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Abstract. The Community Inversion Framework (CIF)
brings together methods for estimating greenhouse gas fluxes
from atmospheric observations. While the analytical and
variational optimization methods implemented in CIF are op-
erational and have proved to be accurate and efficient, the ini-
tial ensemble method was found to be incomplete and could
hardly be compared to other ensemble methods employed
in the inversion community, mainly owing to strong perfor-
mance limitations and absence of localization methods. In
this paper, we present and evaluate a new implementation of
the ensemble mode, building upon the initial developments.
As a first step, we chose to implement the serial and batch
versions of the ensemble square root filter (EnSRF) algo-
rithm because it is widely employed in the inversion commu-
nity. We provide a comprehensive description of the technical
implementation in CIF and the useful features it can provide
to users. Finally, we demonstrate the capabilities of the CIF-
EnSRF system using a large number of synthetic experiments
over Europe with the flexible and scalable high-performance
atmospheric transport model ICON-ART, exploring the sys-
tem’s sensitivity to multiple parameters that can be tuned by
users. As expected, the results are sensitive to the ensem-
ble size and localization parameters. Other tested parameters,
such as the number of lags, the propagation factors, or the lo-
calization function, can also have a substantial influence on
the results. We also introduce and provide a way of interpret-
ing a set of metrics that are automatically computed by CIF

and that can help assess the success of inversions and com-
pare them. This work complements previous efforts focused
on other inversion methods within CIF. While ICON-ART
has been used for testing in this work, the integration of these
new ensemble algorithms enables any atmospheric transport
model to perform inversions, fully leveraging CIF’s robust
capabilities.

1 Introduction

Global warming is caused by the accumulation of green-
house gases (GHGs) in the atmosphere, such as carbon diox-
ide (CO2), methane (CH4), nitrous oxide (N2O), and syn-
thetic gases. The atmospheric concentrations of these GHGs
have been drastically increasing since the pre-industrial era
(in 2019 compared to 1750 – CO2: +47 %, CH4: +156 %,
N2O:+23 %; Gulev et al., 2021) due to the intensification of
human activities worldwide. As the international community
recognized the existence of the link between human activi-
ties and global warming, the urge to gain a comprehensive
understanding of the varied sources of GHGs, both natural
and anthropogenic, across diverse sectors and geographical
regions, has been intensifying.

In response to this imperative, concerted efforts have been
made to continuously develop observational networks across
the globe (e.g., Schuldt et al., 2023; Ramonet et al., 2020;
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Prinn et al., 2000; Dlugokencky et al., 1994). In tandem with
ground-based networks, advancements in remote sensing
technologies have considerably expanded geographical cov-
erage and have enabled frequent observations over remote ar-
eas (e.g., Taylor et al., 2023; Lauvaux et al., 2022; Suto et al.,
2021; Parker et al., 2020; Hu et al., 2018; Frankenberg et al.,
2006). These ever-growing datasets generated by monitor-
ing networks and satellite observations provide an unprece-
dented wealth of information on greenhouse gases and call
for innovative techniques, such as data assimilation methods,
capable of extracting pertinent information from these data.

Data assimilation methods were originally designed for
numerical weather prediction (NWP) to deal with the chaotic
behavior of the atmosphere (Ghil and Malanotte-Rizzoli,
1991). Data assimilation allows for the integration of obser-
vational information into complex NWP models and contin-
uously refines and updates their predictions, therefore pro-
viding better analyses and forecasts of the atmospheric state.
Given the established efficacy of data assimilation techniques
in weather forecasting, they found a natural extension into
the realm of GHG flux estimation in the late 1980s and
early 1990s (Enting and Newsam, 1990a; Newsam and Ent-
ing, 1988). For these applications, the term “inversion” is
preferred to “data assimilation”. The explanation is simple: a
chemical transport model (CTM) serves as an operator link-
ing input data (e.g., fluxes) and observable quantities (e.g., at-
mospheric concentrations). The input data are only boundary
conditions for the prognostic equations solved by the model
to obtain a numerical estimate of the observable quantities.
When observations of these quantities are utilized to refine
model input, the process is said to be inverted.

Over time, multiple inversion methods have been designed
by the scientific community to provide optimized estimates
of fluxes. Despite important differences between these algo-
rithms, they share a common theoretical foundation, which
is Bayes’ theorem, and aim to minimize a specific cost func-
tion. These algorithms can be broadly classified into four dis-
tinct groups: analytical (e.g., Wittig et al., 2023; Wang et al.,
2018; Bousquet et al., 2011; Stohl et al., 2009; Kopacz et al.,
2009), variational (e.g., Thanwerdas et al., 2024; Fortems-
Cheiney et al., 2021; Chevallier et al., 2010, 2005), ensem-
ble (e.g., Steiner et al., 2024; Tsuruta et al., 2017; van der
Laan-Luijkx et al., 2015; Bruhwiler et al., 2014; Kim et al.,
2014a, b; Peters et al., 2007, 2005), and Monte Carlo Markov
chain (MCMC) methods (e.g., Zammit-Mangion et al., 2016;
Miller et al., 2014; Ganesan et al., 2014; Mukherjee et al.,
2011), each presenting a particular set of strengths and weak-
nesses. Within the inversion community, individual research
groups have commonly designed and employed distinct com-
binations of inversion systems and CTMs with varying trans-
parency of specific implementations and their continuous
development, applying them to a range of trace gases and
various types of observations depending on the application.
This variety of combinations, coupled with the lack of trans-
parency regarding advancements, poses a challenge to the in-

version community in terms of leveraging previous develop-
ments and avoiding redundant feature development.

The Community Inversion Framework (CIF; Berchet et al.,
2021, or hereinafter BA21) has been designed to bring to-
gether the different inversion methods and CTMs used in the
community. It is built as an open-source, thoroughly doc-
umented, highly modular multi-model inversion framework
written in Python that facilitates the comparison of (1) inver-
sion methods and (2) CTMs. Additionally, CIF is constantly
being updated and enhanced, based on user feedback. Conse-
quently, it serves as a robust foundation upon which the com-
munity can build and continue to produce accurate estimates
of GHG (and other species) fluxes in a reasonable computa-
tional time. It is important to note that other similar inversion
systems exist and are used in the inversion community. One
prominent example is the CarbonTracker Data Assimilation
Shell (CTDAS; van der Laan-Luijkx et al., 2017; Peters et al.,
2005), a well-established system widely employed for deriv-
ing optimized estimates of GHG fluxes, mainly with ensem-
ble methods (Steiner et al., 2024; Tsuruta et al., 2023; He
et al., 2018).

The analytical and variational methods implemented in
CIF are operational and have proved to be accurate and com-
putationally performant (Fortems-Cheiney et al., 2024; Wit-
tig et al., 2023; Savas et al., 2023; Remaud et al., 2022;
Thanwerdas et al., 2024, 2022a, b). However, analytical
methods become excessively expensive for large inversion
problems, and CTMs without an adjoint cannot use the vari-
ational methods. The increasing need for running CIF inver-
sions with these CTMs has therefore made the imperative to
employ efficient ensemble methods more pressing. However,
the initial ensemble method presented in BA21 was found
to be incomplete and could hardly be compared to other
published ensemble methods, mainly owing to strong per-
formance limitations and the absence of localization meth-
ods, as well as errors in the generation of ensembles and
the propagation of information from one cycle to another.
This method therefore needed improvements, which were
initiated when performing CO2 inversions with CIF using
different models and inversion setups as part of the Hori-
zon 2020 CoCO2 project (Berchet et al., 2023). The model
ICON-ART (Zängl et al., 2015; Rieger et al., 2015), de-
scribed in Sect. 4.1.1, was one of these models. It is uti-
lized here to showcase the capabilities of the new ensemble
method in CIF.

This work therefore presents the recent developments to
the ensemble method in CIF. Section 2 introduces the con-
ceptual framework governing ensemble methods, with a spe-
cific focus on the method implemented in CIF. Section 3
describes the technical implementation of this method and
highlights the main benefits for the inversion community.
Section 4 demonstrates the potential of this new method us-
ing a large set of experiments with synthetic data over Europe
using ICON-ART. Section 5 provides a summary of the key
findings and explores envisioned future developments.
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2 Theoretical formulation

Here, we provide an overview of the general theoretical
framework designed for atmospheric inversions (Enting,
2002; Enting et al., 1995, 1993; Enting and Newsam, 1990b;
Tarantola, 1987; Cunnold et al., 1983; Gelb, 1974), with a
specific focus on ensemble methods.

2.1 Kalman filter

An atmospheric inversion seeks to optimize the variables in-
cluded in the control vector (also called state or target vec-
tor), denoted by x (of dimension n), based on the observation
vector yo (p). An observation operator H(.) (n 7−→ p) links
the control space and the observation space, where the con-
trol and observation vectors are respectively defined. In the
Bayesian approach, a prior (or background) control vector xb

is updated such that the resulting posterior (or analysis) con-
trol vector xa maximizes the conditional probability density
p(x|yo). Bayes’ theorem states that

p(x|yo) α p
(
yo
|x
)
·p(x). (1)

Errors in the observations and the prior control vector in
atmospheric inversions are typically assumed to be unbiased,
although it is difficult to accurately characterize potential bi-
ases. Gaussian distributions, denoted by N (.), are frequently
assumed to represent errors for two main reasons. (1) Errors
can be thought of as the sum of several small, independent ef-
fects (i.e., random variables). According to the central limit
theorem, this sum tends to follow a Gaussian distribution.
Consequently, assuming such a distribution is reasonable in
the absence of better information. (2) Algorithms that as-
sume Gaussian distributions are generally simpler to under-
stand and implement because this assumption simplifies the
mathematics involved. Consequently, the probability density
functions associated with the errors are defined by

p(x)=N
(
xb,B

)
⇒ p

(
x− xb

)
= p

(
εb
)
=N (0,B), (2)

p
(
yo
|x
)
=N (H(x),R)⇒ p

(
yo
−H(x)|x

)
= p

(
εo
|x
)
=N (0,R), (3)

where εb
= x−xb and εo

= yo
−H(x) are the background

and observation errors, respectively. B= E[(εb)(εb)T] and
R= E[(εo)(εo)T] are the background-error and observation-
error covariance matrices, respectively, with E[.] being
the expectation operator. When the probability distribu-
tions p(x) and p(yo

|x) are Gaussian, the left-hand side of
Bayes’ theorem in Eq. (1) also follows a Gaussian distribu-
tion,

p
(
x|yo)

=N
(
xa,Pa)

⇒ p
(
x− xa

|yo)
= p

(
εa
|yo)
=N

(
0,Pa) , (4)

where εa
= x−xa and Pa

= E[(εa)(εa)T] define the analysis-
error and analysis-error covariance matrix, respectively. It
follows that xa is the vector minimizing the quadratic cost
function J (.) defined by

J (x)=
1
2

(
x− xb

)T
B−1

(
x− xb

)
+

1
2

(
H(x)− yo)T

R−1 (H(x)− yo) (5)

= J b(x)+ J o(x), (6)

where J o(x) and J b(x) are the contributions of the obser-
vations and the background to the total cost function, re-
spectively. Minimizing J means finding the optimal balance
between fitting the atmospheric measurements and remain-
ing close to the prior estimate. The error covariance matri-
ces determine the relative weight assigned to each of these
objectives. If it is additionally assumed that H is linear,
H(x)=Hx, where H is the Jacobian matrix of H, the an-
alytical solution for xa is given by

xa
= xb

+K
(
yo
−Hxb

)
(7)

with

K= BHT(HBHT
+R

)−1
. (8)

K (n×p) is called the gain matrix.
Utilizing the Sherman–Morrison–Woodbury identity, it

can also be expressed as

K=
(

B−1
+HTR−1H

)−1
HTR−1. (9)

Using Eqs. (7) and (8), it is also possible to derive an ana-
lytical formulation for the analysis-error covariance matrix,

Pa
= (In−KH)B, (10)

where In is the identity matrix of size n.
This analytical solution in Eq. (8) is the update phase of

the so-called Kalman filter (KF; Kalman, 1960), which was
specifically designed to optimize a prior estimate of a state
vector using a set of observations. Other teams have ex-
tended this framework to non-Gaussian distributions (e.g.,
truncated Gaussian densities, semi-exponential, log-normal
distributions; Lunt et al., 2016; Miller et al., 2014; Ganesan
et al., 2014; Bergamaschi et al., 2010; Michalak and Kitani-
dis, 2005), although this complicates the derivation of the so-
lution. Additionally, an alternative version of the KF, known
as the extended Kalman filter (EKF; Evensen, 1993, 1992;
Brunner et al., 2012), can be employed when H is nonlinear.
For inversion applications, this filter consists simply of lin-
earizing H around the background control vector to be able
to apply the KF equations. For example, consider a scenario
in which CH4 is transported by the CTM, and its reaction
with OH, the primary CH4 sink, is included in the model.
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If both CH4 emissions and OH concentrations are treated
as optimized variables (i.e., included in the control vector),
the observation operator becomes nonlinear. In this case, the
observation operator must be linearized before applying the
KF equations. However, if OH concentrations are not in-
cluded in the optimization process, the observation operator
remains linear, allowing the implementation of the KF.

