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Abstract. This study proposes a method to quantify un-
certainty represented by errors in very-high-resolution near-
surface analysis, specifically for weather nowcasting applica-
tions. Gaussian distributed perturbations are used to perturb
the first guess and observation with a variance equal to that of
the first-guess error. This error reflects the spatial characteris-
tics of the difference between the first guess and observations
and dominates the primary sources of analysis uncertainty.
However, mapping perturbations to analyse the grid mesh
through interpolation results in underdispersion, particularly
in areas without stations. To address this issue, Gaussian per-
turbations are inflated with an inflation factor to amplify the
dispersion. This method was applied to high-resolution anal-
ysis and nowcasting for hourly temperature, humidity, and
wind components in the Beijing–Tianjin–Hebei region to as-
sess its effectiveness in representing uncertainty. The gener-
ated ensemble analysis exhibits reasonable spread and high
reliability, indicating accurate quantification of analysis un-
certainty. Ensemble nowcasting is extrapolated from ensem-
ble analysis to evaluate the transmission of perturbation dur-
ing extrapolation. Verification results of ensemble nowcast-
ing reflect the fact that the spread increases effectively during
extrapolation up to a lead time of 6 h. However, the increase
in the spread is highly dependent on the persistence of nu-
merical weather prediction. The results demonstrate that gen-
erating appropriate perturbations based on analysis errors ef-
fectively represents the analysis uncertainty and contributes
to estimating uncertainty in nowcasting.

1 Introduction

Nowcasting is crucial for severe weather warnings and for
protecting life and property, as it rapidly predicts high-impact
weather events in near real time (Wang et al., 2017a, b; Wastl
et al., 2018; Schmid et al., 2019). A very-high-resolution
weather analysis forms the basis for skilful nowcasting, pro-
viding accurate real-time atmospheric conditions at the initial
time (Wastl et al., 2021). However, due to the chaotic nature
of the atmosphere, errors in the data, and imperfect numeri-
cal models, nowcasting involves uncertainties (Lorenz, 1965;
Leith, 1974; Kann et al., 2012; Glahn and Im, 2013; Wastl et
al., 2019). To deal with uncertainties, generating an ensem-
ble using appropriate perturbations is an effective approach
(Leutbecher et al., 2007; Leutbecher and Palmer, 2008).

In recent years, the use of ensemble nowcasting has be-
come increasingly widespread (Wang et al., 2017b, 2021;
Yang et al., 2023). Numerous studies have demonstrated that
addressing all sources of the uncertainty represented by er-
rors is a key aspect of generating ensembles (Sun et al., 2014;
Thiruvengadam et al., 2020). The weather analysis contains
uncertainty, which significantly impacts nowcasting due to
both measurement errors and computational errors (Eibl and
Steinacker, 2017; Keresturi et al., 2019). As a result, quan-
tifying uncertainty caused by these errors in analysis is one
of the major challenges in constructing ensemble nowcasting
(Wang et al., 2017a; Taylor et al., 2022).

A widely applied approach for quantifying uncertainty
is introducing appropriate perturbations to generate ensem-
bles, based on the characteristics of errors (Buizza et al.,
2005; Zhu, 2005; Bouttier et al., 2016; Chen et al., 2016;
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Wang et al., 2017a; Lin et al., 2022). Most studies focus
on addressing uncertainty in nowcasting, but few have ex-
plored the impact of analysis errors (Bouttier, 2019; Wang
et al., 2021). Wang et al. (2014) and Suklitsch et al. (2015)
presented evidence that introducing additional perturbations
to estimate the analysis uncertainty can improve the sim-
ulation of nowcasting uncertainty. Saetra et al. (2004) ex-
plored the influence of observation errors on analysis uncer-
tainty. Horányi et al. (2011) and Bellus et al. (2016, 2019)
demonstrated that appropriate perturbations can simulate ob-
servation uncertainty in analysis. The Aire Limitée Adapta-
tion dynamique Développement InterNational-Limited Area
Ensemble Forecasting (ALADIN-LAEF) and Convection-
permitting Limited-Area Ensemble Forecasting (C-LAEF)
systems are two skilful systems that use 16 members to rep-
resent analysis uncertainty. These systems account for uncer-
tainty by perturbing observations, while the 16 first guesses
provide important uncertainty information within the three-
dimensional background (more details can be found in Wang
et al., 2011, Bellus et al., 2016, and Wastl et al., 2021). How-
ever, neither ALADIN-LAEF nor C-LAEF addresses the im-
pact of other sources of uncertainty, such as those arising
from interpolation (Wastl et al., 2021). Therefore, consider-
ing various types of analysis errors is crucial for more ac-
curately quantifying analysis uncertainty (Suklitsch et al.,
2015).

