) that trade off physical realism for com-
putational tractability.

Recently, machine learning (ML) and neural networks
in particular have emerged as powerful tools for develop-
ing new parameterizations for atmosphere modeling, usually
with the goal of finding more accurate, faster, and/or more
capable parameterizations (Rasp et al., 2018; Brenowitz and
Bretherton, 2018; Boukabara et al., 2021; Krasnopolsky
et al., 2013). There are a broad range of conventional pa-
rameterizations, including parameterizations derived directly
from physical laws, simplified physical models, statistical
models like lookup tables and linear regressions, and some
that rely on expert heuristics to make decisions about the
behavior of a system. Machine learning provides an excit-
ing data-driven addition to these approaches, and recent ad-
vances in our ability to train and deploy deep neural net-
works (Goodfellow et al., 2016) have significantly acceler-
ated research in this area. While neural networks have some
drawbacks (they do not usually generalize well for samples
that are far from their training dataset and they can be dif-
ficult to interpret, for instance), their ability to accurately
represent nonlinear relationships and relatively cheap infer-
ence cost make them ideal for emulating complicated physi-
cal systems. Applications where a physical process is under-
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stood well but is computationally expensive to simulate di-
rectly are well suited to machine learning emulators. In these
cases, training data can be generated using a model that ac-
curately represents the physics underlying a system, and a
significantly faster ML model can be trained to emulate it.

This work focuses on developing an ML-based emulator
for accurately estimating the optical properties of aerosol
populations. It is intended for use alongside modal aerosol
models (Whitby and McMurry, 1997; Liu et al., 2012, 2016;
Wang et al., 2020). Modal aerosol models are designed to
simulate aerosol populations with limited computational ex-
pense. They are capable of representing a variety of different
aerosol species, and they simplify the modeling problem by
assigning each species to a limited number of size modes.
Each mode assumes that its constituent aerosol species have
prescribed log-normal size distributions and are internally
mixed, typically using either volume mixing assumptions or
the Maxwell Garnett mixing rule (Sand et al., 2021) to de-
termine the resulting refractive index. When a climate or
weather model simulates radiative transfer, the radiation code
must be fed the optical properties of each model grid cell, and
to do this, the aerosol optical properties (AOPs) of the sim-
ulated aerosol populations must be estimated. This is typi-
cally done with a parameterization (Ghan et al., 2001; Ghan
and Zaveri, 2007) that estimates solutions using Lorenz–
Mie theory (Bohren and Huffman, 1983), and NeuralMie
has been designed to fill this role, though it can also be
used as a general purpose model for estimating the opti-
cal properties of log-normally distributed spherical particle
populations. NeuralMie includes the capability to represent
“core-shell” (also called “coated sphere”) scattering (Toon
and Ackerman, 1981). The core-shell model represents par-
ticles as concentric spheres composed of different aerosol
species. Aerosol mixing assumptions can significantly alter
the optical properties of particles. For black carbon, which is
the strongest absorbing common aerosol species (Bond et al.,
2013), representing mixed particles as an insoluble black car-
bon core coated in a shell of another material (e.g., sulfate)
is more physically realistic and typically results in lower ab-
sorption than internal volume mixing but higher absorption
than external mixing due to the shell acting as a lens and fo-
cusing light onto the black carbon core (Bond and Bergstrom,
2006).

Several past studies have applied machine learning to
aerosol scattering and optics. Chen et al. (2022) used a neu-
ral network to represent scattering by spheroidal dust par-
ticles, Yu et al. (2022) trained a large neural network on a
database of non-spherical particles to predict particle optics,
and Ren et al. (2020) trained a neural network to predict
information about aerosol size distributions from photome-
ter observations of AOPs. Both Thong and Yoon (2022) and
Stremme (2019) trained neural networks to directly emulate
a Mie scattering model. Veerman et al. (2021) developed a
machine learning emulator to compute gas optics, typically
a component of an atmospheric radiative transfer parameter-

ization. In a similar vein, there have been numerous efforts
to develop machine learning emulators for the radiation code
typically used in climate models (Krasnopolsky et al., 2012;
Pal et al., 2019; Liu et al., 2020; Belochitski and Krasnopol-
sky, 2021; Song and Roh, 2021; Ukkonen, 2022; Stegmann
et al., 2022; Lagerquist et al., 2023), which is very compu-
tationally expensive despite relying on significant simplifica-
tions to the radiative transfer problem (Pincus and Stevens,
2013; Iacono et al., 2008; Mlawer et al., 1997; Mlawer and
Clough, 1997). Although rather than directly ingesting in-
formation from the aerosol model, these ML radiative trans-
fer emulators typically ingest parameterized aerosol optical
properties, assume climatological aerosol properties, or ig-
nore aerosols altogether. This study is closely related to our
past work developing an aerosol optics emulator specifically
designed to replace the optics parameterization in the Energy
Exascale Earth System Model (E3SM) (Geiss et al., 2023).
Here, we take a significant step beyond that work by intro-
ducing a model that is highly flexible, appropriate for use
in other atmosphere models and applications, and capable of
representing core-shell scattering.

This work provides two major contributions.

1. NeuralMie. NeuralMie is a novel neural-network-based
emulator for estimating the bulk optical properties of
log-normally distributed aerosol populations. It sup-
ports a wide range of input particles, represents homo-
geneous or coated spheres, and works for any plausible
wavelength and geometric mean radius combination by
performing calculations with respect to the size param-
eter, making it wavelength (and thus radiation code and
aerosol model) agnostic. Because it directly performs
bulk calculations for entire particle size distributions,
NeuralMie is extremely fast compared to Mie code and
other Mie optics emulators, and it achieves negligibly
small mean absolute percentage errors in mass extinc-
tion coefficients (0.05 % and 0.08 % for homogeneous
and coated sphere cases, respectively). It is suitable for
use alongside any model that assumes log-normally dis-
tributed spherical aerosol populations.

2. TAMie. TAMie is a new Python-based Mie scattering
code, based on Toon and Ackerman’s (1981) algorithm,
for modeling the optics of individual particles. It can
simulate scattering by both homogeneous and coated
spheres and achieves speed comparable to Fortran Mie
codes using Numba compiling (Lam et al., 2015). While
the TAMie algorithm is not new, the code was a neces-
sary step in the development of NeuralMie and enables
fast core-shell Mie scattering calculations in Python.
Here, we have thoroughly documented and evaluated
the algorithm because we believe it will be useful to
other researchers.

The paper is broken into three main sections. We first dis-
cuss the optics of individual particles and describe TAMie
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(Sect. 2). Then we discuss how bulk AOPs are parameter-
ized and introduce a re-formulation of the problem that al-
lows for training highly accurate and flexible neural net-
works (Sect. 3). Finally, we describe and evaluate NeuralMie
(Sect. 4).