There are subtle differences in the utilization of KF equa-
tions between NWP and inversion applications. In the con-
text of NWP, optimization of the control vector occurs at dif-
ferent time steps (analysis steps), incorporating both the prior
control vector and the observations available at that time step.
After the analysis at time step t , a forecast operator, denoted
by F , uses the newly optimized state to advance the predic-
tion and generates the background control vector for the fol-
lowing assimilation time step t + 1,

xb
t+1 = F

(
xa
t

)
. (11)

Equation (11) describes the evolution of meteorological
fields due to complex nonlinear dynamical processes link-
ing two different time steps. In the context of atmospheric
inversion, in contrast, the forecast model links the optimized
fluxes at one assimilation time step to the background fluxes
at the next assimilation time step. Since no established re-
lationship exists, persistence of fluxes is often assumed for
simplicity (Brunner et al., 2012; Peters et al., 2005). Addi-
tionally, deriving the observation operator H in matrix for-
mat is more challenging in the context of inversion than in
NWP. This is because defining the relationship between the
control space (e.g., fluxes) and the observation space (e.g., at-
mospheric concentrations) requires a CTM, whereas in NWP,
control variables are often observed.

The analytical inversion method directly applies the KF
equations presented above to derive the optimal solution.
However, the explicit derivation of H and its transpose HT

requires n forward runs of the CTM or min(n, p) forward
runs in the case that the CTM is Lagrangian or if an adjoint
version of the model is available. Building H can therefore
be excessively expensive, especially when both optimizing
numerous variables and assimilating a large number of ob-
servations.

The other two methods, variational and ensemble, offer
different solutions to cope with this limitation. In this study,
we focus on ensemble methods.

2.2 Ensemble Kalman filter and square root filters

The ensemble methods utilized in atmospheric inversions
drew inspiration from the original ensemble Kalman fil-
ter (EnKF) introduced by Evensen (1994) for NWP. EnKF,
rooted in Monte Carlo methods, was initially designed to sur-
pass the results of the EKF, avoid the linearization of a non-
linear forecast model, and enhance the derivation of forecast-
error statistics after each analysis. The principle is that an
ensemble of vectors is used to represent the probability dis-

tribution of the control vector. Each member of the ensemble
produces a different forecast, and the ensembles of control
vectors and forecasts are used to compute the posterior con-
trol vector xa using Eq. (7). This algorithm has undergone
improvements through subsequent studies (Houtekamer and
Mitchell, 1998; Burgers et al., 1998). In particular, these
studies account for measurement noise by creating a per-
turbed observation vector for each member of the ensemble.
This enhanced algorithm is now recognized as the stochastic
EnKF.

A few years later, deterministic versions of the EnKF were
developed: the ensemble transform Kalman filter (ETKF;
Bishop et al., 2001), ensemble adjustment Kalman filter
(EAKF; Anderson, 2001), ensemble square root filter (En-
SRF; Whitaker and Hamill, 2002), and local ensemble trans-
form Kalman filter (LETKF; Hunt et al., 2007), to circum-
vent sampling issues associated with the use of perturbed
observations. Deterministic methods have been shown to be
more accurate than their stochastic counterparts (e.g., Tippett
et al., 2003). It should be emphasized that despite the name
chosen for the EnSRF, all the aforementioned deterministic
versions of EnKF belong to the family of square root filters
(Livings et al., 2008; Tippett et al., 2003).

In a square root filter, the background-error covariance ma-
trix is decomposed as B= ZZT, where Z [n×N ] is a square
root matrix of B. In an ensemble representation, N denotes
the number of samples in the ensemble, and we further de-
fine X and X′ such that

Z=
1

√
N − 1

(X− x )=
1

√
N − 1

X′, (12)

where = (1, . . ., 1) is the unit matrix of dimension [1×N ],
X= (x1, . . ., xN ) [n×N ] represents an ensemble of N con-
trol vectors, and X′ = (x′1, . . ., x

′

N ) [n×N ] represents the

deviations around the mean x = 1
N

N∑
i=1
xi [n× 1].

This definition of the square root of B offers an intuitive
approach to solving the inversion problem: we create an en-
semble of perturbed control vectors xi that samples the prior
distribution N (xb,B), and then we employ the KF equations
to incorporate observational knowledge and approximate the
posterior distribution N (xa,Pa). In the limit of N

∞
−→, the

covariance matrix calculated from X′ is equal to B. However,
in a practical scenario where N is relatively small compared
to n and the dimension of B, we can only achieve an approx-
imation of B, denoted by BN ,

BN =
1

N − 1
X′X′T N→∞

−→ B. (13)

The primary benefit of the ensemble method is the abil-
ity to approximate the model–observation covariance ma-
trix BHT and the observation–observation covariance matrix
HBHT in Eq. (8) without the necessity of explicitly comput-
ing H,
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BHT
≈ BNHT

=
1

N − 1
X′Y′T, (14)

HBHT
≈HBNHT

=
1

N − 1
Y′Y′T, (15)

where Y′ =HX′ = (Hx′1, . . ., Hx′N )= (y
′

1, . . ., y
′

N ).
Consequently, the columns of Y′ [p×N ] are obtained by

transporting N + 1 sample tracers with the CTM: one tracer
associated with the ensemble mean x and N tracers associ-
ated with the deviations x′i . The perturbed control vectors xi
can also be transported instead of the deviations because
Hx′i =Hxi −Hx. In CIF, this option is preferred.

The Kalman gain matrix K can be explicitly computed,
and the ensemble mean is updated using Eq. (7),

xa
= x+

1
N − 1

X′Y′TD−1d, (16)

where d = yo
−H(x) is the innovation vector and D=

1
N−1 Y′Y′T+R is the innovation covariance matrix.

The analysis ensemble is then given by

Xa
= xa

+X′a, (17)

where the updated deviations X′a cannot be simply calcu-
lated using an equivalent of Eq. (16). In a deterministic EnKF
algorithm, the analysis-error covariance matrix is formed us-
ing the square root formulation

Pa
=

1
N − 1

(
X′a
)(

X′a
)T
. (18)

It must approximate its Kalman filter counterpart,

Pa
= (In−KH)BN (19)

=
1

N − 1
(In−KH)X′X′T (20)

=
1

N − 1
X′
(

IN −Y′TD−1Y′
)

X′T. (21)

It follows that

X′a = X′T, (22)

where T [N ×N ] is called the transform matrix and satisfies

TTT
= IN −Y′TD−1Y′. (23)

The solution of this equation is not unique because if we de-
fine L= TU, where U is any orthogonal transform UUT

=

UTU= IN , then L is also a solution. Hence, the definition of
T is a key difference between the deterministic algorithms.
In the next section, we focus on the algorithm we chose to
implement in CIF.

2.3 Ensemble square root filter

The EnSRF has already been employed with the models TM5
(Krol et al., 2005), WRF-Chem (Skamarock et al., 2021;
Grell et al., 2005), STILT (Lin et al., 2003), and ICON-ART
(Schröter et al., 2018; Zängl et al., 2015) to perform inver-
sions for different species and at different scales (Steiner
et al., 2024; Reum et al., 2020; Mannisenaho et al., 2023;
Tsuruta et al., 2023; He et al., 2018; Tsuruta et al., 2017).
Hence, to foster interest from other inverse modeling groups
and to allow them to directly compare with their existing
tools, BA21 implemented a preliminary version of the En-
SRF in CIF as a first step. We elaborate on this method in
detail in this section.

2.3.1 Batch EnSRF

In Whitaker and Hamill (2002), the authors investigated a
formulation in which

X′a =
(

In− K̂H
)

X′, (24)

where K̂ is sought such that Eq. (10) is satisfied. The solution
is

K̂= BNHTD−
1
2

(
D

1
2 +R

1
2

)−1

=
1

N − 1
X′Y′TD−

1
2

(
D

1
2 +R

1
2

)−1
. (25)

As the derivation is not trivial and can be found in Whitaker
and Hamill (2002) and references therein, we refrain from
presenting it here. It follows that

X′a =
(

In− K̂H
)

X′ = X′
(

IN −
1

N − 1
Y′TVY′

)
, (26)

where V= D−
1
2

(
D

1
2 +R

1
2

)−1
. Note that this formulation

also defines the transformation matrix T= IN− 1
N−1 Y′TVY′

for the EnSRF. Since this version of the EnSRF assimilates
the observations simultaneously, it is referred to as the batch
EnSRF.

2.3.2 Serial EnSRF

Whitaker and Hamill (2002) also introduced an alternative
approach, called the serial EnSRF. In the serial EnSRF al-
gorithm, the observations are processed serially (one at a
time), in order to reduce the substantial computational cost
that can be associated with matrix inversion. This is feasible
only when observation errors are uncorrelated, namely when
the R matrix is diagonal. In this case, batch EnSRF and serial
EnSRF are mathematically equivalent (Kotsuki et al., 2017;
Nerger, 2015; Whitaker and Hamill, 2002) and thus provide
identical results. If observation errors are correlated, several
approaches can be employed to remove or mitigate the er-
ror correlations: (1) use another space of observations where

https://doi.org/10.5194/gmd-18-1505-2025 Geosci. Model Dev., 18, 1505–1544, 2025
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the error covariance matrix R becomes diagonal; (2) average
(temporally or spatially) the observations, as is often done
for satellite observations; or (3) apply error inflation, as de-
scribed in Chevallier (2007). Additionally, observations with
correlated errors can be processed using the batch EnSRF
as an alternative. When the single observation j is assimi-
lated, R, D, and d become scalars, denoted by rj ,Dj , and dj .
Additionally, Y′ is reduced to an N -dimensional vector, de-
noted by y′j .

Consequently, Eqs. (16) and (26) are revised as follows
to update the mean and deviations of the ensemble based on
observation j :

xa
= x+ djkj , (27)

X′a = X′−αkjy′
T
j , (28)

where kj =
1
Dj

1
N−1 X′y′j and α =

(
1+

√
rj
Dj

)−1
. After

each observation is assimilated, the analyzed state is used as
the new background for the next observation, until all obser-
vations are processed. Consequently, the vector Y′ must also
be updated at each step. It is calculated as

ya
=Hxa

=Hx+ dj lj , (29)

Y′a = Y′−αljy′
T
j , (30)

where lj = 1
Dj

1
N−1 Y′y′j .

All observations are processed until the final analyzed
state is reached.

2.3.3 Ensemble square root smoother

After the KF theory presented in Sect. 2.1 had been applied
in several studies to estimate surface emissions of trace gases
(e.g., Haas-Laursen et al., 1996; Hartley and Prinn, 1993),
Bruhwiler et al. (2005) introduced the fixed-lag Kalman
smoother to reduce the computational cost associated with
the processing of a large number of observations. The au-
thors initially observed that due to atmospheric mixing, in-
formation from a specific source location does not propagate
to atmospheric concentrations very far into the future. As a
result, only a subset of observations obtained after the emis-
sion, around the location of the source, is necessary to ef-
fectively constrain past fluxes. The time period over which
transport information is retained is called the fixed lag and
depends on the scale of the application (e.g., several months
for the global scale but less for the regional scale).

Peters et al. (2005) integrated this fixed-lag feature from
Bruhwiler et al. (2005) with the serial EnSRF algorithm from
Whitaker and Hamill (2002), which was later further devel-
oped into CTDAS (van der Laan-Luijkx et al., 2017). In this
system, the full assimilation period is split into windows of
finite length. For each window, fluxes within the window are
optimized using both the observations from the current win-
dow and the observations from a fixed number (lag) of subse-
quent windows. This version of the EnSRF algorithm, which

is the focus of this work, is described in detail in Sect. 3.1.
It is worth noting that while Peters et al. (2005) retained the
name EnSRF, their method could also be referred to as the
ensemble square root smoother (EnSRS).