An accurate analysis, which describes the current atmo-
sphere, is typically derived by assimilating the first-guess
and observation data (Randriamampianina and Storto, 2008;
Kann et al., 2009; Lin et al., 2022). Observations estimate
true atmospheric values, while the three-dimensional first
guess offers a comprehensive spatial structure for the region
of interest (Sun et al., 2013; Hoteit et al., 2015; Casellas et al.,
2021). However, when combining observations with terrain-
corrected first guesses, interpolation errors caused by the al-
gorithm may also arise (Leutbecher and Palmer, 2008; Feng
et al., 2020). Current research has not clearly addressed the
impact of interpolation error uncertainty on the analysis and
nowcasting. Hence, it is crucial to investigate how to accu-
rately estimate interpolation error in analysis in order to gain
a comprehensive understanding of both analysis and now-
casting uncertainty.

The Integrated Nowcasting through Comprehensive Anal-
ysis (INCA) system calibrates the first guess using automatic
weather station observations (Haiden et al., 2010, 2011).
The first guess in INCA is the numerical weather prediction
(NWP) field, which is provided by the Austrian operational
version of the ALADIN limited-area model, as described by
Wang et al. (2006). In the NWP calibration, a topographic
characteristic factor is used to correct the surface layer to
match the actual terrain (Kann et al., 2009). Seamless Inte-
grated Weather Prediction and Applications (SIVA) is a mul-
tivariable analysis and nowcasting system based on the INCA
framework, and it is applied in the Beijing–Tianjin–Hebei
(BTH) region in China. The NWP output of the China Mete-

orological Administration Mesoscale model (CMA-MESO)
provides a deterministic first guess, which is used by SIVA to
describe the spatial characteristics (Shen et al., 2020). Since
the first guess is deterministic, the uncertainty of SIVA analy-
sis is not considered. Therefore, it is necessary to consider the
computational errors to accurately quantify the uncertainty in
SIVA analysis.

The current methods for estimating uncertainty in analy-
sis primarily depend on perturbations either derived from the
first guess or generated based on the inherent errors in obser-
vation data (Horányi et al., 2011; Wang et al., 2017a; Wastl
et al., 2018; Yang et al., 2023). These approaches introduce
perturbations without accounting for the uncertainty intrinsic
to the analysis calculation process. Nevertheless, they pro-
vide valuable insights, suggesting that perturbations can be
generated according to the statistical characteristics of er-
rors. Building upon this foundation, this study proposes a
novel approach that generates perturbations based on errors
in the calculation process itself, offering a more comprehen-
sive way of quantifying analysis uncertainty. This approach
addresses the limitations of current techniques and enhances
the precision of uncertainty representation. It has significant
potential to improve ensemble nowcasting applications.

This article is organized as follows. Section 2 introduces
the algorithm of SIVA analysis. Section 3 elaborates on the
characteristics of errors and perturbation methods. Section 4
is dedicated to the verification results of ensemble analysis
and nowcasting. A summary and conclusions are given in
Sect. 5.

2 Method and data

SIVA provides hourly analysis and nowcasting fields at a hor-
izontal resolution of 1 km for near-surface temperature, hu-
midity, and wind speed components. The analysis starts with
a first guess, which is a NWP short-range forecast output of
CMA-MESO. CMA-MESO runs twice daily with a forecast
range of 48 h, starting at 00:00 and 12:00 (UTC). It has a hor-
izontal resolution of 3 km and 51 vertical levels. The forecast
field of CMA-MESO is interpolated to a SIVA grid mesh at
a horizontal resolution of 1 km to serve as the first guess,
which is then calibrated based on its errors relative to obser-
vations. Topographic parameters are used to map the heights
of CMA-MESO model levels to the actual altitude of the sta-
tion location. The observations used in this research, con-
sidered the ground truth, are provided by automatic weather
stations and include hourly 2 m surface temperature, specific
humidity, and 10 m surface wind speed. These data can be
obtained by submitting an application through the official
data platform of the China Meteorological Administration.
The algorithm for the 2 m temperature, humidity, and 10 m
wind speed analysis module of SIVA consists of the follow-
ing steps:
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– Step 1. Revise the first guess by inverse distance weight
interpolation (IDW) using ground observation data to
obtain a three-dimensional revised field (3DRF). The
interpolation process in this step is referred to as 3D
interpolation.

– Step 2. Combining the topographic features and obser-
vation data, the 3DRF is revised again and then interpo-
lated vertically to the lowest model level to obtain the
near-surface revised field (NRF). The interpolation pro-
cess in this step is denoted as 2D interpolation.

