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Abstract. High-resolution climate projections are essential
for estimating future climate change impacts. Statistical and
dynamical downscaling methods, or a hybrid of both, are
commonly employed to generate input datasets for impact
modelling. In this study, we employ COSMO-CLM (CCLM)
version 6.0, a regional climate model, to explore the bene-
fits of dynamically downscaling a general circulation model
(GCM) from the Coupled Model Intercomparison Project
Phase 6 (CMIP6), focusing on climate change projections
for central Asia (CA). The CCLM, at 0.22° horizontal res-
olution, is driven by the MPI-ESM1-2-HR GCM (at 1° spa-
tial resolution) for the historical period of 1985–2014 and the
projection period of 2019–2100 under three Shared Socioe-
conomic Pathways (SSPs), namely the SSP1-2.6, SSP3-7.0,
and SSP5-8.5 scenarios. Using the Climate Hazards Group
InfraRed Precipitation with Station data (CHIRPS) gridded
observation dataset as a reference, we evaluate the perfor-
mance of CCLM driven by ERA-Interim reanalysis over the
historical period. The added value of CCLM, compared to
its driving GCM, is evident over mountainous areas in CA,
which are at a higher risk of extreme precipitation events.
The mean absolute error and bias of climatological precip-
itation (mm d−1) are reduced by 5 mm d−1 for summer and
3 mm d−1 for annual values. For winter, there was no error
reduction achieved. However, the frequency of extreme pre-
cipitation values improved in the CCLM simulations. Addi-
tionally, we employ CCLM to refine future climate projec-

tions. We present high-resolution maps of heavy precipita-
tion changes based on CCLM and compare them with the
CMIP6 GCM ensemble. Our analysis indicates an increase
in the intensity and frequency of heavy precipitation events
over CA areas already at risk of extreme climatic events by
the end of the century. The number of days with precipi-
tation exceeding 20 mm increases by more than 90 by the
end of the century, compared to the historical reference pe-
riod, under the SSP3-7.0 and SSP5-8.5 scenarios. The annual
99th percentile of total precipitation increases by more than
9 mm d−1 over mountainous areas of central Asia by the end
of the century, relative to the 1985–2014 reference period,
under the SSP3-7.0 and SSP5-8.5 scenarios. Finally, we train
a convolutional neural network (CNN) to map a GCM simu-
lation to its dynamically downscaled CCLM counterpart. The
CNN successfully emulates the GCM–CCLM model chain
over large areas of CA but shows reduced skill when applied
to a different GCM–CCLM model chain. The scientific com-
munity interested in downscaling CMIP6 models could use
our downscaling data, and the CNN architecture offers an al-
ternative to traditional dynamical and statistical methods.
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1 Introduction

The increasing global mean temperature due to anthro-
pogenic greenhouse gas emissions presents a significant
challenge for society, requiring the assessment and predic-
tion of future impacts on human health, natural ecosys-
tems, and economies across different regions of the world
(IPCC, 2021). Researchers conducting regional studies on
the vulnerability, impacts, and adaptation typically achieve
reliable high-resolution climate projections through dynami-
cal downscaling via regional climate models (RCMs) (Rum-
mukainen, 2010; Feser et al., 2011), statistical techniques
(Maraun and Widmann, 2018; Fowler et al., 2007), or a hy-
brid of both approaches (Maraun et al., 2015; Meredith et al.,
2018; Laflamme et al., 2016).

Central Asia (CA), recognised as one of the regions most
vulnerable to climate change impacts, heavily depends on
water resources from glaciers and rivers that are shrink-
ing due to rising temperatures and decreasing precipitation
(Reyer et al., 2017; Fallah et al., 2023; Didovets et al., 2024;
Fallah and Rostami, 2024). The area faces significant chal-
lenges to food security characterised by declining crop yields
and an increased occurrence of severe and frequent extreme
weather events like floods and landslides. These conditions
damage infrastructure, livelihoods, and agriculture, result-
ing in population displacement and migration (IPCC, 2021;
Reyer et al., 2017).

Significant uncertainties inherent in the existing detailed
observational and reanalysis datasets impede the develop-
ment of high-resolution climate projections in CA (Fallah
et al., 2016a). One option to complement these datasets is to
use dynamical downscaling with RCMs. The Coupled Model
Intercomparison Project Phase 6 (CMIP6) provides a frame-
work for coordinated climate model experiments, enhanc-
ing our understanding of past, present, and future climate
changes. Dynamical downscaling of CMIP6 models for the
CA region is vital for accurately simulating extreme convec-
tive precipitation events which are influenced by the orogra-
phy of the region (Lundquist et al., 2019; Ban et al., 2015;
Wang et al., 2013; Frei et al., 2003; Russo et al., 2019),
large-scale atmospheric circulation, and sea surface temper-
ature anomalies in the Indian Ocean and the Pacific Ocean
(Kendon et al., 2014; Demory et al., 2020; Xu et al., 2022).
This method enhances the resolution of a driving general
circulation model (GCM) and produces a physically consis-
tent regional state of the climate. Despite some systematic
biases, dynamical downscaling consistently provides high-
quality datasets that accurately describe the climatology of
all climate variables in CA (Qiu et al., 2022).

Various international institutions have collaborated within
the Coordinated Regional Climate Downscaling Experiment
(CORDEX) to address these issues and improve the inter-
comparability of RCMs. CORDEX aims to create a robust
framework for producing climate projections at a regional
scale that is suitable for impact evaluation and adaptation

planning globally. This effort aligns with the timeline of
the Intergovernmental Panel on Climate Change’s Sixth
Assessment Report (Kikstra et al., 2022). However, most
CORDEX research focuses on highly industrialised coun-
tries (IPCC, 2021; Taylor et al., 2012). Developing regions,
including CA, bear the brunt of the consequences of global
warming, yet they have access to only a limited number
of CORDEX model simulations (Naddaf, 2022). As of the
latest update, no simulation driven by CMIP6 has been
planned for CORDEX CA (see https://wcrp-cordex.github.
io/simulation-status/CMIP6_downscaling_plans.html, last
access: 17 April 2024).

