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Abstract. The air quality forecasting system is an essential
tool widely used by environmental managers to mitigate ad-
verse health effects of air pollutants. This work presents the
latest development of the next-generation regional air qual-
ity model (AQM) forecast system within the Unified Forecast
System (UFS) framework in the National Oceanic and Atmo-
spheric Administration (NOAA). The UFS air quality model
incorporates the US Environmental Protection Agency (EPA)
Community Multiscale Air Quality (CMAQ) model as its
main chemistry component. In this system, CMAQ is inte-
grated as a column model to solve gas and aerosol chemistry,
while the transport of chemical species is processed by UFS.
The current AQM version 7 (AQMv7) is coupled with an ear-
lier version of CMAQ (version 5.2.1). Here we describe the
development of the updated AQMv7 by coupling to a “state-
of-the-science” CMAQ version 5.4. The updates include im-
provements in gas and aerosol chemistry, dry deposition pro-
cesses, and structural changes to the input/output (I/O) inter-
face, enhancing both computational efficiency and represen-
tation of air–surface exchange processes. A simulation was
conducted for the period of June–August 2023 to assess the
effects of these updates on the forecast performance of ozone
(O3) and fine particulate matter (PM2.5), two major air pol-
lutants over the continental United States (CONUS). The re-
sults show that the updated model demonstrates an enhanced
capability in simulating O3 over the CONUS by reducing the
positive bias, leading to a reduction in the mean bias by 3 %–
5 % and 8 %–12 % for hourly and the maximum daily 8 h av-

erage O3, respectively. Spatially, the updated model lowers
the positive bias of hourly O3 in most of the 10 EPA regions,
particularly within the central and northwest areas, while am-
plifying the O3 underestimation over the sites with negative
bias. Similarly, the updates induce uniformly lower fine par-
ticulate matter (PM2.5) concentrations across the CONUS
domain, reducing the positive bias at some sites over the
northeast in August and central Great Plains. The updated
model does not improve model performance for PM2.5 in
the vicinity and downwind of fire emission sources, where
AQMv7 shows the highest negative bias, thus indicating a
focal point of model uncertainty and needed improvement.
Despite these challenges, the study highlights the importance
of the ongoing refinements for reliable air quality predictions
from the UFS-AQM model, which is a planned future update
to NOAA’s current operational air quality forecast system.

1 Introduction

Air quality, affected by the amount and type of gaseous and
particulate pollutants in the ambient air, has a wide range
of impacts on human health, the ecosystem, and the econ-
omy. Criteria pollutants, such as ground-level ozone (O3) and
particulate matter with an aerodynamic diameter of less than
2.5 µm (PM2.5), can cause cardiovascular and respiratory dis-
eases (Cohen et al., 2005; Lee et al., 2014); worsen symp-
toms and complications of people with pre-existing health
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conditions (Balbus and Malina, 2009; Hooper and Kaufman,
2018); and lead to nearly 4.2 million premature deaths world-
wide in 2019,e with 89 % of these deaths occurring in low-
and middle-income countries (WHO, 2023). Acidic air pol-
lutants, such as sulfur dioxide (SO2) and nitrogen oxides
(NOx), can deposit onto soil and watershed and harm plant
growth and aquatic life, leading to changes in ecosystems
and the loss of biodiversity (Taylor et al., 1994; Lovett et al.,
2009). O3 can also damage forest and crop leaves and in-
terfere with photosynthesis, resulting in yield reduction and
food quality deteriorating with an estimated economic loss
of between USD 14 and 26 billion globally (Van Dingenen
et al., 2009; Tai et al., 2014).

To address the global concern of air pollution and allevi-
ate its health and environmental damage, both international
and national agencies play essential roles in air quality regu-
lation and monitoring. Internationally, the World Health Or-
ganization (WHO) sets global standards for air quality and
provides guidance on its health implications (WHO, 2021).
The United Nations Environment Programme (UNEP) co-
ordinates global efforts, with a specific focus on reducing
short-lived climate pollutants (UNEP, 2021). In Europe, the
European Environment Agency (EEA) provides information
and supports the European Union’s air quality efforts (EEA,
2022). In the United States, the Environmental Protection
Agency (EPA) enforces the Clean Air Act and establishes
national ambient air quality standards (NAAQS). Addition-
ally, most countries maintain their own national environmen-
tal agencies, which set air quality standards and regulations
tailored to local conditions. These agencies follow a compre-
hensive process, which includes establishing air quality stan-
dards, regulating emissions from various sources, monitor-
ing air quality through networks of monitoring stations and
making data accessible to the public. Stringent enforcement
measures are in place to ensure compliance, and research ini-
tiatives and public awareness campaigns further contribute to
informed decision-making and citizen engagement. Impor-
tantly, air quality forecasts issued by some of these agencies
are an effective way to combat air pollution because accurate
air pollutant predictions can protect public health by offering
advance warnings to at-risk individuals and aid in mitigation
strategies by guiding industrial activities and urban planning.

The National Oceanic and Atmospheric Administration
(NOAA) has taken on the responsibility of providing op-
erational air quality forecast guidance since 2004 through
the National Air Quality Forecast Capability (NAQFC) sys-
tem. The initial development of the NAQFC was based
on an offline coupling between NOAA’s ETA meteorolog-
ical model and EPA’s Community Multiscale Air Quality
(CMAQ) model, which provided O3 forecast guidance over
the northeast United States (Otte et al., 2005; Eder et al.,
2006). Continued development and evaluation of the NAQFC
enabled the system to issue O3, PM2.5, wildfire smoke, and
dust forecast guidance for the entire contiguous United States
(CONUS), Alaska, and Hawaii in order to protect human

health, the environment, and the economy (Mathur et al.,
2008; McKeen et al., 2009; Eder et al., 2009; Stajner et al.,
2012; Huang et al., 2017; Lee et al., 2017). With the Na-
tional Weather Service (NWS) transition to use a new Finite-
Volume Cubed-Sphere (FV3) dynamical core in the Global
Forecast System (GFS) model, in combination with GFS’s
improvement in data assimilation and physical parameteri-
zations, both short and long weather forecasts have consid-
erably improved (Harris and Lin, 2013; Zhou et al., 2019;
Chen et al., 2019), which motivated NOAA to use FV3GFS
as the meteorological driver in the NAQFC (Huang et al.,
2017, 2019; Chen et al., 2021). A recent version of the
NAQFC, offline-coupled between version 16 of the FV3GFS
(FV3GFSv16 hereafter) and CMAQv5.3.1, showed signifi-
cantly different meteorological and chemical predictions and
overall improved surface O3 and PM2.5 simulations in a 72 h
forecast relative to its previous version (Campbell et al.,
2022) and further yields similar results in a historical simu-
lation compared with the commonly used Weather Research
& Forecasting Model (WRF; Tang et al., 2022).

In recent years, NOAA has made extensive efforts to de-
velop the next generation weather forecast model, known as
the Unified Forecast System (UFS), which is a community-
based, coupled, comprehensive Earth modeling system with
the capability of integrating a number of common compo-
nents (e.g., land, ocean, atmosphere, and sea ice) into dif-
ferent applications. The UFS framework allows for predic-
tions that span local to global domains and range from sub-
hourly to seasonal timescales (Krishnamurthy et al., 2021;
Bai et al., 2023; Zhu et al., 2023). It is designed to be the
unified system for NOAA’s operational numerical weather
prediction applications while enabling more effective collab-
oration among government, academia, industry, and beyond
(https://ufscommunity.org, last access: 30 October 2023).

The Air Quality Model (AQM; https://github.com/
NOAA-EMC/AQM, last access: 5 March 2023) is one of
UFS’s applications that dynamically couples the CMAQ
model with the UFS weather model (https://github.com/
ufs-community/ufs-weather-model, last access: 5 March
2023) to simulate spatiotemporal variations of atmospheric
composition and air quality. The chemical component in the
AQM version 7 (AQMv7) is currently based on the CMAQ
model version 5.2.1 (CMAQv5.2.1), which was released in
2018. Hence, this version of CMAQ has become scientifi-
cally outdated as EPA is continuously advancing the model
with both scientific and structural changes as described in
Appel et al. (2021) and Murphy et al. (2021), which can po-
tentially lead to higher biases and errors in the air quality
forecast. Therefore, there is a need to update the AQMv7 to
the latest version, v5.4 (at the time of writing) of the CMAQ
model (CMAQv5.4; https://github.com/USEPA/CMAQ/tree/
5.4, last access: 30 October 2023).

The main objective of this study is to upgrade the chem-
ical component of the current AQMv7 to the latest CMAQ
model (see description in Sect. 2). The simulation design and
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model inputs are presented in Sect. 3. In Sect. 4, we compare
the meteorological and air quality predictive performance be-
tween the current and updated AQMv7 (AQMv7_new here-
after) against surface observations in the CONUS. We con-
clude, in Sect. 5, that the advancement using a closer state-of-
the-science chemical transport model will improve the pre-
diction of atmospheric chemical compositions and therefore
result in more accurate air quality forecasts and better protect
public health across the US.

2 Methods: updates to the AQM

The AQM component is a dynamic wrapper that links the
UFS weather model with CMAQ through the National Uni-
fied Operational Prediction Capability (NUOPC) layer based
on the Earth System Modeling Framework (ESMF). AQM
has its own input and output (AQMIO) layer that can read
in the online-coupled meteorology, initial and boundary con-
ditions (IC/BC), and emissions from different sources and
then pass the updated prognostic and diagnostic chemical
tracer fields back to the UFS weather model with no chem-
istry/aerosol feedback. CMAQ is treated as a column model
for emission mapping, photolysis, gas and aerosol chemistry,
dry deposition, and in-cloud wet scavenging at each integra-
tion time step, while other transport terms, such as convec-
tion, advection, and diffusion, are more appropriately han-
dled in the FV3 dynamics and Common Community Physics
Package (CCPP) physics. More details on the AQMv7 struc-
ture can be found in Huang et al. (2025).

The updates of AQMv7 are mainly based on the changes
from CMAQv5.2.1 to CMAQv5.4 between which there were
updates for CMAQ version 5.3 (CMAQv5.3; Appel et al.,
2021). The advancements of CMAQv5.3 and CMAQv5.4 are
listed in its release notes for each respective version (https:
//github.com/USEPA/CMAQ, last access: 30 October 2023).
Here we only include the features that are used in AQMv7.
The newer version usually contains various science, func-
tionality, and computation efficiency upgrades. The follow-
ing subsections describe the specifics of these changes.

2.1 Chemistry

Of all the three families of gas chemical mechanisms in-
cluded in CMAQ, the Carbon Bond version 6 (CB6) scheme
is the most widely used for regional air quality simula-
tions and thus adopted in AQM. The other two chemi-
cal mechanisms currently implemented in CMAQ include
Statewide Air Pollution Research Center (SAPRC) and
the Regional Atmospheric Chemical Mechanism (RACM).
The CB6 mechanism evolved from revision 3 (CB6r3) in
CMAQv5.2.1 to revision 5 (CB6r5) in CMAQv5.4 (Yarwood
et al., 2010; Emery et al., 2015; Yarwood et al., 2020). The
associated aerosol chemistry was also significantly updated
from version 6 (AERO6) to version 7 (AERO7).

2.1.1 Gas chemistry

The chlorine chemistry in CB6r3 (Sarwar et al., 2012;
Luecken et al., 2019) was updated in the 2019 re-
lease of CMAQv5.3, which added five chemical re-
actions and one new chlorine species compared with
the previous CB6r3 mechanism in CMAQv5.2.1
(https://github.com/USEPA/CMAQ/blob/5.3/DOCS/
Release_Notes/chlorine_chemistry_CB6r3.md, last ac-
cess: 21 February 2024). The same chlorine chemistry was
kept in the CB6r5 mechanism. Both detailed and simplified
bromine and iodine chemistry schemes (Sarwar et al., 2015)
are implemented in CMAQ, the latter of which is used in
AQMv7 to reduce the computational demand. The simple
halogen chemistry uses a first-order constant to calculate
the O3 loss rate to seawater as a function of atmospheric
pressure. With the updates of the detailed halogen chemistry
(Sarwar et al., 2019), the O3 loss rate constant has been recal-
culated in CMAQv5.3 and further rederived in CMAQv5.4
with an increased and decreased value relative to its previous
version, respectively. The final result is a reduction in O3
in the ocean (https://github.com/USEPA/CMAQ/blob/5.3/
DOCS/Release_Notes/simple_halogen_chemistry.md, last
access: 22 March 2024). Other chemistry changes in CB6r5
(Burkholder et al., 2019) include the updates in reaction rate
constants, reaction products and yields, photolysis rates of
some species, and addition of new reactions. The overall im-
pacts of the mechanism migration from CB6r3 to CB6r5 are
marginal increases in both summer and winter months (https:
//github.com/USEPA/CMAQ/wiki/CMAQ-Release-Notes:
-Chemistry:-Carbon-Bond-6-Mechanism-(CB6), last
access: 31 October 2023).

2.1.2 Aerosol chemistry

AERO7 has extensive changes from AERO6, incorporating
a number of key improvements, such as updating the yields
of monoterpene secondary organic aerosol (SOA) resulting
from the photooxidation by hydroxyl radicals (OH) and O3
(Saha and Grieshop, 2016), adding the formation and subse-
quent partitioning of organic nitrate (Pye et al., 2015), intro-
ducing the inclusion of water uptake on hydrophilic organic
compounds as described in Pye et al. (2017), accounting for
the consumption of inorganic sulfate during the formation
of isoprene epoxydiol (IEPOX) organosulfates (Pye et al.,
2013; Zhang et al., 2018b), and enhancing computational ef-
ficiency by replacing the Odum two-product fit (Odum et al.,
1996; Henze and Seinfeld, 2006; Carlton et al., 2010) with a
new parameterization of anthropogenic SOA yields through
a volatility basis set (VBS) approach (Pye et al., 2010, 2019).
The updated monoterpene oxidation yield in the VBS fit and
the inclusion of water uptake in AERO7 will generally in-
crease organic aerosol and PM2.5, primarily in the vegetated
southeast US during summertime (Xu et al., 2018; Zhang et
al., 2018a), the latter of which will also affect deposition and
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aerosol optical depth (AOD) by modulating aerosol size (Pye
et al., 2017).

2.2 Dry deposition

There are two air–surface exchange models starting from
CMAQv5.3: the Models-3 dry (M3Dry) deposition model
and the Surface Tiled Aerosol and Gaseous Exchange
(STAGE) model. Currently, only M3Dry is adopted in
AQMv7. Some important updates have been made for O3
and aerosol deposition depending on land use types since the
release of CMAQv5.2.1. The O3 dry deposition resistance to
snow was raised by 10 times, from 1000 to 10 000 s m−1, fol-
lowing the observed evidence in Helmig et al. (2007), leading
to a significant increase in ambient O3 over snow-covered re-
gions. The ground O3 resistance over soil has also been mod-
ified to be dependent on soil moisture (Mészáros et al., 2009;
Fares et al., 2012) with a generally decreased value relative
to the previous dry deposition scheme and thus result in more
O3 depositing to the soil surface and less of it remaining in
the ambient air.