2.3.4 Covariance localization

Due to sampling errors, spurious long-range correlations
tend to appear in BN, which can ultimately lead to a degraded
analysis. The so-called covariance localization technique has
been developed to mitigate this effect by filtering out the cor-
relations between distant locations or between variables that
have small correlations (Hamill et al., 2001; Houtekamer and
Mitchell, 2001, 1998).

Localization is typically performed by applying a Schur
product (element-wise multiplication, denoted by ◦) between
a covariance matrix and a localization matrix L [n×p]. Each
element Li,j is defined using some decreasing function of the
distance between the locations of the ith and j th elements.
Two types of localization exist: while the R localization is
applied on the observation-error covariance matrix R, the
B localization operates on the background-error covariance
matrix B (Hotta and Ota, 2021).

The B localization can further be split into the model-
space localization and the observation-space localization
(Shlyaeva et al., 2019). The model-space B localization di-
rectly transforms BN = 1

N−1 X′X′T and the gain matrix K.
When applied to the batch EnSRF equations, we have

Kloc,model = (L ◦BN )HT(H(L ◦BN )HT
+R

)−1
. (31)

The observation-space B localization modifies the
model–observation covariance BNHT

=
1

N−1 X′Y′T and the
observation–observation covariance HBNHT

=
1

N−1 Y′Y′T

separately. Two different localization matrices, L1 [n×p]
and L2 [p×p], are therefore necessary,

Kloc,obs =
(
L1 ◦

(
BNHT))(L2 ◦

(
HBNHT)

+R
)−1

. (32)

In the context of inversion performed with EnSRF,
observation-space B localization is preferred over model-
space B localization because H is not explicitly computed. It
is important to note that applying localization invalidates the
mathematical equivalence between serial and batch EnSRF,
as well as between serial EnSRF algorithms executed with
different assimilation orders (Kotsuki et al., 2017; Nerger,
2015).

3 Technical implementation of the CIF-EnSRF

Many improvements have been introduced since the initial
implementation of EnSRF in CIF by BA21. Here, we de-
scribe the new CIF-EnSRF workflow comprehensively and
highlight the various enhancements.
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3.1 Implementation details

The objective of an inversion performed with the EnSRF
method is to optimize elements within a control vector, en-
compassing fluxes, boundary conditions, atmospheric con-
centrations, and potentially more. In our demonstration, we
specifically focus on fluxes and optimize scaling factors ap-
plied to a prior estimate of these fluxes. The full assimila-
tion time period is partitioned into several windows of finite
length. For each window, a single scaling factor is associated
with each variable to optimize (e.g., flux emitted in a cell
of the horizontal domain). Consequently, selecting a shorter
window increases the temporal resolution of the optimized
variables. However, if the number of lags is unchanged, a
shorter window also means that the influence of the scaled
fluxes only propagates to assimilated observations that are
closer to the sources. A larger number of lags (1) increases
the computational cost but (2) may enhance the accuracy if
emissions in the present window affect the observations in
not only the present but also in subsequent windows. These
two statements are confirmed later by the synthetic experi-
ments (see Tables D1 and 3, respectively). One of the chal-
lenges in this inversion process is effectively managing the
trade-off between the window length, the number of lags, and
the computational cost.

3.1.1 Initialization and generation of samples

Through the YAML configuration file of CIF (http://yaml.
org, last access: 12 December 2024), users can define funda-
mental settings for the inversion process:

– datei, start date of the inversion;

– datef, end date of the inversion;

– window_length, length of a single window;

– nlag, number of windows within each cycle (conse-
quently, it also represents the number of times the con-
trol variables within a window are optimized by the sys-
tem).

As an illustrative example, we consider an inversion with
the following settings:

– datei, 2018-01-01;

– datef, 2018-03-02;

– window_length, 10D (i.e., 10 d);

– nlag, 2.

With these settings, the resulting inversion consists of six
cycles, each spanning 20 d (two windows of 10 d). When
an inversion is started with CIF, the system first reads the
configuration file and initializes all the relevant components,
namely the control vector x, the observation vector yo, the

background-error covariance matrix B, and the observation-
error covariance matrix R.

Each part of B corresponding to an optimized flux cat-
egory is initialized based on the parameters defined in the
configuration file. Corresponding eigenvectors and eigenval-
ues are computed and stored for future usage. Every time the
full B matrix must be accessed, Kronecker products are used
to compute it (see BA21 for further details).

Each member of the ensemble of control vectors must be
drawn from a multivariate Gaussian distribution N (xb,B).
We use the following result to generate this ensemble: if z is
an n-dimensional vector that follows a multivariate Gaussian
distribution N (0,In), then Cz+µ follows the distribution
N (µ,CCT), where µ is an n-dimensional vector, and C is a
matrix of dimension n× n.

Here we describe two simple methods that can be em-
ployed to generate C such that B= CCT. The first method
is the Cholesky decomposition, which decomposes B as
B= LLT, where L is a lower triangular matrix with positive
diagonal elements. The second method is a specific appli-
cation of the so-called singular value decomposition (SVD)
method. In our case, it can simply be called eigendecom-
position as B is a square real matrix. This method decom-
poses B as B=Q3QT, where Q is an orthogonal matrix
whose columns are the orthonormal eigenvectors of B, and
3 is a diagonal matrix whose entries are the eigenvalues of B.
As Q−1

=QT, we have C=Q3
1
2 QT.

In CIF, we employ the second method since the eigenval-
ues and eigenvectors of the B matrix are automatically com-
puted when the YAML configuration file is read. Therefore,
we first generate an ensemble of random vectors zi that each
follow a multivariate Gaussian distribution N (0,In) and then
apply the formula Q3

1
2 QTzi+x

b for each vector using Kro-
necker products to obtain random vectors that follow the dis-
tribution N (xb,B).

The computation of eigenvalues is performed using the
linalg.eigh function from the NumPy Python package, which
has a computational complexity of O(n3). However, per-
forming the decomposition of B via Kronecker products re-
duces this complexity to approximately O(s3), where s rep-
resents the number of variables to optimize within a sin-
gle window. The generation of random vectors, on the other
hand, has a complexity of O(n2) and can be computation-
ally demanding at the start of the inversion, particularly for
inversions spanning long periods. For typical real-data cases,
such as a 1-year inversion with a spatial resolution of approx-
imately 0.25° over a domain like Europe, these two steps may
take 1 to 2 h to complete. However, as shown in Table D1,
these steps are generally not the primary bottleneck in com-
putational time, with model simulations being significantly
more time-consuming.

The size of the ensemble N is defined by the user in the
configuration file. However, the total number of samples that
the CTM needs to transport is N + 3 because three “system-
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bound” samples are inserted at the beginning of the ensem-
ble:

1. The first additional sample is filled with ones only. Dur-
ing the pre-processing of inputs, the CIF routines con-
vert the scaling factors to perturbed fluxes. This con-
version is necessary to ensure that complex operations
(e.g., isotope operations on fluxes) can be performed.
The default behavior of CIF is to erase scaling fac-
tors after conversion. However, certain models, such as
ICON-ART, require scaling factors instead of perturbed
fluxes. The additional sample allows us to retrieve the
former from the latter.

Subsequently, CIF erases the variables containing the
scaling factors to limit memory allocation because most
CTMs only need the ensemble of physical fluxes. How-
ever, certain models (e.g., ICON-ART) currently require
inputting scaling factors rather than physical fluxes.
Therefore, the prior fluxes should always remain acces-
sible to recreate the scaling factors, which is not CIF’s
default behavior. This is an easy but performant fix that
might be improved in the future.

2. The second additional sample contains the prior values
of the scaling factors, which are not necessarily ones.

3. The third additional sample contains the ensemble
mean, i.e., the optimized scaling factors. This sample is
updated after each optimization. For the cycle being op-
timized, it is equal to the background control vector be-
fore the optimization and equal to the posterior control
vector after the optimization. Note that before starting
the inversion, the second and third additional samples
are equal.

We also added multiple optional settings that might be use-
ful in some cases:

– Random seed. Using the same random seed for two dif-
ferent inversions, all the other parameters being equal,
will always generate the same random vectors. If no ran-
dom seed is selected, a different seed is adopted each
time.

– Adjustment of the mean and variance. Due to sampling
errors, the means and variances of the ensemble may not
necessarily align with the means and variances of the
corresponding distribution. To rectify this discrepancy,
users have the option to enable a setting that adjusts the
means and variances, applying an offset and a scaling
operation, respectively, after the step that generates the
random samples.

– Setting equal prior deviations for all windows. This
technique involves generating the same deviations for
all windows at the beginning of the inversion. Conse-
quently, the scaling factors are fully correlated in time.

To reproduce the same behavior, users can also choose
to utilize a core feature of CIF and prescribe maximal
temporal error correlations between different windows
directly in the B matrix and generate the ensemble based
on this matrix.

3.1.2 Run

The inversion process, as depicted in Fig. 1, involves several
steps. We present them here using the example of settings
introduced in Sect. 3.1.1.

1. A prior forward simulation of 20 d (10 d window
length× 2 lags) is run with the selected model over the
initial cycle (first and second windows). A simulation
transports one tracer per member of the ensemble and
the three system-bound tracers. Each CTM integrated
into CIF possesses its own unique approach to handling
these tracers. Notably, users can choose, using a param-
eter in the configuration file, to transport the full ensem-
ble of tracers within the same simulation or to split this
ensemble into multiple simulations if the model cannot
accommodate a large number of tracers simultaneously.
Simulated values sampled at the locations and times of
assimilated observations are provided for each tracer at
the end of the simulation.

2. Scaling factors corresponding to the first cycle (first and
second windows) are optimized using the outputs of the
prior forward simulation and the batch or serial algo-
rithm presented in Sect. 2.3.

3. A posterior forward simulation is run over the first win-
dow using the optimized fluxes. This so-called advance
step integrates the fluxes of this window into the back-
ground concentrations, serving as the starting point for
the next cycle.

4. The process moves to the next cycle (second and third
windows), running a forward simulation of 20 d again
with the optimized scaling factors obtained in step 2. All
the samples in this simulation are initialized using the
final concentrations obtained with the ensemble mean
tracer of the posterior forward simulation performed in
step 3.

5. Scaling factors corresponding to the second cycle are
optimized using the observations in the third window.
Note that the scaling factors of the second window are
optimized for the second time, after having already been
optimized in the first cycle using the observations from
the second window.

6. A posterior forward simulation is run over the second
window with the optimized scaling factors. This simula-
tion starts from the final concentrations of the posterior
forward simulation performed in step 3.
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Figure 1. Example of the optimization process in CIF with two lags. The full assimilation period is split into M windows and L cycles. In
this example, each cycle consists of two windows. The process starts at the lower-left corner with a prior simulation (red box) spanning the
first two windows. After the assimilation of observations (red stripes), the posterior simulation (green box) is run until the starting point of
the second cycle. The final concentrations of the ensemble mean tracer obtained with the posterior simulation are used to initialize the next
prior simulation (purple arrow). The gray area in the center of the figure and the green and red boxes represent all the windows and cycles
that are run between cycle 3 and cycle L-2.

The iterative process continues until the last cycle is com-
pleted. Each window is simulated nlag+1 times (nlag pri-
ors and one posterior). It is also important to highlight that
the last window is optimized using observations of only one
window, regardless of nlag.

3.1.3 Localization

Here, we describe how the localization works in CIF. For
each window, two distance matrices L1 and L2 of dimensions
n×p and p×p are calculated and applied to the model–
observation covariance matrix X′Y′T and the observation–
observation covariance matrix Y′Y′T, respectively, as de-
scribed in Sect. 2.3.4. Each element of the first matrix stores
the great-circle distance (haversine formula) between the
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center of the cell or region represented by this element and
the observation’s location. Each element of the second matrix
stores the great-circle distance between each pair of observa-
tion locations. The localization matrices are then calculated
using the decay function and length defined by the user in
the configuration file. The same decay length is used for both
matrices. Four localization functions commonly employed in
the ensemble inversion community (Steiner et al., 2024; Peng
et al., 2015; Peters et al., 2005; Whitaker and Hamill, 2002)
are available in CIF: the Gaussian function, the exponential
function, the Heaviside function, and the function given by
Eq. (4.10) in Gaspari and Cohn (1999), hereafter referred to
as the GC99 function. Analytical definitions for these func-
tions are provided in Appendix C.