Beyond dynamical methods, recent developments in ma-
chine learning, including convolutional neural networks
(CNNs), offer promising avenues for statistical downscal-
ing (Harder et al., 2023; Rampal et al., 2024). CNNs
have proven effective in numerous Earth science disciplines
besides downscaling, such as classification (Gardoll and
Boucher, 2022), segmentation (Galea et al., 2024), and pre-
diction (Watson-Parris et al., 2022), thanks to their capacity
to extract features from spatial data and identify nonlinear re-
lationships between inputs and outputs. CNNs can recognise
and encode spatial hierarchies in data (Zhu et al., 2017), mak-
ing them exceptionally suitable for analysing geospatial data,
a critical component in climate modelling. Unlike traditional
statistical methods that often require manual selection and
careful engineering of features, CNNs automatically learn
the most predictive features directly from the data (Reich-
stein et al., 2019). They are generally more straightforward
and efficient than traditional statistical downscaling methods
for tasks aiming to predict or classify patterns distributed
across spatial domains, such as temperature or precipitation
patterns in climate models (Racah et al., 2017). CNNs are
adept at maintaining spatial coherence in the output, which
is critical in downscaling where preserving the geographi-
cal patterns of climate variables (like precipitation) is crucial
(Kurth et al., 2018).

Researchers classify CNNs into two categories based on
their last layer, namely (1) constrained and (2) unconstrained.
Constrained CNNs integrate physical laws directly into the
training process, such as mass, energy, or momentum con-
servation. This integration is achieved by modifying the loss
function or the network’s architecture to ensure compliance
with these laws. In contrast, unconstrained CNNs do not ex-
plicitly incorporate physical laws or constraints. Instead, they
rely solely on learning from the input data, generating output
predictions based on the patterns detected in the data.

This study explores unconstrained and constrained CNN
approaches to understand their effectiveness in downscaling
and their performance when applied to GCMs not initially
used for training.

The research questions guiding this study are as follows:

Geosci. Model Dev., 18, 161–180, 2025 https://doi.org/10.5194/gmd-18-161-2025

https://wcrp-cordex.github.io/simulation-status/CMIP6_downscaling_plans.html
https://wcrp-cordex.github.io/simulation-status/CMIP6_downscaling_plans.html


B. Fallah et al.: Climate model downscaling in central Asia 163

1. How effectively can CMIP6 models be downscaled
to enhance precipitation simulations for the CORDEX
central Asian region?

2. Can CNNs effectively downscale GCM outputs, and
how do they perform when applied to GCMs that did
not initially train them?

This article focuses on two main topics: (1) the added
value of COSMO-CLM (CCLM) for representing precipi-
tation over central Asia and (2) training a CCLM emulator
using a CNN. We present data and methods in Sect. 2. Sec-
tions 3 and 4 introduce the results of dynamical and hybrid
downscaling, respectively. Finally, we discuss the results and
conclude in Sect. 5.

2 Data and methods

The methodology employed in this study is illustrated in
Fig. 1.

2.1 Employed models and experimental setups

2.1.1 Regional climate model (RCM)

In this study, we conduct simulations using the CCLM re-
gional climate model. Developed by the German Weather
Service (DWD) and the German Climate Computing Cen-
ter (Deutsches Klimarechenzentrum, DKRZ), CCLM origi-
nates from the COSMO numerical weather prediction model
(Rockel and Geyer, 2008), which is widely utilised for short-
term weather forecasting. Explicitly designed for regional
climate simulation, CCLM enables researchers to investi-
gate various aspects of the climate system, including tem-
perature, precipitation, and extreme events. It has been ex-
tensively used to assess the impact of climate change across
different regions such as Europe (Russo et al., 2022), Africa
(Panitz et al., 2014; Dosio and Panitz, 2016), and Asia (Jacob
et al., 2014; Kotlarski et al., 2014; Wang et al., 2013). Ad-
ditionally, CCLM has been employed in climate projection
studies to evaluate climate adaptation and mitigation strate-
gies. The model has undergone thorough evaluation and val-
idation (Fallah et al., 2016b; Russo et al., 2019; Kjellström
et al., 2011), and its ability to generate realistic simulations
of present climate conditions and variability has established
it as one of the most widely used regional climate models in
the scientific community (Sørland et al., 2021).

For our experiments, we utilised a model setup similar to
the “optimal” configuration described by Russo et al. (2019).
In their study, Russo et al. (2019) optimised the CCLM re-
gional climate model for CA by adjusting the albedo based
on forest fraction ratios and soil conductivity to account for
the soil’s liquid water and ice proportions. These modifica-
tions significantly improved the model’s climatological per-
formance and the distribution of incoming radiation, leading

to more accurate climate representations for the region. Ac-
cording to the CORDEX protocol, simulations are divided
into two primary phases. The first phase, the evaluation run,
involves a single-model experiment over the period 1979–
2014, using ERA-Interim reanalysis data at a spatial reso-
lution of T255 (∼ 0.7°). The second phase, the projection
run, utilises boundary conditions from GCMs of the CMIP6
project for the period 1950–2100 under various Shared So-
cioeconomic Pathways (SSPs). For this study, we selected
the MPI-ESM1-2-HR GCM and considered the SSP1-2.6,
SSP3-7.0, and SSP5-8.5 scenarios. SSPs represent baseline
scenarios that describe future pathways based on population
growth, technological advancement, economic development,
urbanisation, and investments in healthcare, education, land
use, and energy (Riahi et al., 2017).