The aerosol dry deposition scheme has been updated in
both CMAQv5.3 and CMAQv5.4. The revised parameteriza-
tion of aerosol dry deposition in CMAQv5.3 added a leaf area
index (LAI) factor in the boundary layer resistance to account
for large depositions over forest canopies, which greatly re-
duces the coarse-mode particle dry deposition velocity (Shu
et al., 2022; Appel et al., 2021). The scheme is further im-
proved in CMAQv5.4 by introducing a two-term impaction
efficiency to represent macroscale and microscale obstacles,
which differ by land use categories, including needleleaf for-
est, broadleaf forest, and grassland (Pleim et al., 2022). The
most significant changes in mass dry deposition velocity are
found for the accumulation mode over the forested areas with
an increase by almost an order of magnitude, causing overall
reduced PM2.5 in the contiguous US relative to CMAQv5.3.

2.3 Structural changes

A number of changes have been made to the input/out-
put (I/O) framework of CMAQ (Fig. 1). Emission reading,
mapping, and scaling are controlled in the Detailed Emis-
sions Scaling, Isolation, and Diagnostic (DESID) module in
CMAQv5.3 and beyond. The module can read any number
of offline gridded and point emission files by their sources
(defined as streams) and apply scaling factors on a per-
species and per-region basis for each stream, allowing users
to perform emission scaling and perturbation tests with great
ease and flexibility (Murphy et al., 2021). The opening, de-
scription, extraction, and interpolation of the meteorological
and emission variables are encapsulated in the centralized
I/O (CIO) module from CMAQv5.3, lowering computational
memory requirements and easing code maintenance. The In-
troduction of the Explicit and Lumped air quality Model Out-
put (ELMO) module, which can synthesize the definition,

calculation, and maintenance of individual or aggregate gas
and particulate matter parameters (e.g., PM2.5) online, saving
time and storage to run post-processing tools, is included in
CMAQv5.4. Implementing these changes requires new con-
trol namelists and extensive code updates in AQMv7_new.

3 Simulation design and evaluation protocol

Despite the chemistry and dry deposition updates described
in the last section, other model components and configu-
rations are the same in order to isolate the model perfor-
mance changes caused by the updates. Table 1 summarizes
the model domain, physical settings, and emission inputs, as
well as some additional information.

The model domain covers North America (NA) with a hor-
izontal resolution of ∼ 13 km and 64 vertical layers spanning
from the surface up to the top of the stratosphere (∼ 0.4 hPa).
The CCPP FV3GFSv16.3 physics suite (Heinzeller et al.,
2023) is used to provide meteorological conditions, where
its physical configurations include the Monin–Obukhov sim-
ilarity surface layer (Monin and Obukhov, 1954; Grell et al.,
1994; Jiménez et al., 2012), the Noah land surface scheme
(Chen and Dudhia, 2001; Ek et al., 2003; Tewari et al., 2004),
the Rapid Radiative Transfer Model (RRTM) longwave and
shortwave radiation schemes (Mlawer et al., 1997; Clough
et al., 2005; Iacono et al., 2008), the Simplified Arakawa–
Schubert (SAS) cumulus parameterization (Han and Pan,
2011; Han et al., 2017), the Geophysical Fluid Dynamics
Laboratory (GFDL) six-category cloud microphysics scheme
(Lin et al., 1983; Lord et al., 1984; Krueger et al., 1995;
Chen and Lin, 2011, 2013), and the sa-TKE-EDMF planetary
boundary layer (PBL) scheme (Han and Bretherton, 2019).

Anthropogenic emissions outside of the CONUS are from
CEDSv2-2019 for all gases, except for sulfur dioxide (SO2)
only in the ocean, organic carbon (OC), and black carbon
(BC) (Table 1). The blended Ozone Monitoring Instrument-
HTAP (OMI-HTAP) 2019 dataset (https://so2.gsfc.nasa.gov/
measures.html, last access: 15 March 2024) provides SO2
emissions over land, and the emissions of coarse particulate
matter (PMC) and PM2.5 are from HTAPv2-2010. Within
the CONUS, all gas and aerosol anthropogenic emissions are
from the National Emissions Inventory Collaborative (NEIC)
2016 version 1 (2016v1). NEIC2016v1 provides both area
and point emissions, the latter of which is further calculated
in-line in AQM using the Briggs plume rise method. The
same plume rise method is also applied to the wildfire emis-
sions from the Regional ABI and VIIRS fire Emissions ver-
sion 1 (RAVE1) inventory, in which all gaseous emissions
are scaled from CO and speciated particulate matter emis-
sions are scaled from total PM2.5. Both windblown dust and
sea salt emissions are calculated in-line. The dust scheme is
based on a novel FENGSHA model (Fu et al., 2014; Huang et
al., 2015; Dong et al., 2016), which is dependent on the land
cover, soil type, soil moisture, and friction velocity. Biogenic
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Figure 1. Summary of the I/O changes in the AQMv7_new model. Three major structural changes are highlighted in red.

emissions are from the Model of Emissions of Gases and
Aerosols from Nature version 2.1 (MEGAN2.1) driven by
the GFSv16 meteorology. The area source anthropogenic and
biogenic emissions are both processed and calculated in-line
using the NOAA Emission and eXchange Unified System
(NEXUS) component (Campbell et al., 2020), which is based
upon the Harmonized Emissions Component (HEMCO) 3.0
(Lin et al., 2021). The chemical initial and boundary condi-
tions (ICs and BCs) are from the monthly mean Atmospheric
Model version 4 (AM4) outputs for gas and aerosol species
with additional dynamic BCs for dust and smoke aerosols
from the aerosol forecast member in the Global Ensemble
Forecast System (GEFS-Aerosols), which can better capture
the aerosol intrusion events from outside of the domain and
thus improve the prediction of air quality (Tang et al., 2021).

The simulations for both AQMv7 and AQMv7_new were
performed for 3 months, from June to August of 2023, during
which there were extensive wildfire activities over the north-
west US and Canada. The air quality observations from the
EPA AirNow network are used to evaluate the model perfor-
mance, and the evaluation is conducted using the publicly
available software MELODIES-MONET (Model EvaLua-
tion using Observations, DIagnostics and Experiments Soft-
ware, MELODIES, with the Model and ObservatioN Evalu-
ation Toolkit; Baker and Pan, 2017; https://melodies-monet.
readthedocs.io/en/stable/, last access: 29 October 2024). The
software can produce flexible diagnostic assessments by pair-

ing models and observations, plotting spatial maps, and cal-
culating statistics such as mean bias (MB), normalized mean
bias (NMB), median bias (MdnB), normalized median bias
(NMdnB), mean absolute error (MAE), normalized mean
error (NME), coefficient of determination (R2), root-mean-
square error (RMSE), and the index of agreement (IOA). A
meteorological evaluation was also conducted using the US
EPA Atmospheric Model Evaluation Tool (AMET; Appel et
al., 2011; https://www.cmascenter.org/amet/, last access: 15
March 2024) against the observations collected from the Sur-
face Weather Observations and Reports for Aviation Routine
Weather Reports (METAR) and Earth System Research Lab-
oratory’s (ESRL’s) Radiosonde Database (RAOB).

4 Results: assessment and evaluation of updates

In this section, we compare the performance of the current
and updated models in their capability of predicting summer
season (June, July, and August 2023) O3 and PM2.5 as they
are the most important air pollutants of concern. Although
both models are driven by the same CCPP GFSv16 physics
suite, we first briefly evaluated the simulation of some me-
teorological factors critical for O3 and PM2.5 formation and
transport, which can provide insights into the overall model
performance in air quality predictions.
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Table 1. UFS-AQM model components and configurations. The abbreviation n/a stands for not applicable in this table.

Model attributes Configuration Reference

Domain North America
Centered on 50° N, 118° W

n/a

Horizontal resolution 13 km n/a

Vertical resolution 64 levels from near the surface up to
the top of the stratosphere

n/a

Meteorological ICs and BCs FV3GFSv16.3 https://nws.weather.gov/ (last access: 25 November
2023)

Chemical ICs and BCs Static monthly AM4 for gases and
aerosol species and GEFS-Aerosol for
dynamic smoke and dust

Horowitz et al. (2020); Tang et al. (2021); Lin et al.
(2020, 2024)

Microphysics GFDL six-category cloud
microphysics scheme

Lin et al. (1983); Lord et al. (1984); Krueger et al.
(1995); Chen and Lin (2011, 2013)

PBL physics scheme sa-TKE-EDMF Han and Bretherton (2019)

Shallow and deep cumulus
parameterization

SAS scheme Han and Pan (2011); Han et al. (2017)

Shortwave and longwave
radiation

RRTMg Mlawer et al. (1997); Clough et al. (2005); Iacono et al.
(2008)

Land surface model Noah land surface model with
20-category IGBP land cover

Chen and Dudhia (2001); Ek et al. (2003); Tewari et al.
(2004)

Surface layer Monin–Obukhov Monin and Obukhov (1954); Grell et al. (1994);
Jiménez et al. (2012)

Anthropogenic emissions
(CONUS)

Area sources: NEIC2016v1
Point sources: NEIC2016v1 with
Briggs plume rise

NEI (2019); Briggs (1965)

Anthropogenic emissions
(outside CONUS)

CEDSv2; HTAPv2.2; OMI-HTAP SO2
2019

O’Rourke et al. (2021); Janssens-Maenhout et al.
(2015); Liu et al. (2018)

Biogenic emissions MEGAN2.1 driven by GFSv16
meteorology

Guenther et al. (2012)

Wildfire emissions RAVE with Sofiev plume rise Li et al. (2022); Sofiev et al. (2012)

Other in-line/offline emissions FENGSHA windblown dust scheme Fu et al. (2014); Huang et al. (2015); Dong et al. (2016)

Sea spray emissions Kelly et al. (2010); Gantt et al. (2015)

4.1 Meteorology evaluation

Figure 2 shows the anomaly correlation coefficient (ACC)
and mean bias (MB) between four simulated and observed
variables at each site in August, including 2 m tempera-
ture (TEMP2) and specific humidity (Q2), 10 m wind speed
(WS10), and direction (WD10), with more statistics listed in
Table 2. Similar spatial patterns of ACC and MB are found
for June and July (Figs. S1–S2 in the Supplement). Some
diurnal variation and vertical distribution comparisons were
also conducted and shown in Figs. S3–S11. TEMP2, Q2, and
WS10 in the CONUS are well simulated with high correla-

tion coefficients (CORR) of 0.93–0.95, 0.91–0.93, and 0.56–
0.65 and low mean bias of −0.03 to −0.56 °C, −0.81 to
−1.41 g kg−1, and −0.15 to −0.25 m s−1, respectively (Ta-
ble 2). While cold biases are found in the northeastern and
western US (Figs. 2 and S1–S2) at the surface mainly driven
by nighttime underpredictions (Figs. S3–S8), the vertical dis-
tribution shows a nationwide warm bias (Figs. S9–S11). Spe-
cific humidity has a universal dry bias within the domain
at both the surface and vertically, with the latter showing
a higher bias of up to 10 g kg−1 at some sites. Such biases
in TEMP2 and Q2 suggest an overly stable atmosphere in
the GFSv16 physics during summer, which may influence
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overpredictions in trace gases in the lowest model layers by
suppressing advection and diffusion. The diurnal evaluations
also indicate overpredictions in TEMP2 during the daytime
in both the western and eastern US, where the warm and dry
biases may further exacerbate O3 formation and overpredic-
tions, especially in the eastern US (see Sect. 4.2 below). Fur-
thermore, WS10 is underestimated in the western and part of
eastern US by up to 3 m s−1, which also contributes to the
overestimation of O3 therein due to reduced dilution. WD10
demonstrated relatively worse predictions, especially in its
vertical distributions, with low CORR values smaller than 0.6
and a high mean bias greater than 20° at most sites, adding
more uncertainties to the transport of pollutants in addition
to those from WS10. AMET accounts for the wind direction
vector issue in its calculation of the evaluation statistics.

4.2 O3 evaluation

Figure 3 displays the spatial maps of hourly O3 distribu-
tion in the CONUS averaged in June–August 2023 from two
model simulations and AirNow observations as well as the
model mean bias at each site. The western US generally has
a higher level of O3 relative to the eastern US, reflecting
the overall O3 spatial distribution during summertime. The
AQMv7 captures this spatial pattern, yet with a positive bias
at the majority of the AirNow sites. A higher positive bias of
more than 20 ppb can be found near the west and east coast
compared to the smaller or negative bias in other regions for
all the months, indicating that the land–sea interactions may
not be well represented in the model. The relatively large
O3 overestimates are also impacted by the near-surface me-
teorological biases described previously (i.e., too warm and
dry during the day and too cool and dry at night) as well as
an overly stable boundary layer. The most noticeable nega-
tive bias can be seen in the northeastern US in June, which
is attributable to the record-breaking wildfire smoke trans-
ported from Quebec. This indicates the contributions from
fires to O3 enhancements are underestimated in the model.
The AQMv7_new model shows a nationwide decrease in O3
mixing ratios, which reduces the high positive bias over the
coastal sites. This reduction, however, also exacerbates the
O3 underestimation for the sites with negative bias.

Averaging across the CONUS, the hourly O3 time series
from the AQMv7 simulation (blue line in Fig. 4) show that
the model captures the temporal variation with an R2 value
of 0.44, 0.50, and 0.49 from June to August, respectively (Ta-
bles 3–5). However, except for the fire-related O3 underesti-
mation in June, the model overestimates both the peak val-
ues at noon and the low values at night with a mean bias of
1.54 ppb (4.23 %) in June, 4.84 ppb (14.55 %) in July, and
7.21 ppb (23.12 %) in August, which explains the high posi-
tive bias shown in Fig. 2. Such overestimation of O3 is mit-
igated, especially during nighttime, by the updated model,
reducing the mean bias by 3 %–5 %. The RMSE and IOA
values of hourly O3 are also improved by the model updates,

indicating an enhanced model performance in simulating O3
in the CONUS overall. We also evaluated the model perfor-
mance of the maximum daily 8 h average (MDA8) O3 simu-
lation in Fig. 4, with the statistics listed in Tables S1–S3 in
the Supplement. The AQMv7 model underestimates MDA8
O3 by 1.87 ppb (3.82 %) in June, while the model overpre-
dicts it by 1.94 ppb (4.21 %) and 5.18 ppb (11.89 %) in July to
August, respectively. The reduction effects in AQMv7_new
lowers the positive bias in July and August by 0.15 ppb (8 %)
and 0.62 (12 %) and amplifies the negative bias in June by
0.23 ppb (12 %). Considering the underestimation of day-
time O3 in AQMv7 due to the big impact from fire in June,
this may indicate that the model updates can improve sum-
mertime MDA8 O3 simulation when influences from fire are
small.