Since SIVA is a new version of INCA developed in the
BTH region, readers can find more details of the algorithm
in Haiden et al. (2010, 2011). To avoid confusion of the term
“error”, the difference between the first guess and observa-
tion in Step 1 is denoted as “error1”. The difference between
the 3DRF and the observation in Step 2 is denoted as “er-
ror2”. The experimental periods are August 2020 (hereafter
called summer) and February 2021 (hereafter called winter).
With the high horizontal resolution, SIVA can describe the
geographical features in detail. In addition, 21 vertical levels
corresponding to various altitudes, such as 0, 200 m, and up
to 4000 m above the ground, are used to match stations at dif-
ferent elevations. The wind speed is represented at 32 vertical
levels with intervals of 125 m. This approach ensures that the
first guess is calibrated using topographic parameters and ob-
servations at the station locations. This study discusses three
meteorological elements: temperature (T2 m), humidity (rel-
ative humidity RH2m and specific humidity QQ2 m) at 2 m
above the surface, and wind speed components (U10 m and
V10 m) at 10 m above the ground.

BTH has a unique and complex topographic structure,
with the north-western part between two mountain ranges
and the south-eastern part belonging to the North China
Plain (Fig. 1). Such topographic information and station alti-
tude are used to impose terrain constraints on the SIVA grid
points. The 1670 automatic weather stations can pass quality
control and are used for T2 m and humidity analysis. For wind
components, 2351 stations are available. To assess the ef-
fectiveness of ensemble analysis in representing uncertainty,
151 stations are randomly selected as the test set, while the
remaining 1519 stations are the training set and then are used
to generate the ensemble analysis and nowcasting (Fig. 1).
Since the wind components have different quality control
frameworks with temperature, the total number of stations
for wind is 2350, while the number of test stations is 191.

This work proposes a perturbation method to accurately
quantify the uncertainty represented by the errors in the anal-
ysis. These errors depend on the observations, which can
only be obtained in areas with station information and inter-
polated across the entire grid mesh. Therefore, the magnitude
of the perturbation is expected to be consistent with the statis-
tical characteristics of these errors, as observed at the training
stations (Fig. S1 in the Supplement). In addition, the test sta-
tions assess whether interpolation can effectively propagate

the perturbation information throughout the entire space. To
evaluate the impact of the perturbation on extrapolation, the
perturbed analysis is used to generate ensemble nowcasting.
The ensemble nowcasting starts hourly and extrapolates up to
a lead time of 6 h. The verification of both ensemble analysis
and nowcasting covers the test stations shown in Fig. 1.

3 Perturbation method

For T2 m, error1 is based on the principle of minimal required
correction to filter out the excessive forecast errors, which
may result in some instances where the error value is zero,
even though the true error1 value is non-zero. Therefore, the
forecast error of NWP causes a major source of uncertainty in
error1. Due to the terrain constraint, the spatial distribution
of error1 and error2 exhibits distinct topographic features,
and the analysis error will reflect these geographic character-
istics (Fig. S1). As described by Horányi et al. (2011), per-
turbations are generated by the standard deviation (SD) of
the errors to represent the uncertainty at the observation site.
Hence, the observation perturbation in this study is generated
based on the SD of error1 at the training station sites. Error1
is the difference between the first guess and observation and
is represented at the training station locations. This means
that at each training station the observation perturbation is
sampled randomly from Gaussian noise with a mean of 0
and a scale equal to the SD of error1. However, both error1
and the observation perturbation are extrapolated to the entire
grid mesh through interpolation, which means that the areas
without stations (hereafter called the area with test stations)
can only have partial information on error1 and the perturba-
tion. Therefore, to account more comprehensively for uncer-
tainty across the entire grid mesh, the perturbation of the first
guess is crucial, as the first guess is responsible for providing
a calibrated forecast in areas without observations.

To estimate the uncertainty across the entire space, the SD
of error1 is interpolated to the SIVA grid mesh to perturb
the first guess. At each grid point, the perturbation (hereafter
called first-guess perturbation) is a Gaussian noise with a
mean of 0 and an SD equal to that of the interpolated error1.
Since error1 is the distance between the first guess and the
observation at the lowest model level, it implies a downward
(upward) shift that aligns the model height with the true alti-
tude of the station location. This indicates that in vertical in-
terpolation the forecast error will combine with geographical
features. In addition, interpolating the 3DRF to the surface
level depends on the vertical errors between adjacent levels.
Hence, the first-guess perturbation is sampled from Gaussian
noise with a shape (M,Z), where M represents the number
of members and Z denotes the number of levels. Such first-
guess perturbation can represent the NWP systemic uncer-
tainty in the vertical dimension, while the horizontal distri-
bution of the interpolated error1 provides the spatial charac-
teristic.
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Figure 1. Topography height (m) and station distribution over the Beijing–Tianjin–Hebei (BTH) region. Black dots represent training stations
and red dots represent test stations, both used for T2 m and QQ2 m.