2 Particle optics

Calculating the optical properties of aerosol populations first
requires the computation of the scattering properties of in-
dividual particles. Theoretical representations of light scat-
tering by small spheres were found by Gustav Mie in 1908
(Mie, 1908) and independently by several other researchers
(Horvath, 2009). The more complicated case of concentric
spheres with different refractive indices was solved later by
Aden and Kerker (1951). For an individual homogeneous
spherical particle the extinction (Qe), scattering (Qs), and
absorption (Qa) coefficients are

Qe =
2
x2

∞∑
n=1
(2n+ 1)Re {an+ bn} , (1)

Qs =
2
x2

∞∑
n=1
(2n+ 1)(|an|2+ |bn|2), (2)

Qa =Qe−Qs, (3)

while the asymmetry parameter, which describes the mean of
the cosine of the scattering angle and ranges from −1 to 1, is
given by (Wiscombe, 1980)

g =
4

x2Qs

∞∑
n=1

[
n(n+ 2)
n+ 1

Re
{
ana
∗

n+1+ bnb
∗

n+1
}

+
2n+ 1
n(n+ 1)

Re
{
anb
∗
n

}]
. (4)

Here, x is the size parameter, defined as x = 2πr/λ, where r
is the particle radius and λ is the wavelength of the radiation
interacting with the particle. an and bn are known as the “Mie
coefficients”. They depend on x and m (the complex refrac-
tive index of the particle) and can be expressed in terms of
Ricatti–Bessel (RB) functions and their derivatives. The def-
initions of the Mie coefficients in terms of RB functions can
be found in Bohren and Huffman (1983) for both homoge-
neous spheres (their Eqs. 4.56 and 4.57) and coated spheres
(their Eq. 8.2).

While the theoretical Mie solutions have been known for
some time, numerical difficulties arise when computing the
Mie coefficients, and often a large number of Mie coefficients
(hundreds) are needed for the summations in Eqs. (1)–(4) to
converge, exacerbating the problem. Numerical difficulties
can occur because the RB functions that define an and bn and
their logarithmic derivatives are computed using recursion
relations, and numerical solutions can explode due to small
errors introduced by limited machine precision growing ex-
ponentially when a large number of terms are calculated.

Wiscombe (1979) provides a detailed discussion of how the
necessary recursion relations can be computed safely for the
case of homogeneous spheres. Toon and Ackerman (1981)
introduced the first stable Mie code capable of representing
arbitrary coated spheres. They solve the numerical stability
problem by expressing an and bn entirely in terms of ratios
and products of RB functions and their logarithmic deriva-
tives that do not explode when a large number of terms are
computed and then by deriving recurrence relations so that
those products and ratios can be calculated directly. In the
next section, we describe a Python-based implementation of
their algorithm.

2.1 The “TAMie” Python package

As a component of this study, we have written a new Python-
based Mie code. The code is stable for a large range of in-
put parameters, easy to read and use (compared to Fortran
implementations), and by leveraging just-in-time compiling
achieves comparable speed to Fortran Mie code. At the time
of writing, Python Mie codes did exist, but they did not meet
our exact requirements in terms of speed and reliability. The
PyMieScatt package (Sumlin et al., 2018) is popular within
the atmospheric sciences, and we used it to calculate op-
tics for homogeneous spheres in our previous work (Geiss
et al., 2023), but PyMieScatt’s coated sphere implementa-
tion uses interpreted Python and was too slow to generate
the large volume of training data needed to train NeuralMie.
Instead, we have produced our own Python core-shell Mie
solver that implements the Toon and Ackerman (1981) algo-
rithm. Of course, more sophisticated algorithms have since
been developed for calculating the optical properties of par-
ticles composed of any number of layers for instance (Wu
and Wang, 1991; Johnson, 1996), but that level of complex-
ity is not required for our use case. We have slightly altered
Toon and Ackerman’s (1981) original work to express ev-
erything in terms of the dimensionless size parameter and
added a recursion relation that they did not use (Eq. 14a–b;
Shiloah, 2018), so in this section we provide a full overview
of the algorithm implementation to serve as a companion to
the published code. The next section (Sect. 2.2) provides a
thorough evaluation of the new Mie code against PyMieScatt
(Sumlin et al., 2018), a Fortran algorithm for coated spheres
(Wiscombe, 1993), and a Fortran algorithm for homogeneous
spheres (Bohren and Huffman, 1983).

The Mie coefficients for coated spheres are given by the
following (Toon and Ackerman, 1981; Bohren and Huffman,
1983).
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an =

[
ψn(xs)

ζn(xs)

]

×

([
ψ ′n(msxs)
ψn(msxs)

]
−ms

[
ψ ′n(xs)
ψn(xs)

])
(mc+UW)−U

[
ψn(msxc)
ψn(msxs)

]2

([
ψ ′n(msxs)
ψn(msxs)

]
−ms

[
ζ ′n(xs)
ζn(xs)

])
(mc+UW)−U

[
ψn(msxc)
ψn(msxs)

]2 (5)

bn =

[
ψn(xs)

ζn(xs)

]
(
ms

[
ψ ′n(msxs)
ψn(msxs)

]
−

[
ψ ′n(xs)
ψn(xs)

])
(ms+VW)−msV

[
ψn(msxc)
ψn(msxs)

]2

(
ms
[
ψ ′n(msxs)
ψn(msxs)

]
−

[
ζ ′n(xs)
ζn(xs)

])
(ms+VW)−msV

[
ψn(msxc)
ψn(msxs)

]2 (6)

U =mc

[
ψ ′n(msxc)

ψn(msxc)

]
−ms

[
ψ ′n(mcxc)

ψn(mcxc)

]
(7a)

V =ms

[
ψ ′n(msxc)

ψn(msxc)

]
−mc

[
ψ ′n(mcxc)

ψn(mcxc)

]
(7b)

W =−i

([
ψn(msxc)

ψn(msxs)

]
[ζn(msxs)ψn(msxc)]

− [ζn(msxc)ψn(msxc)]
)

(8)

Here, we have expressed everything in terms of the dimen-
sionless size parameter of the core and shell (xc and xs, re-
spectively) and the complex refractive indices of the core and
the shell (mc and ms, respectively). ψn(z)= zjn(z), where
jn(z) is the spherical Bessel function of the first kind, and
ζn(z)= zh

(1)
n (z), where h(1)n (z) is the spherical Hankel func-

tion of the first kind (Bohren and Huffman, 1983). In the
event that mc =ms, the values of U and V both go to zero
and Eqs. (5) and (6) reduce to the solution for homogeneous
spheres.

an =

[
ψn(xs)

ζn(xs)

] ([ψ ′n(msxs)
ψn(msxs)

]
−ms

[
ψ ′n(xs)
ψn(xs)

])
([

ψ ′n(msxs)
ψn(msxs)

]
−ms

[
ζ ′n(xs)
ζn(xs)

]) (9a)

bn =

[
ψn(xs)

ζn(xs)

] (ms

[
ψ ′n(msxs)
ψn(msxs)

]
−

[
ψ ′n(xs)
ψn(xs)

])
(
ms

[
ψ ′n(msxs)
ψn(msxs)

]
−

[
ζ ′n(xs)
ζn(xs)

]) (9b)

Algorithmically, each of the six unique terms in square
brackets in Eqs. (5)–(8) is computed via its own recur-
sion relation, which is critical to ensure stability (Toon
and Ackerman, 1981). Note that the logarithmic derivative
ψ ′n(z)/ψn(z) must be calculated using downward recurrence
in this (Wiscombe, 1979), but not all (Shiloah, 2018), for-
mulations of the problem, while the other terms can be com-
puted with upward recurrence. The recurrence relations are

ψ ′n−1(z)

ψn−1(z)
=
n

z
−

(
n

z
+
ψ ′n(z)

ψn(z)

)−1

, (10a)

ψ ′nmax+20(z)

ψnmax+20(z)
= 0, (10b)

ζ ′n(z)

ζn(z)
=

(
n

z
−
ζ ′n−1(z)

ζn−1(z)

)−1

−
n

z
, (11a)

ζ ′0(z)

ζ0(z)
=−i, (11b)

ψn+1(z)

ζn+1(z)
=
ψn(z)

ζn(z)

(
n+ 1
z
−
ψ ′n(z)

ψn(z)

)(
n+ 1
z
−
ζ ′n(z)