In addition to the statistics listed in Tables 3–5, hit rate,
false alarm rate, and critical success index (CSI) are metrics
commonly used to evaluate the performance of predictions,
providing valuable insights into different aspects of forecast
accuracy and reliability. Figure 5 compares these three met-
rics between AQMv7 and AQMv7_new at different hourly
O3 thresholds across the CONUS. Although both models
have difficulties in predicting higher levels of O3 indicated
by the decrease in hit rate and CSI and the increase in false
alarm rate as the threshold changes from 0 to 100 ppbv, the
new model yields a higher CSI value when O3 is greater than
60 ppb for the 3 months. However, it also exhibits a slightly
lower hit rate and higher false alarm rate at the 60 ppbv
threshold, especially for June and July. This suggests that
while the new model is more successful in accurately predict-
ing significant ozone events, it does so less frequently, with
a higher number of false positives in the upper concentration
ranges (e.g., > 80 ppb). However, the new model can better
capture the moderate O3 concentration ranges near 40 ppb as
indicated by the higher hit rate and lower false alarm rate
with a similar accuracy (CSI value) for all the months.

We also assessed the model simulations in each of the 10
EPA regions (R1–R10 hereafter) in Fig. 6a and Tables 3–5 to
further examine how the updates will affect the model per-
formance regionally. Except for the underestimation in the
upper Midwest (R5) and Great Plains (R7–R8) in June and
the northwest (R10) in July, the AQMv7 model overestimates
hourly O3 in all regions with the highest mean bias value
found in the northeast (R1) for June (7.04 ppb) and the south-
east (R4) for July and August (11.65 and 12.97 ppb, respec-
tively). Compared to the AQMv7 model, the statistical dis-
tributions of hourly O3 from the AQMv7_new model move
to the lower end, which reduces the positive bias in most of
the regions by 0.18–3.06 ppb (3.06 %–95.12 %) as indicated
by the improved statistics (bold numbers) in Tables 3–5. In-
terestingly, the central and southwest regions (R6–R9) have
a higher sensitivity to the model updates relative to other re-
gions in all 3 months, which is likely due to the combined
effects of O3 chemistry and dry deposition. As described in
Sect. 2, the halogen chemistry updates reduce O3 over seawa-
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Figure 2. Anomaly correlation coefficient (ACC; left column) and mean bias (MB) between GFSv16.3 simulated and observed TEMP2 (a;
°C), Q2 (b; g kg−1), WS10 (c; m s−1), and WD10 (d; degree) at the surface in August 2023.
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Figure 3. Maps of monthly mean hourly O3 in the CONUS predicted by AQMv7 (a) and AQMv7_new (b) overlaid by AirNow observation
sites (left column) and its bias between simulations and observations (model – AirNow) at each site (right column).
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Table 2. Evaluation statistics of TEMP2 (K), Q2 (g kg−1), and WS10 (m s−1) from the GFSv16.3 simulation in summer months of 2023.
MB, MAE, and RMSE have the same units as the variables.

Region Variable Month CORR ACC MB NMB (%) MAE NME (%) RMSE

CONUS TEMP2 June 0.93 0.93 −0.56 −1.05 1.93 3.66 2.52
July 0.93 0.93 −0.44 −0.83 2.00 3.76 2.64
August 0.95 0.95 −0.03 −0.06 1.73 3.27 2.29

Q2 June 0.91 0.89 −0.81 −2.65 1.43 4.70 1.94
July 0.93 0.90 −1.21 −4.29 1.63 5.76 2.12
August 0.92 0.87 −1.41 −4.72 1.70 5.66 2.25

WS10 June 0.59 0.51 −0.17 −0.75 1.30 5.83 1.76
July 0.56 0.47 −0.25 −1.00 1.36 5.35 1.85
August 0.65 0.56 −0.15 −0.57 1.24 4.72 1.68

Eastern US TEMP2 June 0.93 0.93 −0.60 −1.15 1.88 3.69 2.44
(100° W July 0.92 0.92 −0.32 −0.64 1.86 3.59 2.43
eastward) August 0.95 0.95 0.00 0.00 1.60 3.19 2.08

Q2 June 0.89 0.86 −0.88 −2.91 1.56 5.15 2.07
July 0.86 0.78 −1.55 −5.47 1.95 6.87 2.48
August 0.89 0.81 −1.65 −5.55 1.91 6.40 2.45

WS10 June 0.59 0.50 0.02 0.08 1.19 5.34 1.59
July 0.53 0.44 0.00 −0.01 1.22 6.09 1.63
August 0.63 0.54 0.05 0.19 1.12 4.78 1.50

Western US TEMP2 June 0.93 0.93 −0.45 −0.86 2.05 4.03 2.70
(100° W July 0.93 0.93 −0.08 −0.17 2.32 4.44 3.04
westward) August 0.93 0.93 0.02 0.06 2.07 4.12 2.76

Q2 June 0.88 0.86 −0.60 −2.36 1.07 4.20 1.54
July 0.80 0.75 −1.04 −3.96 1.49 5.66 2.03
August 0.83 0.77 −0.98 −3.48 1.37 4.87 1.83

WS10 June 0.61 0.53 −0.55 −2.54 1.52 7.05 2.06
July 0.56 0.48 −0.44 −1.71 1.53 6.02 2.05
August 0.63 0.54 −0.48 −1.86 1.41 5.47 1.89

ter, which can be transported into the central US dominated
by southerly winds in summer, such as the Great Plains low-
level jet (Zhu and Liang, 2013; Li et al., 2020). In addition,
the added dependence of O3 dry deposition velocity to soil
moisture leads to more O3 uptake by dry soil than wet soil
(Appel et al., 2021), and the central and western US gener-
ally have lower soil moisture than the eastern regions. The
IOA and RMSE values in most of the regions also improve
during the 3 months.

The regional analysis was also conducted by comparing
IOA values between these two models on a daily basis, and
the results are shown in the scorecard plot (Fig. 6b). The IOA
is a standardized measure of the degree of model prediction
error and is defined as the ratio of the mean square error to
the potential error. The calculation of IOA can be found in the
supplementary information. A value of 1 indicates a perfect
match between the model and observations, while a value of
0 indicates no agreement at all (Willmott, 1981). The new
model has higher IOA values on most of the days from R4 to

R9 at a 95 % confidence level, although R1–R3 and R10 only
have improved IOA values on individual days. It is noted that
there are some days on which the AQMv7_new model per-
forms worse at both urban and rural sites in a specific re-
gion (e.g., 9–10 June in R9). The time series focusing on R9
(Fig. S12) reveal that the AQMv7 model generally underes-
timates O3 on those days and that a further reduction in the
new model will make the performance worse.

In summary, we compared the model performance of two
models in their capability of predicting the spatiotemporal
patterns of O3 in the CONUS and found that the updated
AQMv7_new model reduces the positive bias and the RMSE
values of both hourly and MDA8 O3, indicating improved
model accuracy. The extent of the model performance im-
provements also differs by region, with the central and south-
west areas experiencing the highest enhancement, likely due
to contributions from both halogen chemistry and dry depo-
sition.
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Table 3. Hourly O3 evaluation statistics of the AQMv7 and AQMv7_new simulations against the AirNow network in the CONUS and
different regions in June 2023. The bold numbers in AQMv7_new indicate an improvement relative to those in AQMv7.

Region Model MB (ppb) NMB (%) MdnB (ppb) NMdnB (%) R2 RMSE (ppb) IOA

CONUS AQMv7 1.54 4.23 1.26 3.60 0.44 12.91 0.78
AQMv7_new 0.37 1.01 −0.11 −0.31 0.46 12.71 0.80

Region 1 AQMv7 7.04 23.15 6.25 21.54 0.46 13.10 0.76
(northeast) AQMv7_new 6.10 19.77 4.90 16.91 0.45 12.87 0.78

Region 2 AQMv7 4.63 14.04 4.07 12.71 0.44 12.98 0.79
(NY-NJ) AQMv7_new 4.22 12.79 3.47 10.84 0.45 12.99 0.80

Region 3 AQMv7 2.83 7.53 1.95 5.13 0.42 13.14 0.77
(mid-Atlantic) AQMv7_new 2.32 6.17 1.25 3.30 0.44 12.89 0.78

Region 4 AQMv7 6.43 18.63 6.22 18.30 0.46 14.17 0.73
(southeast) AQMv7_new 5.67 16.40 5.14 10.65 0.48 13.54 0.76

Region 5 AQMv7 −4.29 −10.40 −5.04 −12.61 0.45 14.57 0.75
(upper Midwest) AQMv7_new −5.10 −12.36 −5.87 −14.68 0.48 14.48 0.77

Region 6 AQMv7 4.62 13.69 4.79 14.50 0.54 12.67 0.81
(south) AQMv7_new 3.24 9.60 3.21 9.48 0.55 12.07 0.83

Region 7 AQMv7 −6.39 −13.94 −7.52 −15.99 0.42 15.08 0.71
(central Great Plains) AQMv7_new −7.38 −16.12 −8.56 −18.22 0.45 15.15 0.73

Region 8 AQMv7 −2.20 −5.23 −2.97 −6.90 0.27 12.15 0.68
(northern Great Plains) AQMv7_new −3.93 −9.32 −4.54 −10.55 0.33 12.07 0.71

Region 9 AQMv7 0.05 0.12 0.04 0.10 0.59 10.01 0.85
(southwest) AQMv7_new −2.08 −5.41 −2.09 −5.65 0.59 10.24 0.86

Region 10 AQMv7 0.82 2.84 −0.02 −0.06 0.49 9.32 0.82
(northwest) AQMv7_new 0.04 0.12 −1.05 −3.37 0.49 9.47 0.83

Table 4. Same as Table 3 but for July 2023.

Region Model MB (ppb) NMB (%) MdnB (ppb) NMdnB (%) R2 RMSE (ppb) IOA

CONUS AQMv7 4.84 14.55 4.14 12.55 0.50 12.77 0.80
AQMv7_new 3.56 10.71 2.86 8.68 0.50 12.53 0.82

Region 1 AQMv7 8.11 24.67 7.36 23.01 0.51 13.84 0.78
(northeast) AQMv7_new 7.68 23.36 6.70 20.93 0.50 14.00 0.78

Region 2 AQMv7 5.88 16.89 5.06 14.47 0.49 13.41 0.80
(NY-NJ) AQMv7_new 5.70 16.35 4.79 13.68 0.50 13.51 0.81

Region 3 AQMv7 7.49 21.95 6.25 17.87 0.45 14.15 0.74
(mid-Atlantic) AQMv7_new 7.17 21.01 6.03 17.23 0.46 14.01 0.76

Region 4 AQMv7 11.65 42.50 11.12 41.17 0.51 15.88 0.70
(southeast) AQMv7_new 10.81 39.44 10.17 37.67 0.53 15.16 0.73

Region 5 AQMv7 0.91 2.58 −0.18 −0.49 0.47 11.54 0.80
(upper Midwest) AQMv7_new 0.06 0.18 −1.09 −3.02 0.49 11.34 0.81

Region 6 AQMv7 6.53 21.85 7.15 25.53 0.65 12.05 0.83
(south) AQMv7_new 4.49 15.03 5.08 18.16 0.63 11.22 0.85

Region 7 AQMv7 2.15 5.97 0.81 2.18 0.41 11.27 0.76
(central Great Plains) AQMv7_new 0.39 1.09 −0.95 −2.56 0.43 10.85 0.79

Region 8 AQMv7 0.45 1.12 −0.59 −1.43 0.42 10.28 0.78
(northern Great Plains) AQMv7_new −1.97 −4.94 −2.80 −6.82 0.47 10.06 0.80

Region 9 AQMv7 1.57 5.55 0.80 3.08 0.62 8.62 0.88
(southwest) AQMv7_new 0.51 1.78 −0.51 −1.95 0.60 8.83 0.88

Region 10 AQMv7 −2.06 −19.25 −0.20 −2.65 0.21 13.95 0.52
(northwest) AQMv7_new −2.83 −26.39 −0.80 −10.56 0.20 14.21 0.49
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Figure 4. Time series of hourly (left column) and MDA8 (right column) O3 in the CONUS from AirNow observations (black line), AQMv7
(blue line) and AQMv7_new (red line) predictions for June (a), July (b), and August (c) 2023.

4.3 PM2.5 evaluation

As shown in Fig. 7a, the monthly average of the hourly PM2.5
spatial map from AQMv7 displays extremely high values
over eastern and western Canada and the northwestern US
due to wildfire emissions. The fire plumes were transported
to the northeastern US, especially for the extreme event in
June, and led to higher PM2.5 levels compared to those in the
central and southwestern regions. The negative mean bias of
PM2.5 at the AirNow sites downstream the wildfire plumes is
very high, with a value of up to −15 µg m−3, where generally
in the west-northwest US, there are PM2.5 overpredictions
near fire sources. This result implies that there are substan-
tial uncertainties in wildfire emissions and plume rise, smoke
transport, and smoke plume chemistry for AQMv7. Some
sites over the Great Plains and the northeast in August have a
relatively smaller positive mean bias of less than 10 µg m−3,
followed by the close-to-zero mean bias at the sites over the
south. The AQMv7_new model also predicts extreme PM2.5
values near the wildfire locations and thus shows compara-
ble positive or negative bias as the AQMv7. However, the
positive mean bias in the Great Plains and the northeastern
area in August is reduced in AQMv7_new, which implies that
the overall effect of the model updates is to reduce PM2.5 in

places with less wildfire impact. Such reductions inevitably
deteriorate the model performance when AQMv7 is unbiased
or already underestimates PM2.5 at the sites in the southern
US.

The hourly and daily time series of the CONUS-mean
PM2.5 are shown in Fig. 8, and their corresponding statis-
tics are summarized in Tables 6–8 and S4–S6. The two mod-
els have similar temporal variations, and they both miss the
high PM2.5 episodes on 6–9 and 27–30 June and 4–5, 15–
18, and 24–27 July while better capturing the peak during
19–21 August, which are both dominated by enhanced fire
sources across the US. The AQMv7 overall shows an un-
derestimated simulation of hourly PM2.5, with a mean bias
value of −3.23 µg m−3 (−24.13 %) for June, −2.06 µg m−3

(−19.25 %) for July, and −0.61 µg m−3 (−5.47 %) for Au-
gust over the CONUS. The higher negative bias in June and
July can be explained by the missed fire-induced high PM2.5
values. The AQMv7_new predicts lower PM2.5 values at
most hours, which increases the mean bias to −4.85 µg m−3

(−36.24 %), −2.83 µg m−3 (−26.39 %), and −1.84 µg m−3

(−16.42 %) from June to August, respectively. Daily PM2.5
from the AQMv7_new is also lower on all days, increas-
ing the negative bias from −3.37 µg m−3 (−24.74 %) to
−5.03 µg m−3 (−36.98 %) for June, from −2.02 µg m−3
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Table 5. Same as Table 3 but for August 2023.