For the serial EnSRF method, the first localization ma-
trix, L1, is applied to the gain matrix when updating the
mean control vector (x) and the deviations (X′) (see Eqs. 27
and 28). The second matrix, L2, is not applied at this step be-
cause Y′Y′T is a scalar. However, it is applied when updating
the projection of the mean (Hx) and deviations (Y′) in the
observation space (see Eqs. 29 and 30) to keep consistency
between both X′ and Y′ updates. Although we believe this
second step is important, it is not described in other EnSRF
papers (e.g., CTDAS). Consequently, if both the first and the
second steps are performed, we call it full localization, as
opposed to a partial localization where only the first step is
conducted. One of our experiments in Sect. 4 investigates the
difference between full and partial localizations.

3.1.4 Forecast operator

As described in Sect. 2.1, the forecast operator is considered
either nonexistent or simple in ensemble carbon flux inver-
sions. Initially, Peters et al. (2005) chose to utilize the iden-
tity operator when laying the foundation for CTDAS, thereby
assuming a maximal correlation between the prior estimate
of the control vector for a specific window (xb

w) and the
posterior estimate for the preceding window (xa

w−1), where
w denotes the window index. However, in subsequent papers
employing the EnSRF algorithm in CTDAS (Steiner et al.,
2024; van der Laan-Luijkx et al., 2017; Kim et al., 2014b),
the forecast operator was adjusted to a simple weighting
function between the posterior estimates of the preceding
windows and the original prior estimate of the current win-
dow,

x
b,updated
w =

w−1∑
i=1

λw−ix
a
w−i +

(
1−

w−1∑
i=1

λw−i

)
xb

w. (33)

Here, λw−i is a propagation factor ranging between 0
and 1, where i ranges from 1 tow−1. The sum of these prop-
agation factors is smaller than or equal to 1. The windows in
the first cycle are not modified, hencew ≥ nlag. This formula
is empirical and relies on the assumption that the optimized
scaling factors should not vary much from one window to

another when the window is reasonably short (e.g., less than
a month). Therefore, the information used to update the flux
in a window should be partially propagated to the next win-
dow. It also mitigates the likelihood of significant disconti-
nuities between fluxes in different windows, especially if the
assimilated data are sparser in one window compared to the
next one. Also, if the sum of the propagation factors is cho-
sen to be smaller than 1 and the amount of assimilated data
drastically drops, then the optimized fluxes will slowly return
to prior estimates. In Steiner et al. (2024), a single propaga-
tion factor, λw−1, is used and set to 2

3 . In Kim et al. (2014b)
and van der Laan-Luijkx et al. (2017), two propagation fac-
tors, λw−1 and λw−2, are used and both set to 1

3 .
This formula has been implemented in CIF-EnSRF. In

practice, whenever a new window is about to be optimized
for the first time, the associated ensemble mean is updated
using Eq. (33), and the samples are shifted based on the dif-
ference between the previous and updated ensemble means.
Note that the deviations are not modified; hence the prior un-
certainties remain identical.

3.2 Advantages of the new EnSRF mode

The new EnSRF mode in CIF introduces practical features
for the inversion community. This value arises not only from
recent developments but also from the synergy between the
established general features of CIF and the enhanced EnSRF
method.

3.2.1 Comparison to previous version

Significant enhancements have been made since the origi-
nal implementation presented in BA21. The initial version
featured only a basic structure of the EnSRF method, with-
out the batch optimization method and localization. It also
lacked the capability for new cycles to properly restart from
previous posterior simulations, preventing a reasonable divi-
sion of the full assimilation period into multiple windows.
Additionally, the pre- and post-processing routines could not
handle a large number of samples in a reasonable amount of
time (i.e., > 50), and the assimilation process was not opti-
mized computationally, drastically impacting the overall per-
formance of the EnSRF.

To address these limitations, we implemented several key
features, including the batch optimization method and lo-
calization, bringing the EnSRF method to the level of ex-
isting ensemble frameworks. Additionally, we significantly
improved the speed of the pre- and post-processing routines
within CIF, removing constraints on ensemble size. CIF is
now capable of performing complex operations for more than
500 samples in a few minutes, compared to roughly 50 sam-
ples before. For each CTM, respective modeling communi-
ties can further enhance overall speed by refining routines
dedicated to input writing and output processing, e.g., using
parallelization. This optimization effort has been done with
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ICON-ART for this work, and Table D1 provides a break-
down of the time and CPU hours required by both CIF and
the ICON-ART model to run the experiments presented in
this work.

Lastly, a metrics class has been introduced for EnSRF.
This object calculates and stores different types of metrics
that are commonly computed in the inversion community and
have proven useful in assessing the quality of results. Sec-
tion 3.3 provides a description of these metrics.

3.2.2 Important CIF features

In addition to the new EnSRF features, CIF itself provides a
handful of useful core features that were first introduced in
BA21 and that work conveniently with the EnSRF mode:

– If the prescribed data are not defined on the same (hor-
izontal or vertical) grid as the selected CTM, then CIF
automatically performs the interpolation operations. It
can also handle unstructured grids such as the ICON
icosahedral grid.

– Multiple categories of emissions for the same species
can easily be prescribed and optimized independently.

– The B matrix is automatically computed based on the
configuration file (e.g., flux categories to include, spa-
tial or temporal correlations to calculate, regions to op-
timize).

– After a potential crash, inversions can resume from any
point without any loss of data or time. The only excep-
tion is when the CTM fails during one of the forward
simulations and is unable to restart directly from the
problematic point.

– Any element of the inversion (e.g., prior and posterior
fluxes, ensemble of scaling factors, simulated values),
for each window and each cycle, is easily accessible.

– Changing the simulated species (e.g., switching from
CH4 to CO2) is straightforward, as the variable names
and the species attributes are not hard-coded. It only
requires a modification of the prescribed data (e.g.,
surface fluxes, observations, or background concentra-
tions) to ensure consistent results.

– Inversion routines are not model-specific; hence two
inversions conducted with two different models un-
dergo identical optimization operations. This core fea-
ture helps eliminate many potential discrepancies be-
tween elements of an inversion workflow (e.g., pre-
processing of prescribed data, CTM run, or optimization
algorithm). The CIF-EnSRF method has recently been
tested with ICON-ART, CHIMERE, and WRF-Chem.
Preliminary results from the inversions performed with
the three different CTMs appear to be very comparable
and, therefore, promising (Berchet et al., 2023).

– CIF can automatically execute complex operations in-
volving different optimized elements, if requested. For
example, isotope operations between δ13C(CO2) source
signatures and CO2 can be performed in order to simu-
late 12CO2 and 13CO2 while optimizing CO2 at the end
of the simulation.

3.3 Metrics

To quantify the success of an inversion, we use different met-
rics. Most of them are automatically computed by CIF dur-
ing the inversion. It is important to note that some descrip-
tions are not exhaustive, and for a more comprehensive un-
derstanding, references are provided for further exploration.

3.3.1 Mean error reduction (MER)

The error reduction (ER) quantifies the agreement between
the optimized fluxes and the true fluxes. It is the only metric
that is not automatically computed by CIF because it depends
on the true scaling factors. It is defined by

ER(k, t)= 1−
ea(k, t)

eb(k, t)
(34)

= 1−
|xa(k, t) ·F(k, t)− xt(k, t) ·F(k, t)|

|xb(k, t) ·F(k, t)− xt(k, t) ·F(k, t)|
. (35)

Here, xb(.), xa(.), and xt(.) are the prior, posterior, and true
control data (i.e., scaling factors) included in the correspond-
ing vectors xb, xa, and xt, respectively. In this work, F(.) is
the respiration flux; eb(.) and ea(.) are the prior and posterior
absolute flux errors, respectively; and k and t represent the
cells of the model’s horizontal grid and the time dimension,
respectively. This formula gives a quantity that is time de-
pendent and spatially distributed. We further define the mean
error reduction (MER) using an area-weighted spatial aver-
age of the flux errors,

MER(t)= 1−
ea(k, t)

eb(k, t)
(36)

= 1−

∑
k∈S

a(k) · ea(k, t)∑
k∈S

a(k) · eb(k, t)
. (37)

Here, S represents the CTM’s spatial domain or a subpart of
this domain (e.g., a country), and a(.) denotes the cell’s area.
A positive MER indicates that the optimized fluxes agree bet-
ter with the truth than the prior data, whereas a negative MER
shows the opposite. Figure 3 illustrates an example of MER
computation over Europe based on a set of prior, posterior,
and true scaling factors.

3.3.2 Root mean square deviation (RMSD)

The root mean square deviation (RMSD) is commonly em-
ployed to quantify the agreement between the observed and
simulated atmospheric mole fractions. It is defined by
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RMSD=

√√√√ 1
p

p∑
i=1

(
yi − y

o
i

)2
. (38)

Here, p represents the number of observations, while yi and
yoi denote the (prior or posterior) simulated and observed
value associated with the ith atmospheric observation, re-
spectively. The RMSD can also be computed on a subset
of observations, such as specific stations or windows. CIF
automatically computes this metric for the full assimilation
period and the full set of observations but also for all assim-
ilated stations, across all the cycles and windows, prior and
posterior to the inversion. It should be noted that a lower pos-
terior RMSD does not necessarily mean better performance,
since close agreement with observations can easily be ob-
tained by overfitting. It is therefore important to combine this
metric with others, such as those described below.

3.3.3 Cost function reduction (CFR)

The optimal solution derived by the EnSRF minimizes the
cost function defined in Eq. (6). To quantify this, we define
the cost function reduction (CFR),

CFR= 1−
J (xa)

J
(
xb
) . (39)

A larger CFR indicates a greater reduction in the cost func-
tion.

3.3.4 Mean uncertainty reduction (MUR)

The EnSRF provides an easy way to calculate the posterior
uncertainties using the posterior deviations X′a (see Eq. 18).
For each cell, we define the uncertainty reduction (UR) as the
reduction in the ratio of posterior to prior uncertainties,

UR(x)= 1−
σ a(k)

σ b(k)
, (40)

where σ b(.) and σ a(.) denote the prior and posterior stan-
dard deviation associated with the cell k. We further define
the mean uncertainty reduction (MUR) as the average of UR
over a domain (e.g., the full domain or a specific country),

MUR= UR(k). (41)

Note that it is not the posterior uncertainty of the average but
the average of the posterior uncertainty.

3.3.5 Reduced chi-squared statistic (χ2
r )

If the error covariances are properly specified and accurately
reflect the true errors in the control variables and the obser-
vations, it can be demonstrated that J (xa) has an expected
value of p

2 (Desroziers and Ivanov, 2001; Talagrand, 1999;

Tarantola, 1987). Additionally, if errors are normally dis-
tributed, then J (xa) follows a χ2 distribution with p de-

grees of freedom and has a standard deviation equal to
√
p
2

(Desroziers and Ivanov, 2001; Talagrand, 1999; Tarantola,
1987). Intuitively, the number of degrees of freedom is p =
n+p− n because the number of data points is n+p (prior
estimates and observations), and the number of fitted param-
eters is n.

We define the reduced chi-squared statistic χ2
r ,

χ2
r (x)=

2
p
J(x). (42)

Assuming the previously mentioned assumptions hold, the
statistical mean of χ2

r over a large number of similar experi-
ments with different perturbations should be equal to 1, and

its spread (standard deviation) should be equal to
√

2
p

. Con-

sequently, a single experiment should have a χ2
r close to 1

when the number of observations is large (p > 100). Testing
that the χ2

r is close to 1 after the inversion therefore provides
a simple and low-cost diagnosis for ensuring that the error
covariance matrices are properly specified and the ensemble
properly approximates the background-error matrix.

3.3.6 Degrees of freedom of the ensemble (DOFE)

The degrees of freedom (DOF) of a system refer to the num-
ber of independent components within it. In other words, they
represent the number of elements that need to be estimated to
obtain a comprehensive understanding of the system. Here,
we employ the formula derived by Fraedrich et al. (1995)
and Bretherton et al. (1999) and subsequently employed by
Peters et al. (2005) to obtain a statistical estimate of the DOF
using the corresponding covariance matrix,

DOF=

(
n∑
i=1
λi

)2

n∑
i=1
λ2
i

. (43)

Here, λi represents the ith eigenvalue of the covariance ma-
trix defining the system. In our inversion problem, the sys-
tem of unknown variables is represented by the B matrix;
hence the DOF are obtained by applying this formula to their
eigenvalues. The DOF in the finite ensemble (i.e., obtained
by applying the formula to the BN matrix) are necessarily
smaller than the DOF in our inversion problem (i.e., obtained
by applying the formula to the BN matrix). Hereinafter, the
metric representing the DOF in the ensemble is denoted by
DOFE, whereas the metric representing the DOF in the inver-
sion problem (i.e., the optimal value of the DOFE) is denoted
by DOFEopt. For a specific cycle, the closer the DOFE are to
the DOFEopt, the closer the EnSRF solution is to the optimal
KF solution. Furthermore, one cycle may include multiple
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windows; hence if the scaling factors representing the differ-
ent windows are not correlated in time with each other, the
DOF for the cycle are equal to the DOF for a single window
multiplied by the number of lags. Conversely, if the scaling
factors are fully correlated in time, the DOF for the cycle
should be equal to the DOF for a single window.