ζn(z)

)−1

, (12a)

ψ1(z)

ζ1(z)
=

1
2
e2iz z+ i

z− i
+

1
2
, (12b)

ζn(z1)ψn(z2)=
ζn−1(z1)ψn−1(z2)(

ζ ′n(z1)
ζn(z1)

+
n
z1

)(
ψ ′n(z2)
ψn(z2)

+
n
z2

) , (13a)

ζ0(z1)ψ0(z2)=
1
2
e−iz1+iz2 −

1
2
e−iz1−iz2 , (13b)

ψn(z1)

ψn(z2)
=
ψn−1(z1)

ψn−1(z2)

ψ ′n(z2)
ψn(z2)

+
n
z2

ψ ′n(z1)
ψn(z1)

+
n
z1

, (14a)

ψ0(z1)

ψ0(z2)
=
e−i(z1+z2)− ei(z1−z2)

e−2iz2 − 1
, (14b)

where the square brackets have been dropped to avoid clutter.
The variable nmax is the number of Mie coefficients neces-
sary to be calculated to ensure convergence and is estimated
as

nmax = Re{ms}xs+ 4.3(Re{ms}xs)
1
3 + 3, (15)

based on Johnson (1996). The additional 20 terms calcu-
lated for the downward recurrence in Eq. (10a) are discarded.
Likewise, in Eqs. (1)–(4) the 0th terms of an and bn are not
needed, and so the 0th terms of the above recurrence re-
lations (Eqs. 10a–14b) can also be discarded. The TAMie
package includes a separate, more efficient subroutine for
the homogeneous sphere case that shares subroutines for
calculating the recursion relations in Eqs. (10a), (11a), and
(12a) with the coated sphere code, and in the event that the
coated sphere function is called withmc =ms, xc/xs < 0.01,
or xc/xs > 0.99, it uses the homogeneous sphere solution in-
stead (using the refractive index of just the shell or just the
core). This algorithm has been implemented in the “sphere”
and “coreshell” subroutines of the TAMie.py Python script
released alongside this paper. TAMie has been implemented
to leverage Numba (Lam et al., 2015) just-in-time compil-
ing. Numba is a software library that compiles Python pro-
grams directly to machine code. It has very limited impact
on the structure of the Python script and only requires the
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addition of function decorators for each of the compiled sub-
routines. Using this approach, TAMie achieves computation
times comparable to Fortran Mie codes while retaining the
simplicity and readability of Python code.

While the above formulas have all been published by past
authors, we have opted to reproduce them here in a concise
manner yet in enough detail that our Mie solver can be re-
produced without external references and to provide a de-
scription that uses notation that is consistent with both our
Python code and the remainder of this paper. For more de-
tailed explanations of the reasoning behind the algorithm’s
construction and the choice and stability of the recursion
relations, see Toon and Ackerman (1981) and Wiscombe
(1979).

2.2 Mie code testing

To ensure TAMie functions properly, we compared it with
several established Mie scattering codes. We chose to test
against the Wiscombe (1993) Fortran implementation of the
Toon and Ackerman (1981) algorithm for core-shell scatter-
ing because it proved less likely to crash than their orig-
inal implementation. For homogeneous spheres, we tested
against Fortran code from Bohren and Huffman (1983). Both
of these Fortran codes were compiled using the GNU Fortran
compiler version 9.4.0 without passing optimization flags
and wrapped using the f2py library to allow them to be
called from a Python script. Finally, we performed a com-
parison to the PyMieScatt Python package (Sumlin et al.,
2018) for both homogeneous and coated sphere cases. We
tested the code on a dataset of 106 randomly generated lay-
ered particles, where the size parameter was randomly se-
lected from lnU(10−2,102) and the ratio of the core to shell
radii was drawn from U(0.01,0.99). The complex refractive
indices of the core and shell were drawn independently from
m= U(1.1,3.0)+ lnU(10−8,1)i. Here, U and lnU represent
uniform and log-uniform distributions, respectively, with the
bounds shown in the parentheses. The same dataset was used
for both the layered and homogeneous sphere cases, and
when the homogeneous sphere cases were tested, the shell
size parameter and refractive index were used to represent
the whole particle. Table 1 shows the 99th and 99.9th per-
centile absolute differences between the various algorithms,
and Table 2 shows the single-core runtime required by each
code to evaluate all 106 test particles.

Percentiles of the absolute differences over the testing
dataset are shown in Table 1 instead of maximum differences
because much more appreciable discrepancies can occur in
the most extreme cases for the coated sphere dataset. The
largest absolute differences between the scattering models
tend to occur in cases where both Re{ms} and xs are large
and many Mie coefficients must be calculated. The largest
difference between DMiLay and TAMie occurred for such a
particle, for which DMiLay output Qe = 1.9 and Qs = 2.6,
while TAMie output Qe = 2.1 and Qs = 1.2. Here TAMie’s

result is more physically plausible because Qs must be less
than or equal to Qe. In the worst case for PyMieScatt it out-
put a completely non-physical scattering efficiency of 160.
We investigated these large disagreements by plotting curves
comparing each scattering code to TAMie for a range of xs
and the same refractive indices and xc/xs ratio that caused
significant disagreement with TAMie in the testing dataset
(Fig. 1). These plots indicate that in both cases it was DMi-
Lay and PyMieScatt generating the erroneous values, and
spurious spikes appear in their Qs curves for specific values
of xs. The most extreme differences between the Mie codes
were negligible in the homogeneous sphere case, where BH-
MIE and TAMie disagreed on extinction efficiency by 0.053
and PyMieScatt and TAMie disagreed also on extinction ef-
ficiency by 0.045.

Finally, we performed some additional checks on TAMie
for specific input limits with known behavior on smaller
(105 samples) testing sets. For particles with size parame-
ters sampled from lnU(10−4,105), the output from the core-
shell model with ms =mc never diverged from the spherical
scattering model’s output by more than 10−14 (disabling the
core-shell code’s ability to call the homogeneous sphere code
whenms =mc). In the Rayleigh scattering limit (x� 1), it is
appropriate to use the approximation (Bohren and Huffman,
1983)

Qe =Qs+Qa (16a)

Qs =
8
3
x4
∣∣∣∣m2
− 1

m2+ 2

∣∣∣∣2 (16b)

Qa = 4xIm
{
m2
− 1

m2+ 2

}(
1+

4x3

3
Im
{
m2
− 1

m2+ 2

})
. (16c)

For random inputs with xs drawn from lnU(10−5,10−2) the
maximum absolute difference between the efficiencies out-
put from TAMie and this approximation was 4.2× 10−5. Fi-
nally, in the geometric limit (x>>1) the extinction efficiency
approaches 2. Even for particles with xs > 100 the solution
may still oscillate around 2 as xs changes however. For a test-
ing set of random inputs with xs sampled from lnU(102,105),
the mean Qe was 2.02 with a standard deviation of 0.04.

In closing, TAMie provides a new, entirely Python-based
code based on established algorithms for computing the opti-
cal properties of homogeneous and coated spheres. It shows
good agreement with existing Fortran and Python Mie scat-
tering codes and appropriate behavior in the Rayleigh and
geometric limits, as well as when the core-shell solution
approaches the homogeneous sphere solution. In the cases
where there were large disagreements between TAMie and
existing codes, it appears that the discrepancies originated
with the existing algorithms. The Numba compiled version
of TAMie achieves substantially faster runtimes than conven-
tional Python code and is only slightly slower than Fortran
solutions. We note though that more modern compiled scat-
tering codes exist, that more speed could likely be achieved
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Table 1. The 99th and 99.9th percentile absolute differences between the outputs from TAMie and various other Mie scattering codes for
both the coated and homogeneous sphere cases computed on a testing set of 106 randomly generated particles.