Historical data for this study are based on greenhouse gas
levels, land use, and other climate forcings observed from
1850 to 2014. The SSP scenarios used in the projections are
as follows:

– SSP1-2.6 represents a “green” future, characterised by
global efforts to protect resources, improve human well-
being, and narrow income gaps. This scenario assumes
low challenges to adaptation and low greenhouse gas
emissions. Adaptation challenges in this context refer
to the difficulties societies might face in adjusting to the
impacts of climate change, including their susceptibility
and the availability and the effectiveness of mitigation
technologies and strategies. Under SSP1-2.6, global co-
operation and sustainable practices lead to advance-
ments in technology and governance, significantly re-
ducing the vulnerability to climate change impacts. So-
cietal structures are resilient, and resources are managed
to minimise environmental stresses while maximising
human well-being.

– SSP3-7.0 depicts a future characterised by regional ri-
valry, where nationalism and regional conflicts dom-
inate, global issues are neglected, and inequality in-
creases. This scenario involves a great number of chal-
lenges to adaptation and high greenhouse gas emissions.

– SSP5-8.5 represents a future of fossil-fuelled develop-
ment with globally connected markets, rapid techno-
logical progress, and weak environmental policies. This
scenario has fewer challenges to adaptation but results
in very high greenhouse gas emissions.

For a comparison and evaluation of our RCM simulations,
we have selected two CORDEX CA evaluation simulations
from other models driven by ERA-Interim at a 0.22° hor-
izontal resolution, namely (1) ERA-Interim-RMIB-UGent-
ALARO-0 (Giot et al., 2016) and (2) ERA-Interim-GERICS-
REMO2015 (Jacob and Podzun, 1997; Fotso-Nguemo et al.,
2017).
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Figure 1. Schematic of the methodology used in this study. Green arrows show the data flow used for training the CNN, and magenta arrows
are for the evaluation and calculation of the added values. Datasets are shown by rectangles, downscaling models by hexagons, and the
evaluation analysis by a circle.

2.1.2 CNNs

In this study, we develop a CNN-based emulator for the
CCLM driven by the MPI-ESM1-2-HR GCM. This CNN
utilises outputs from the GCM, covering the historical pe-
riod from 1985 to 2014 and future scenarios spanning 2019
to 2100, as inputs to model the responses of the CCLM,
which serves as the target. Given the low annual precipita-
tion and significant spatiotemporal variability in many re-
gions of CA, a comprehensive dataset that includes vari-
ous precipitation patterns from both GCMs and RCMs is es-
sential for effectively training the CNN to map from GCM
to RCM outputs. To enhance model training, we have aug-
mented our dataset with ERA-Interim reanalysis data and
the corresponding CCLM simulations driven by it (ERA-
Interim-CCLM) (see Fig. 1).

We train our CNN model based on the architecture pro-
posed by Harder et al. (2023) (Fig. 2), which incorporates
physical constraints to ensure mass conservation and energy
balance. The model architecture features the following:

– Conv (convolutional layer). These layers help extract
various levels of features from low-resolution images,
such as edges, textures, and other relevant image details.

– ReLU (rectified linear activation unit). This nonlinear
activation function introduces non-linearity and returns
the input unchanged if it is positive; otherwise, it re-
turns zero. This function enables the network to learn
complex patterns efficiently.

– TransConv (transposed convolutional layer). This layer
is crucial for downscaling. It increases the spatial di-
mensions of the feature maps, performing a sort of
learnt interpolation. This allows the model to add de-
tails to the downscaled images based on the features ex-
tracted and processed in the earlier layers.

– ResBlock (residual block). These blocks allow the
model to refine the initial lower-resolution predictions,
which are downscaled (interpolated outputs) to a higher
resolution. They enhance the model’s ability to add fine
details and textures (high-frequency information), im-
proving the perceptual quality and sharpness of the im-
ages at an increased resolution.

In the context of deep learning for climate modelling,
the “perfect model” approach involves starting with high-
resolution data and intentionally upscaling it to a lower res-
olution. The machine-learning model is subsequently trained
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to reproduce the high-resolution data while receiving this ar-
tificial low-resolution input. The aim is to simulate a sce-
nario in which the “truth” (the original high-resolution data)
is known and then to recover this high resolution from the ar-
tificially upscaled data. This approach teaches the model the
desired mapping from low to high resolution, enabling the
model to effectively learn how to downscale or enhance the
resolution, while minimising the loss of critical information.
It is a controlled experiment that helps refine the model’s ca-
pabilities.

The “imperfect model” approach, on the other hand, ac-
knowledges that both the low-resolution (GCM output) and
the high-resolution (RCM output) datasets have their inher-
ent errors and limitations. In this scenario, we do not have
a single source of truth but rather two separate sets of data,
which are as follows:

– Low-resolution data. These data may capture global or
large-scale phenomena but miss regional details (Xu
et al., 2021; Chokkavarapu and Mandla, 2019).

– High-resolution data. These data provide detailed re-
gional information but may still have errors or may not
perfectly reflect reality due to limitations in data collec-
tion, model configuration, or computational constraints
(Muttaqien et al., 2021).

In the imperfect model setup, the CNN’s challenge is learn-
ing to map between two independently imperfect datasets.
The CNN is trained to predict high-resolution details from
low-resolution inputs as accurately as possible despite the
absence of perfect ground truth. This process involves under-
standing and modelling the uncertainties and biases inherent
in both datasets.

Prior to training, the dataset was randomly shuffled at
the pair level to ensure that each GCM input and its corre-
sponding RCM output remained together, preserving the in-
trinsic relationships between the coarse- and fine-resolution
data. This approach prevents temporal or spatial autocorre-
lation from biasing the training process. It also improves
the model’s generalisation and performance by exposing it
to various conditions. For the dataset distribution, 68 141 d
(60 %) of RCM simulation data were used for training,
22 714 d (20 %) for validation, and 22 714 d (20 %) for inde-
pendent testing. The low-resolution (GCM) dataset consists
of 30×60 grid points, and the high-resolution (RCM) dataset
comprises 120× 240 grid points over latitudes and longi-
tudes, respectively, resulting in a downscaling factor (N ) of
4.