3.3.7 Degrees of freedom for signal (DOFS)

The degrees of freedom for signal (DOFS) quantify the
amount of independent information that can be extracted
from the observations to constrain the variables being op-
timized (Rodgers, 2000). Consequently, higher DOFS lead
to more robust estimates. In a general inversion framework,
the DOFS are necessarily smaller than min(n, p). Addition-
ally, with ensemble methods, they cannot exceed the ensem-
ble size without using localization (Hotta and Ota, 2021).

It can be shown that the DOFS are equal to the trace of
the so-called averaging kernel matrix A (Brasseur and Jacob,
2017; Rodgers, 2000), which is defined by

A=
∂xa

∂xt =
∂xa

∂yo
∂yo

∂xt =KH. (44)

This matrix represents the sensitivity of the analysis control
vector to the true control vector. In an ideal scenario with a
perfect observation network, A would be equal to In. While
the EnSRF algorithm helps avoid explicit computation of the
observation operator H, it also prevents the derivation of A.
To circumvent this problem, we also introduce the so-called
influence matrix So (Cardinali et al., 2004), which is defined
by

So
=
∂ya

∂yo =
∂ya

∂xa
∂xa

∂yo =KTHT. (45)

This matrix represents the sensitivity of the optimized sim-
ulated values to the observations. Large diagonal elements
(i.e., close to 1) indicate that each observation provided a
strong constraint for the corresponding optimized simulated
value compared to the background and the other observa-
tions. Using the properties of the trace operator Tr(.), we
have

DOFS= Tr(A)= Tr(KH)= Tr(HK)= Tr
(
(HK)T

)
= Tr

(
KTHT)

= Tr
(
So) . (46)

We do not explicitly compute H with the EnSRF; therefore
we need another way to compute So. Using Eqs. (8), (9),
and (10), we can show that

Pa
=

(
B−1
+HTR−1H

)−1
. (47)

Using this result, we obtain another formulation for So,

So
=KTHT, (48)

= R−1H
(

B−1
+HTR−1H

)−1
HT, (49)

= R−1HPaHT. (50)

It shows that the influence matrix is equal to the posterior-
error covariance matrix mapped onto the observation space
and normalized by the observation-error covariance matrix.
It follows that

DOFS=
1

N − 1
Tr
(

R−1H
(
X′a
)(

X′a
)THT

)
(51)

=
1

N − 1
Tr
(

R−1 (Y′a)(Y′a)T) . (52)

This formulation enables an easy computation of the DOFS
with the EnSRF (Kim et al., 2014a) at the end of the inversion
and after each cycle.

4 Demonstration with synthetic experiments

To demonstrate the successful implementation of the new
EnSRF method in CIF and the influence of the most impor-
tant parameters, we present inversion results obtained with
different configurations. All examples are synthetic experi-
ments, i.e., inversions assimilating only synthetic observa-
tions generated with the CTM and perturbed stochastically.
These experiments aim to provide useful guidelines for fu-
ture inversions utilizing the EnSRF mode of CIF. Further-
more, we intend to identify elements that could have im-
proved the initial real-data CIF-EnSRF inversions presented
in Berchet et al. (2023), which were performed as part of
the EU Horizon 2020 CoCO2 project. For this purpose, we
maintain consistency by performing CO2 inversions and us-
ing the same input data. All experiments in this study cover a
2-month period, from 1 June to 31 July 2018. In addition to
these experiments, we also provide in Appendix B a compar-
ison between two inversions with identical setups, one per-
formed with CTDAS and the other with CIF, demonstrating
the near equivalence of the two frameworks.

4.1 Configuration of forward simulation

4.1.1 ICON-ART model

The Icosahedral Nonhydrostatic (ICON) weather and cli-
mate model (Zängl et al., 2015) is a joint project between
the Deutscher Wetterdienst (DWD), the Max Planck Insti-
tute for Meteorology (MPI-M), the Deutsches Klimarechen-
zentrum (DKRZ), and the Karlsruhe Institute of Technol-
ogy (KIT) for developing a unified next-generation global
NWP and climate modeling system. The ICON modeling
framework became operational in DWD’s forecast system
in January 2015. Additionally, ICON is being deployed for
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numerical forecasting for the Swiss meteorological service,
MeteoSwiss. ICON was released in February 2024 as open
source to broaden the community of users and developers.
The Aerosols and Reactive Trace gases (ART) module, de-
veloped and maintained by KIT (Schröter et al., 2018; Rieger
et al., 2015), supplements ICON to form the ICON-ART
model by including emissions, transport, gas-phase chem-
istry, and aerosol dynamics in the troposphere and strato-
sphere.

ICON-ART is a non-hydrostatic Eulerian CTM. Its hori-
zontal domain is described by an icosahedral grid and can
cover either the globe or a limited area, ranging from sev-
eral degrees to a few kilometers. For this work, a horizontal
resolution of 52 km (∼ 0.7°) is adopted for the geographi-
cal area covering Europe (33–73° N, 15° W–35° E), resulting
in a total number of c = 5520 cells. In the vertical, the do-
main extends from the surface to an altitude of 23 km, with
60 levels described by a height-based terrain-following ver-
tical coordinate. A coarse resolution is used here to demon-
strate the new system and conduct numerous sensitivity tests.
Finer horizontal resolutions, up to 13 km, have already been
successfully tested with ICON-ART.

Meteorological fields are computed online by the ICON
model, and, in our setup, several prognostic variables (wind
speed, specific humidity, density, virtual potential tempera-
ture, and Exner pressure) are weakly nudged towards the
ERA5 reanalysis data (Hersbach et al., 2023, 2017) pro-
vided by the ECMWF at a 3-hourly time resolution. This
prevents the model from drifting away from a realistic atmo-
spheric state. The ERA5 data are also employed to initialize
the model. For the limited-area mode, boundary conditions
can be prescribed at the borders of the domain using exter-
nal data. Emission fields for any transported species are pro-
cessed by the Online Emissions Module (OEM; Jähn et al.,
2020), included in ART. Output files of instantaneous con-
centrations are written at hourly resolution and are tempo-
rally, vertically, and horizontally interpolated offline in order
to retrieve simulated equivalents of observations.

4.1.2 Input data

Anthropogenic fluxes

Anthropogenic CO2 fluxes are based on the spatial distribu-
tion of the EDGAR v4.2 inventory and on national and an-
nual budgets from British Petroleum (BP) statistics. Hourly
temporal profiles are derived with the COFFEE approach
(Steinbach et al., 2011, available on the ICOS Carbon Portal).
The data are provided at a horizontal resolution of 0.1°×0.1°
and at hourly temporal resolution.

Biogenic fluxes

Biogenic CO2 fluxes are derived from ORCHIDEE simula-
tions using two sets of simulations: global simulations from

the TRENDY project and higher-resolution simulations from
the VERIFY project over Europe. While the latter is used for
the region covering (35–73° N, 25° W–45° E), the former al-
lows for the extension of the domain and covers the full re-
gion of interest. More details can be found in Berchet et al.
(2023).

Ocean fluxes

Ocean CO2 fluxes are derived from a hybrid product that
combines the University of Bergen coastal ocean flux esti-
mate with the global ocean estimate from Rödenbeck et al.
(2014). These data are available at a horizontal resolution of
0.125°× 0.125° and a daily temporal resolution.

Background concentrations

Initial conditions and lateral boundary conditions for CO2
mole fractions are derived from the CAMS global inversion-
optimized CO2 concentration product v20r2 (Chevallier
et al., 2010). The data are provided at a horizontal resolution
of 3.75°× 1.9° and at a 3-hourly temporal resolution.

Observations

We assimilate synthetic observations matching the observed
CO2 atmospheric mixing ratios in Europe compiled in ver-
sion 8 of the ICOS GlobalView Obspack (ICOS RI et al.,
2023). This dataset comprises continuous measurements col-
lected from 58 stations across Europe, including both ICOS
and non-ICOS facilities. For the period spanned by our ex-
periments, data from 45 stations are available, as depicted in
Fig. 2, and specific information about each observation site is
provided in Table D2. The number of synthetic observations
to assimilate (p) is equal to 12 277.

4.1.3 Generation of synthetic data

To create synthetic observations, we first generate a set
of scaling factors for each cell of the ICON domain (c =
5520 cells) using the method described in Sect. 3.1.1. The
background-error covariance matrix (of dimension c× c)
used for generating the true scaling factors has diagonal ele-
ments (variance) equal to 1 (relative variance of 100 %), and
the off-diagonal elements (covariance) are calculated based
on an exponential decay with a correlation length of 200 km.
The resulting scaling factors are shown in Fig. 3a. Perturbed
fluxes representing the truth are then obtained by applying
these scaling factors to the respiration fluxes while keeping
other fluxes unperturbed (i.e., scaling factors are equal to 1).
It is important to note that, for the sake of simplicity, the true
scaling factors have no time component, and therefore we
assume the perturbation to be constant over time. Finally, we
run a forward simulation over the 2-month period with the
perturbed fluxes.
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Figure 2. Locations of stations assimilated in the synthetic experiments. The purple range shows the observational error prescribed for each
station. The background is obtained from Natural Earth.

After this forward simulation, the simulated values match-
ing the assimilated observations are stored. These simulated
values are then treated as the new observations to be assimi-
lated in the experiments presented in the next section. How-
ever, to mimic realistic uncertainty in these observations, we
perturb them with random values drawn from a Gaussian dis-
tribution with a mean of 0 and a standard deviation equal to
the observation error calculated for each original observation
(see Fig. 2). Note that the resulting observation errors are
therefore uncorrelated.

4.2 Description of experiments

We categorize the experiments into two groups testing differ-
ent parameters, Level 1 and Level 2.

4.2.1 Level 1 experiments

The Level 1 group exclusively assesses the impact of the
number of samples and the localization length, recognizing
these as critical parameters. We conduct 20 inversions, de-

noted NiLj, where i={50,100,200,300} represents the num-
ber of samples, and j = {200, 600, 1000, 1500, none} in-
dicates the localization length in kilometers. For example,
N200L600 corresponds to an inversion executed with 200
samples and a localization length of 600 km. N100Lnone
corresponds to an inversion executed with 100 samples but
without localization. For each inversion of the Level 1 group,
a common configuration is provided in Table 1. Over Europe,
most of the air is flushed out of the domain within approx-
imately 10–20 d. As a result, propagating information from
local sources beyond 20 d into the future is unnecessary when
performing inversions over Europe. However, observations at
the beginning of a window are also sensitive to the emissions
in the previous window. Selecting at least two lags ensures
this influence is considered. We therefore select a window
length of 10 d, providing three optimized values per month,
and set a nlag value of 2 to balance computational efficiency
and accuracy. The sensitivity to the number of lags is tested
in Level 2 experiments. The results of Level 1 experiments
are presented and discussed in Sect. 4.3.
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Figure 3. Computation of error reduction for N200L600, which is adopted as the control experiment for all families in Level 2 experiments.
(a) True scaling factors used to generate the synthetic observations. (b) Posterior scaling factors obtained with N200L600 averaged over the
full assimilation window. (c) Error reduction for each cell. (d) MER calculated for each country. This subplot is created by setting each cell’s
value in a specific country to the MER calculated over the country. Prior, posterior, and true fluxes are displayed in Fig. D2.

4.2.2 Level 2 experiments

In the Level 2 group, we explore eight additional families of
experiments, each denoted by a capital letter, where we test
the sensitivity of the EnSRF algorithm to other parameters:

a. We alter the seed used to generate the ensemble to study
the impact of randomness on the results.

b. We vary the number of lags.

c. We adjust the propagation factor.

d. We experiment with different localization functions, in-
cluding exponential, Gaussian, Heaviside, and GC99.
All experiments in this family are performed with a lo-
calization length of 600 km except for the GC99 case.
We observed that the GC99 function is extremely simi-
lar to the Gaussian function when the localization length
is multiplied by 1.78 (see Fig. C1). We therefore use a
localization length of 600× 1.78= 1068 km to investi-
gate this similarity.

e. We apply either partial localization or full localization.
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Table 1. Description of Level 1 experiments. The last column provides the common configuration that all experiments of the Level 1 group
share. Table D1 provides the amount of CPU hours used to perform these experiments.