Qe Qs g

Percentile 99 99.9 99 99.9 99 99.9

Coated spheres

DMiLay vs. TAMie 9.2× 10−5 0.11 0.00013 0.12 2.9× 10−5 0.029
PyMieScatt vs. TAMie 0.0068 0.099 0.0076 0.13 0.0021 0.036
DMiLay vs. PyMieScatt 0.0056 0.077 0.0062 0.1 0.0016 0.03

Homogeneous spheres

BHMIE vs. TAMie 7× 10−5 0.00045 7× 10−5 0.00044 1.7× 10−5 0.00011
PyMieScatt vs. TAMie 7.4× 10−5 0.00044 6.7× 10−5 0.00043 0.00058 0.00087
BHMIE vs. PyMieScatt 1.3× 10−5 7.8× 10−5 6.9× 10−6 3.4× 10−5 0.00058 0.00087

Table 2. Time required for single-CPU-core Mie calculations for all 106 test cases (on a Ryzen 9 3900xt CPU). Fortran Mie codes were
compiled with the GNU Fortran compiler using default settings. Times are shown for TAMie with and without Numba compiling.

Code Citation Sphere runtime Core-shell runtime
(s) (s)

BHMIE Bohren and Huffman (1983) 5 –
DMiLay Wiscombe (1993) – 15
TAMie – 6 15
TAMie (no Numba) – 22 138
PyMieScatt Sumlin et al. (2018) 156 431

by the Fortran codes tested here using appropriate compiler
optimization flags, and that PyMieScatt offers more features
than TAMie. We believe that the TAMie code fills a gap in
currently available scattering codes though, and it will be
useful for those who wish to perform fast Mie calculations
in Python. In the following sections, we use outputs from
TAMie to train a neural network emulator to predict the bulk
optical properties of aerosol populations.

3 Bulk optics

Mie codes can accurately calculate the optical properties of
individual particles. Real atmospheric aerosol populations
are not monodisperse however. To calculate the bulk optics of
a particle distribution with Mie code, one must compute opti-
cal properties for all relevant particle sizes and then integrate
them over the particle size distribution. The repeated calls
to Mie code necessary to do this, together with the fact that
the procedure must be repeated for different wavelengths and
aerosol species, make this approach computationally infeasi-
ble in global atmosphere simulations. Instead, bulk AOPs are
parameterized.

3.1 Bulk aerosol optics calculations

Bulk optics parameterizations typically estimate three quan-
tities for an aerosol population: the dimensionless bulk asym-
metry parameter (g) and the mass absorption and scatter-
ing coefficients, ka and ks, respectively, which have units
of square meters per kilogram (m2 kg−1). Alternatively, the
mass extinction coefficient (ke) and/or the dimensionless sin-
gle scattering albedo (ω) might be used. These parameters
satisfy the constraints ke = ks+ ka and ω = ksk

−1
e and are

thus interchangeable. The mass extinction coefficient for a
polydisperse aerosol population is defined as

ke =

∫
∞

0 p(r)Qe(r,λ,m)πr
2dr∫

∞

0 p(r)ρ 4π
3 r

3dr
, (17)

where the subscript e can be interchanged with a or s to de-
fine the mass absorption or scattering coefficients, respec-
tively (Petty, 2006). Here, p represents the particle size dis-
tribution, and ρ is the density of the aerosol species. The
mass extinction coefficient is defined in such a way that
multiplying by the aerosol mass mixing ratio M (kg kg−1),
air density ρa (kg m−3), and path length 1z (m) yields the
aerosol optical depth τ :

τ = keρaM1z. (18)
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Figure 1. A comparison of scattering efficiency for a range of large size parameters in the specific test cases with the largest disagreement
between TAMie and DMiLay (a) and TAMie and PyMieScatt (b).

The bulk asymmetry parameter g is defined in a similar
way (Petty, 2006):

g =

∫
∞

0 g(r)p(r)Qs(r,λ,m)r
2dr∫

∞

0 p(r)Qs(r,λ,m)r2dr
, (19)

and it can be thought of as a weighted average of the par-
ticle asymmetry parameters. Finally, modal aerosol models
assume a different log-normal size distribution for each of
their aerosol modes of the form

p(r)= lnN (r,µ,σ )=
1

rln(σ )
√

2π
e
−

(
ln(r/µ)2

2ln(σ )2

)
, (20)

where µ and σ represent the geometric mean and standard
deviation of the particle size distribution, r is the particle ra-
dius, and lnN represents a log-normal distribution.

3.2 E3SM parameterization

NeuralMie is meant to be model agnostic, but our intended
use is deployment in the E3SM (Golaz et al., 2019) At-
mosphere Model version 1 (EAMv1) (Rasch et al., 2019).
EAMv1 simulates aerosols with the four-mode version of
the Modal Aerosol Module (MAM4) (Liu et al., 2012, 2016;
Wang et al., 2020), which splits aerosol populations between
four different size modes: Aitken, accumulation, coarse, and
primary carbon, each with an assumed log-normal size distri-
bution. When EAM’s radiation code is run (RRTMG; Iacono
et al., 2008; Pincus and Stevens, 2013), it calls a parameter-
ization (Ghan and Zaveri, 2007; Ghan et al., 2001) that esti-
mates the bulk optics of the aerosols represented by MAM4
assuming internal mixing within each mode. This parameter-
ization is also used in other Earth system models (ESMs),
including the Community Earth System Model v2.2 (Dan-
abasoglu et al., 2020).

The existing optics parameterization uses a lookup-table-
based approach to estimate bulk AOPs based on values that
were pre-computed using Mie code. The lookup table is
5-dimensional and takes information about the wavelength
(30), aerosol mode (4), geometric mean radius of the size
distribution (5), and the real (7) and imaginary (10) compo-
nents of the refractive index as input, where the values in
the parentheses represent the table’s resolution along the cor-
responding dimension. The high dimensionality of the table
means that its resolution cannot be increased without mak-
ing it significantly larger. When called, the parameterization
estimates AOPs by performing 2-dimensional interpolation
with respect to the components of the refractive index and
Chebyshev (Vetterling et al., 1988) interpolation along the
geometric mean radius dimension, while the other two di-
mensions are discrete and do not require interpolation. The
Chebyshev interpolation along the geometric mean radius di-
mension allows this dimension to be stored at lower resolu-
tion than would otherwise be required. Ultimately, three such
tables are required to store mass scattering coefficients, mass
absorption coefficients, and the bulk asymmetry parameter.