As described above, both the observation perturbation and
the first-guess perturbation are generated based on the er-
rors in analysis and within areas that have observation infor-
mation. Introducing these perturbations into the observation
and first guess, ensemble analysis is constructed. To evaluate
the representation of the uncertainty, the ensemble is inter-
polated to all the stations and uses the observation data to
verify its reliability. Figure 2 shows the root-mean-square er-
ror (RMSE) and ensemble spread at both the training and
test stations. The spread quantifies the dispersion or variabil-
ity among the ensemble members, while the RMSE repre-
sents the errors of the ensemble mean. Comparing the spread
and RMSE assesses the statistical reliability of the ensem-
ble. A reliable ensemble should exhibit alignment between
the spread and the RMSE (Fortin et al., 2014). It can be ob-
served that the spread in training stations is consistent with
the RMSE (Fig. 2a, b). The ratio of RMSE to spread is nearly
equal to 1 (Fig. 2c). This indicates that the uncertainty in
area with station information has been quantified appropri-
ately. There is a significant underdispersion at the test sta-
tions (Fig. 2d, e). This underdispersion can be interpreted as

the information in the area without the stations being suffi-
cient. However, in the concept of appropriate representation
of uncertainty, the spread in the test stations should be am-
plified to be equal to the RMSE.

An inflation factor is calculated to address the underdis-
persion at the test stations. The inflation factor is the ratio of
the RMSE to the spread (Rrs) at the test stations in the ensem-
ble analysis obtained by perturbing both the first guess and
the observation (e.g. as shown in Fig. 2f). This factor is then
interpolated to the grid mesh to amplify the SD of the first-
guess perturbation in the area with the test stations, thereby
ensuring that the spread aligns with the RMSE (Fig. S2).

By combining an inflation factor with the perturbations,
these are generated as follows:

NWP′(i, j) = NWP(i,j)+N(0, SD2D error1 (i,j)

· infla_factor(i,j)), (1)
OBS′k = OBSk +N(0, SDerror1(k)). (2)

Here, 2D error1 represents the interpolated SD of error1. The
subscripts (i,j) and k refer to the SIVA grid point and the kth
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Figure 2. RMSE of the ensemble mean (a, d), spread of the ensemble (b, e), and the ratio of the RMSE to the spread (c, f) for T2 m at both
the training and test stations. All the values are averaged over August 2020.

station, respectively. It should be emphasized that the obser-
vation of wind has not been perturbed. The true values of the
wind components are obtained through the sine and cosine
transformations. Therefore, perturbing the wind components
through error-based noise cannot reflect the uncertainty aris-
ing from the wind direction.

The principle of minimal required correction in T2 m anal-
ysis results in a significant reduction in the dispersion of the
perturbed error1 relative to the unperturbed error1. Never-
theless, the impact of the inflation factor guarantees that the
dispersion of ensemble errors will not attenuate excessively
(Fig. 3a, b). The error dispersion at both the training and
test stations aligns with the perturbed error1. This consis-
tency substantiates the reliability of this approach, involving
the introduction of the inflation factor in representing uncer-
tainties. The generated ensembles consistently represent un-
certainty with comparable reliability across the entire region
(Fig. 3). Furthermore, the results of ensembles with varying
members differ by only about 1 %. To balance computational
efficiency with the need for sufficient members, the ensemble
size is set to 20.

4 Verification

4.1 Verification of the ensemble analysis

The deterministic SIVA analysis (hereafter called CANA)
served as a reference for assessing the performance of the

generated ensemble in estimating uncertainty at test stations.
Commonly used probability verification scores, including
the RMSE, ensemble spread, Talagrand diagram, rank his-
togram, and reliability diagram, are applied to evaluate the
effectiveness of the uncertainty representation at the test sta-
tions (Hamill et al., 2000; Hamill 2001; Fortin et al., 2014).

4.1.1 Ensemble RMSE and spread

For the verification of the T2 m, QQ2 m, and RH2m ensem-
bles, a total of 151 stations is used. One station in the south-
east is only available in summer, and there are 150 test sta-
tions in winter. There are 191 test stations to evaluate the per-
formance of wind components. Table 1 presents the averaged
RMSE and ensemble spread for the meteorological elements
discussed in this research.