Name Number of samples Localization length (km) Other parameters

NxLy x = {50, 100, 200, 300}

– Window length= 10 d
– Number of lags= 2
– Single propagation factor= 2

3
y = {200, 600, 1000, 1500, none} – Localization function is a Gaussian function
“none” means no localization is applied. – Horizontal correlation length in the B matrix= 200 km

– Random seed for generating samples= 1000
– Prior deviations set equal for all windows
– Mean and variance of the ensemble not adjusted

f. We adjust the mean and variance of the ensemble, or we
do not.

g. We set the prior deviations for all windows equal, or we
do not.

h. We employ either the serial or the batch EnSRF algo-
rithm.

The Level 2 experiments are labeled EXP_p_v, where p =
{A, B, . . ., G, H } is a capital letter representing the tested
parameter (i.e., the family), and v represents the value of this
parameter. For each family, control experiments have already
been performed in the Level 1 group. Consequently, while
the Level 2 group comprises 26 experiments, only 16 of them
need to be run in addition to the Level 1 group. To run inver-
sions with ICON-ART, an ensemble size of 200 is typically
employed to balance computational cost and inversion qual-
ity (Steiner et al., 2024). As the best Level 1 results with
this ensemble size are obtained with a localization length of
600 km, N200L600 is adopted as the control experiment for
all families. Some families also feature experiments with a
smaller ensemble size when deemed relevant. A summary of
all Level 2 experiments is presented in Table 2, and results
are discussed in Sect. 4.4.

4.3 Level 1 results

We explore the impact of ensemble size and localization on
our ability to accurately determine the true scaling factors.
Since these sensitivities have already been explored exten-
sively in previous EnSRF studies (e.g., Peters et al., 2005),
our objective is to validate that our system can produce re-
sults consistent with existing literature.

Figure 3 illustrates the process of calculating the ER and
MER for each country in Europe, based on the true and pos-
terior scaling factors and the prior fluxes. The ER can ex-
hibit strong spatial heterogeneity for two main reasons. First,
the spatial distribution of posterior scaling factors is gener-
ally smoother than that of the true scaling factors because
the constraints provided by surface observations are insuffi-
cient to fully capture the spatial variability of the true scal-
ing factors. Second, when fluxes within a region are spatially

non-uniform, the system has difficulty distinguishing low-
flux cells from high-flux cells. This limitation can result in
large relative errors for cells with low fluxes. The MER re-
duces the influence of errors associated with low fluxes, pro-
viding a reliable estimate of how accurately the cells within
a country can be evaluated by the system.

Figure 4 illustrates the MER calculated for each country
for every Level 1 experiment. Across experiments with the
same localization length, those with larger ensemble sizes
tend to yield scaling factors that align more closely with the
true values. For instance, N300Lnone achieves a MER of
13.9 %, whereas N50Lnone exhibits a notably lower value of
−21.9 %. Moreover, within experiments sharing the same en-
semble size, shorter localization lengths generally yield bet-
ter results by neglecting long-distance correlations. This lo-
calization effect is particularly pronounced in scenarios with
smaller ensemble sizes, as evidenced by the improvement
from −21.9 % to 23.3 % with 50 samples. Countries near
observing sites, such as those in Western and Central Eu-
rope, benefit from a reduced localization length, regardless of
the number of samples. However, when the number of sam-
ples is reasonable, decreasing the localization length below a
certain threshold can start filtering out relevant information.
This effect is evident in countries farther from observation
sites, such as Portugal, Spain, and those in the Balkans or
Eastern Europe. For these countries, the MER (whether ini-
tially positive or negative without localization) tends toward
0 % as the localization length decreases. This indicates not
only the loss of potential meaningful information but also the
suppression of any problematic effects from random noise.
Overall, with a reasonable number of samples, a localization
length of 600 km appears to produce the best results, confirm-
ing the results obtained by Peters et al. (2005) with a local-
ization length equal to 3 times the spatial correlation length
prescribed in B. Figure 3a and b also illustrate an interest-
ing consequence of a sparse network: while the true scaling
factor exhibits a patch of values greater than 1 in the center
of Spain, the assimilated observations from this region are
not sufficient to detect it. However, this is not related to the
performance of the EnSRF itself.
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Table 2. Description of Level 2 experiments. Apart from the parameters described in this table, the Level 2 experiments all share the same
configuration. 1For each of the n optimized variables, an average across the N samples is calculated. A distribution of ensemble averages is
therefore created. The values presented here represent the mean and standard deviation computed over this distribution. 2Same as before, but
the distribution is made with the variance over the N samples for each optimized variable.

Name Number of Localization Sensitivity parameters
samples length (km)

EXP_A_1 200 600 Random seed for generating samples= 1000

EXP_A_2 200 600 Random seed for generating samples= 2000

EXP_A_3 200 600 Random seed for generating samples= 3000

EXP_B_1 200 600 Number of lags= 1

EXP_B_2 200 600 Number of lags= 2

EXP_B_3 200 600 Number of lags= 3

EXP_C_0 200 600 Single propagation factor= 0

EXP_C_1 200 600 Single propagation factor= 1
3

EXP_C_2 200 600 Single propagation factor= 2
3

EXP_C_3 200 600 Single propagation factor= 1

EXP_D_e 200 600 Localization function: exponential

EXP_D_g 200 1068 Localization function: GC99

EXP_D_h 200 600 Localization function: Heaviside

EXP_D_n 200 600 Localization function: Gaussian

EXP_E_f 200 600 Full localization

EXP_E_p 200 600 Partial localization

EXP_F_f1 50 600 Adjusting the mean and variance of the ensemble= false
1 Means= 1.00± 0.15. 2 Variances= 0.98± 0.20.

EXP_F_t1 50 600 Adjusting the mean and variance of the ensemble= true
1 Means= 1.00± 0.00. 2 Variances= 1.00± 0.00.

EXP_F_f2 200 600 Adjusting the mean and variance of the ensemble= false
1 Means= 1.00± 0.07. 2 Variances= 1.00± 0.10.

EXP_F_t2 200 600 Adjusting the mean and variance of the ensemble= true
1 Means= 1.00± 0.00. 2 Variances= 1.00± 0.00.

EXP_G_f 200 600 Prior deviations set equal for all windows= false

EXP_G_t 200 600 Prior deviations set equal for all windows= true

EXP_H_b1 200 None Type of optimization: batch

EXP_H_s1 200 None Type of optimization: serial

EXP_H_b2 200 600 Type of optimization: batch

EXP_H_s2 200 600 Type of optimization: serial
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Figure 4. MER calculated for each country and for each Level 1 experiment. For each experiment, the corresponding subplot is created by
setting each cell’s value in a specific country to the MER calculated over the country. The corresponding MER calculated for the full domain
and the posterior χ2

r are displayed in red and blue in the top-left corner, respectively. The value in blue and parentheses represents the ratio
of the χ2

r explained by the observation-error part of the cost function (J o), as opposed to the background-error part (J b).
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Figure 4 also shows the posterior χ2
r for each experi-

ment, revealing a convergence towards 1 with increased sam-
ple size and decreased localization length. Notably, the ratio
J o/J follows the same dependence, namely when the num-
ber of samples is low and the localization is weak, only a
small part of J is explained by the posterior discrepancies
between simulations and observations. It means that there is
an excessive distance (defined by the inner product) between
the posterior and prior state vectors, relative to the prescribed
uncertainties. An intuitive explanation is that spurious noise
in BN creates an inconsistency between the characteristics of
the optimal solution found by the EnSRF and the expected
KF solution that should be obtained with the original B ma-
trix.

Figure 5 offers further insights by presenting statistics for
individual windows and cycles. Posterior RMSD (Fig. 5b)
exhibits substantial consistency across Level 1 experiments.
Experiments with large ensemble sizes and short localization
lengths slightly outperform others, suggesting that achieving
good agreement between posterior simulations and assimi-
lated observations alone does not guarantee high confidence
in the results of an EnSRF inversion. Additional diagnostics,
such as RMSD calculated with independent observations for
real-data inversions or error reductions for synthetic experi-
ments, should be computed. For each window, note that the
posterior RMSD closely mirrors the prescribed observation
error (Fig. 5a and b) because the difference between true and
estimated fluxes is considerably dampened after the inver-
sion. Additionally, since the true scaling factors remain con-
stant over time and posterior information is partially propa-
gated from one window to the next, the reduction between
prior and posterior RMSDs is larger for the initial two win-
dows.

Figure 5d shows the MUR averaged over France. We high-
light France here because, among the countries well covered
by the observation network, its metrics are the most affected
by changes in the number of samples and localization length.
The figure illustrates the tendency of the EnSRF to exhibit in-
creased overconfidence in the derived solution as the number
of samples decreases. This underestimation of the posterior
uncertainty has already been observed by Peters et al. (2005),
Whitaker and Hamill (2002), and Houtekamer and Mitchell
(1998). A comprehensive analysis and an explanation of this
effect are provided by Leeuwen (1999). As the number of
samples increases, the posterior uncertainty obtained with
the EnSRF tends toward that obtained with the KF. At a con-
stant number of samples, localization helps reduce the bias
only for countries with a dense network, while other coun-
tries show little or no uncertainty reduction. A spatial illus-
tration is provided in Fig. D1. The consequence is that es-
timates of EnSRF posterior uncertainties should be trusted
only if the number of samples is reasonably high or if local-
ization is strong enough. Nevertheless, the optimal param-
eters to employ rely heavily on the inversion problem, and
hence sensitivity tests need to be conducted in all cases.

Figure 5e and f display the DOFE and DOFS calculated
for each cycle. In our Level 1 experiments, we find that the
DOFEopt for one window equals 261. This number is chiefly
controlled not by the number of unknowns (i.e., the spatial
resolution of the model), but by the correlation length, as it
is much larger than a model pixel. As we chose to set the
deviations of each sample from the mean equal for all win-
dows, the DOFE for the first cycle (i.e., two windows) are
equal to the DOFE for a single window. While increasing
the DOFE means that we will obtain a solution that is closer
to the KF solution for a specific cycle, increasing the DOFS
means that more DOF are constrained by observations. The
DOFE remain relatively stable throughout the optimization
process. As anticipated, this metric increases with the num-
ber of samples because BN better approximates B. Neverthe-
less, the DOFE are only around 140 when using 300 sam-
ples, significantly lower than the DOFEopt. The DOFS also
increase with the number of samples, indicating that more
DOF are efficiently constrained by the observations. As the
DOFS are linked to the posterior uncertainty, smaller DOFS
reflect a larger overconfidence. Additionally, the localization
allows us to solve the rank-deficiency problem and inflate the
DOFS (Hotta and Ota, 2021) but only in the vicinity of obser-
vations, as illustrated by the difference between N300Lnone
and N300L600. Both DOFE and DOFS offer valuable in-
sights, yet in cases of low DOFE and with localization, large
DOFS may not necessarily imply a solution closer to reality.
This is illustrated by the experiments with a 200 km local-
ization compared to the others. When the localization length
is close to the spatial correlation length, non-spurious cor-
relations are also filtered out, and the number of apparent
DOF in the BN matrix surges. Consequently, the number of
DOF that seems to be constrained by the observations also
increases. For this reason, we recommend (1) using DOFS
solely for comparing setups that have an identical number of
samples and localization method and (2) always selecting a
localization length larger than the spatial correlation.

4.4 Level 2 results

Table 3 summarizes all the results obtained with the Level 2
experiments. Note that we only show the DOFS and DOFE
for the first cycle rather than an average or a sum over all
cycles because this is easier to interpret. Moreover, the pos-
terior information is partially propagated from one window
to the next; hence the information obtained in the first cycle
largely influences the MER over the full period.