2.1.3 Constraint layers

We test the CNN with three different constraining methods in
the last CNN layer (Harder et al., 2023), namely (1) hard con-
straining (HCL), (2) soft constraining (SCL), and (3) without
constraining (NoCL). The setup of constraining is as follows:

consider a factor N for downscaling in all linear directions,
and let n :=N2 and yi , i = 1, . . .,n be the high-resolution
patch values that correspond to the low-resolution pixel x.
The mass conservation law has the following form:

1
n

n∑
i=1

yi = x. (1)

2.2 Validation and testing

According to Ciarlo‘ et al. (2021), the choice of observational
data can significantly influence the perceived added value
of an RCM, particularly when detecting extreme events,
where poor-quality data might misleadingly suggest im-
proved model performance. They recommend using obser-
vational datasets with spatiotemporal resolutions compara-
ble to the model’s for enhanced accuracy. In line with this,
we use CHIRPS (Climate Hazards Group InfraRed Precip-
itation with Station data), a high-resolution gridded obser-
vational dataset, to validate the CCLM driven by the GCM.
CHIRPS offers a resolution of 0.05°, covering latitudes from
50° N to 50° S, and provides independent observations de-
rived from satellite and station data. This contrasts with re-
analysis datasets which rely on climate model simulations
(Funk et al., 2015).

For the validation of the CNN, however, we allocate 20 %
of the CCLM simulation data as the target for evaluating
the CNN emulator’s performance rather than directly using
CHIRPS. This is because the CNN is designed to emulate
the climate output produced by the CCLM and not to match
the observational data directly. While CHIRPS is used to val-
idate the accuracy of the CCLM output, we validate the CNN
by ensuring it accurately reproduces the CCLM’s fine-scale
climate information which has already been verified against
CHIRPS for its realism.

We measure the added value of the CNN by comparing the
MAE of the CNN outputs and the interpolated GCM outputs
against the target CCLM output. This comparison assesses
whether the CNN outperforms simple interpolation. The se-
lected GCM and observational data are interpolated onto the
RCM grid using the distance-weighted average method. Cia-
rlo‘ et al. (2021) noted that such an interpolation might create
unrealistic values as it does not account for the physical pro-
cesses and could introduce artefacts, depending on the inter-
polation method, the spatial distribution of data points, and
the resolution ratio. Therefore, we use simple interpolation as
a baseline, recognising its limitations in preserving the sta-
tistical properties of precipitation, which does not follow a
normal distribution. Following (Hodson, 2022), we apply the
MAE as an evaluation metric to quantify the biases in emu-
lated and dynamically downscaled precipitation (yt ) against
observations (O) as follows:

MAE=
1
T

T∑
t=1
|yt −Ot |, (5)
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Figure 2. Schematic of the CNN architecture for upsampling with the constraints layer two times. The inputs are low-resolution (LR) images
sized 30× 60, and the output is a super-resolution (SR) image sized 60× 120. This figure is modified from Harder et al. (2023).

where T represents the number of time steps over 30 years
of daily data.

We define the added value (AV) as the reduction in MAE
achieved by the downscaling relative to the driving GCM as
follows:

AV=MAEGCM−MAECCLM, (6)

where MAEGCM and MAECCLM are the differences between
interpolated GCM and RCM with respect to the reference
CHIRPS dataset.

As an additional metric, we also use the climatological
bias; i.e. the difference between the model and observations
is as follows:

BIAS= PRy −PRO. (7)

3 Results

Figure 3a illustrates the topography of the CORDEX CA
simulation domain. Figure 3b displays the mean daily pre-
cipitation averaged over the years 1985–2014 (mm d−1) and
derived from CHIRPS data. The regions with the highest pre-
cipitation are the mountainous areas of CA, particularly no-
table in the Asian summer monsoon region north of India and
along the Himalayas in the southeastern part of the domain,
where precipitation values are pronounced. Figure 3c depicts
the distribution of WorldClim weather stations (Fick and Hi-
jmans, 2017) across CA, serving as a proxy for the density
of station data used in the CHIRPS dataset. Observational
data are sparsely distributed in East China, especially over
the Tibetan Plateau. Consequently, data–model comparisons
are considered unreliable in this region (Randall et al., 2007;
Cui et al., 2021; Yan et al., 2020; Russo et al., 2019).

3.1 Added value of CCLM driven by ERA-Interim

To characterise the overall performance of the CCLM model
across time and space, Figs. 4 and 5 present maps display-
ing annual, winter (December, January, and February – DJF),
and summer (June, July, and August – JJA) MAE and mean

biases. These biases in precipitation are calculated between
the interpolated ERA-Interim data and CCLM outputs driven
by ERA-Interim for the period 1985–2014 in comparison
to CHIRPS (see Eqs. 5 and 6). Figure 4a–c illustrate the
MAE for ERA-Interim for annual, winter, and summer av-
erages. The added value of the CCLM RCM compared to
the interpolated ERA-Interim is depicted in Fig. 4d–f. Dur-
ing the Asian summer monsoon, the CCLM MAE is high
(5 mm d−1) with respect to the GCM over the south and
southeast of the domain (regions in magenta), whereas it is
generally lower (< 1 mm d−1) during winter. In the moun-
tainous areas of Afghanistan, Kyrgyzstan, and Tajikistan,
CCLM is closer to observations than GCM. However, the
GCM is closer to observations near the domain’s southern
boundaries for annual values and in the south and southeast
during summer.