Without inflation, the averaged ensemble spread is around
0.16, while the RMSE is approximately 10 times larger
(Fig. 2d–f). This reflects the considerable underdispersion of
the ensemble (Fig. 4a, d). By introducing the inflation factor,
the ensemble spread increases to 0.89 and Rrs approaches
1, indicating that the ensemble exhibits reliable dispersion.
Moreover, the increase in the spread of both temperature and
humidity does not result in a corresponding increase in the
RMSE (Table 1). This is attributed to the zero mean of the
perturbations, allowing the inflation factor to adjust only the
SD without affecting the mean.

This work focuses primarily on quantifying analysis un-
certainty rather than achieving dramatic improvements in
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Figure 3. Probability density function (PDF) of errors. Panel (a) shows error1, where the thick black line (•) represents the unperturbed
error1 and the thin grey line (N) represents the perturbed error1. Panels (b–d) show the analysis errors of the temperature, specific humidity,
and U component of the wind speed. The black solid and dashed lines represent the PDFs of SIVA deterministic analysis errors at both the
training and test stations, respectively. The blue and light-blue lines represent the PDFs of the ensemble analysis errors at the same stations.

Table 1. RMSE and spread of the ensemble analyses for summer (August 2020) and winter (February 2021). The subscript C (E) denotes
the RMSE of CANA (ensemble analysis), and Rrs represents the ratio of the ensemble RMSE to the spread. Values are averaged over all the
test stations and the entire period.

Summer Winter

RMSEC RMSEE Spread Rrs RMSEC RMSEE Spread Rrs

T2 m (°) 0.96 0.96 0.89 1.06 1.23 1.23 1.18 1.03
RH2m (%) 6.92 6.73 4.58 1.37 6.57 6.57 5.67 1.17
QQ2 m (g g−1) 1.09 1.08 0.95 1.12 0.24 0.23 0.23 0.99
U10 m (m s−1) 1.25 1.28 1.29 0.99 1.90 1.96 1.96 0.99
V10 m (m s−1) 1.37 1.41 1.40 0.99 1.85 1.91 1.90 1.00

verification scores. With the effect of the inflation factor, the
perturbation in the corresponding grids of the test stations is
amplified to align the ensemble spread with the RMSE. In ad-
dition, the perturbed first guess reflects the spatial uncertainty
at the grid points. Hence, the distance weight in the 3D inter-
polation of the 3DRF can account for the uncertainty derived
from the geographic characteristics of CMA-MESO. Most
test stations have a spread nearly equal to the RMSE, indicat-
ing the accuracy of the uncertainty quantification (Fig. S3).
In mountainous areas, the RMSE is negatively affected due
to the lack of precise information on the inversion heights
(Fig. S3g). A marine station in the south-east receives pertur-

bation information mainly from the 3DRF and only a small
amount of NRF information during the summer.

QQ2 m exhibits similar characteristics to T2 m but limita-
tions in variable conversion affecting the transmission of per-
turbation information, resulting in underestimated dispersion
for RH2m. Nevertheless, the ensemble of humidity maintains
the error consistency with CANA and provides a reliable es-
timate of uncertainty (Fig. S4).

For the wind components, uncertainty is represented by
the perturbation of the first guess. The consistency of the en-
semble spread and RMSE indicates the effective representa-
tion of the error uncertainty. However, the increased RMSE
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Figure 4. Talagrand (a, b, d, e) and reliability (c, f) diagrams for T2 m ensemble analysis, averaged over all the test stations.

of the ensemble mean may result from the lack of observa-
tion perturbation or the divergence constraint of wind com-
ponents (Table 1). One possible approach is to account for
the error arising from the wind component conversion in or-
der to support the generation of observation perturbation.

4.1.2 Probability scores

The Talagrand diagram describes the characteristics of the
ensemble spread and bias (Hamill, 2001). It evaluates the
ability of an ensemble to reflect the observed frequency dis-
tribution. A flat rank histogram is an indication of a per-
fect ensemble, with the uniform reference rank equal to
1/(M + 1), where M is the ensemble size. In this study, the
uniform rank is 0.0476, which corresponds to the dashed line
in the Talagrand diagram. The “U-shaped” rank histogram il-
lustrates that the ensemble without inflation is underdisper-
sive and does not sufficiently represent the uncertainty, which
is consistent with the results shown in Fig. 2 (Fig. 4a, d).
In contrast, the inflated ensemble presents a nearly flat rank
histogram (Fig. 4b, e). This result indicates that the ensem-
ble exhibits reliable dispersion, which aligns with the scores
presented in Table 1.