Region Model MB (ppb) NMB (%) MdnB (ppb) NMdnB (%) R2 RMSE (ppb) IOA

CONUS AQMv7 7.21 23.12 6.45 21.51 0.49 13.50 0.78
AQMv7_new 5.65 18.11 4.79 15.98 0.49 12.87 0.80

Region 1 (northeast) AQMv7 7.31 26.10 6.47 22.32 0.44 12.07 0.74
AQMv7_new 6.63 23.68 5.69 19.61 0.46 11.70 0.76

Region 2 (NY-NJ) AQMv7 6.96 23.50 6.10 20.35 0.46 12.70 0.77
AQMv7_new 6.59 22.24 5.47 18.24 0.47 12.70 0.78

Region 3 (mid-Atlantic) AQMv7 9.26 29.51 8.01 25.04 0.42 14.48 0.72
AQMv7_new 8.56 27.56 7.41 23.14 0.43 14.23 0.73

Region 4 (southeast) AQMv7 12.97 46.99 12.19 45.16 0.50 16.84 0.69
AQMv7_new 11.77 42.64 10.96 40.58 0.52 15.88 0.72

Region 5 (upper Midwest) AQMv7 6.85 21.99 5.94 19.17 0.48 12.56 0.78
AQMv7_new 5.72 18.36 4.59 14.82 0.50 11.93 0.80

Region 6 (south) AQMv7 4.65 13.44 4.78 14.05 0.66 11.79 0.85
AQMv7_new 2.24 6.48 2.39 7.03 0.65 11.00 0.87

Region 7 (central Great Plains) AQMv7 8.17 25.16 7.30 22.12 0.48 13.02 0.75
AQMv7_new 6.11 18.81 5.08 15.41 0.48 11.92 0.78

Region 8 (northern Great Plains) AQMv7 4.34 11.38 3.38 8.40 0.35 12.25 0.72
AQMv7_new 1.28 3.36 0.37 0.96 0.42 10.86 0.78

Region 9 (southwest) AQMv7 5.80 16.14 5.18 15.24 0.56 13.10 0.82
AQMv7_new 3.35 9.32 2.54 7.48 0.57 12.27 0.85

Region 10 (northwest) AQMv7 6.02 20.79 4.63 16.54 0.54 12.44 0.82
AQMv7_new 4.80 16.59 3.11 11.12 0.52 12.45 0.83

(−18.96 %) to −2.78 µg m−3 (−26.07 %) for July, and from
−0.62 µg m−3 (−5.52 %) to −1.88 µg m−3 (−16.60 %) for
August. Similarly, the hourly and daily IOA values are wors-
ened for all 3 months, with the RMSE value only slightly
improved in August.

The hit rate, false alarm rate, and CSI for PM2.5 resem-
ble the changes in O3 as the threshold varies from low to
high, with a generally decreasing hit rate and CSI and in-
creasing false alarm rate (Fig. 9). The AQMv7_new shows a
lower hit rate and CSI and a higher false alarm rate in June
and July when PM2.5 is greater than 60 µg m−3, implying an
overall worse model performance. As opposed to June and
July, although CSI values in August only slightly increase in
AQMv7_new when PM2.5 is greater than 40 µg m−3, the val-
ues of hit rate and false alarm rate become higher and lower
compared to AQMv7, respectively, and the changes are big-
ger at higher thresholds. This indicates that AQMv7_new can
better predict August PM2.5 at most pollution levels, with
more improvements found in highly polluted cases. Consid-
ering the fire events are better captured in August, the con-
trasting model performance from our updates between June
and July and August highlights the necessity to improve the
representation of wildfire processes for future model devel-
opments.

The evaluation by each EPA region is illustrated in Fig. 10
and the corresponding metrics are listed in Tables 6–8. Here,
7 and 9 out of the 10 regions show underestimated PM2.5
values from the AQMv7 simulation for June and July, re-
spectively. The highest negative mean bias is found in the
upper Midwest (R5) in June with a value of −11.47 µg m−3

(−43.92 %) and the northern Great Plains (R8) in July with
a value of −3.11 µg m−3 (−34.86 %), suggesting a different
fire plume transport pathway mainly from eastern and west-
ern Canada for June and July, respectively. For August, the
AQMv7 shows a general overestimation in the eastern US
(R1–R5) and central Great Plains (R7), with the positive bias
values ranging from 0.20 µg m−3 (2.02 %) in the southeast
(R4) to 1.79 µg m−3 (21.56 %) in the New York–New Jer-
sey area (NY–NJ; R2). Regions in the western US (R6, R8–
R10) exhibit an overall underestimation of PM2.5, with the
lowest negative bias of −0.26 µg m−3 (−3.37 %) found in
the southwest (R9). The highest mean bias of −3.10 µg m−3

(−18.65 %) among all the 10 regions lies in the northwest
(R10), which can be attributed to wildfires from local sources
and southwest Canada. The RMSE value of 54.54 µg m−3 in
the southwest is also much higher than those in other regions,
which range from 4.13 to 12.78 µg m−3. From the box plot
in Fig. 10a, the AQMv7_new predicts a uniformly reduced
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Table 6. Hourly PM2.5 evaluation statistics of the AQMv7 and AQMv7_new simulations against the AirNow network in the CONUS and
different regions in June 2023. The bold numbers in AQMv7_new indicate an improvement relative to those in AQMv7.

Region Model MB (µg m−3) NMB (%) MdnB (µg m−3) NMdnB (%) R2 RMSE (µg m−3) IOA

CONUS AQMv7 −3.23 −24.13 −0.04 −0.47 0.32 19.78 0.60
AQMv7_new −4.85 −36.24 −0.94 −12.43 0.27 20.96 0.52

Region 1 AQMv7 0.65 5.82 2.38 36.70 0.29 13.95 0.66
(northeast) AQMv7_new −2.85 −25.46 0.12 1.93 0.32 14.01 0.59

Region 2 AQMv7 −4.78 −22.23 1.55 15.48 0.43 27.21 0.68
(NY-NJ) AQMv7_new −8.76 −40.73 −0.93 −9.29 0.44 29.14 0.60

Region 3 AQMv7 −10.04 −39.77 −2.17 −15.32 0.43 31.63 0.61
(mid-Atlantic) AQMv7_new −13.68 −54.21 −4.95 −34.88 0.45 33.79 0.54

Region 4 AQMv7 −3.92 −29.38 −2.32 −21.66 0.34 9.12 0.58
(southeast) AQMv7_new −5.25 −39.41 −3.39 −31.70 0.32 9.93 0.54

Region 5 AQMv7 −11.47 −43.92 −4.74 −27.90 0.42 27.27 0.61
(upper Midwest) AQMv7_new −14.94 −57.23 −7.36 −43.28 0.33 30.62 0.49

Region 6 AQMv7 −2.90 −25.79 −1.84 −18.62 0.14 7.34 0.54
(south) AQMv7_new −3.81 −33.88 −2.83 −28.63 0.09 8.07 0.50

Region 7 AQMv7 −3.56 −23.02 −1.21 −10.09 0.24 16.58 0.49
(central Great Plains) AQMv7_new −5.86 −37.88 −3.22 −26.82 0.19 17.78 0.40

Region 8 AQMv7 −0.4 −5.75 −0.05 −0.93 0.02 8.98 0.34
(northern Great Plains) AQMv7_new −0.57 −8.30 −0.29 −5.50 0.01 11.75 0.21

Region 9 AQMv7 0.91 13.95 1.16 19.40 0.12 5.01 0.57
(southwest) AQMv7_new 0.64 9.71 0.96 15.94 0.12 4.91 0.57

Region 10 AQMv7 2.31 54.35 1.95 54.03 0.07 5.08 0.45
(northwest) AQMv7_new 1.73 40.62 1.49 41.31 0.07 4.61 0.47

Table 7. Same as Table 6 but for July 2023.

Region Model MB (µg m−3) NMB (%) MdnB (µg m−3) NMdnB (%) R2 RMSE (µg m−3) IOA

CONUS AQMv7 −2.06 −19.25 −0.20 −2.65 0.21 13.95 0.52
AQMv7_new −2.83 −26.39 −0.80 −10.56 0.20 14.21 0.49

Region 1 AQMv7 −1.21 −11.45 0.10 1.18 0.29 7.82 0.62
(northeast) AQMv7_new −2.77 −26.17 −1.18 −14.40 0.22 8.55 0.53

Region 2 AQMv7 −1.40 −11.52 0.53 5.51 0.13 12.06 0.38
(NY-NJ) AQMv7_new −2.68 −22.06 −0.68 −7.06 0.12 12.34 0.37

Region 3 AQMv7 −1.65 −14.52 −0.05 −0.57 0.23 8.35 0.49
(mid-Atlantic) AQMv7_new −2.85 −25.03 −1.12 −12.29 0.18 8.87 0.45

Region 4 AQMv7 −1.99 −17.56 −0.81 −8.90 0.13 8.27 0.47
(southeast) AQMv7_new −2.84 −25.04 −1.48 −16.29 0.15 8.41 0.48

Region 5 AQMv7 −2.68 −21.30 −0.13 −1.46 0.19 11.53 0.46
(upper Midwest) AQMv7_new −4.30 −34.16 −1.44 −15.99 0.16 12.23 0.42

Region 6 AQMv7 −1.48 −12.51 −1.08 −10.07 0.39 5.96 0.76
(south) AQMv7_new −2.63 −22.29 −2.14 −20.02 0.31 6.64 0.69

Region 7 AQMv7 −2.24 −21.32 −0.63 −7.86 0.15 9.68 0.42
(central Great Plains) AQMv7_new −3.58 −34.07 −1.76 −21.95 0.13 10.21 0.39

Region 8 AQMv7 −3.11 −34.86 −1.54 −24.08 0.03 12.24 0.35
(northern Great Plains) AQMv7_new −3.06 −34.24 −1.45 −22.61 0.02 12.21 0.33

Region 9 AQMv7 −0.31 −3.67 0.28 3.98 0.07 10.55 0.40
(southwest) AQMv7_new −0.35 −4.07 0.29 4.16 0.07 10.56 0.39

Region 10 AQMv7 0.48 8.38 1.12 28.11 0.03 10.21 0.28
(northwest) AQMv7_new 0.33 5.80 0.95 23.63 0.04 10.15 0.28
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Figure 5. Hit rate (a), false alarm rate (b), and critical success index (c) of hourly O3 at different thresholds across the CONUS for June (top
row), July (middle row), and August (bottom row) 2023.

PM2.5 level in all regions, except for R8 in July, which is
consistent with the time series in Fig. 8. Such effects im-
prove the model performance in regions with a relatively
large positive bias, such as R9–R10 in June. However, if
the overestimation is small (e.g., R1 in June) or if AQMv7
underestimates PM2.5, a further reduction in AQMv7_new
deteriorates the model performance by increasing the mean
bias. Unlike O3, PM2.5 experiences a higher level of reduc-
tion in the eastern US (R1–R7) for all 3 months, ranging
from 0.82 to 3.98 µg m−3. In contrast, the western US ar-
eas (R8–R10) witness a lower reduction by 0.11, 0.12, and
0.49 µg m−3 averaging across 3 months, respectively. Since
the use of AERO7 generally enhances PM2.5 mass concen-
trations (Sect. 2), such spatial patterns can be explained by
the dominating updates to the dry deposition scheme, which
increase the deposition velocity of the accumulation mode
aerosol by a factor of 10 in forested areas (Pleim et al., 2022),
with less enhancement for low-lying vegetation.

The scorecard plot in Fig. 10b compares the daily values
of IOA between the two models in each region. Unlike the
considerable differences in the eastern US (R1–R7), posi-

tive or negative, most days in the western US (R8–R10) do
not have statistically significant changes in July and August.
The AQMv7_new seems to only improve IOA on individual
days for most of the regions in the 3 months. This is likely
due to the frequent impact from wildfire events, which lead
to PM2.5 underestimation in the AQMv7 model on the ma-
jority of days. Although there are only one to three PM2.5
peaks averaged across the CONUS (time series Fig. 8) from
wildfire plumes, some regions may experience more high-
PM2.5 episodes spanning different dates from the CONUS-
mean results and thus make AQMv7 underestimate PM2.5 on
most days. Here we show an example of R5 for the 3 months
in Fig. S13 in which several high-PM2.5 episodes with val-
ues greater than 15 µg m−3 are missed by both models. The
IOA values are improved outside of these episodes, such as
30–31 July, in the AQMv7_new model. The underestimation
of PM2.5 from wildfire can be partly attributed to the fact
that gaseous (speciated particulates) fire emissions from the
RAVE inventory are scaled from CO (PM2.5) and the factors
currently used are too small, resulting in lower trace gases
and aerosol predictions.
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Figure 6. (a) Box plot of observed and model-simulated hourly O3 separated by 10 EPA regions. (b) Scorecard plot based on IOA values
grouped by urban and rural sites (right axis) within each region (left axis) on each day. Red colors indicate the AQMv7_new model performs
better, while blue colors indicate that the AQMv7 model performs better. The saturation of the colors varies by significance levels. Gray color
indicate there being no significant difference between two models.

In summary, the AQMv7 demonstrates large bias/error
for PM2.5 near and downstream of wildfire sources from
Canada and the northwestern US, indicating uncertainties in
fire emissions and plume rise, transport, and smoke plume
chemistry, while there is an overall smaller PM2.5 bias in
the southern US. The AQMv7_new demonstrates a reduced

PM2.5 level in all regions, which closes the gap between the
model and the observation in the places where positive bi-
ases are found, thus improving the PM2.5 predictive accu-
racy therein. However, the reduction also worsens the model
performance in the regions with a negative bias, which be-
comes more frequent during our study period with the influ-
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Figure 7. Same as Fig. 3 but for PM2.5.
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Figure 8. Same as Fig. 4 but for PM2.5.

ence from wildfires. The magnitude of the reduction in the
AQMv7_new displays an east-to-west discrepancy, which is
due to the dependence of the dry deposition velocity on veg-
etation types introduced by the new scheme.

5 Conclusion and discussion

An updated AQMv7 model (AQMv7_new) within the UFS
system was developed to incorporate the recent scientific
improvements from CMAQv5.4. The evolution of gas and
aerosol chemistry in AQMv7_new is primarily influenced
by the changes in the CB6 scheme, introduction of a new
aerosol module, and updated air–surface exchange processes.
The adoption of CB6r5 in CMAQv5.4 represents an improve-
ment over CB6r3, with updates in halogen chemistry, reac-
tion rates, products, photolysis rates, and addition of new re-
actions. The aerosol chemistry scheme, AERO7, introduces
key improvements, such as the updated monoterpene oxida-
tion yields, organic nitrate formation, water uptake on hy-
drophilic organic compounds, and new parameterization for
anthropogenic SOA yields. Significant updates in dry deposi-
tion processes enhance the representation of air–surface ex-
change in AQMv7_new. Changes in O3 dry deposition de-
pendence on soil moisture contribute to a more accurate sim-

ulation of ambient O3 concentrations. The aerosol dry de-
position scheme undergoes continuous refinement, incorpo-
rating factors like leaf area index (LAI) and impaction ef-
ficiency based on land use categories. Structural changes in
the I/O framework of CMAQ, such as the DESID and CIO
modules contribute to an improved computational efficiency
and ease of maintenance. The ELMO module in CMAQv5.4
further streamlines the synthesis of model output parameters,
reducing the need for post-processing tools.