The AVs of GERICS-REMO2015 and RMIB-UGent-
ALARO-0 driven by ERA-Interim are presented in Fig. 4g–l,
using CHIRPS as the observational dataset. The added value
of the RCM is most pronounced in areas with complex to-
pography, especially during summer, across all three RCMs
(Fig. 4f, i, and l). Areas where the RCM has a smaller MAE
than the reanalysis in comparison to observations are found
over Tajikistan, Kyrgyzstan, northern Afghanistan, and part
of the Himalayas – regions that are crucial water sources for
post-Soviet states. The annual AV patterns still show pos-
itive values in these regions (Fig. 4d, g, and j). GERICS-
REMO2015 has less skill than the reanalysis during winter
and for annual values over large portions of mountainous ar-
eas.

For annual values, all three RCMs reduce the large- and
local-scale bias of ERA-Interim, especially in regions with
complex topographies. However, the nested RCMs exhibit
similar MAE values near their lateral boundaries, relative
to their driving model (Fig. 4a–c). This is likely due to the
RCM being constrained by the boundary conditions imposed
by the GCM, limiting the RCM’s ability to generate its own
internal variability. As a result, negative AV quantities may
arise from boundary effects, particularly near the eastern and
southeastern edges, where the model is less free to improve
upon the monsoonal precipitation patterns set by the driving
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Figure 3. (a) CCLM simulation domain over central Asia and the
topography (m). (b) CHIRPS climatology for 1985–2014 (average
of daily values over all years in mm d−1). (c) WorldClim weather
stations (red dots).

GCM. This is also reflected in the model climatology biases
in Fig. 5. These biases are particularly evident in the lower-
right corner of the domain during JJA and across the Tibetan
Plateau throughout the year, likely influenced by the con-
straints imposed by the GCM’s boundary conditions. In these
regions, the errors in the RCM closely mirror those of the
GCM, suggesting that the RCM is heavily constrained by the
lateral boundary conditions. Moreover, across other parts of
the domain, the RCM tends to inherit the biases of the GCM
for 30-year climatological means as large-scale errors in the

driving GCM propagate through the nested model. However,
despite these limitations, RCMs are more capable of captur-
ing extreme weather events, such as heavy precipitation (see
Fig. A1), which are often underrepresented in GCMs due to
their coarse resolution (Rai et al., 2024).

3.2 Extreme precipitation patterns in CCLM and
CMIP6 GCMs

Given that the CCLM simulation has demonstrated added
value for precipitation over the mountainous regions of CA,
we explore climate change signals in its high-resolution out-
put. These high-resolution maps may inherit biases from the
GCM–RCM selection and could vary under different anthro-
pogenic forcings. We assume that many model biases are
consistent across different time slices and, therefore, can be
removed when calculating changes between the historical pe-
riod (1985–2014) and future periods (2070–2099).

We present climate change trends in CCLM and the
CMIP6 GCMs ensemble statistics (ensemble mean and stan-
dard deviation). We analysed 31, 33, and 38 models for
SSP1-2.6, SSP3-7.0, and SSP5-8.5 scenarios, respectively,
with a total of 158, 185, and 242 simulations (see the Sup-
plement for the list of models used). We calculate statis-
tics over each model’s members to ensure equal weighting
for individual models before building the final statistics. We
have selected the yearly 99th percentile of daily precipitation
(PR99), which accounts for the 3 d with the highest precipi-
tation each year. Additionally, we chose the number of very
heavy precipitation days during the period (ECA–RX20mm)
as another index, which is commonly used in climate re-
search to assess the impacts of heavy precipitation events on
water resources, agriculture, and natural ecosystems (Klok
and Klein Tank, 2008).

Figure 6 shows the changes in PR99 at the end of the cen-
tury (2070–2099) compared to the historical period (1985–
2014) for CCLM (Fig. 6a, d, g) and CMIP6 GCMs (Fig. 6b,
e, h) under different scenarios. The large-scale patterns re-
main consistent across all three scenarios, intensifying with
increased anthropogenic influence. The standard deviation
of the models’ ensemble is depicted in Fig. 6c, f, and i.
Our analysis indicates that the Himalayas, particularly Nepal,
north India, and Bhutan, exhibit the highest uncertainty
among the GCMs in all scenarios. Except for this region
and the eastern boundary of the domain, the standard de-
viation remains below 3 mm d−1. Under the SSP5-8.5 and
SSP3-7.0 scenarios, regions including northwest India, north
Pakistan, north and southwest Iran, and the south and south-
east of the Black Sea are projected to experience increases
in PR99 values exceeding 9 mm d−1. A reduction in PR99
is detected in the eastern Mediterranean, specifically in Jor-
dan, Syria, and southern Türkiye. Similar patterns are ob-
served in the CMIP6 ensemble mean, but due to averaging,
the ensemble mean patterns are approximately ±5 mm d−1

over these areas. Under the SSP1-2.6 scenario, which is
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Figure 4. Mean absolute error (MAE) of daily precipitation (mm d−1) from ERA-Interim, as well as the added value (AV), as measured
by MAE differences between ERA-Interim and RCMs (MAEERA-Interim−MAERCM) (in mm d−1) for annual amounts (a, d, j, i), amounts
in December, January, and February (b, e, h, k) and amounts in June, July, and August (c, f, i, l). CHIRPS is used as the observation. All
datasets are interpolated to the CCLM grid.

aligned with the 2 °C warming target, the previously ob-
served increases in precipitation exceeding ±9 mm d−1 for
CCLM and ±5 mm d−1 for GCMs are no longer evident.
In CA, areas such as Kyrgyzstan, Tajikistan, northern Pak-
istan, and southwestern Iran are particularly vulnerable to
rainfall-induced hazards, including landslides (Wang et al.,

2021; Kirschbaum et al., 2010) and floods (e.g. the Pakistan
floods of 2010 and 2022).