The reliability diagram illustrates how the ensemble prob-
abilities match the frequency of verification references at a
given threshold. For a perfect ensemble, probabilities should
equal the verification frequency (the diagonal line in the
diagram). The samples within each bin, as shown in the
sharpness histogram, represent the resolution of the ensem-
ble. The thresholds used in the diagram correspond to the

median value of the considered elements. Figure 4c and f
show that the ensemble with inflation exhibits high relia-
bility, whereas the ensemble without inflation displays poor
reliability and resolution. Both the Talagrand and reliabil-
ity diagrams demonstrate that the inflation factor effectively
amplifies the spread at test stations, thereby enhancing the
ability of ensemble analysis to represent uncertainty in areas
lacking station information.

As stated above, the inflation factor is based on test sta-
tions and is extrapolated to the entire grid mesh via interpola-
tion. To gain a comprehensive understanding of the approach
proposed in this study, it is important to evaluate ensemble
performance in areas where neither training nor test stations
are available. An experiment is conducted by dividing the
stations into three groups: (1) training stations that partici-
pate in the computation of analysis, (2) test stations used to
calculate the inflation factor, and (3) outside stations that are
excluded from both the analysis and inflation factor calcula-
tion. The outside stations actually represent the areas with no
observation information, where the data in these areas gener-
ally tend to align with the first guess. Verifying the ensemble
at the outside stations evaluates the representation of uncer-
tainty in areas dependent solely on interpolation. Figure 5
shows the rank histogram for T2 m at the outside stations dur-
ing summer, both without and with the inflation factor. The
rank histogram illustrates that the inflation factor increases
the dispersion at the outside stations. However, the spread is
around 0.73, which is less than that of the test stations (0.89).
In addition, as observed in Fig. 5b, the ensemble is slightly
underdispersive and exhibits a cold bias. The results high-
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light a limitation of the approach: the inflation factor relies
on stations not used in the analysis computation but that ex-
ist in practice. This factor cannot adequately represent the
complexity of interpolation uncertainty in areas where there
are truly no stations. One potential improvement would be to
explore whether some predictors could help inflation factors
to extrapolate this information to the outside station sites.

Figure 6 shows the Talagrand diagram and reliability dia-
gram for QQ2 m and RH2m in both summer and winter. The
ensemble for QQ2 m in summer has a high resolution and re-
liability at different thresholds. Additionally, the flatness of
the rank histogram indicates that the uncertainty has been es-
timated accurately. The conversion of RH2m involves tem-
perature. To avoid the influence of temperature uncertainty
on the variable conversion, only deterministic temperature
observation is used in the humidity module. Therefore, this
study does not account for the interplay effects between dif-
ferent variables. As a result, systematic biases in T2 m within
SIVA will propagate into RH2m, causing a dry bias in win-
ter. In addition, the rank histogram and reliability for RH2m
illustrate that the ensemble is underdispersive due to the ne-
glect of variable conversion.

Figure 7 shows the Talagrand diagram and reliability dia-
gram for wind components in summer and winter. A positive
value of U10 m (V10 m) represents westerly (southerly) wind,
while a negative value means easterly (northerly) wind. The
bias for wind ensembles observed on the reliability curve is
primarily caused by the representation of uncertainty in the
wind direction. For example, when U10 m is +1 m s−1, the
ensemble values may be−1 m s−1, leading to significant bias
due to the opposing wind direction. Although both U10 and
V10 display a flat rank histogram, Rrs is less than 1 (Table 1)
and the reliability curve does not match the diagonal line.
These results suggest that the ensemble analysis of the wind
components is less effective in reflecting uncertainty com-
pared to T2 m. A probable solution is to consider the impact
of wind direction on observation data.

4.2 Verification of nowcasting

Verifications of ensemble analysis demonstrate the reliabil-
ity of the uncertainty estimation. The ensemble provides a
spread at the initial time of nowcasting and exhibits a rea-
sonable error that is consistent with the deterministic anal-
ysis. To evaluate the transmission effect of the spread in
forecast extrapolation, the perturbed analyses are employed
to compute ensemble nowcasting. Due to the range limita-
tion in variable conversion, direct-ensemble nowcasting for
RH2m is unfeasible. For wind, SIVA assigns a weight to the
first guess based on an extrapolation step function. As the ef-
fectiveness of the extrapolation method gradually diminishes
with the prolongation of the time steps, the weight assigned
to the uncertainty information decreases when extrapolating
to a lead time of 3 h. Hence, the ensemble nowcasting of wind

is limited to a lead time of 2 h, while T2 m and QQ2 m are ex-
trapolated up to a lead time of 6 h.