The coarse resolution of the lookup tables used in E3SM’s
current parameterization introduce error in simulated AOPs.
Ghan and Zaveri (2007) do not report errors for a large test-
ing dataset but evaluate several important test cases and re-
port typical errors of less than 20 %. Geiss et al. (2023) per-
formed a more in-depth comparison of an ML emulator to
EAM’s existing parameterization and found that using neu-
ral networks for the same task could reduce error by multiple
orders of magnitude to the point where it is negligibly small
compared to other sources of error like sphericity and mixing
assumptions.
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3.3 An ML-friendly formulation

Mie calculations depend only on size parameter (x = 2πr
λ

)
and index of refraction, meaning that two particles with the
same refractive index but different sizes can have identical
scattering properties at the appropriate wavelengths. This is
a symmetry that can be leveraged to reduce the dimension-
ality of the optics parameterization problem. The only dif-
ficulty is that the parameterization predicts bulk AOPs inte-
grated over a particle size distribution, and to leverage this
property, we must reformulate the bulk problem in terms of
the size parameter. While a neural network can certainly be
trained to predict ke as a function of both µ and λ, a goal of
this study is to develop a neural network emulator that is sig-
nificantly more generalizable and flexible than in Geiss et al.
(2023). Re-formulation in terms of the size parameter means
that the trained network will be able to generalize to wave-
lengths and particle size ranges that fall outside of its training
dataset, a rarity in typical neural network applications (Ha-
ley and Soloway, 1992; Xu et al., 2020). Furthermore, ML
models can often benefit from a dimensionality reduction of
their input space (Murphy, 2012), and here that can be done
by leveraging a known symmetry in the underlying physical
system. To this end, we combine Eqs. (17) and (20) and in-
troduce the following substitutions:

r =
λx

2π
µ=

λµx

2π
dr
dx
=

λ

2π
, (21)

keλρ =
3π
∫
∞

0 e
−

(
log(x/µx )2

2ln(σ )2

)
Qe(x,m)xdx

2
∫
∞

0 e
−

(
log(x/µx )2

2ln(σ )2

)
x2dx

. (22)

The scaling factor in front of the exponential in p(r) and
most of the constants introduced by the substitutions cancel
out. This leaves only one instance of λ and ρ which can be
pulled out of the integral and moved to the left-hand side. The
value of λρ will be known at inference time, so we opt to train
our neural network to predict the function on the right-hand
side of Eq. (22) and simply divide its predictions by λρ. With
this formulation, the neural network requires µx as an input
rather than both µ and λ, and the input dimensionality has
been reduced by 1.

We have designed NeuralMie to predict three output val-
ues: (keλρ), ω, and g. ω and g are dimensionless parame-
ters, and it can be seen by inspection of Eqs. (19) and (22)
and from the relation ω = ksk

−1
e that performing the substi-

tutions in Eq. (21) results in all of the extra terms introduced
canceling and in neither ω nor g needs to be scaled to be pre-
dicted as functions ofµx . For ke, scaling by λρ allows it to be
predicted as a function of µx and conveniently yields a non-
dimensional value, though values of keλρ still span multiple
orders of magnitude in practice.

Re-formulating the bulk optics problem in this way is ben-
eficial from an ML perspective for three main reasons: (1) the
range of possible values for keλρ is smaller than ke because

of the wavelength scaling. Meanwhile the other two predic-
tands remain bounded to the range [0,1] (mathematically, g
is in the range [−1,1] but for the aerosol populations con-
sidered here is non-negative), which is convenient for neural
networks because a sigmoid output activation can be used for
these two values. (2) The dimensionality of the input space
has been reduced by one, making this a simpler problem to
solve. (3) A neural network trained to perform predictions in
terms of µx can extrapolate and make predictions for values
of µ and λ that were not in the range of the training data as
long as the associated value of µx was.

3.4 Bulk optics in the Rayleigh limit

In the Rayleigh limit it is not necessary to use a neural net-
work emulator to calculate bulk AOPs. Equation (17) with
Eq. (16b) or Eq. (16c) plugged in forQ and Eq. (20) plugged
in for p has analytical solutions in terms of the error function:

ks =
4πµ3

x

λρ
e

27
2 ln(σ )2

∣∣∣∣m2
− 1

m2+ 2

∣∣∣∣2
[
erf
{

6ln(σ )2−ln(x/µx )√
2ln(σ )

}]x2

x1[
erf
{

3ln(σ )2−ln(x/µx )√
2ln(σ )

}]x2

x1

, (23a)

ka =
6π
λρ

Im
{
m2
− 1

m2+ 2

}
, (23b)

where we have dropped the x4 term in the approximation of
Qa, since the x term will dominate for small values of x. For
the core-shell case we simply use volume-weighted mixing
of the refractive index in this limit. We also assume g→ 0.
The use of the Rayleigh approximation in this limit allows
the neural network to focus only on learning cases where
Mie scattering is relevant. These approximations were appro-
priate to use for about 22 % of the testing data generated for
NeuralMie (discussed in Sect. 4.2). The mean absolute errors
of those data for ω and g were 0.0002 and 0.0017, respec-
tively. In Sect. 4 we use the mean absolute percentage error
(MAPE) to evaluate estimated mass extinction coefficients,
but in this limit many of the values of ke are very close to
zero and the formulation for MAPE means it can explode for
very small inputs. Meanwhile, a metric like mean absolute
error (MAE) will be completely dominated by the handful
of very large values of ke. As a compromise, we report that,
using the approximations in Eq. (23a) and (23b), the MAPE
when the true value of keλρ is 0.01 or greater is 0.048 %,
while the MAE when the true value of keλρ is less than 0.01
is 1.86× 10−6.

In the next section we introduce NeuralMie, which is
meant to be used alongside this approximation. In the
event that the inputs can be accurately computed using the
Rayleigh approximation, Eqs. (23a) and (23b) are signifi-
cantly faster to evaluate than performing inference with the
neural network, and using this approach reduces the range of
behaviors the neural network needs to learn.
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4 NeuralMie

This section introduces “NeuralMie”, a neural-network-
based emulator for bulk AOPs. It consists of two different
neural networks: one trained to represent scattering by log-
normally distributed populations of homogeneous spherical
particles and one for coated spherical particles. It can han-
dle both internal and external mixing assumptions, as well as
combinations thereof, using multiple inferences. The model
has been created with use in E3SM in mind – though it is de-
signed in such a way that it should be compatible with other
Earth system models, climate models, and weather models –
and can be used as a general purpose and fast alternative to
Mie code for particle populations with refractive indices in
the range of values it was trained on (Table 5).

4.1 Setup

Both the homogeneous and coated sphere cases use a four-
layer feed-forward neural network. All of the model’s inter-
nal connections use the “swish” activation with β = 1 (Chol-
let et al., 2015) (sometimes called the “SiLU” or “sigmoid
linear unit” activation function; Ramachandran et al., 2017;
Hendrycks and Gimpel, 2016). In the homogeneous sphere
case, the neural network takes four inputs: µx = 2πµ/λ, σ ,
Re{m}, and Im{m} (in that order). These are the geometric
mean radius of the size distribution expressed as a size pa-
rameter, the geometric standard deviation of the size distribu-
tion, and the real and imaginary components of the aerosol’s
refractive index, respectively. In the core-shell case, it takes
seven inputs, two additional values representing the core’s
refractive index, and a value f = xc/xs representing the ratio
of the core’s radius to the particle radius. Each of the inputs
is scaled to a range of approximately−2 to 2 using the trans-
forms shown in Table 3.

The model’s output layer does not apply an activation
function and outputs three values, o1, o2, and o3, correspond-
ing to ke, ω, and g. To convert the outputs to physical values
the transforms in Table 4 must be applied. The choice to use
linear output was made mainly due to the limitations of the
Fortran–Keras bridge (Ott et al., 2020), which we are using
to deploy the model in Fortran.

Outputting ke scaled by the wavelength and density is crit-
ical for ensuring the flexibility of NeuralMie. Firstly, the
density is not necessary for scattering calculations, and this
value can be applied after inference. More importantly, scal-
ing by the wavelength allows for the neural network to rep-
resent scattering entirely in terms of the dimensionless size
parameter, which makes its performance largely independent
of wavelength and particle size (geometric mean radius). We
opted to predict the single scattering albedo in addition to
ke and g because it is bounded by 0 and 1. This means we
can apply a sigmoid function to the neural network’s output
to bound it to a physical range. Constructing the outputs in
this way can be thought of as predicting the mass extinction

coefficient and then predicting what fraction of it is parti-
tioned into scattering versus absorption. This is an implicitly
enforced analytical constraint (Beucler et al., 2021), albeit a
simple one, in that the network’s output cannot break the con-
straints ke = ka+ ks and ω = ksk−1

e (Bohren and Huffman,
1983).