Figure 7a, d, and g illustrate the changes in ECA–
RX20mm values for CCLM at the end of the century across
three scenarios with respect to the historical period of 1985–
2014. The observed patterns align with those in Fig. 6, un-
derscoring an increase in the frequency of very heavy pre-
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Figure 5. Bias of climatological precipitation (mm d−1) from ERA-Interim, as well as the ERA-Interim-driven RCMs
(PRERA-Interim-CCLM−PROBS) (in mm d−1) for annual amounts (a, d, j, i), amounts in December, January, and February (b, e, h, k)
and amounts in June, July, and August (c, f, i, l). CHIRPS is used as the observation.

cipitation days, particularly marked over the Tibetan Plateau,
as anthropogenic influences intensify. Similarly, Fig. 7b, e,
and h reveal that the CMIP6 GCM ensemble mirrors the be-
haviour observed in CCLM. However, the ensemble standard
deviations for ECA–RX20mm values rise over Tajikistan and
Kyrgyzstan, as shown in Fig. 7c, f, and i. The growing fre-
quency and intensity of extreme precipitation events over the
elevated regions of central Asia, driven by anthropogenic fac-

tors, are a cause for concern (Fallah et al., 2023). This CCLM
simulation enhances our understanding of how the dynamical
downscaling sensitivity to different levels of anthropogenic
forcing can vary locally.
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Figure 6. Changes in the averaged yearly 99th percentile (3 d per year) of total precipitation (mm d−1) with respect to 1985–2014 references
for (a, b) SSP1-2.6, (d, e) SSP3-7.0, and (g, h) SSP5-8.5 at the end of the century (2070–2099) from the CCLM and CMIP6 GCM ensemble
means. The ensemble’s standard deviations are shown in panels (c), (f), and (i).

4 CCLM emulator using a CNN

In this study, we create a CCLM emulator for precipitation
over CA. We aim to establish that this emulator outperforms
a simple interpolation, particularly in areas experiencing ex-
treme precipitation. We aim to show that the CCLM emulator
can replicate CCLM-like precipitation patterns when driven
by the parent GCM.

Focusing on the CA domain, which encompasses post-
Soviet states (Kazakhstan, Kyrgyzstan, Tajikistan, Turk-
menistan, and Uzbekistan), we exclude the broader
CORDEX CA domain shown in Fig. 3. This domain is the
region of interest in the Green Central Asia project https://
www.greencentralasia.org/en (last access: 13 January 2025),
which the German Foreign Office finances. Figure 8a illus-
trates the MAE of the interpolated MPI-ESM1-2-HR, using
the CCLM output as the “true” precipitation. CCLM gener-
ates distinct precipitation patterns, particularly in areas with
complex topography. Assuming CCLM as the ground truth,

we examine whether the CNN can replicate these outputs us-
ing the GCM as input. To assess the emulator’s effective-
ness, we present added value maps (relative to the reference
RCM) in Fig. 8b–d. A comparison of MAE reduction maps
reveals that the unconstrained CNN demonstrates significant
skill over elevated regions of CA, whereas constrained runs
show less noticeable pattern changes. For instance, the HCL
and SCL emulators generate closely mixed negative and pos-
itive added values across elevated areas, while NoCL con-
sistently exhibits positive values across the domain. Several
artefacts in the MAE reduction maps of constrained mod-
els, particularly over northern India, reflect the shape of the
GCM grid. We also produce boxplots of daily precipitation
for the CA domain to explore the distribution improvements
(Fig. 9). Correlation coefficients between the time series av-
erages of precipitation across the domain and CCLM are pre-
sented in Fig. 9 (values in parentheses). Among the daily av-
erages, NoCL achieves the best performance (highest corre-
lation coefficient of 0.8318), although it records fewer out-
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Figure 7. Changes in number of days with precipitation of more than 20 mm in the period with respect to 1985–2014 references for (a,
b) SSP1-2.6, (d, e) SSP3-7.0 and (g, h) SSP5-8.5 at the end of the century (2070–2099) from the CCLM and CMIP6 GCM ensemble mean.
The ensemble’s standard deviations are shown in panels (c), (f), and (i).

liers than CCLM and other model simulations. The distribu-
tion is concentrated around the median, exhibiting the nar-
rowest interquartile range. The distribution profiles of both
constrained models (HCL and SCL) resemble those of the
interpolated GCM, which is expected since the constraints
maintain mass consistency within corresponding grid boxes
(Eq. 1).

Applying the CNN to a different GCM

We evaluate the emulator’s generalisation ability, i.e. its ca-
pacity to generate reliable predictions on new datasets. We
chose NoCL for its superior performance among the three
CNNs. We conduct a new 15-year dynamical simulation us-
ing CCLM, driven by the EC-Earth3-Veg (Döscher et al.,
2022) GCM under the SSP3-7.0 scenario from 2019 to 2033.
These data serve as input to our CCLM emulator, which
was previously trained to emulate CCLM outputs using MPI-
ESMI-2-HR. Although EC-Earth3-Veg may appear distinct
from MPI-ESM1-2-HR, it shares the same forcing informa-

tion tied to the SSP3-7.0 scenario. This could lead to similar
climate outputs despite their differences. Therefore, the two
datasets used for training and prediction might not be as dis-
tinct as they seem, possibly contributing to the emulator’s
generalisation performance.