4.2.1 Ensemble bias and RMSE

Figure 8 shows that the bias and RMSE of the ensemble
mean are nearly identical to those of deterministic nowcast-
ing (hereafter called CNOW). As described in Sect. 4.1, the
primary objective of this work is to quantify the uncertainty
using a perturbation approach. The introduced perturbations
are Gaussian-distributed with a mean of zero. In this context,
the scores (bias and RMSE) of the ensemble mean should
remain consistent with those of the deterministic reference.
This ensures that the perturbations do not introduce addi-
tional biases while maintaining an accurate representation of
uncertainty.

The increases in the ensemble spread for both the training
and test stations are consistent with those of the deterministic
references and RMSE (Fig. 8). However, a certain degree of
underdispersion can be observed as the lead times increase.
One reason is that the extrapolation is based on the persis-
tence of the first guess, which can only provide deterministic
information. Although the first guess is perturbed at the ini-
tial time of the nowcasting, no additional noise is introduced
into the forecasting. Therefore, the nowcasting uncertainty
depends completely on the ensemble analysis. Furthermore,
the perturbations in areas with test stations are amplified by
the inflation factor. However, at the test stations, the differ-
ence between the spread and the RMSE is more pronounced
than at the training stations. This phenomenon indicates that,
although the inflation factor can amplify the spread in ar-
eas without stations, it does not fully capture the uncertainty
from the complex interpolation in the analysis calculation.
The ensemble nowcasting for specific humidity is also calcu-
lated, and due to its similarity to the temperature calculation
framework the results are generally consistent.

For the wind components, the spread is consistent with
the RMSE of the ensemble mean (Fig. 9). This could be at-
tributed to the estimation of the lowest model layer through
the divergence constraint after wind correction (3DRF),
thereby avoiding dispersion attenuation caused by 2D in-
terpolation. The ensemble nowcasting for the wind compo-
nent shows a reliable spread that can be transmitted effec-
tively without causing unusual increases in errors. However,
when the lead time exceeds 3 h, the forecast is entirely rep-
resented by the first guess. Therefore, using an ensemble of
first guesses is a promising approach for improving the un-
certainty estimation of wind speed. Additionally, this may
enhance the ability of the inflation factor to more compre-
hensively represent the interpolation uncertainty.

4.2.2 Probability scores

The reliability of T2 m is evaluated in Fig. 10 in terms of the
Talagrand diagram and reliability diagram, which are valid at
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Figure 5. Talagrand diagram for T2 m ensemble analysis without (a) and with (b) inflation in summer, averaged over all the outside stations.

Figure 6. Talagrand (a, b) and reliability (c–f) diagrams for the ensemble analysis of QQ (g g−1) and RH (%), averaged over all the test
stations.

the lead time +6 h. The verification reference is the observa-
tion at the test stations. The rank histogram displays a slight
“L shape”, indicating a warm bias in the ensemble nowcast-
ing. One reason is that the persistence of NWP is carried
over into the extrapolation. At each time step, the NWP fore-
cast adjusts by subtracting the previous step to represent the
predictive trend of the variables, thereby converting the cold
bias into a warm bias at the opposite site. In the reliability
diagram, the thresholds are the quartile of the ranked tem-
perature in both summer and winter. At each threshold, the
ensemble probabilities align closely with the observed fre-
quency. The high reliability and resolution of T2 m ensemble
nowcasting at a lead time of 6 h highlight the effectiveness
of the proposed approach in quantifying the nowcast uncer-
tainty.

U10 m and V10 m have similar characteristics in the veri-
fication results. The verification of U10 m shows that ensem-
ble nowcasting performs with better reliability and resolution
in summer compared to winter (Fig. 11). The evident bias
for the summer U10 m, as depicted on the reliability curve
(Fig. 11b), suggests that ensembles struggle to capture wind

direction uncertainty during periods of significant wind vari-
ability. This limitation arises from the lack of appropriate ob-
servational perturbations. In the calibration of wind compo-
nents, vertical wind is used to calculate divergence in order
to constrain the horizontal wind. Hence, the interpolation of
wind differs from that of temperature. The divergence con-
straints cause the first-guess error to incorporate additional
information in order to calibrate the first guess. For this rea-
son, it is difficult to fully understand the impact of the per-
turbation on the observations. Consequently, the reliability of
the wind components is lower than that of the temperature.
Further research should address these difficulties by account-
ing for the impact of divergence constraints.

5 Conclusion and discussion

This study proposes an efficient perturbation method to
quantify the uncertainty of near-surface atmosphere analy-
sis. Gaussian-distributed noise, generated based on the error
characteristic, simulates the propagation of the uncertainty in
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Figure 7. Same as Fig. 6 but for U10 m and V10 m (m s−1).