Experiment A investigates the influence of randomness on
the results using different seeds. Overall, all the statistics are
highly similar. Only the MER and the MUR show small vari-
ations of about 1 % and 0.3 % across the experiments, respec-
tively. More tests would be necessary to precisely assess the
impact of randomness, but this is sufficient to prove that with
a reasonable setup, the randomness should not play a signifi-
cant role.
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Figure 5. Summary of metrics for Level 1 experiments. For each panel, each bar represents the N200L600 value of a specific metric for a
window (W ), a cycle (C), or the full period. The small markers represent all the Level 1 experiments. (a) Number of assimilated observations,
number of assimilated stations, and mean prescribed observation error computed over the assimilated observations in the window. (b) Prior,
background, and posterior RMSD in parts per million by volume. (c) Prior, background, and posterior χ2

r . Bars have two components, one for
the observation-error part of the cost function and one for the background-error part. (d) MUR over France after first and second (posterior)
optimizations. (e) DOFE computed for each cycle before optimization and after the optimization. (f) DOFS computed for each cycle over
the assimilated observations after the optimization. Solid black lines in panels (e) and (f) have been added to show DOFEopt.
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Table 3. Description and results for Level 2 experiments. A brief description of each experiment and several statistics, such as the MER,
MUR, χ2

r , RMSD, DOFE, and DOFS, are provided for each experiment of the Level 2 group. The MER’s value is computed over the
full domain for each window and then averaged over all windows. The MUR’s value is computed over France and then averaged over all
windows. The values of the DOFS and DOFE are given for the first cycle only. The other statistics are computed for the entire assimilation
period.

Name Number of Localization Other parameters MER MUR RMSD CFR χ2
r DOFE DOFS

samples length (km)

EXP_A_1 200 600 Random seed= 1000 27.2 79.1 2.04 71.4 1.2 113 149
EXP_A_2 200 600 Random seed= 2000 26.2 79.3 2.04 71.3 1.2 113 149
EXP_A_3 200 600 Random seed= 3000 26.1 79.6 2.03 71.2 1.3 114 149
EXP_B_1 200 600 Number of lags= 1 22.6 71.1 2.04 73.9 1.1 113 106
EXP_B_2 200 600 Number of lags= 2 27.2 79.1 2.04 71.4 1.2 113 149
EXP_B_3 200 600 Number of lags= 3 28.2 82.4 2.04 69.9 1.3 113 181
EXP_C_0 200 600 Single propagation factor= 0 24.2 79.1 2.05 70.9 1.3 113 149
EXP_C_1 200 600 Single propagation factor= 1

3 25.8 79.1 2.04 71.4 1.2 113 149
EXP_C_2 200 600 Single propagation factor= 2

3 27.2 79.1 2.04 71.4 1.2 113 149
EXP_C_3 200 600 Single propagation factor= 1 27.7 79.1 2.04 70.4 1.3 113 149
EXP_D_e 200 600 Localization function: exponential 27.6 76.6 2.04 72.8 1.2 113 156
EXP_D_g 200 1068 Localization function: GC99 27.1 79.1 2.04 71.3 1.2 113 149
EXP_D_h 200 600 Localization function: Heaviside 22.3 75.5 2.06 68.3 1.4 113 180
EXP_D_n 200 600 Localization function: Gaussian 27.2 79.1 2.04 71.4 1.2 113 149
EXP_E_f 200 600 Full localization 27.2 79.1 2.04 71.4 1.2 113 149
EXP_E_p 200 600 Partial localization 20.7 76.7 2.44 57.3 1.9 113 117
EXP_F_f1 50 600 Adjusting the mean/variance= false 18.3 93.5 2.07 57.6 1.8 42 102
EXP_F_t1 50 600 Adjusting the mean/variance= true 18.1 93.4 2.07 58.0 1.8 41 101
EXP_F_f2 200 600 Adjusting the mean/variance= false 27.2 79.1 2.04 71.4 1.2 113 149
EXP_F_t2 200 600 Adjusting the mean/variance= true 27.3 79.1 2.04 71.4 1.2 113 148
EXP_G_f 200 600 Prior deviations set equal for all windows= false 23.3 78.2 2.03 72.0 1.2 144 198
EXP_G_t 200 600 Prior deviations set equal for all windows= true 27.2 79.1 2.04 71.4 1.2 113 149
EXP_H_b1 200 None Type of optimization: batch 6.9 86.8 2.04 23.9 3.3 113 117
EXP_H_s1 200 None Type of optimization: serial 6.9 86.8 2.04 23.9 3.3 113 117
EXP_H_b2 200 600 Type of optimization: batch 26.7 77.5 2.04 71.9 1.2 113 144
EXP_H_s2 200 600 Type of optimization: serial 27.2 79.1 2.04 71.4 1.2 113 149

Experiment B alters the number of lags. As the deviations
are set equal for all windows, the DOFE for the first cycle do
not change. However, the DOFS for the first cycle increase
with the number of lags as more observations are assimilated,
and therefore more information is obtained, and more DOF
are constrained. As the posterior information of the first cy-
cle is partially propagated to the other windows, the MER is
larger when selecting more lags. The MUR is also increased
because each window is constrained by more observations
when we increase the number of lags.

Experiment C explores the propagation of posterior infor-
mation from one window to the next. Increasing the propaga-
tion factors lead to a better MER. As the true scaling factors
are constant, the cycles can more effectively build upon the
information already collected in the previous cycles if the
propagation factor is high. The results might be very differ-
ent with time-dependent true scaling factors. Note that the
MUR calculated over the full domain (not just France) is un-
changed because only the mean of the ensemble is propa-
gated forward, not the deviations (i.e., uncertainties). Addi-
tionally, a propagation factor of 0 or 1 appears to slightly
reduce the CFR and increase the χ2

r . As the propagation fac-
tor increases, the posterior estimate for a specific window is
more likely to diverge further away from the original prior es-

timate because the system can start the optimization from a
point that is already distant, therefore further increasing pos-
terior J b(x) for the window. However, it also reduces J o(x)

because the fit to the observations is better. Consequently,
there is an optimal value of CFR and χ2

r for a propagation
factor between 0 and 1 in our case.

Experiment D tests different localization functions. For a
localization length of 600 km, the best results are obtained
with the exponential function, although the Gaussian func-
tion yields similar metrics. The effect of the GC99 function
is, as expected, extremely similar to that of the Gaussian
function when a factor of 1.76 is applied to the localization
length. The Heaviside function gives worse results, although
it yields larger DOFS, likely because this function is non-
smooth, and its effect, with a localization length of 600 km,
is close to the effect of the Gaussian function with a reduced
localization length (e.g., N200L200). Therefore, it increases
the DOFS, but the variables are only well constrained in the
proximity of the observations, and the MER calculated over
the full domain is therefore smaller than with the Gaussian
and exponential functions.

Experiment E assesses the difference between full and
partial localizations. When the observation–observation co-
variances are not localized, the results are substantially de-
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graded for our case. Filtering out the long-range observation–
observation covariances in the same way as for the long-
range model–observation covariances logically leads to a
better consistency between the update of the Y’ (see Eq. 30)
and the update of the X′ (see Eq. 28). Our results do not prove
that using the full localization is better in all cases. It only
confirms that the option to enable or disable the full localiza-
tion should be easily accessible to users.

Experiment F quantifies the influence of adjusting the en-
semble to match the mean and variance of the original distri-
bution. This adjustment has a minimal impact on the results,
irrespective of whether 50 or 200 samples are used. Further-
more, randomness may also play a role because the ensem-
bles are modified slightly by this adjustment. The difference
between our results can therefore be considered negligible.

Experiment G investigates the impact of setting prior
deviations equal for all windows. In this experiment, the
DOFEopt is 261× 2= 522 in one cycle because the two
sets of scaling factors representing each window are not
correlated anymore. Although the DOFE value is increased
slightly from 113 to 144, the ratio of DOFE to DOFEopt be-
comes smaller. More DOF are constrained by the observa-
tions (higher DOFS), but it is not sufficient, and the error
reduction is larger when the prior deviations are set equal.
However, these results may not hold if the true scaling fac-
tors are not constant.

Experiment H explores the differences between the batch
and serial EnSRF. Without localization and with a diago-
nal R matrix, the two algorithms should be mathematically
equivalent. They logically produce identical results, indicat-
ing that both algorithms are properly implemented. However,
the equivalence is broken when localization is applied as ex-
pected, although both algorithms provide similar results. CIF
therefore allows users to easily leverage the strengths of each
algorithm.

4.5 Discussion

Level 1 experiments have been performed mainly to assess
the influence of the ensemble size and localization on the
results, and Level 2 experiments have tested other param-
eters. The overarching aim of these experiments (including
those presented in Appendix B) was to validate that the CIF-
EnSRF system produces results consistent with established
literature. Here, we have used an oversimplified synthetic
setup over Europe to gauge the system’s response. The en-
couraging outcomes we have achieved here represent a cru-
cial yet not exhaustive indication of the system’s potential ef-
ficacy in addressing real-data scenarios. Although certain pa-
rameters may have warranted further experimentation across
a broader spectrum of values, we prioritized experiments that
we deemed pertinent to highlight the system’s capabilities
and establish a solid foundation for future research or techni-
cal endeavors.

Future work will nevertheless have to further investigate
other aspects of the CIF-EnSRF. First, to better mirror a real-
data case, temporal variability needs to be included in the
true scaling factors. This temporal variability calls for a bet-
ter assessment of the potential of prescribing temporal error
correlations in the EnSRF. The present work has only be-
gun to delve into this by examining either maximal temporal
correlations or no correlations at all between the windows in
the same cycle. There exists a spectrum of other possibili-
ties that warrants further exploration. Additionally, we only
prescribed correlations in B and R that were consistent with
the parameters used to generate the ensemble, therefore en-
suring a perfect characterization of the problem. This is not
representative of the reality where variances and covariances
are not perfectly known. Including a misrepresentation in the
prescribed errors to test the system’s response is therefore
necessary.

Our current setup focuses solely on optimizing fluxes,
overlooking other important components such as initial and
boundary conditions. Furthermore, our current setup is lim-
ited to the European domain, while the CIF-EnSRF is adapt-
able to any geographic region, whether regional or global.
While this suffices for the scope of our technical demonstra-
tion, we recommend conducting tests across various regions
and with additional control variables representing compo-
nents other than fluxes to assess the versatility and perfor-
mance of this new system.

Finally, the compilation of metrics presented in this work
provides a solid foundation for future investigations, facili-
tating better comparisons between inversions and providing
clearer insights into the influence of selected parameters.

5 Conclusions

We have presented the new EnSRF mode implemented in
CIF. After introducing the theoretical framework of the en-
semble inversions and the algorithms we implemented in
CIF, we have provided a comprehensive description of the
technical implementation in CIF. Finally, we have showcased
the enhanced capabilities of CIF-EnSRF using a large num-
ber of synthetic experiments, exploring the system’s sensitiv-
ity to multiple parameters that can be tuned by users.

For inversions conducted over our European domain, em-
ploying a spatial correlation length of 200 km in the B matrix
with prior deviations equal across windows yields a DOFEopt
of 261. In this case, our synthetic experiments suggest that
200 samples suffice for acceptable results, albeit only when
applying localization. Without localization, the spurious cor-
relations in BN have a large influence and lead to poor esti-
mates. The best results are obtained with a localization length
of 600 km. Note that the DOFE must always be compared to
the DOFEopt to confirm whether the number of samples is
sufficient. Moreover, using three lags appears to be slightly
more performant than using two lags in our case, although
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it increases the computational cost. Although a propagation
factor of 1 leads to enhanced results in our case, our true
scaling factors do not have temporal variability, and there-
fore the results obtained here could be wrong for a real-data
case. Consequently, we recommend using a propagation fac-
tor between 1

3 and 2
3 and perform sensitivity tests. Finally,

using full localization has been beneficial in our case, and, as
we believe it can be generalized to any case, we recommend
using this option.

This work complements previous efforts focused on other
inversion methods within CIF. With the successful integra-
tion of the EnSRF algorithm, any CTM can now be used to
run inversions using CIF, leveraging its capabilities. This en-
ables systematic and rigorous comparisons between different
(1) inversion methods and (2) transport models, employing
state-of-the-art techniques. Furthermore, beyond batch and
serial EnSRF, there exist other ensemble algorithms utilized
in the inversion community. Zupanski et al. (2007) applied
a new ensemble method called the maximum likelihood en-
semble filter (MLEF) to CO2 regional inversion. Feng et al.
(2009) used the revised ETKF from Wang et al. (2004) to
derive global CO2 based on satellite data. Chatterjee et al.
(2012) developed the geostatistical ensemble square root fil-
ter (GEnSRF) by modifying the original EnSRF to be con-
sistent with a geostatistical inverse modeling (GIM) formu-
lation of the flux estimation problem (Michalak et al., 2004).
This list is not exhaustive, as other ensemble methods applied
to atmospheric inversion exist (e.g., Liu et al., 2022; Peng
et al., 2015; Kang et al., 2011, 2012). Our work establishes
the groundwork for the integration of these other algorithms,
facilitating comparisons and evaluations.