The trained NoCL model was applied to the unshuf-
fled EC-EARTH3-Veg data for new predictions. Figure 10a
presents the MAE of the interpolated EC-Earth3-Veg with
respect to the dynamical downscaling with CCLM. The
MAE pattern of EC-Earth3-Veg closely mirrors that of MPI-
ESM1-2-HR (Fig. 8a). The NoCL emulator does not consis-
tently show positive AV across the domain (Fig. 10b) as was
previously observed when applied to the MPI-ESM1-2-HR.
The emulator learnt relationships between MPI-ESM1-2-HR
and CCLM, which may be specific to these models and might
not necessarily apply to the new EC-Earth3-Veg and CCLM
configuration. As demonstrated previously, the RCM state
depends on the state of its driving GCM. CCLM is driven at
the lateral boundaries by the GCM values for state variables
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Figure 8. Performance based on shuffled testing data (22 714 d or 20 % of the dataset). (a) Mean absolute error (MAE) between the
GCM(MPI-ESM1-2-HR) and the RCM (CCLM). MPI-ESM1-2-HR is remapped bilinearly to the 0.25× 0.25 grid. (b–d) Added value
(AV) or MAE(MPI-ESM1-2-HR,CCLM)−MAE(CNN,CCLM) for different constraining methods.

Figure 9. Boxplot of averaged daily precipitation over the central Asian domain (shown in Fig. 7) for different models and test datasets
(22 714 d or 62.2 years). Numbers in the parentheses indicate the correlation coefficients between each model and the CCLM simulation.

(temperature, pressure, wind speed, etc.) and not by precip-
itation, which is the input of the CNN. The precipitation in-
puts from the two GCMs carry different biases, complicat-
ing the transfer of mapping from MPI-ESM1-2-HR-driven
CCLM outputs to those driven by EC-Earth3-Veg.

Despite these challenges, the CNN model demonstrates
added values exceeding 1 mm d−1 in regions such as the Al-
borz mountains and the southern Caspian Sea in northern
Iran (highlighted in black rectangles in Fig. 10a and b) and
parts of Tajikistan and Kyrgyzstan. An exploration of the
daily precipitation distribution field mean indicates that the
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Figure 10. (a) Mean absolute error (MAE) between the GCM(EC-Earth3-Veg) and the RCM (CCLM). The GCM is remapped bilinearly to
the 0.25× 0.25 grid. (b) The added value (AV) or MAE reduction (MAE(EC-Earth3-Veg,CCLM)−MAE(CNN,CCLM) for unconstrained
method. Panels (c) and (d) show boxplots of averaged daily precipitation over the CA domain and the black box shown in panels (a) and (b)
over the north of Iran. Numbers in the parentheses indicate the correlation coefficients of each model with respect to CCLM.

CNN’s median value and outliers are lower than those of
the EC-Earth3-Veg and CCLM simulations (Fig. 10c). The
day-to-day correlation has improved in NoCL with respect
to GCM, increasing the correlation coefficient from 0.815
(EC-Earth3-Veg) to 0.844 (NoCL). Over the highlighted area
in Fig. 10b, where the NoCL model has a lower MAE than
the GCM, the distribution of precipitation resembles that of
CCLM, encompassing the region with the highest rainfall in
Iran, which is vital for a large portion of the population, in-
cluding Tehran. Only the outliers larger than 20 mm d−1 are
not reconstructed by NoCL.

As a further test of generalisation, we intentionally ex-
cluded the SSP3.7-0 scenario from the training process. This
allowed us to apply the model to a specific simulation and
assess its ability to handle an unknown type of forcing.
Figure 11 demonstrates the AV of the CNN emulator for
SSP3-7.0 in comparison to the dynamical downscaling with
CCLM, revealing that the AV pattern is strikingly similar to
that shown in Fig. 8d. This confirms that the CNN shows
promise for learning and reproducing the patterns under dif-
ferent forcing scenarios it was not explicitly trained on, as
demonstrated by its performance with the SSP3.7-0 scenario.

Figure 11. The added value (AV) or MAE reduction (MAE(EC-
MPI-ESM1-2HR, CCLM)−MAE(CNN, CCLM)) for an uncon-
strained method that was not trained but applied to the SSP3-7.0
scenario.

5 Discussion and conclusions

Regional climate change impact assessments require high-
resolution climate projections. The main strategies to pro-
duce such datasets are statistical and dynamical downscaling,
as well as a hybrid of the two methods. Statistical downscal-
ing often struggles to account for the dynamic influences of
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complex landscapes, including topography and varying sur-
face parameters such as vegetation, soil types, and water-
bodies like lakes, which may affect the accuracy of statisti-
cal relationships (Li et al., 2022). For statistical downscaling
methods applied to precipitation, observations need to con-
tain detailed information about precipitation distribution in
areas with complex topography (Lundquist et al., 2019).

Conversely, dynamical downscaling requires massive
computational time and data storage. For example, a 30-
year CCLM simulation driven by ERA-Interim took roughly
1 week to complete using 216 processors of the HLRE-4
Levante computer at the German Climate Computing Cen-
ter (DKRZ). Additionally, the added value of RCMs is still
debated as they are highly dependent on the driving GCMs.

In this study, we contributed to the dynamic downscaling
efforts over the CORDEX CA domain, taking a small step
towards creating an RCM ensemble for CA. A single RCM
simulation helps identify model biases and uncertainties that
need to be addressed in future model improvements. It is es-
sential to note that a single-model run for CMIP6, instead
of an RCM ensemble, may not provide a comprehensive un-
derstanding of potential climate change impacts on a region.
Therefore, it is recommended that researchers conduct multi-
ple simulations with different initial and boundary conditions
and model configurations to account for the uncertainty as-
sociated with climate projections.

In the first part of the study, we demonstrated the added
value of RCMs (using the CCLM model) over GCMs for
CA in representing precipitation. Our CCLM run showed
added value with respect to its driving GCM, comparable
to the range of values obtained for other RCMs applied
to the CORDEX CA domain over the evaluation period. It
also reproduced extreme precipitation patterns similar to the
CMIP6 ensemble mean projections for the end of the century.
The CCLM and CMIP6 ensembles indicated an increased
risk (in terms of intensity and frequency) of heavy precipita-
tion events in vulnerable regions of CA due to various human
activities.