To test the performance of AQMv7_new, a 3-month simu-
lation in June–August 2023 was conducted over North Amer-
ica, and an air quality evaluation was performed for the
CONUS in comparison to the surface O3 and PM2.5 obser-
vations at AirNow sites. AQMv7_new demonstrates an im-
proved simulation of O3 concentrations, reflecting better spa-
tiotemporal agreement of the CONUS-mean with observa-
tions. Generally, there is a nation-wise decrease in O3 mixing
ratios, mainly reducing the persistent high positive bias ob-
served at coastal sites for AQMv7. Temporally, AQMv7_new
addresses the persistent positive bias in peak values at noon
and low values at night, leading to a reduction of 8 %–12 % in
the overprediction of MDA8 O3. While AQMv7 with CMAQ
5.2.1 chemistry tends to overestimate hourly O3 concentra-
tions in the EPA regions with small or no wildfire influence,
AQMv7_new with CMAQ 5.4 exhibits a universal shift in the
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Figure 9. Same as Fig. 5 but for PM2.5.

statistical distribution to the lower end, thus reducing the pos-
itive bias across these regions. The central and southwestern
regions particularly benefit from the model updates, possibly
due to the enhanced O3 dry deposition velocity over dry soil
and the increased halogen-mediated O3 loss over the sea.

The spatial distribution of monthly average PM2.5 con-
centrations reflects extreme values over eastern and west-
ern Canada and the northwestern US, which is attributed to
wildfire emissions, and this introduces substantial uncertain-
ties in the model as indicated by the high mean bias val-
ues at the AirNow sites close to and downwind of wildfire
sources. AQMv7_new generally predicts lower PM2.5 values
averaged across the CONUS domain, which reduces the pos-
itive bias in the northeast for August. Improvements are also
found in August for the hit rate and false alarm rate at high
thresholds, suggesting a better predictive accuracy of PM2.5,
particularly in highly polluted scenarios when wildfire events
are captured by the model. By contrast, the generally worse
performance in June and July is likely a result of missing the
full extent of fire events in both models. The region-specific
evaluation highlights a general underestimation over most of
the areas in June and July, while it shows an overestimation

in the eastern US and an underestimation in the western US
by AQMv7 in August, with the AQMv7_new uniformly re-
ducing PM2.5 levels across all regions. This reduction im-
proves the predictive accuracy in regions with a positive bias
but exacerbates the negative bias in regions where AQMv7
already underestimated PM2.5. Furthermore, the magnitude
of the reduction displays an east-to-west discrepancy: higher
reduction in the east and lower in the west. This spatial pat-
tern can be attributed to the changes in the dry deposition
scheme, which greatly increases the dry deposition rate over
forests for the accumulation mode aerosol.

The NMB of AQMv7_new simulated MDA8 O3 and daily
PM2.5 over the CONUS are −4.28 %, 3.89 %, and 10.75 %
and −36.98 %, −26.07 %, and −16.60 % from June to Au-
gust, respectively. Except for the high negative PM2.5 bias
in June, these values fall in the benchmark criteria of ±15 %
for MDA8 O3 and ±30 % for daily PM25 as suggested by
Emery et al. (2017) by summarizing the model performance
statistics reported from 2005 to 2015 in the CONUS. This
highlights the challenges and uncertainties persisting in accu-
rately capturing the complex dynamics of wildfire emissions
and their influence on air quality. The AQMv7_new model
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Figure 10. Same as Fig. 6 but for PM2.5.

cannot improve upon the exacerbated PM2.5 predictions near
and downstream of wildfire sources (e.g., the northeast and
west-northwest US), partly due to its current small factors, to
scale fire-related emission species from CO and total PM2.5
in the simulations. Continuous efforts should be made to re-
duce the uncertainties of wildfire emissions, and test cases
can be conducted to adjust the RAVE emission factors based
on more intensive field campaigns and measurements within
smoke plumes. The current UFS-AQM system has limited

capabilities in diagnostics and can only write out species
concentrations and AOD. This limits our current study to
only a qualitative inference that the performance changes are
driven by lumped updates to the chemistry and/or dry depo-
sition schemes based on the CMAQ release notes. However,
the verification results in this study showed that the changes
from AQM_v7 to AQMv7_new behave similarly to that of
the WRF-CMAQ version 5.2.1 versus 5.4. More process-
related diagnostics and tools are currently being added to
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Table 8. Same as Table 6 but for August 2023.

Region Model MB (µg m−3) NMB (%) MdnB (µg m−3) NMdnB (%) R2 RMSE (µg m−3) IOA

CONUS AQMv7 −0.61 −5.47 0.31 4.06 0.07 32.71 0.39
AQMv7_new −1.84 −16.42 −0.59 −7.73 0.07 32.21 0.38

Region 1 AQMv7 0.90 13.35 1.22 23.50 0.24 4.13 0.68
(northeast) AQMv7_new −0.83 −12.39 −0.30 −5.83 0.14 4.37 0.59

Region 2 AQMv7 1.79 21.56 1.97 27.05 0.20 5.30 0.63
(NY-NJ) AQMv7_new 0.11 1.28 0.34 4.68 0.13 5.25 0.59

Region 3 AQMv7 1.07 11.46 1.25 15.58 0.27 4.83 0.70
(mid-Atlantic) AQMv7_new −0.74 −7.89 −0.32 −3.94 0.21 4.97 0.65

Region 4 AQMv7 0.20 2.02 0.41 4.70 0.30 4.52 0.72
(southeast) AQMv7_new −0.88 −8.97 −0.55 −6.33 0.26 4.71 0.69

Region 5 AQMv7 0.53 4.49 0.76 7.33 0.18 8.49 0.63
(upper Midwest) AQMv7_new −2.49 −21.21 −1.65 −15.90 0.17 7.59 0.62

Region 6 AQMv7 −1.37 −13.48 −0.85 −9.12 0.22 5.93 0.63
(south) AQMv7_new −2.19 −21.61 −1.80 −19.34 0.20 6.39 0.62

Region 7 AQMv7 0.95 9.48 1.12 12.34 0.12 7.13 0.56
(central Great Plains) AQMv7_new −1.30 −12.97 −0.98 −10.82 0.11 6.54 0.57

Region 8 AQMv7 −1.60 −18.74 −0.68 −11.29 0.06 12.78 0.44
(northern Great Plains) AQMv7_new −1.82 −21.31 −0.82 −13.64 0.04 13.58 0.38

Region 9 AQMv7 −0.26 −3.37 0.47 7.81 0.11 10.53 0.46
(southwest) AQMv7_new −0.31 −3.99 0.44 7.36 0.10 10.58 0.45

Region 10 AQMv7 −3.10 −18.65 0.31 4.90 0.11 54.54 0.47
(northwest) AQMv7_new −3.83 −23.00 0.18 2.80 0.11 51.63 0.49

UFS-AQM to better interpret the performance changes by
quantitatively attributing them to various processes, such as
chemical productions and destructions, dry deposition, and
transport. In addition, longer simulations covering multiple
seasons and a more comprehensive evaluation with different
observational platforms (e.g., surface sites, ozonesondes, air-
craft, lidar, and satellite) are also ongoing for a more thor-
ough investigation of the AQM and impacts of the model
updates described here. Further refinements to the coupled
CCPP physics (e.g., GFS) and the critical driving meteo-
rological parameters which inherently interact with natural
emissions in addition to wildfire, such as biogenic VOCs, soil
NO, windblown dust, oceanic dimethyl sulfide (DMS), and
lightning NOx emissions, are also highly needed. This study
shows that the UFS-AQM framework can well accommodate
the community air quality model, such as CMAQ, as well as
its latest upgrade. The results of this upgrade are consistent
with those shown in the WRF-CMAQ systems. This method
is proven to be viable for ESMF coupling for different dy-
namics, physics, and chemistry with a hierarchal coding in-
frastructure linked across authorized repositories at collabo-
rating agencies. Although we did not include some functions
of the original CMAQ, such as the decoupled direct method
in three dimensions (DDM-3D) (Zhang et al., 2012), Inte-

grated Source Apportionment Method (ISAM) (Kwok et al.,
2015) in the UFS-AQM model, due to its novel ESMF cou-
pling, the online CMAQ prediction model within this frame-
work yields overall reasonable results. As the UFS-AQM
model is the current operational air quality forecast system
of NOAA, this study underscores the importance of ongo-
ing scientific investigations, refinement, and quality assur-
ance processes in atmospheric modeling to ensure reliable
predictions and advance our understanding of the intricate
interactions driving air quality variability.

Code and data availability. The UFS-AQMv7 source codes
are available on the following GitHub repository: GitHub
– ufs-community/ufs-srweather-app at production/AQM.v7
(https://github.com/ufs-community/ufs-srweather-app/releases,
Huang et al., 2025). The AQMv7_new codes are reposited
at https://doi.org/10.5281/zenodo.10833128 (Campbell et
al., 2024) and can also be downloaded via a GitHub
tag: GitHub – noaa-oar-arl/AQM at CMAQ54_Paper
(https://github.com/noaa-oar-arl/AQM/tree/CMAQ54_Paper,
last access: 15 March 2024). The AirNow data used for evaluation
are publicly available at https://files.airnowtech.org/ (US EPA,
2023).

https://doi.org/10.5194/gmd-18-1635-2025 Geosci. Model Dev., 18, 1635–1660, 2025

https://github.com/ufs-community/ufs-srweather-app/releases
https://doi.org/10.5281/zenodo.10833128
https://github.com/noaa-oar-arl/AQM/tree/CMAQ54_Paper
https://files.airnowtech.org/


1656 W. Li et al.: Updates and evaluation of NOAA’s online-coupled air quality model version 7

Supplement. The supplement related to this article is available on-
line at https://doi.org/10.5194/gmd-18-1635-2025-supplement.

Author contributions. WL conducted the model updates and
drafted the initial manuscript. BT contributed to model updates,
conducted the 3-month model runs, and performed model evalua-
tion for gas and aerosol species. PCC guided BT for model runs
and conducted meteorology evaluation. PCC, YT, BB, ZM, KW,
JH, and RM contributed to model updates, project methodology,
analyses, and evaluation. BB, DT, IS, PCC, and YT contributed to
project administration, funding acquisition, and supervision. All au-
thors contributed to the interpretation of the results and revisions of
the paper.

Competing interests. The contact author has declared that none of
the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affiliations, or any other geographical rep-
resentation in this paper. While Copernicus Publications makes ev-
ery effort to include appropriate place names, the final responsibility
lies with the authors.

Acknowledgements. We acknowledge the developers for creating
the useful evaluation tools of MELODIES-MONET and AMET.

Financial support. This study was co-funded by NOAA grant
nos. NA24NESX432C0001 and NA19NES4320002 (Coop-
erative Institute for Satellite Earth System Studies, CISESS)
at the University of Maryland/ESSIC and NOAA IIJA (grant
no. NA22NES4050024I/121327-Z7648201), DSRA (grant
no. NA22NES4050023D/119812-Z7646201). This research
has been supported by the National Oceanic and Atmospheric
Administration (grant no. 79785-Z7554202) and George Mason
University (grant no. NA22NES4050024I).

Review statement. This paper was edited by Samuel Remy and re-
viewed by two anonymous referees.

References

Appel, K. W., Gilliam, R. C., Davis, N., Zubrow, A., and
Howard, S. C.: Overview of the atmospheric model evalu-
ation tool (AMET) v1.1 for evaluating meteorological and
air quality models, Environ. Modell. Softw., 26, 434–443,
https://doi.org/10.1016/j.envsoft.2010.09.007, 2011.

Appel, K. W., Bash, J. O., Fahey, K. M., Foley, K. M., Gilliam, R.
C., Hogrefe, C., Hutzell, W. T., Kang, D., Mathur, R., Murphy,
B. N., Napelenok, S. L., Nolte, C. G., Pleim, J. E., Pouliot, G.
A., Pye, H. O. T., Ran, L., Roselle, S. J., Sarwar, G., Schwede,

D. B., Sidi, F. I., Spero, T. L., and Wong, D. C.: The Community
Multiscale Air Quality (CMAQ) model versions 5.3 and 5.3.1:
system updates and evaluation, Geosci. Model Dev., 14, 2867–
2897, https://doi.org/10.5194/gmd-14-2867-2021, 2021.

Bai, H., Li, B., Mehra, A., Meixner, J., Moorthi, S., Ray, S., Ste-
fanova, L., Wang, J., Wang, J., Worthen, D., Yang, F., and Stan,
C.: The Impact of Tropical SST Biases on the S2S Precipita-
tion Forecast Skill over the Contiguous United States in the
UFS Global Coupled Model, Weather Forecast., 38, 937–952,
https://doi.org/10.1175/WAF-D-22-0162.1, 2023.

Baker, B. and Pan, L.: Overview of the Model and Obser-
vation Evaluation Toolkit (MONET) Version 1.0 for Eval-
uating Atmospheric Transport Models, Atmosphere, 8, 210,
https://doi.org/10.3390/atmos8110210, 2017.

Balbus, J. M. and Malina, C.: Identifying Vulnerable Sub-
populations for Climate Change Health Effects in the
United States, J. Occup. Environ. Med., 51, 33–37,
https://doi.org/10.1097/JOM.0b013e318193e12e, 2009.

Briggs, G. A.: A Plume Rise Model Compared with Ob-
servations, JAPCA J. Air Waste Ma., 15, 433–438,
https://doi.org/10.1080/00022470.1965.10468404, 1965.

Burkholder, J. B., Sander, S. P., Abbatt, J. P. D. A. D., Barker, J. R.,
Huie, R. E., Kolb, C. E., Iii, M. J. K., Orkin, V. L., Wilmouth, D.
M., and Wine, P. H.: Chemical Kinetics and Photochemical Data
for Use in Atmospheric Studies: Evaluation number 18, JPL Pub-
lication 15-10, Jet Propulsion Laboratory, Pasadena, CA, 2019.

Campbell, P. C., Baker, B., Saylor, R., Tong, D., Tang, Y., and
Lee, P.: Initial Development of a NOAA Emissions and eX-
change Unified System (NEXUS), 100th American Meteorolog-
ical Society Annual Meeting, 12–16 January 2020, Boston, MA,
https://doi.org/10.13140/RG.2.2.21070.20806, 2020.