4.2 Datasets

The training, validation, and testing datasets were generated
by randomly sampling a large range of plausible values of
the various input parameters. The ranges sampled for each
input variable have been chosen to span the range of possi-
ble inputs that could be produced by the various versions of
MAM. The range and distribution of values sampled for each
variable are given in Table 5.

To train and evaluate NeuralMie, we generated a dataset
of 108 randomly generated log-normal aerosol size distribu-
tions. Of these, we allocated the first 8×107 as training data,
the subsequent 107 as validation data, and the final 107 as
testing data. Because each sample was generated randomly
and independently, the validation and testing data are un-
correlated with the training data but may contain individual
samples that are near specific points in the training dataset.
To ensure that the model has not overfit within its support, it
will be important to analyze not just the mean error but the
spread of errors for the testing set when evaluating the model
(Sect. 4.5).

Each of the input samples has all seven inputs required
by the core-shell model. We generated two sets of target data
though: one for core-shell scattering and one for the homoge-
neous sphere case. In the homogeneous sphere case, only the
first input refractive index (ms) is used for the whole particle
and f is discarded. The target data were calculated by nu-
merical integration of Eq. (17) in log coordinates, spanning
1024 logarithmically spaced values of r . Extinction, scatter-
ing, and absorption efficiencies for each value of r were com-
puted using TAMie. The integration bounds were determined
using the log-normal cumulative density function to encom-
pass 99.9 % of the area under the size distribution.

As discussed in Sect. 3.4, in some cases it is sufficient to
use a Rayleigh scattering approximation to compute the bulk
optics, and the randomly generated inputs included some of
these cases. We chose to retain those cases for the testing
of our Rayleigh approximation function but did not include
them in the training or evaluation of the artificial neural net-
works (ANNs) because inputs in this regime will not be fed
to the ANN in deployment. This reduced the size of each
of the training, validation, and testing sets by around 22 %.
We opted to use the Rayleigh approximation (Eq. 23a–b)
when the upper bound of integration was less than or equal
to x = 0.1. Specifically, the following criterion is computed:

µxe
√

2ln(σ )erf−1(0.999)
≤ 0.1, (24)

where erf−1 is the inverse error function.
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Table 3. Neural network input scaling functions. These map from physical input variables to dimensionless inputs that are approximately
uniformly distributed in the range −2 to 2.

Variable µx = 2πµ/λ σ Re{m} Im{m} f = xc/xs

Scaling function (ln(µx)+ 1.5)/3.6 2σ − 4 2Re{m}− 4 (ln(Im{m})+ 9)/5 4f − 2

Table 4. Neural network output scaling functions. These map from the three dimensionless outputs from NeuralMie’s output layer (denoted
o1, o2, and o3 above) to physical values of ke, ω, and g.

Variable ke ω g

Scaling function eo1/(λρ) 1/(1+ e−o2) 1/(1+ e−o3)

4.3 Training procedure

The neural networks were trained in two stages. In the first
stage, we performed a limited hyperparameter search that
involved relatively short training runs to determine optimal
model sizes for each of the two ANNs. During this stage,
models were trained on the training dataset and evaluated on
the validation dataset. In the second stage, once model archi-
tectures were selected, a final training run was performed on
both the training and validation data and these models were
evaluated on the testing dataset.

In both phases, we used the Adam optimizer (Kingma and
Ba, 2014) with an initial learning rate of 0.001. We applied
learning rate reductions by a factor of 10 at 30 %, 60 %, and
90 % of the way through training. We experimented with a
range of batch sizes and found that the model could train well
with a large batch size (thousands of samples) but performed
slightly better with a much smaller batch size (tens of sam-
ples). Training on large batches is attractive because it allows
for significant GPU acceleration, so we opted to use a batch
size of 2048 and train for 100 epochs during the hyperparam-
eter tuning phase (about 1.5 h per ANN on GPU) and a batch
size of 64 and train for 33 epochs during the final training
phase (8–12 h per ANN on CPU). These training durations
and learning rate schedules were decided by manually mon-
itoring the training loss and making a qualitative decision as
to when the model skill had stopped increasing appreciably.
We found it useful to use 100× the hyperbolic tangent of the
absolute fractional error for ke as a performance metric dur-
ing training. This is similar to the mean arc-tangent absolute
percentage error and approximates the MAPE with contribu-
tions from cases with extreme percentage errors suppressed
to 100 %.

NeuralMie’s outputs have different physical meaning and
scaling, so we had to implement a custom loss function that
treats ke differently than ω and g (and performs the sigmoid
scaling necessary to retrieve ω and g from the model’s out-
put layer). Ultimately we decided to use the mean absolute
error (MAE) for ω and g and use the root mean squared log
error (RMSLE) for keλρ. We found that simply summing the

three losses was effective and that a scaling parameter was
not needed to combine them. Specifically, the loss was com-
puted as

L=
√

1
N

∑
N

(ln(keλρ)− ̂ln(keλρ))
2

+
1
N

∑
N

(|ω− ω̂| + |g− ĝ|) , (25)

where values with hats are predicted values, while those
without are target values and 1

N

∑
N represents an average

with respect to the samples in a training batch of size N . Re-
call that the neural networks do not apply an activation to
their last layer, so expressed in terms of the model’s outputs,
the loss is

L=
√

1
N

∑
N

(ln(keλρ)− ô1)
2

+
1
N

∑
N

(|ω− sig(ô2)| + |g− sig(ô3)|) , (26)

where “sig” represents the sigmoid function. The RMSLE
can be computed using a ratio of the ground truth to the out-
put, so, while we have written them out here, values of λρ do
not need to be used in the loss function implementation.

4.4 Model selection

In our previous work (Geiss et al., 2023) we utilized a
neural architecture search strategy (Elsken et al., 2019;
Hutter et al., 2019) that included the random wiring of net-
work layers (Xie et al., 2019) and found that this strategy
produced more skilled models than those found in a search
of conventional, serially connected architectures. This tech-
nique has been shown to be beneficial in other applications in
atmospheric science (Yik et al., 2023) likely due to its ability
to identify specific skip connections (He et al., 2016) help-
ful for the target task. Ultimately we would like NeuralMie
to be deployable in Fortran-based weather and climate mod-
els however, and we are using the Fortran–Keras bridge to
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Table 5. Random distributions and sampling ranges used to generate the training, testing, and validation inputs.

Variable λ (m) µ (m) σ Re{m} Im{m} f = rc/rs

Distribution lnU lnU U U lnU U

Range (2× 10−7,10−3) (5× 10−9,5× 10−5) (1.2,2.8) (1.1,3.0) (10−8,1) (0,0.98)

accomplish this, which does not support complex model ar-
chitectures (Ott et al., 2020). For this reason, we performed
a more limited hyperparameter search of conventional, seri-
ally connected ANNs to determine an optimal model. Future
versions of E3SM will be written in C++, which will make
deploying ML models significantly easier, and so we may
eventually produce a superior version of NeuralMie leverag-
ing a random wiring architecture search but leave this as a
future task for now.