Our study evaluated the downscaling skill of RCM us-
ing high-resolution observations, a crucial step for accurately
capturing localised climate phenomena. This evaluation was
essential before further study steps and regional adaptation
strategies could be implemented. In future work, it would be
valuable to follow the approach suggested by Volosciuk et al.
(2017), where downscaling outputs are evaluated at coarser
resolutions. This would allow for a deeper understanding of
how downscaling methods introduce or fail to correct biases,
which can vary significantly across spatial scales. By con-
ducting evaluations on a coarser grid, we can better distin-
guish between the inherent biases of the model and those
introduced by the downscaling process, providing important
insights into the limitations and strengths of downscaling
techniques in representing climatic variables across different
scales.

We showed that a single GCM–RCM model chain could
be used to train a climate emulator based on a CNN model. It
learnt relationships between the coarse- and fine-resolution
datasets, addressing the issue of spatial intermittency –
where data points are unevenly distributed or missing across
space – common in some statistical downscaling approaches
(Harder et al., 2023). However, we also demonstrated that the
CNN model had limitations when generalising, as it did not
achieve a robust error reduction pattern when given a differ-
ent GCM as input. The learning process strongly depended
on the GCM–CCLM relationships. More importantly, an
RCM is usually forced to follow its driving GCM and can
only produce extra information on a local scale. The pre-
sented CNN could be applied to other experiments of the
same GCM.

We deliberately excluded the SSP3-7.0 scenario from the
training dataset to evaluate the model’s generalisation capa-
bilities for other scenarios of the same GCM. This strategy
allowed us to assess whether the model could effectively
infer and replicate patterns from untrained scenarios. The
model’s output for the SSP3-7.0 scenario exhibited an AV
pattern that mirrored the dynamical downscaling results of
the CCLM driven by the same SSP3-7.0 scenario. This align-
ment supported the notion that our CNN emulator could learn
from its training data and generalise to new and unseen con-
ditions.

This work was an initial step in demonstrating the poten-
tial of such a hybrid approach. We encourage the community
to explore different model structures and parameter combina-
tions for further improvement. For example, our initial setups
showed that a physically constrained CNN setup that applies
a linear transformation to ensure mass or energy conservation
between the low- and high-resolution images did not suc-
cessfully downscale precipitation. The original dataset might
not satisfy the constraints, leading to suboptimal results. In
contrast, with a higher degree of freedom, the unconstrained
CNN produced patterns closer to the target RCM. Future
studies could test alternative machine learning models, such
as generative adversarial networks (GANs), which can gen-
erate more high-frequency patterns and improve the down-
scaled output. Additionally, incorporating more information
into the CNN by adding characteristics like surface height,
vegetation, land cover, and land use as new channels within
the input layer could enhance model performance.

Appendix A: Precipitation distribution

To further explore the added value of dynamical downscaling
in the estimation of precipitation distribution, we calculated
the histogram of daily precipitation (for grid points where
precipitation > 1 mm d−1) for the daily maximum value in
the free zone (the red box shown in Fig. A1a). We select a
free zone such that it is far from the lateral boundaries and
located within the CHIRPS data coverage (south of 50° N).
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Figure A1. (a) Free zone within the study region over central Asia.
The dashed box (110×76 grids) is selected as the free zone for fur-
ther data–model comparisons. (b) Precipitation distribution of max-
imum daily values in the free zone shown from different RCMs,
GCMs, and CHIRPS for the period 1985–2014. Vertical lines show
different percentiles of the CHIRPS dataset on the x axis.

Therefore, we assume that the RCMs can freely create their
climate state (internal climate variability) within this box and
that the influence of the GCM boundary conditions is mi-
nor. As expected, ERA-Interim and MPI-ESM1-2-HR have
shorter right tails and a higher maximum frequency than the
CHIRPS dataset (Fig. A1b). They do not show many values
greater than 70 mm d−1. Increasing the resolution via the dy-
namical downscaling, all the RCMs create extreme values,
as seen in the observation, and have longer right tails. Both
CCLM simulations show a similar distribution, and their
maximum frequencies are closer to the one from CHIRPS
than the other two RCMs. This agrees with the findings of
Ciarlo‘ et al. (2021), who showed that the added value is

more considerable for higher-precipitation percentiles. We
know that such a comparison between the GCM and RCM
probability is not “fair”. Comparisons are usually conducted
at the coarser resolution, and RCM values must be aggre-
gated to GCM grids. However, we are interested in the added
value of different RCMs, especially for the extreme values
and aggregation to the coarser grid will degrade the spatial
statistics of the local higher-resolution phenomena. It has
been previously shown that RCMs have higher skills when
simulating extreme precipitation events than GCMs (Gao
et al., 2015; Rajczak et al., 2013; Feser et al., 2011).
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Appendix B: CNN runs

We used the following commands for training the CNN
model based on Harder et al. (2023).

Note that the datasets and codes are available via Zenodo
(https://zenodo.org/records/10417111, Fallah, 2023), with
comprehensive details utilised in the paper.

Listing B1. Commands for CNN training runs.
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Code and data availability. The code for “Physics-Constrained
Deep Learning for Climate Downscaling” is available via Zen-
odo at https://doi.org/10.5281/zenodo.8150694 (Harder, 2023).
This repository includes the input and output data, trained mod-
els, a snapshot of the code used in the deep-learning down-
scaling process, CCLM model setups for all regional climate
model (RCM) simulations conducted, and a list of CMIP6 mod-
els used for comparative analysis. Additionally, a Jupyter Note-
book for executing a test case of the “Physics-Constrained Deep
Learning for Climate Downscaling” is available via Zenodo at
https://doi.org/10.5281/zenodo.10417111 (Fallah, 2023).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/gmd-18-161-2025-supplement.
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