Figure 8. Bias (a, b) and RMSE (c, d) for the deterministic reference (black, CNOW,©) and ensemble mean (grey, ENS, ×) as a function
of the forecast lead time. The ensemble spread is represented by the dashed grey line (×). These scores are averaged over all the training
stations (a, c) or test stations (b, d) for August 2020.

the analysis computation. An inflation factor is computed to
simulate the attenuation of perturbation dispersion during the
interpolation process. The ensemble analysis offers a robust
estimation of surface uncertainty at the initial time of now-
casting, aligning with the error increment observed in now-
casting extrapolation.

Adding noise to both observations and first guesses reflects
the dispersion of the analysis error, which reflects the anal-
ysis uncertainty, especially in the areas without stations. For
temperature, the spatial uncertainty caused by terrain can be
addressed by incorporating the perturbed field with terrain
information during interpolation. For humidity, its intrinsic
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Figure 9. RMSE of the deterministic nowcasting (black,©), ensemble mean (black, ×), and ensemble spread (grey, ×) for U10 m in both
August 2020 (a) and February 2021 (b), averaged over all the test stations.

Figure 10. Talagrand (a) and reliability (b, c) diagrams for the ensemble nowcasting at a lead time of 6 h of T2 m (°), verified over all the test
stations.

correlation with temperature affects the estimation of the er-
ror uncertainty. For the wind components, the divergence
constraint does not account for variations in perturbation in-
formation, resulting in an increased RMSE. Addressing this
issue could be a focus of future improvements.

The ensemble analysis verification for all the variables
demonstrates reliable representation of analysis uncertainty.
However, wind components suffer from the influence of di-
vergence constraints. Relative humidity is influenced by vari-
able conversion processes, leading to an underdispersive en-
semble.

The flat Talagrand diagrams illustrate that ensembles ef-
fectively estimate the probable range of true values. Intro-
ducing perturbations into analysis computation effectively
quantifies the uncertainty of near-surface variables in both
magnitude and spatial distribution. A limitation of the current

method is that the inflation factor cannot represent the com-
plexity of interpolation uncertainty. A possible improvement
would be to see whether there are some predictors which
could help inflation factors extrapolate perturbation informa-
tion to the areas where there are truly no stations.

The ensemble analysis provides a reliable presentation of
uncertainty at the initial time of nowcasting. The errors in en-
semble nowcasting match those of deterministic nowcasting,
and the growth of the ensemble spread aligns with the error
growth trend in nowcasting extrapolation. Since this method
does not account for the uncertainty derived by NWP sys-
tematic errors and the relativity of different variables, the en-
semble nowcasting is slightly underdispersive.

The perturbed first-guess errors, along with the spread and
error of the ensemble, are associated with the analysis er-
rors observed at the test stations. The perturbation method
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Figure 11. Same as Fig. 10 but for U10 m (m s−1).

in this study addresses the challenge in accurately represent-
ing the uncertainty of near-surface deterministic analysis.
This method enhances the estimation of near-surface analy-
sis uncertainty for both nowcasting applications and ensem-
ble nowcasting development. Further improvements could
involve considering the uncertainty in estimating the first-
guess error of multi-source NWP in order to obtain a more
comprehensive spatial uncertainty representation.

Appendix A: Case of generating temperature
perturbation

Listing A1 presents how to generate perturbation for both
observations and NWP. This case is for 2 m temperature,
while the specific humidity and wind components have
similar processes. The input files sta_inf and grid_inf are
the example temperature data and the corresponding stan-
dard deviation of the first-guess error. Due to the confiden-
tiality agreement, these files only include the temperature
value. The variable inflation in grid_inf is the inflation fac-
tor which is used to rescale the perturbed NWP. Since the
standard deviation of the perturbation generated by the func-
tion numpy.random.normal exists offset, the factors sc_sta
and sc_grid are used to ensure that the scale of the perturba-
tion is consistent with the scale of the first-guess error.
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Listing A1. Processes of generating random perturbation and rescaling the perturbed NWP using the inflation factor.

Code and data availability. The information data, example data,
and corresponding codes for generating the perturbation are
archived on Zenodo at https://doi.org/10.5281/zenodo.11243716
(Zhu, 2024). Due to the confidentiality policy, the code and datasets
of SIVA that are utilized in this study are not in the public domain
and cannot be distributed.

Supplement. The supplement related to this article is available on-
line at https://doi.org/10.5194/gmd-18-1545-2025-supplement.
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