Campbell, P. C., Tang, Y., Lee, P., Baker, B., Tong, D., Saylor, R.,
Stein, A., Huang, J., Huang, H.-C., Strobach, E., McQueen, J.,
Pan, L., Stajner, I., Sims, J., Tirado-Delgado, J., Jung, Y., Yang,
F., Spero, T. L., and Gilliam, R. C.: Development and evalua-
tion of an advanced National Air Quality Forecasting Capabil-
ity using the NOAA Global Forecast System version 16, Geosci.
Model Dev., 15, 3281–3313, https://doi.org/10.5194/gmd-15-
3281-2022, 2022.

Campbell, P. C., Li, W., and Tang, B.: noaa-oar-arl/AQM:
CMAQv5.4 Paper (CMAQ54_Paper), Zenodo [code],
https://doi.org/10.5281/zenodo.10833128, 2024.

Carlton, A. G., Bhave, P. V., Napelenok, S. L., Edney,
E. O., Sarwar, G., Pinder, R. W., Pouliot, G. A., and
Houyoux, M.: Model Representation of Secondary Organic
Aerosol in CMAQv4.7, Environ. Sci. Technol., 44, 8553–8560,
https://doi.org/10.1021/es100636q, 2010.

Chen, F. and Dudhia, J.: Coupling an Advanced Land Surface–
Hydrology Model with the Penn State–NCAR MM5 Mod-
eling System. Part I: Model Implementation and Sensitivity,
Mon. Weather Rev., 129, 569–585, https://doi.org/10.1175/1520-
0493(2001)129<0569:CAALSH>2.0.CO;2, 2001.

Chen, J.-H. and Lin, S.-J.: The remarkable predictability
of inter-annual variability of Atlantic hurricanes dur-
ing the past decade, Geophys. Res. Lett., 38, L11804,
https://doi.org/10.1029/2011GL047629, 2011.

Chen, J.-H. and Lin, S.-J.: Seasonal Predictions of Tropical Cy-
clones Using a 25-km-Resolution General Circulation Model,

Geosci. Model Dev., 18, 1635–1660, 2025 https://doi.org/10.5194/gmd-18-1635-2025

https://doi.org/10.5194/gmd-18-1635-2025-supplement
https://doi.org/10.1016/j.envsoft.2010.09.007
https://doi.org/10.5194/gmd-14-2867-2021
https://doi.org/10.1175/WAF-D-22-0162.1
https://doi.org/10.3390/atmos8110210
https://doi.org/10.1097/JOM.0b013e318193e12e
https://doi.org/10.1080/00022470.1965.10468404
https://doi.org/10.13140/RG.2.2.21070.20806
https://doi.org/10.5194/gmd-15-3281-2022
https://doi.org/10.5194/gmd-15-3281-2022
https://doi.org/10.5281/zenodo.10833128
https://doi.org/10.1021/es100636q
https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2
https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2
https://doi.org/10.1029/2011GL047629


W. Li et al.: Updates and evaluation of NOAA’s online-coupled air quality model version 7 1657

J. Climate, 26, 380–398, https://doi.org/10.1175/JCLI-D-12-
00061.1, 2013.

Chen, J.-H., Lin, S.-J., Zhou, L., Chen, X., Rees, S., Bender, M., and
Morin, M.: Evaluation of Tropical Cyclone Forecasts in the Next
Generation Global Prediction System, Mon. Weather Rev., 147,
3409–3428, https://doi.org/10.1175/MWR-D-18-0227.1, 2019.

Chen, X., Zhang, Y., Wang, K., Tong, D., Lee, P., Tang, Y.,
Huang, J., Campbell, P. C., Mcqueen, J., Pye, H. O. T.,
Murphy, B. N., and Kang, D.: Evaluation of the offline-
coupled GFSv15–FV3–CMAQv5.0.2 in support of the next-
generation National Air Quality Forecast Capability over the
contiguous United States, Geosci. Model Dev., 14, 3969–3993,
https://doi.org/10.5194/gmd-14-3969-2021, 2021.

Clough, S. A., Shephard, M. W., Mlawer, E. J., Delamere, J. S.,
Iacono, M. J., Cady-Pereira, K., Boukabara, S., and Brown,
P. D.: Atmospheric radiative transfer modeling: a summary
of the AER codes, J. Quant. Spectrosc. Ra., 91, 233–244,
https://doi.org/10.1016/j.jqsrt.2004.05.058, 2005.

Cohen, A. J., Ross Anderson, H., Ostro, B., Pandey, K. D.,
Krzyzanowski, M., Künzli, N., Gutschmidt, K., Pope, A.,
Romieu, I., Samet, J. M., and Smith, K.: The Global Burden
of Disease Due to Outdoor Air Pollution, J. Toxicol. Env. Heal.
A, 68, 1301–1307, https://doi.org/10.1080/15287390590936166,
2005.

Dong, X., Fu, J. S., Huang, K., Tong, D., and Zhuang, G.: Model de-
velopment of dust emission and heterogeneous chemistry within
the Community Multiscale Air Quality modeling system and its
application over East Asia, Atmos. Chem. Phys., 16, 8157–8180,
https://doi.org/10.5194/acp-16-8157-2016, 2016.

Eder, B., Kang, D., Mathur, R., Yu, S., and Schere, K.:
An operational evaluation of the Eta–CMAQ air qual-
ity forecast model, Atmos. Environ., 40, 4894–4905,
https://doi.org/10.1016/j.atmosenv.2005.12.062, 2006.

Eder, B., Kang, D., Mathur, R., Pleim, J., Yu, S., Otte, T., and
Pouliot, G.: A performance evaluation of the National Air Qual-
ity Forecast Capability for the summer of 2007, Atmos. Environ.,
43, 2312–2320, https://doi.org/10.1016/j.atmosenv.2009.01.033,
2009.

EEA (European Environment Agency): Advancing towards climate
resilience in Europe – Status of reported national adaptation ac-
tions in 2021, ISBN 978-92-9480-516-4, 2022.

Ek, M. B., Mitchell, K. E., Lin, Y., Rogers, E., Grunmann, P., Ko-
ren, V., Gayno, G., and Tarpley, J. D.: Implementation of Noah
land surface model advances in the National Centers for Environ-
mental Prediction operational mesoscale Eta model, J. Geophys.
Res.-Atmos., 108, 8851, https://doi.org/10.1029/2002JD003296,
2003.

Emery, C., Jung, J., Koo, B., and Yarwood, G.: Improvements to
CAMx snow cover treatments and Carbon Bond chemical mech-
anism for winter ozone, Final report for Utah Department of En-
vironmental Quality, Salt Lake City, UT, prepared by Ramboll
Environ, Novato, CA, 2015.

Emery, C., Liu, Z., Russell, A. G., Odman, M. T., Yarwood,
G., and Kumar, N.: Recommendations on statistics
and benchmarks to assess photochemical model per-
formance, J. Air Waste Manage. Assoc., 67, 582–598,
https://doi.org/10.1080/10962247.2016.1265027, 2017.

Fares, S., Weber, R., Park, J.-H., Gentner, D., Karlik, J., and Gold-
stein, A. H.: Ozone deposition to an orange orchard: Partitioning

between stomatal and non-stomatal sinks, Environ. Pollut., 169,
258–266, https://doi.org/10.1016/j.envpol.2012.01.030, 2012.

Fu, X., Wang, S. X., Cheng, Z., Xing, J., Zhao, B., Wang, J.
D., and Hao, J. M.: Source, transport and impacts of a heavy
dust event in the Yangtze River Delta, China, in 2011, At-
mos. Chem. Phys., 14, 1239–1254, https://doi.org/10.5194/acp-
14-1239-2014, 2014.

Gantt, B., Kelly, J. T., and Bash, J. O.: Updating sea spray
aerosol emissions in the Community Multiscale Air Quality
(CMAQ) model version 5.0.2, Geosci. Model Dev., 8, 3733–
3746, https://doi.org/10.5194/gmd-8-3733-2015, 2015.

Grell, A., Dudhia, J., and Stauffer, D.: A description of
the fifth-generation Penn State/NCAR Mesoscale Model
(MM5), NCAR tech, Note NCAR TN-398-1-STR, 117 pp.,
https://doi.org/10.5065/D60Z716B, 1994.

Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya,
T., Duhl, T., Emmons, L. K., and Wang, X.: The Model of
Emissions of Gases and Aerosols from Nature version 2.1
(MEGAN2.1): an extended and updated framework for mod-
eling biogenic emissions, Geosci. Model Dev., 5, 1471–1492,
https://doi.org/10.5194/gmd-5-1471-2012, 2012.

Han, J. and Bretherton, C. S.: TKE-Based Moist Eddy-
Diffusivity Mass-Flux (EDMF) Parameterization for Ver-
tical Turbulent Mixing, Weather Forecast., 34, 869–886,
https://doi.org/10.1175/WAF-D-18-0146.1, 2019.

Han, J. and Pan, H.-L.: Revision of Convection and Vertical
Diffusion Schemes in the NCEP Global Forecast System,
Weather Forecast., 26, 520–533, https://doi.org/10.1175/WAF-
D-10-05038.1, 2011.

Han, J., Wang, W., Kwon, Y. C., Hong, S.-Y., Tallapragada,
V., and Yang, F.: Updates in the NCEP GFS Cumulus Con-
vection Schemes with Scale and Aerosol Awareness, Weather
Forecast., 32, 2005–2017, https://doi.org/10.1175/WAF-D-17-
0046.1, 2017.

Harris, L. M. and Lin, S.-J.: A Two-Way Nested Global-
Regional Dynamical Core on the Cubed-Sphere Grid, Mon.
Weather Rev., 141, 283–306, https://doi.org/10.1175/MWR-D-
11-00201.1, 2013.

Heinzeller, D., Bernardet, L., Firl, G., Zhang, M., Sun, X.,
and Ek, M.: The Common Community Physics Package
(CCPP) Framework v6, Geosci. Model Dev., 16, 2235–2259,
https://doi.org/10.5194/gmd-16-2235-2023, 2023.

Helmig, D., Ganzeveld, L., Butler, T., and Oltmans, S. J.: The role of
ozone atmosphere-snow gas exchange on polar, boundary-layer
tropospheric ozone – a review and sensitivity analysis, Atmos.
Chem. Phys., 7, 15–30, https://doi.org/10.5194/acp-7-15-2007,
2007.

Henze, D. K. and Seinfeld, J. H.: Global secondary organic aerosol
from isoprene oxidation, Geophys. Res. Lett., 33, L09812,
https://doi.org/10.1029/2006GL025976, 2006.

Hooper, L. G. and Kaufman, J. D.: Ambient Air Pollution
and Clinical Implications for Susceptible Populations, Annals
ATS, 15, S64–S68, https://doi.org/10.1513/AnnalsATS.201707-
574MG, 2018.

Horowitz, L. W., Naik, V., Paulot, F., Ginoux, P. A., Dunne,
J. P., Mao, J., Schnell, J., Chen, X., He, J., John, J. G.,
Lin, M., Lin, P., Malyshev, S., Paynter, D., Shevliakova, E.,
and Zhao, M.: The GFDL Global Atmospheric Chemistry-
Climate Model AM4.1: Model Description and Simulation Char-

https://doi.org/10.5194/gmd-18-1635-2025 Geosci. Model Dev., 18, 1635–1660, 2025

https://doi.org/10.1175/JCLI-D-12-00061.1
https://doi.org/10.1175/JCLI-D-12-00061.1
https://doi.org/10.1175/MWR-D-18-0227.1
https://doi.org/10.5194/gmd-14-3969-2021
https://doi.org/10.1016/j.jqsrt.2004.05.058
https://doi.org/10.1080/15287390590936166
https://doi.org/10.5194/acp-16-8157-2016
https://doi.org/10.1016/j.atmosenv.2005.12.062
https://doi.org/10.1016/j.atmosenv.2009.01.033
https://doi.org/10.1029/2002JD003296
https://doi.org/10.1080/10962247.2016.1265027
https://doi.org/10.1016/j.envpol.2012.01.030
https://doi.org/10.5194/acp-14-1239-2014
https://doi.org/10.5194/acp-14-1239-2014
https://doi.org/10.5194/gmd-8-3733-2015
https://doi.org/10.5065/D60Z716B
https://doi.org/10.5194/gmd-5-1471-2012
https://doi.org/10.1175/WAF-D-18-0146.1
https://doi.org/10.1175/WAF-D-10-05038.1
https://doi.org/10.1175/WAF-D-10-05038.1
https://doi.org/10.1175/WAF-D-17-0046.1
https://doi.org/10.1175/WAF-D-17-0046.1
https://doi.org/10.1175/MWR-D-11-00201.1
https://doi.org/10.1175/MWR-D-11-00201.1
https://doi.org/10.5194/gmd-16-2235-2023
https://doi.org/10.5194/acp-7-15-2007
https://doi.org/10.1029/2006GL025976
https://doi.org/10.1513/AnnalsATS.201707-574MG
https://doi.org/10.1513/AnnalsATS.201707-574MG


1658 W. Li et al.: Updates and evaluation of NOAA’s online-coupled air quality model version 7

acteristics, J. Adv. Model. Earth Sy., 12, e2019MS002032,
https://doi.org/10.1029/2019MS002032, 2020.

Huang, J., McQueen, J., Wilczak, J., Djalalova, I., Stajner,
I., Shafran, P., Allured, D., Lee, P., Pan, L., Tong, D.,
Huang, H.-C., DiMego, G., Upadhayay, S., and Monache,
L. D.: Improving NOAA NAQFC PM2.5 Predictions with a
Bias Correction Approach, Weather Forecast., 32, 407–421,
https://doi.org/10.1175/WAF-D-16-0118.1, 2017.

Huang, J., McQueen, J., Yang, B., Shafran, P., Huang, H.-C., Bhat-
tacharjee, P., Tang, Y., Campbell, P. C., Tong, D., Lee, P., Stajner,
I., Kain, J. S., Tirado-Delgado, J., and Koch, D. M.: A compari-
son of global scale FV3 versus regional scale NAM meteorolog-
ical drivers for regional air quality forecastin, The 100th AGU
Fall Meeting, 9–13 December 2019, San Francisco, CA, 2019.

Huang, J., Stajner, I., Raffaele, M., Fanglin, Y., Kai, Y., Huang,
H. C., Jeon, C. H., Curtis, B., McQueen, J., Haixia, L., Baker,
B., Daniel, T., Tang, Y., Patrick, C., George, G., Frost, G.,
Rebecca, S., Wang, S., Kondragunta, S., Li, F., and Jung, Y.:
Development of the next-generation air quality prediction sys-
tem in the Unified Forecast System framework: Enhancing pre-
dictability of wildfire air quality impacts, B. Am. Meteorol. Soc.,
https://doi.org/10.1175/BAMS-D-23-0053.1, 2025 (code avail-
able at: (https://github.com/ufs-community/ufs-srweather-app/
releases, last access: 15 March 2024).