Our parameter search and many of our model design
choices are based on findings from Geiss et al. (2023). The
main exception is that we have used swish transfer functions,
which we found to perform better than tanh. The Fortran–
Keras bridge (Ott et al., 2020) does not natively support
swish, but it does support the sigmoid function, and swish
is simply the sigmoid times its input. We randomly gen-
erated 200 neural networks for both the homogeneous and
coated sphere cases. The networks had randomly selected
layer counts between 2 and 4 (Geiss et al., 2023) with equal
numbers of neurons per layer (along with a three-neuron out-
put layer) and randomly selected total trainable parameter
counts between 500 and 100 000. They were trained as de-
scribed in Sect. 4.3 and then evaluated on the validation set.

Figure 2 shows the validation set MAPE for ke plotted
against model complexity (in terms of the number of param-
eters). In this plot we can clearly identify the Pareto frontier
and can strike a good balance between model accuracy and
complexity by selecting a model that lies near the elbow of
the curve. Because this model is intended for use as a pa-
rameterization that could easily be called millions of times
during a climate or weather simulation, there is significant
benefit in using as few parameters as possible. Furthermore,
accurate parsimonious models are less likely to overfit (Ge-
man et al., 1992) and are generally more trustworthy as a
result. The red markers in Fig. 2 represent the architectures
that we eventually chose for additional training. The homo-
geneous sphere model has 69 neurons in each of four hidden
layers, while the core-shell model has 112 neurons in each of
four hidden layers.

Both panels in Fig. 2 contain two bands of models, where
one set performs considerably worse than the others. The up-
per band in each case corresponds to models with only two
hidden layers, indicating that including at least three hidden
layers is critical, but moving beyond that depth does not re-
sult in significantly better performance. In our previous work
(Geiss et al., 2023), we performed a more detailed analysis of

how choices regarding model architecture and depth impact
this problem and found that large networks with more than
three hidden layers typically performed worse than those
with three, which was not the case here. We hypothesize that
this may be due to the use of the swish transfer function here
instead of tanh. The tanh function saturates for any large-
magnitude output from a layer and is thus more likely to
suppress gradients when training deep ANNs (Bengio et al.,
1994; He et al., 2016). More investigation would be needed
to confirm this however.

4.5 Model performance

After selecting a model architecture for both the core-shell
and homogeneous sphere problems, we performed a final
round of training that included the training and validation
data and used a much smaller batch size (Sect. 4.3). These
final two models were then evaluated on the testing set, and
their testing errors for all output parameters are summarized
in Figs. 3 and 4 and in Table 6. We chose to evaluate ke in
terms of absolute percentage error because its possible values
span multiple orders of magnitude. Also, because it is com-
puted as a ratio, we can compute this metric without account-
ing for the extra λρ term in Eq. (22). Meanwhile, the asym-
metry parameter and single scattering albedo are bounded by
0 and 1, so we have expressed their error in terms of absolute
error.

Both models perform well, with negligible error com-
pared to other sources of uncertainty affecting aerosol optics
(e.g., aerosol burden, composition, size distribution). Both
achieve mean absolute percentage errors on the order of
hundredths of a percent, which is dramatically better than
the conventional parameterization (Ghan and Zaveri, 2007;
Geiss et al., 2023). Table 6 also shows several percentile er-
rors and the maximum error for the test set. The maximum
absolute percentage error for the homogeneous sphere case
is only 1.36 %. Meanwhile, the core-shell model had error
even at the 99.99th percentile of only 1.86 % but has a much
higher maximum error of 31 %. This is an extreme outlier
case, and only 9 samples from the 107 sample testing set had
ke errors exceeding 10 %. These were typically particles with
very high or very low values of f , so it may be preferable
to simply use a homogeneous mixing assumption in cases
where the core is extremely small or the shell is extremely
thin. Figures 3 and 4 summarize the same information as Ta-
ble 6 visually and provide some insight into the spread of the
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Figure 2. Mean absolute percentage error (MAPE) computed on the validation set for each of the randomly generated serially connected
neural networks. Red dots represent the neural networks that were selected for use and provide a good balance between network size and
performance.

Figure 3. Error histograms for the homogeneous sphere Mie optics emulator.

test error. Finally, absolute errors forω and g were also small,
with errors on the order of 10−3 out to the 99th percentile.

Overall, this level of accuracy is a significant improvement
over the existing parameterization. These models are accu-
rate enough that further improvements likely will not have a
substantial impact on weather and climate simulations, and
they are nearly as good as running Mie code directly in an
atmosphere simulation. In Geiss et al. (2023), we used a for-
mulation of the problem that closely followed the Ghan and
Zaveri (2007) parameterization. Here, we have used a dif-
ferent formulation and removed some simplifications made
by that algorithm, so our results are not directly compara-
ble and will differ for reasons other than improved param-
eterization accuracy. That said, they report seeing errors of

up to 10 % for the test cases they evaluated, and the MAPE
of 0.05 % or 0.08 % observed here for a significantly larger
and more diverse test set is a substantial improvement. Fi-
nally, Fig. 5 shows a plot of specific extinction and scattering
and the asymmetry parameter for a hypothetical population
of sulfate-coated black carbon. This can be compared to the
plots in Ghan and Zaveri (2007), where there is visible dis-
agreement between parameterized and true AOPs, whereas
here there is no visually perceptible difference between the
output from Mie code and from NeuralMie.
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Figure 4. Error histograms for the coated sphere Mie optics emulator.

Table 6. NeuralMie errors on the testing set. Errors for the mass extinction coefficient (ke) are expressed as absolute percentage error (APE)
because values of ke span multiple orders of magnitude, while errors for the single scattering albedo (ω) and the bulk asymmetry parameter
(g) are expressed as absolute error (AE) because their values are constrained to a range of (0,1). The mean test set error, 90th percentile,
99th percentile, 99.99th percentile, and maximum error are shown to give an idea of the spread of the error. The maximum error for ke for
the core-shell case is an extreme outlier, and only 9 of the 107 test cases had error exceeding 10 %.

Homogeneous spheres Coated spheres

ke (APE) ω (AE) g (AE) ke (APE) ω (AE) g (AE)

Mean 0.05 % 1.3× 10−4 3.1× 10−4 0.08 % 5.8× 10−4 8.1× 10−4

90th percentile 0.11 % 3.3× 10−4 7.3× 10−4 0.17 % 1.5× 10−3 1.9× 10−3

99th percentile 0.27 % 1.2× 10−3 2.3× 10−3 0.43 % 5.1× 10−3 6.5× 10−3

99.99th percentile 0.66 % 6.9× 10−3 1.1× 10−2 1.86 % 2.4× 10−2 3.3× 10−2

Maximum 1.36 % 2.3× 10−2 3.7× 10−2 31 % 0.13 0.09

5 Discussion

Here we have presented two contributions in the area of
aerosol optics modeling: NeuralMie and TAMie. The TAMie
scattering code implements the Toon and Ackerman (1981)
Mie scattering algorithm in Python and provides an easy-
to-use and easy-to-read Mie solver. It compares favorably
to both established Fortran and Python Mie codes in terms
of accuracy and stability and achieves speeds comparable to
Fortran solutions. It was invaluable for producing the volume
of data needed to train the NeuralMie optics emulator, and
we hope that future investigators will find it useful as well.
NeuralMie provides a significant improvement in the accu-
racy with which aerosol optics are parameterized in E3SM.
Not only does it add the capability to represent core-shell
scattering, but it does so with a high level of flexibility for a
neural network and incurs only a small fraction of the error
in the parameterization that is currently deployed. In this sec-
tion we discuss some of the limitations of the emulator, other
approaches to aerosol optics emulation, and potential future
use cases and areas of future research.