Huang, M., Tong, D., Lee, P., Pan, L., Tang, Y., Stajner, I., Pierce, R.
B., McQueen, J., and Wang, J.: Toward enhanced capability for
detecting and predicting dust events in the western United States:
the Arizona case study, Atmos. Chem. Phys., 15, 12595–12610,
https://doi.org/10.5194/acp-15-12595-2015, 2015.

Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M.
W., Clough, S. A., and Collins, W. D.: Radiative forcing by
long-lived greenhouse gases: Calculations with the AER radia-
tive transfer models, J. Geophys. Res.-Atmos., 113, D13103,
https://doi.org/10.1029/2008JD009944, 2008.

Janssens-Maenhout, G., Crippa, M., Guizzardi, D., Dentener, F.,
Muntean, M., Pouliot, G., Keating, T., Zhang, Q., Kurokawa,
J., Wankmüller, R., Denier van der Gon, H., Kuenen, J. J.
P., Klimont, Z., Frost, G., Darras, S., Koffi, B., and Li,
M.: HTAP_v2.2: a mosaic of regional and global emission
grid maps for 2008 and 2010 to study hemispheric trans-
port of air pollution, Atmos. Chem. Phys., 15, 11411–11432,
https://doi.org/10.5194/acp-15-11411-2015, 2015.

Jiménez, P. A., Dudhia, J., González-Rouco, J. F., Navarro, J., Mon-
távez, J. P., and García-Bustamante, E.: A Revised Scheme for
the WRF Surface Layer Formulation, Mon. Weather Rev., 140,
898–918, https://doi.org/10.1175/MWR-D-11-00056.1, 2012.

Kelly, J. T., Bhave, P. V., Nolte, C. G., Shankar, U., and Fo-
ley, K. M.: Simulating emission and chemical evolution of
coarse sea-salt particles in the Community Multiscale Air
Quality (CMAQ) model, Geosci. Model Dev., 3, 257–273,
https://doi.org/10.5194/gmd-3-257-2010, 2010.

Krishnamurthy, V., Meixner, J., Stefanova, L., Wang, J., Worthen,
D., Moorthi, S., Li, B., Sluka, T., and Stan, C.: Sources of
Subseasonal Predictability over CONUS during Boreal Summer,
J. Climate, 34, 3273–3294, https://doi.org/10.1175/JCLI-D-20-
0586.1, 2021.

Krueger, S. K., Fu, Q., Liou, K. N., and Chin, H.-N. S.: Improve-
ments of an Ice-Phase Microphysics Parameterization for Use
in Numerical Simulations of Tropical Convection, J. Appl. Me-

teorol. Clim., 34, 281–287, https://doi.org/10.1175/1520-0450-
34.1.281, 1995.

Kwok, R. H. F., Baker, K. R., Napelenok, S. L., and Tonnesen, G.
S.: Photochemical grid model implementation and application of
VOC, NOx, and O3 source apportionment, Geosci. Model Dev.,
8, 99–114, https://doi.org/10.5194/gmd-8-99-2015, 2015.

Lee, B.-J., Kim, B., and Lee, K.: Air Pollution Expo-
sure and Cardiovascular Disease, Toxicol Res., 30, 71–75,
https://doi.org/10.5487/TR.2014.30.2.071, 2014.

Lee, P., McQueen, J., Stajner, I., Huang, J., Pan, L., Tong, D., Kim,
H., Tang, Y., Kondragunta, S., Ruminski, M., Lu, S., Rogers, E.,
Saylor, R., Shafran, P., Huang, H.-C., Gorline, J., Upadhayay,
S., and Artz, R.: NAQFC Developmental Forecast Guidance for
Fine Particulate Matter (PM2.5), Weather Forecast., 32, 343–360,
https://doi.org/10.1175/WAF-D-15-0163.1, 2017.

Li, F., Zhang, X., Kondragunta, S., Lu, X., Csiszar, I., and
Schmidt, C. C.: Hourly biomass burning emissions product from
blended geostationary and polar-orbiting satellites for air quality
forecasting applications, Remote Sens. Environ., 281, 113237,
https://doi.org/10.1016/j.rse.2022.113237, 2022.

Li, W., Wang, Y., Bernier, C., and Estes, M.: Identification of Sea
Breeze Recirculation and Its Effects on Ozone in Houston, TX,
During DISCOVER-AQ 2013, J. Geophys. Res.-Atmos., 125,
e2020JD033165, https://doi.org/10.1029/2020JD033165, 2020.

Lin, H., Jacob, D. J., Lundgren, E. W., Sulprizio, M. P., Keller,
C. A., Fritz, T. M., Eastham, S. D., Emmons, L. K., Camp-
bell, P. C., Baker, B., Saylor, R. D., and Montuoro, R.: Har-
monized Emissions Component (HEMCO) 3.0 as a versatile
emissions component for atmospheric models: application in the
GEOS-Chem, NASA GEOS, WRF-GC, CESM2, NOAA GEFS-
Aerosol, and NOAA UFS models, Geosci. Model Dev., 14,
5487–5506, https://doi.org/10.5194/gmd-14-5487-2021, 2021.

Lin, M., Horowitz, L. W., Xie, Y., Paulot, F., Malyshev, S., Shevli-
akova, E., Finco, A., Gerosa, G., Kubistin, D., and Pilegaard,
K.: Vegetation feedbacks during drought exacerbate ozone air
pollution extremes in Europe, Nat. Clim. Change, 10, 444–451,
https://doi.org/10.1038/s41558-020-0743-y, 2020.

Lin, M., Horowitz, L. W., Zhao, M., Harris, L., Ginoux, P., Dunne,
J., Malyshev, S., Shevliakova, E., Ahsan, H., Garner, S., Paulot,
F., Pouyaei, A., Smith, S. J., Xie, Y., Zadeh, N., and Zhou,
L.: The GFDL Variable-Resolution Global Chemistry-Climate
Model for Research at the Nexus of US Climate and Air Qual-
ity Extremes, J. Adv. Model. Earth Sy., 16, e2023MS003984,
https://doi.org/10.1029/2023MS003984, 2024.

Lin, Y.-L., Farley, R. D., and Orville, H. D.: Bulk Parameter-
ization of the Snow Field in a Cloud Model, J. Appl. Me-
teorol. Climatol., 22, 1065–1092, https://doi.org/10.1175/1520-
0450(1983)022<1065:BPOTSF>2.0.CO;2, 1983.

Liu, F., Choi, S., Li, C., Fioletov, V. E., McLinden, C. A., Joiner, J.,
Krotkov, N. A., Bian, H., Janssens-Maenhout, G., Darmenov, A.
S., and da Silva, A. M.: A new global anthropogenic SO2 emis-
sion inventory for the last decade: a mosaic of satellite-derived
and bottom-up emissions, Atmos. Chem. Phys., 18, 16571–
16586, https://doi.org/10.5194/acp-18-16571-2018, 2018.

Lord, S. J., Willoughby, H. E., and Piotrowicz, J. M.:
Role of a Parameterized Ice-Phase Microphysics in an
Axisymmetric, Nonhydrostatic Tropical Cyclone Model, J.
Atmos. Sci., 41, 2836–2848, https://doi.org/10.1175/1520-
0469(1984)041<2836:ROAPIP>2.0.CO;2, 1984.

Geosci. Model Dev., 18, 1635–1660, 2025 https://doi.org/10.5194/gmd-18-1635-2025

https://doi.org/10.1029/2019MS002032
https://doi.org/10.1175/WAF-D-16-0118.1
https://doi.org/10.1175/BAMS-D-23-0053.1
https://github.com/ufs-community/ufs-srweather-app/releases
https://github.com/ufs-community/ufs-srweather-app/releases
https://doi.org/10.5194/acp-15-12595-2015
https://doi.org/10.1029/2008JD009944
https://doi.org/10.5194/acp-15-11411-2015
https://doi.org/10.1175/MWR-D-11-00056.1
https://doi.org/10.5194/gmd-3-257-2010
https://doi.org/10.1175/JCLI-D-20-0586.1
https://doi.org/10.1175/JCLI-D-20-0586.1
https://doi.org/10.1175/1520-0450-34.1.281
https://doi.org/10.1175/1520-0450-34.1.281
https://doi.org/10.5194/gmd-8-99-2015
https://doi.org/10.5487/TR.2014.30.2.071
https://doi.org/10.1175/WAF-D-15-0163.1
https://doi.org/10.1016/j.rse.2022.113237
https://doi.org/10.1029/2020JD033165
https://doi.org/10.5194/gmd-14-5487-2021
https://doi.org/10.1038/s41558-020-0743-y
https://doi.org/10.1029/2023MS003984
https://doi.org/10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2
https://doi.org/10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2
https://doi.org/10.5194/acp-18-16571-2018
https://doi.org/10.1175/1520-0469(1984)041<2836:ROAPIP>2.0.CO;2
https://doi.org/10.1175/1520-0469(1984)041<2836:ROAPIP>2.0.CO;2


W. Li et al.: Updates and evaluation of NOAA’s online-coupled air quality model version 7 1659

Lovett, G. M., Tear, T. H., Evers, D. C., Findlay, S. E. G., Cosby,
B. J., Dunscomb, J. K., Driscoll, C. T., and Weathers, K. C.: Ef-
fects of Air Pollution on Ecosystems and Biological Diversity in
the Eastern United States, Ann. NY Acad. Sci., 1162, 99–135,
https://doi.org/10.1111/j.1749-6632.2009.04153.x, 2009.

Luecken, D. J., Yarwood, G., and Hutzell, W. T.: Multipollutant
modeling of ozone, reactive nitrogen and HAPs across the con-
tinental US with CMAQ-CB6, Atmos. Environ., 201, 62–72,
https://doi.org/10.1016/j.atmosenv.2018.11.060, 2019.

Mathur, R., Yu, S., Kang, D., and Schere, K. L.: Assessment of
the wintertime performance of developmental particulate mat-
ter forecasts with the Eta-Community Multiscale Air Qual-
ity modeling system, J. Geophys. Res.-Atmos., 113, D02303,
https://doi.org/10.1029/2007JD008580, 2008.

McKeen, S., Grell, G., Peckham, S., Wilczak, J., Djalalova, I., Hsie,
E.-Y., Frost, G., Peischl, J., Schwarz, J., Spackman, R., Hol-
loway, J., de Gouw, J., Warneke, C., Gong, W., Bouchet, V., Gau-
dreault, S., Racine, J., McHenry, J., McQueen, J., Lee, P., Tang,
Y., Carmichael, G. R., and Mathur, R.: An evaluation of real-
time air quality forecasts and their urban emissions over east-
ern Texas during the summer of 2006 Second Texas Air Qual-
ity Study field study, J. Geophys. Res.-Atmos., 114, D00F11,
https://doi.org/10.1029/2008JD011697, 2009.

Mészáros, R., Horváth, L., Weidinger, T., Neftel, A., Nemitz, E.,
Dämmgen, U., Cellier, P., and Loubet, B.: Measurement and
modelling ozone fluxes over a cut and fertilized grassland, Bio-
geosciences, 6, 1987–1999, https://doi.org/10.5194/bg-6-1987-
2009, 2009.

Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M.
J., and Clough, S. A.: Radiative transfer for inhomoge-
neous atmospheres: RRTM, a validated correlated-k model for
the longwave, J. Geophys. Res.-Atmos., 102, 16663–16682,
https://doi.org/10.1029/97JD00237, 1997.

Monin, A. S. and Obukhov, A. M.: Basic laws of turbulent mixing
in the surface layer of the atmosphere, Tr. Akad. Nauk SSSR
Geophiz. Inst., 24, 163–187, 1954.

Murphy, B. N., Nolte, C. G., Sidi, F., Bash, J. O., Appel, K. W.,
Jang, C., Kang, D., Kelly, J., Mathur, R., Napelenok, S., Pouliot,
G., and Pye, H. O. T.: The Detailed Emissions Scaling, Isolation,
and Diagnostic (DESID) module in the Community Multiscale
Air Quality (CMAQ) modeling system version 5.3.2, Geosci.
Model Dev., 14, 3407–3420, https://doi.org/10.5194/gmd-14-
3407-2021, 2021.

NEI (National Emissions Inventory Collaborative): 2016v1 Emis-
sions Modeling Platform [data set], http://views.cira.colostate.
edu/wiki/wiki/10202 (last access: 20 February 2024), 2019.

Odum, J. R., Hoffmann, T., Bowman, F., Collins, D., Flagan, R.
C., and Seinfeld, J. H.: Gas/Particle Partitioning and Secondary
Organic Aerosol Yields, Environ. Sci. Technol., 30, 2580–2585,
https://doi.org/10.1021/es950943+, 1996.

O’Rourke, P. R., Smith, S. J., Mott, A., Ahsan, H., McDuffie, E.
E., Crippa, M., Klimont, Z., McDonald, B., Wang, S., Nichol-
son, M. B., Feng, L., and Hoesly, R. M.: CEDS v_2021_02_05
Release Emission Data (v_2021_02_05), Zenodo [data set],
https://doi.org/10.5281/zenodo.4509372, 2021.

Otte, T. L., Pouliot, G., Pleim, J. E., Young, J. O., Schere, K. L.,
Wong, D. C., Lee, P. C. S., Tsidulko, M., McQueen, J. T., David-
son, P., Mathur, R., Chuang, H.-Y., DiMego, G., and Seaman,
N. L.: Linking the Eta Model with the Community Multiscale

Air Quality (CMAQ) Modeling System to Build a National Air
Quality Forecasting System, Weather Forecast., 20, 367–384,
https://doi.org/10.1175/WAF855.1, 2005.

Pleim, J. E., Ran, L., Saylor, R. D., Willison, J., and Binkowski,
F. S.: A New Aerosol Dry Deposition Model for Air
Quality and Climate Modeling, J. Adv. Model. Earth Sy.,
14, e2022MS003050, https://doi.org/10.1029/2022MS003050,
2022.

Pye, H. O. T., Chan, A. W. H., Barkley, M. P., and Seinfeld, J.
H.: Global modeling of organic aerosol: the importance of reac-
tive nitrogen (NOx and NO3), Atmos. Chem. Phys., 10, 11261–
11276, https://doi.org/10.5194/acp-10-11261-2010, 2010.

Pye, H. O. T., Pinder, R. W., Piletic, I. R., Xie, Y., Capps, S. L.,
Lin, Y.-H., Surratt, J. D., Zhang, Z., Gold, A., Luecken, D. J.,
Hutzell, W. T., Jaoui, M., Offenberg, J. H., Kleindienst, T. E.,
Lewandowski, M., and Edney, E. O.: Epoxide Pathways Im-
prove Model Predictions of Isoprene Markers and Reveal Key
Role of Acidity in Aerosol Formation, Environ. Sci. Technol.,
47, 11056–11064, https://doi.org/10.1021/es402106h, 2013.

Pye, H. O. T., Luecken, D. J., Xu, L., Boyd, C. M., Ng, N. L.,
Baker, K. R., Ayres, B. R., Bash, J. O., Baumann, K., Carter,
W. P. L., Edgerton, E., Fry, J. L., Hutzell, W. T., Schwede,
D. B., and Shepson, P. B.: Modeling the Current and Fu-
ture Roles of Particulate Organic Nitrates in the Southeast-
ern United States, Environ. Sci. Technol., 49, 14195–14203,
https://doi.org/10.1021/acs.est.5b03738, 2015.

Pye, H. O. T., Murphy, B. N., Xu, L., Ng, N. L., Carlton, A. G.,
Guo, H., Weber, R., Vasilakos, P., Appel, K. W., Budisulistior-
ini, S. H., Surratt, J. D., Nenes, A., Hu, W., Jimenez, J. L.,
Isaacman-VanWertz, G., Misztal, P. K., and Goldstein, A. H.:
On the implications of aerosol liquid water and phase separa-
tion for organic aerosol mass, Atmos. Chem. Phys., 17, 343–369,
https://doi.org/10.5194/acp-17-343-2017, 2017.

Pye, H. O. T., D’Ambro, E. L., Lee, B. H., Schobesberger, S.,
Takeuchi, M., Zhao, Y., Lopez-Hilfiker, F., Liu, J., Shilling, J.
E., Xing, J., Mathur, R., Middlebrook, A. M., Liao, J., Welti,
A., Graus, M., Warneke, C., de Gouw, J. A., Holloway, J.
S., Ryerson, T. B., Pollack, I. B., and Thornton, J. A.: An-
thropogenic enhancements to production of highly oxygenated
molecules from autoxidation, P. Natl. Acad. Sci., 116, 6641–
6646, https://doi.org/10.1073/pnas.1810774116, 2019.

Saha, P. K. and Grieshop, A. P.: Exploring Divergent Volatil-
ity Properties from Yield and Thermodenuder Measure-
ments of Secondary Organic Aerosol from á-Pinene
Ozonolysis, Environ. Sci. Technol., 50, 5740–5749,
https://doi.org/10.1021/acs.est.6b00303, 2016.

Sarwar, G., Simon, H., Bhave, P., and Yarwood, G.: Examining the
impact of heterogeneous nitryl chloride production on air quality
across the United States, Atmos. Chem. Phys., 12, 6455–6473,
https://doi.org/10.5194/acp-12-6455-2012, 2012.

Sarwar, G., Gantt, B., Schwede, D., Foley, K., Mathur, R.,
and Saiz-Lopez, A.: Impact of Enhanced Ozone Deposition
and Halogen Chemistry on Tropospheric Ozone over the
Northern Hemisphere, Environ. Sci. Technol., 49, 9203–9211,
https://doi.org/10.1021/acs.est.5b01657, 2015.

Sarwar, G., Gantt, B., Foley, K., Fahey, K., Spero, T. L., Kang,
D., Mathur, R., Foroutan, H., Xing, J., Sherwen, T., and Saiz-
Lopez, A.: Influence of bromine and iodine chemistry on an-
nual, seasonal, diurnal, and background ozone: CMAQ simula-

https://doi.org/10.5194/gmd-18-1635-2025 Geosci. Model Dev., 18, 1635–1660, 2025

https://doi.org/10.1111/j.1749-6632.2009.04153.x
https://doi.org/10.1016/j.atmosenv.2018.11.060
https://doi.org/10.1029/2007JD008580
https://doi.org/10.1029/2008JD011697
https://doi.org/10.5194/bg-6-1987-2009
https://doi.org/10.5194/bg-6-1987-2009
https://doi.org/10.1029/97JD00237
https://doi.org/10.5194/gmd-14-3407-2021
https://doi.org/10.5194/gmd-14-3407-2021
http://views.cira.colostate.edu/wiki/wiki/10202
http://views.cira.colostate.edu/wiki/wiki/10202
https://doi.org/10.1021/es950943+
https://doi.org/10.5281/zenodo.4509372
https://doi.org/10.1175/WAF855.1
https://doi.org/10.1029/2022MS003050
https://doi.org/10.5194/acp-10-11261-2010
https://doi.org/10.1021/es402106h
https://doi.org/10.1021/acs.est.5b03738
https://doi.org/10.5194/acp-17-343-2017
https://doi.org/10.1073/pnas.1810774116
https://doi.org/10.1021/acs.est.6b00303
https://doi.org/10.5194/acp-12-6455-2012
https://doi.org/10.1021/acs.est.5b01657


1660 W. Li et al.: Updates and evaluation of NOAA’s online-coupled air quality model version 7

tions over the Northern Hemisphere, Atmos. Environ., 213, 395–
404, https://doi.org/10.1016/j.atmosenv.2019.06.020, 2019.

Shu, Q., Murphy, B., Schwede, D., Henderson, B. H., Pye, H.
O. T., Appel, K. W., Khan, T. R., and Perlinger, J. A.: Im-
proving the particle dry deposition scheme in the CMAQ pho-
tochemical modeling system, Atmos. Environ., 289, 119343,
https://doi.org/10.1016/j.atmosenv.2022.119343, 2022.

Sofiev, M., Ermakova, T., and Vankevich, R.: Evaluation
of the smoke-injection height from wild-land fires using
remote-sensing data, Atmos. Chem. Phys., 12, 1995–2006,
https://doi.org/10.5194/acp-12-1995-2012, 2012.

Stajner, I., Davidson, P., Byun, D., McQueen, J., Draxler, R., Dick-
erson, P., and Meagher, J.: US National Air Quality Forecast
Capability: Expanding Coverage to Include Particulate Matter,
in: Air Pollution Modeling and its Application XXI, Dordrecht,
379–384, https://doi.org/10.1007/978-94-007-1359-8_64, 2012.

Tai, A. P. K., Martin, M. V., and Heald, C. L.: Threat to
future global food security from climate change and
ozone air pollution, Nat. Clim. Change, 4, 817–821,
https://doi.org/10.1038/nclimate2317, 2014.

Tang, Y., Bian, H., Tao, Z., Oman, L. D., Tong, D., Lee, P., Camp-
bell, P. C., Baker, B., Lu, C.-H., Pan, L., Wang, J., McQueen, J.,
and Stajner, I.: Comparison of chemical lateral boundary condi-
tions for air quality predictions over the contiguous United States
during pollutant intrusion events, Atmos. Chem. Phys., 21, 2527–
2550, https://doi.org/10.5194/acp-21-2527-2021, 2021.

Tang, Y., Campbell, P. C., Lee, P., Saylor, R., Yang, F., Baker,
B., Tong, D., Stein, A., Huang, J., Huang, H.-C., Pan, L., Mc-
Queen, J., Stajner, I., Tirado-Delgado, J., Jung, Y., Yang, M.,
Bourgeois, I., Peischl, J., Ryerson, T., Blake, D., Schwarz, J.,
Jimenez, J.-L., Crawford, J., Diskin, G., Moore, R., Hair, J.,
Huey, G., Rollins, A., Dibb, J., and Zhang, X.: Evaluation of
the NAQFC driven by the NOAA Global Forecast System (ver-
sion 16): comparison with the WRF-CMAQ during the sum-
mer 2019 FIREX-AQ campaign, Geosci. Model Dev., 15, 7977–
7999, https://doi.org/10.5194/gmd-15-7977-2022, 2022.

Taylor, G. E., Johnson, D. W., and Andersen, C. P.: Air Pollution
and Forest Ecosystems: A Regional to Global Perspective, Ecol.
Appl., 4, 662–689, https://doi.org/10.2307/1941999, 1994.

Tewari, M., Chen, F., Wang, W., Dudhia, J., LeMone, M., Mitchell,
K., Ek, M., Gayno, G., and Wegiel, J.: Implementation and ver-
ification of the unified NOAH land surface model in the WRF
model (Formerly Paper Number 17.5), in: Proceedings of the
20th conference on weather analysis and forecasting/16th con-
ference on numerical weather prediction, Seattle, WA, USA,
https://n2t.org/ark:/85065/d7fb523p (last access: 5 March 2025),
2004.

UNEP (United Nations EnvironmentProgramme): Actions on Air
Quality: A Global Summary of Policies and Programmes to Re-
duce Air Pollution, ISBN 978-92-807-3880-3, 2021.

United States Environmental Protection Agency: AirNow Data
Manage Center, AirNow [data set], https://files.airnowtech.org/
(last access: 10 March 2025), 2023.

Van Dingenen, R., Dentener, F. J., Raes, F., Krol, M. C.,
Emberson, L., and Cofala, J.: The global impact of
ozone on agricultural crop yields under current and fu-
ture air quality legislation, Atmos. Environ., 43, 604–618,
https://doi.org/10.1016/j.atmosenv.2008.10.033, 2009.

WHO (World Health Organization): WHO global air quality guide-
lines: particulate matter (PM2.5 and PM10), ozone, nitrogen
dioxide, sulfur dioxide and carbon monoxide, WHO, Geneva,
Switzerland, ISBN 978-92-4-003422-8, 2021.

WHO: Ambient (outdoor) air pollution, https://www.
who.int/news-room/fact-sheets/detail/ambient-(outdoor)
-air-quality-and-health, last access: 10 May 2023.

Willmott, C. J.: On the Validation of Models, Phys. Geogr., 2, 184–
194, https://doi.org/10.1080/02723646.1981.10642213, 1981.

Xu, L., Pye, H. O. T., He, J., Chen, Y., Murphy, B. N., and Ng,
N. L.: Experimental and model estimates of the contributions
from biogenic monoterpenes and sesquiterpenes to secondary or-
ganic aerosol in the southeastern United States, Atmos. Chem.
Phys., 18, 12613–12637, https://doi.org/10.5194/acp-18-12613-
2018, 2018.

Yarwood, G., Whitten, G. Z., Jung, J., Heo, G., and Allen, D. T.:
Development, evaluation and testing of version 6 of the car-
bon Bond chemical mechanism (CB6), Final report to the Texas
Commission on Environmental Quality, Work Order No. 582-7-
84005-FY10-26, 2010.

Yarwood, G., Shi, Y., and Beardsley, R.: Impact of CB6r5 Mecha-
nism Changes on Air Pollutant Modeling in Texas, Texas Com-
mission on Environmental Quality, Austin, Texas, USA 2020.

Zhang, H., Yee, L. D., Lee, B. H., Curtis, M. P., Worton, D. R.,
Isaacman-VanWertz, G., Offenberg, J. H., Lewandowski, M.,
Kleindienst, T. E., Beaver, M. R., Holder, A. L., Lonneman, W.
A., Docherty, K. S., Jaoui, M., Pye, H. O. T., Hu, W., Day, D.
A., Campuzano-Jost, P., Jimenez, J. L., Guo, H., Weber, R. J.,
de Gouw, J., Koss, A. R., Edgerton, E. S., Brune, W., Mohr, C.,
Lopez-Hilfiker, F. D., Lutz, A., Kreisberg, N. M., Spielman, S.
R., Hering, S. V., Wilson, K. R., Thornton, J. A., and Goldstein,
A. H.: Monoterpenes are the largest source of summertime or-
ganic aerosol in the southeastern United States, P. Natl. Acad.
Sci., 115, 2038–2043, https://doi.org/10.1073/pnas.1717513115,
2018a.

Zhang, W., Capps, S. L., Hu, Y., Nenes, A., Napelenok, S. L.,
and Russell, A. G.: Development of the high-order decou-
pled direct method in three dimensions for particulate matter:
enabling advanced sensitivity analysis in air quality models,
Geosci. Model Dev., 5, 355–368, https://doi.org/10.5194/gmd-5-
355-2012, 2012.

Zhang, Y., Chen, Y., Lambe, A. T., Olson, N. E., Lei, Z., Craig, R.
L., Zhang, Z., Gold, A., Onasch, T. B., Jayne, J. T., Worsnop, D.
R., Gaston, C. J., Thornton, J. A., Vizuete, W., Ault, A. P., and
Surratt, J. D.: Effect of the Aerosol-Phase State on Secondary Or-
ganic Aerosol Formation from the Reactive Uptake of Isoprene-
Derived Epoxydiols (IEPOX), Environ. Sci. Tech. Let., 5, 167–
174, https://doi.org/10.1021/acs.estlett.8b00044, 2018b.

Zhou, L., Lin, S.-J., Chen, J.-H., Harris, L. M., Chen, X., and Rees,
S. L.: Toward Convective-Scale Prediction within the Next Gen-
eration Global Prediction System, B. Am. Meteorol. Soc., 100,
1225–1243, https://doi.org/10.1175/BAMS-D-17-0246.1, 2019.

Zhu, J. and Liang, X.-Z.: Impacts of the Bermuda High on Regional
Climate and Ozone over the United States, J. Climate, 26, 1018–
1032, https://doi.org/10.1175/JCLI-D-12-00168.1, 2013.

Zhu, J., Wang, W., Liu, Y., Kumar, A., and DeWitt, D.:
Advances in Seasonal Predictions of Arctic Sea Ice With
NOAA UFS, Geophys. Res. Lett., 50, e2022GL102392,
https://doi.org/10.1029/2022GL102392, 2023.

Geosci. Model Dev., 18, 1635–1660, 2025 https://doi.org/10.5194/gmd-18-1635-2025

https://doi.org/10.1016/j.atmosenv.2019.06.020
https://doi.org/10.1016/j.atmosenv.2022.119343
https://doi.org/10.5194/acp-12-1995-2012
https://doi.org/10.1007/978-94-007-1359-8_64
https://doi.org/10.1038/nclimate2317
https://doi.org/10.5194/acp-21-2527-2021
https://doi.org/10.5194/gmd-15-7977-2022
https://doi.org/10.2307/1941999
https://n2t.org/ark:/85065/d7fb523p
https://files.airnowtech.org/
https://doi.org/10.1016/j.atmosenv.2008.10.033
https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health
https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health
https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health
https://doi.org/10.1080/02723646.1981.10642213
https://doi.org/10.5194/acp-18-12613-2018
https://doi.org/10.5194/acp-18-12613-2018
https://doi.org/10.1073/pnas.1717513115
https://doi.org/10.5194/gmd-5-355-2012
https://doi.org/10.5194/gmd-5-355-2012
https://doi.org/10.1021/acs.estlett.8b00044
https://doi.org/10.1175/BAMS-D-17-0246.1
https://doi.org/10.1175/JCLI-D-12-00168.1
https://doi.org/10.1029/2022GL102392

	Abstract
	Introduction
	Methods: updates to the AQM
	Chemistry
	Gas chemistry
	Aerosol chemistry

	Dry deposition
	Structural changes

	Simulation design and evaluation protocol
	Results: assessment and evaluation of updates
	Meteorology evaluation
	O3 evaluation
	PM2.5 evaluation

	Conclusion and discussion
	Code and data availability
	Supplement
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