NeuralMie has several limitations that should be noted.
The largest limitations are not necessarily specific to the ma-
chine learning model and are rooted in the simplifying as-
sumptions about particle shapes and particle size distribu-
tions used in aerosol models and used to create the training
data. Our solution assumes that aerosol populations are al-
ways log-normally distributed. This is not true in reality but
is a very common simplifying assumption in modal aerosol
models. This means that the neural network model is only ap-
propriate for use alongside these models or in specific cases
where the log-normal assumption is reasonable. Similarly,
the assumption of particle sphericity (and perfect concen-
tric spheres in the core-shell case) deviates from reality. It is
appropriate for some types of atmospheric particles but not
others. Notably, atmospheric black carbon can form highly
irregular shapes that have significantly different scattering
properties than spheres, though when it becomes coated in
a large quantity of sulfate the sphericity assumption becomes
more reasonable (Adachi et al., 2010). These differences in
shape can substantially impact scattering properties. Finally,
neural networks are typically poor extrapolators (Haley and
Soloway, 1992; Xu et al., 2020). While we have designed
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Figure 5. Scattering properties for log-normally distributed populations of sulfate-coated black carbon with various values of µ. The core
has a refractive index of m= 1.95+ i0.78 and a density of ρ = 1.8 g cm−3, while the shell has a refractive index of 1.55+ i1× 10−8 and a
density of ρ = 1.2 g cm−3, with f = 0.25. The upper lines in (a) correspond to extinction, while the lower line corresponds to absorption.

this model to support nearly any wavelength and particle size
combination, it should only be trusted when the input re-
fractive indices and size distribution standard deviations are
within the range the model was trained on (i.e., Table 5 in
this study).

This model was designed to directly estimate the bulk op-
tics of a particle size distribution, but there are other ap-
proaches to the same problem that we briefly discuss here.
One strategy is to train a neural network to emulate Mie code
and compute individual particle optical properties rather than
compute bulk optics directly. Three past studies we are aware
of have done this (Kumar et al., 2024; Thong and Yoon, 2022;
Stremme, 2019). A major benefit of this approach is that
the resulting ML model will be applicable to aerosol models
that do not prescribe a particle size distribution (bin models
for example), making it even more flexible. There are two
main downsides to this method though. Firstly, to numeri-
cally compute the integral in Eq. (17), the ML model would
need to be called multiple times to compute values of Qe.
This negates a significant amount of the performance im-
provement over Mie code, particularly considering that the
number of Mie coefficients required scales with the size pa-
rameter, and in cases with a small size parameter a single call
to Mie code can actually be much more efficient than even a
small neural network. Secondly, individual particles’ optical
properties vary much more rapidly as a function of size pa-
rameter than a log-normal aerosol population’s bulk AOPs
vary as a function of the geometric mean radius (e.g., Figs. 1
and 5). This is because integrating AOPs over a size distri-
bution smooths out the variability in the individual particle
optical properties. This makes the bulk AOPs much easier to
predict than particle optics with a small neural network and is
likely a large contributor to NeuralMie’s extremely low error.
Another, quite different approach is to skip the process of es-
timating AOPs altogether. This could be done in cases where
the entire radiative transfer scheme is emulated, and it is con-

ceivable that a radiative transfer emulator could be developed
that ingests information about aerosol populations directly.
This approach bypasses the need for a standalone optics pa-
rameterization because those calculations would be handled
internally by the emulator. The downside is that the emulator
would have to be retrained to accommodate any changes to
the aerosol model, and retraining such an emulator is much
more difficult than retraining an aerosol optics emulator. We
believe NeuralMie strikes a good balance between general-
izability, speed, and accuracy compared to these other ap-
proaches.

Work to integrate NeuralMie into E3SM is ongoing. Based
on offline results, we expect that online accuracy will be
comparable to running Mie scattering code directly in the
model. At the time of writing, both the homogeneous sphere
and coated sphere versions of NeuralMie have been run sta-
bly in E3SM for multi-year simulations, but a detailed anal-
ysis of the impacts of NeuralMie on the simulated climate
will be the focus of future work. A remaining hurdle is that
NeuralMie is slower than the existing aerosol optics parame-
terization. The current parameterization is similar to a lookup
table and has higher memory usage but near-negligible com-
putational cost compared to a neural network. Initial simu-
lations with the homogeneous sphere version of NeuralMie
took approximately twice as long, and simulations with the
coated sphere version took approximately 4 times as long.
This additional computational expense may be acceptable
for an aerosol-focused study but is too high to deploy Neu-
ralMie operationally as the default aerosol optics scheme in
E3SM. Fortunately, there are a variety of potential pathways
to optimize the computational cost of NeuralMie: (1) per-
forming batched inference with an optimized linear algebra
library (e.g., BLAS) (Ukkonen et al., 2020). To determine
aerosol optical properties within a grid cell, NeuralMie must
be inferenced for each aerosol mode and wavelength com-
bination (120 times for MAM4 in E3SM). A Fortran–Keras
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bridge (FKB) does this sequentially with the Fortran “mat-
mul” function, but all 120 can be done simultaneously in-
stead. (2) Second is predicting all wavelengths in a single
inference step with a single model. This would negate much
of NeuralMie’s flexibility and require retraining for different
MAM and spectral configurations but would undoubtedly be
faster. (3) Third is reducing the model size, by either select-
ing a smaller architecture that incurs slightly higher error,
exploring a wider variety of architectures, or model pruning.
(4) Fourth is training multiple smaller models. For example,
only the absorption output by NeuralMie is used for the long-
wave spectral bands in E3SM, so a separate, smaller model
could be used in those cases. (5) Last is only calling Neu-
ralMie when there is appreciable aerosol loading but other-
wise using a simpler method. The results of these efforts and
evaluation of the emulator in E3SM will be documented in a
future paper.

There are several other areas of potential future research
and applications for NeuralMie. Firstly, black carbon has
a particularly large radiative impact and is the strongest-
absorbing common aerosol species (Bond et al., 2013). When
mixed with other aerosol species, the difference in absorption
estimates under homogeneous versus core-shell mixing as-
sumptions can be substantial (Adachi et al., 2010), and Neu-
ralMie adds the capability to represent coated black carbon
particles, which will improve the physical realism of E3SM.
Black carbon particles can have highly irregular shapes how-
ever, which impact their optical properties (Adachi et al.,
2010; Fierce et al., 2020), and investigation of methods to
correct for the errors associated with NeuralMie’s spheric-
ity assumption for black carbon specifically would be valu-
able. Finally, our previous work (Geiss et al., 2023) leveraged
a neural architecture search that included random wiring of
network layers. We did not do this here because of the lim-
itations of the Fortran–Keras bridge, but future versions of
E3SM will be written in C++, which will make deployment
of complicated neural networks significantly easier. In the fu-
ture it may be worthwhile to further tune the NeuralMie ar-
chitecture using this method to achieve even better accuracy
or comparable accuracy with a smaller model. Ultimately,
we expect that the increase in accuracy and capability intro-
duced by NeuralMie will improve E3SM’s ability to repre-
sent aerosol direct radiative effects.

Code and data availability. The code for both NeuralMie and
TAMie along with documentation and examples has been
made publicly available through GitHub: https://github.com/pnnl/
NEURALMIE (last access: 4 October 2024). The first release of
the code is also permanently archived through Zenodo: https://doi.
org/10.5281/zenodo.13900995 (Geiss and Ma, 2024a). The neural
network training and hyperparameter search data are also available
through Zenodo: https://doi.org/10.5281/zenodo.10840152 (Geiss
and Ma, 2024b).
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