The ever-growing threat imposed by climate change forces
the inversion community to produce top-down estimates in
near-real time. CIF is a powerful tool to reduce the work-
load associated with running an inversion while providing
robust estimates and comparisons between them. To validate
these inversions, we need to easily access metrics that quan-
tify the success of an inversion, ensuring robust comparisons
between different inverse modeling teams. The metrics pre-
sented in this work are automatically calculated by CIF, for
any model, and will be generalized to the other optimiza-
tion methods in the future. Therefore, we believe this work
represents a significant step towards creating an operational
system that can address the challenges in GHG emission es-
timation we are facing today.

As satellite data become more precise and abundant, fu-
ture work will have to better assess the potential of CIF to
take advantage of these rich datasets. Moreover, at present,
the speed of the inversion process can be limited by key rou-
tines (e.g., regridding) in CIF if a large number of samples
has to be processed with ensemble methods. Consequently,
parallelization has to be generalized to these routines. More-
over, CIF greatly benefits from user feedback, and the in-
tegration and utilization of new models (ICON-ART, WRF-
CHEM, STILT, etc.) will contribute to shaping a system that
caters to the needs of members within the inversion commu-
nity and facilitate policy-relevant research on greenhouse gas
emissions.
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Appendix A: Notations

Table A1. Summary of all notations used in this paper.

Notation Description Dimensions

n Total number of optimized variables scalar
m Number of optimized variables in a window scalar
p Total number of observations scalar
c Number of cells in the ICON horizontal domain scalar
N Number of samples (or members) in the ensemble scalar
x Control (or state or target) vector n

xb Prior (or background) control vector n

xa Posterior (or analysis) control vector n

yo Observation vector p

εb Background error n

εa Analysis error n

εo Observation error p

E[.] Expectation operator any 7−→ any
B= E[(εb)(εb)T] Background-error covariance matrix n× n

Pa
= E[(εa)(εa)T] Analysis-error covariance matrix n× n

R= E[(εo)(εo)T] Observation-error covariance matrix p×p

H(.) Observation operator n 7−→ p

H Jacobian matrix of the observation operator p× n

K Kalman gain matrix n×p

J(.) Cost function operator n→ scalar
J o(.) Observation part of the cost function operator n 7−→ scalar
J b(.) Background part of the cost function operator n 7−→ scalar
F(.) Forecast operator (or propagation operator) m 7−→m

N (µ,C) Multivariate Gaussian distribution of mean µ and covariance matrix C n/a
x Mean of the Gaussian distribution of control vectors n

X= (x1, . . ., xN ) Sample control vectors n×N

X′ = (x1− x, . . ., xN − x) Deviations of the sample control vectors from the mean control vector. n×N

BN = 1
N−1 X′X′T Ensemble approximation of background-error covariance matrix N ×N

Y′ =HX′ Projection of X′ in the observation space p×N

d = yo
−Hx Innovation vector p

D= 1
N−1 Y′Y′T+R Innovation covariance matrix p×p

T= IN − 1
N−1 Y′TVY′ with V= D−

1
2
(

D
1
2 +R

1
2
)−1

Transformation matrix for EnSRF N ×N

A= ∂xa

∂xt =KH Averaging kernel matrix n× n

So
=
∂ya

∂yo =KTHT Influence matrix n× n

n/a stands for not applicable.

Appendix B: Comparison between CTDAS and CIF

CTDAS is widely used within the EnSRF inversion commu-
nity. As part of our study, we conducted a comparison be-
tween CTDAS and CIF to demonstrate to inverse modelers
that the EnSRF algorithm implemented in CIF is equivalent
to the one in CTDAS. To provide a robust comparison, we
needed to perform two inversions (one with CTDAS and one
with CIF) with identical setups, data processing, and assimi-
lation methods (e.g., the same assimilation order). Before this
work, ICON-ART inversions had been exclusively conducted
with CTDAS (Steiner et al., 2024), but those inversions were
performed only for CH4. As mentioned in Sect. 3.2.2, it is
straightforward to switch from one

species to another in CIF. We therefore selected the refer-
ence synthetic inversion (case 1) of CH4 fluxes over Europe
performed by Steiner et al. (2024) with CTDAS-ICON-ART
and aimed to replicate it precisely with CIF-ICON-ART. The
complete setup of the CTDAS-ICON-ART inversion is de-
tailed in Steiner et al. (2024); hence we only outline the main
components of the configuration here:

– The assimilation window spans the period 1 January to
1 March 2018.

– The ICON horizontal resolution is R3B6 (∼ 26 km).

– The ensemble size is 192.

– The number of lags is 2.
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– The window length is 10 d.

– The localization is applied with a Gaussian function and
a length of 600 km.

– Two emission categories are optimized: anthropogenic
and natural.

– The number of optimized variables for each category is
equal to 21 344, which is the number of horizontal cells
in the ICON domain.

– A relative prior uncertainty of 100 % is prescribed for
each emission category.

– The synthetic observations are generated using a for-
ward simulation spanning the full assimilation window
and applying a random noise of 2 ppbv to the simulated
values at the observation locations.

– The diagonal elements of the observation-error matrix
are equal to 10 ppbv+ 30 % of the prior signal of the
CH4 emissions, at the corresponding observation’s lo-
cation, averaged over the entire inversion period. Ob-
servation errors are uncorrelated.

We applied the exact same setup for the CIF inversions.
Additionally, the same ensemble (i.e., same ensemble size
and same sample values) was employed in both inversions to
eliminate the influence of randomness. We also endeavored
to replicate the post-processing of ICON outputs (i.e., time
and horizontal and vertical interpolations) as closely as pos-
sible in CIF. However, despite our efforts, minor differences
(less than 2 ppbv) sometimes emerged between the CH4 mole
fractions simulated by the two systems. This discrepancy is
particularly noteworthy because the synthetic observations
are generated using the CTDAS version described by Steiner
et al. (2024). Consequently, the posterior scaling factors ob-
tained with CIF cannot be as close to the truth as those ob-
tained with CTDAS. Despite these caveats, Figs. B1 and B2
show almost identical results between CTDAS and CIF for
both emission categories and for both the error reduction and
the posterior uncertainties.
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Figure B1. True and optimized scaling factors averaged over the full assimilation period for the anthropogenic (a, c, e) and natural (b, d, f)
emission categories. The upper panels (a, b) represent the true scaling factors applied to the fluxes to generate the synthetic observations.
The center panels (c, d) represent the optimized scaling factors obtained by Steiner et al. (2024) with CTDAS-ICON-ART. The lower panels
(e, f) represent the optimized scaling factors obtained with CIF-ICON-ART and the same inversion setup that led to the CTDAS-ICON-ART
scaling factors. The dots represent the locations of observation sites. Their size is proportional to the number of assimilated observations
provided by the corresponding site.
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Figure B2. Uncertainty reductions averaged over the full assimilation period for the anthropogenic (a, c) and natural (b, d) emission cate-
gories. The upper panels (a, b) represent the uncertainty reductions obtained by Steiner et al. (2024) with CTDAS-ICON-ART. The lower
panels (c, d) represent the uncertainty reductions obtained with CIF-ICON-ART.

Appendix C: Localization functions

We introduced four localization functions in Sect. 3.1.3: the
Gaussian, exponential, Heaviside, and GC99 functions. For
each function, an analytical definition and an illustration
(Fig. C1) are provided below. d denotes the great-circle dis-
tance between two locations on Earth, l is the localization
length, and r is just equal to d/l. Then, the localizations
functions are defined by the lines below.

LGaussian(r)= e
−
r2
2 , (C1)

Lexponential(r)= e
−r , (C2)

LHeaviside(r)=

{
1 if r ≤ 1
0 if r > 1, (C3)

LGC99(r)= −
1
4 · r

5
+

1
2 · r

4
+

5
8 · r

3
−

5
3 · r

2
+ 1 if 0≤ r ≤ 1

1
12 · r

5
−

1
2 · r

4
+

5
8 · r

3
+

5
3 · r

2
− 5 · r + 4− 2

3 · r
2
− 1 if 1< r ≤ 2

0 if 2< r.
(C4)
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Figure C1. Localization coefficient as a function of distance
(in km). Four functions with a localization length of 600 km are
displayed: exponential (dashed red), Gaussian (solid green), Heav-
iside (dotted blue), and GC99 (long-dashed yellow). The dashed
black line represents the GC99 function with a localization length of
600×1.78= 1068 km to highlight that the GC99 function is highly
similar to the Gaussian function when a coefficient of 1.78 is ap-
plied to the localization length of the Gaussian function.

Appendix D: Additional figures and tables

Table D1. CPU hours used by CIF and ICON-ART (resolu-
tion R3B5 with 5520 cells) to perform Level 1 experiments (2-
month period) on the supercomputer Piz Daint at the Swiss Na-
tional Supercomputing Centre (CSCS). At the end of each job per-
formed on the Piz Daint supercomputer, the logs provide the total
CPU hours used. To execute the inversion, a parent job running CIF
periodically initiates sub-jobs to perform ICON simulations. It al-
lows us to track the CPU hours consumed separately by CIF and
ICON.

Ensemble CPU hours CPU hours used
size used by CIF by ICON-ART

50 0.6 288
100 1.0 432
200 1.3 936
300 2.5 1728
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Figure D1. Uncertainty reduction calculated for each Level 1 experiment. The corresponding MUR calculated for the full domain is displayed
in black in the top-left corner.
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Figure D2. Prior, posterior, and true respiration CO2 fluxes from the N200L600 experiment, for which the ER and MER computations are
presented in Fig. 3. Prior and true fluxes are identical for all synthetic experiments.
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Table D2. Overview of the surface stations that provided the assimilated observations.

ID Name Country Latitude Longitude Altitude Inlet
(m a.s.l.) height

(m a.g.l.)

BIK Bialystok PL 53.23 23.01 183 300
BIS Biscarrosse FR 44.38 −1.23 73 47
BRM Beromünster CH 47.19 8.18 797 212
BSD Bilsdale GB 54.36 −1.15 382 248
CBW Cabauw NL 51.97 4.93 0 207
CMN Monte Cimone IT 44.19 10.70 2165 8
CRA Centre de Recherches Atmosphériques FR 43.13 0.37 600 60
CRP Carnsore Point IE 52.18 −6.37 9 14
ERS Ersa FR 42.97 9.38 533 40
FKL Finokalia GR 35.34 25.67 250 15
GAT Gartow DE 53.07 11.44 70 341
HEI Heidelberg DE 49.42 8.68 113 30
HPB Hohenpeissenberg DE 47.80 11.02 934 131
HTM Hyltemossa SE 56.10 13.42 115 150
HUN Hegyhátsál HU 46.96 16.65 248 115
IPR Ispra IT 45.81 8.64 210 100
JFJ Jungfraujoch CH 46.55 7.99 3572 14
KAS Kasprowy Wierch PL 49.23 19.98 1987 7
KIT Karlsruhe DE 49.09 8.42 110 200
KRE Křešín u Pacova CZ 49.57 15.08 534 250
LHW Lägern-Hochwacht CH 47.48 8.40 840 32
LIN Lindenberg DE 52.17 14.12 73 98
LMP Lampedusa IT 35.52 12.63 45 8
LUT Lutjewad NL 53.40 6.35 1 60
MHD Mace Head IE 53.33 −9.90 5 24
MLH Malin Head IE 55.36 −7.33 22 47
NOR Norunda SE 60.09 17.48 46 100
OHP Observatoire de Haute Provence FR 43.93 5.71 650 100
OPE Observatoire pérenne de l’environnement FR 48.56 5.50 390 120
PAL Pallas FI 67.97 24.12 565 12
PDM Pic du Midi FR 42.94 0.14 2877 28
PRS Plateau Rosa IT 45.93 7.70 3480 10
PUI Puijo FI 62.91 27.65 232 84
PUY Puy-de-Dôme FR 45.77 2.97 1465 10
RGL Ridge Hill GB 52.00 −2.54 207 90
SAC Saclay FR 48.72 2.14 160 100
SMR Hyytiälä FI 61.85 24.29 181 125
STE Steinkimmen DE 53.04 8.46 29 252
STE Steinkimmen DE 53.04 8.46 29 252
SVB Svartberget SE 64.26 19.78 269 150
TAC Tacolneston GB 52.52 1.14 64 185
TOH Torfhaus DE 51.81 10.54 801 147
TRN Traînou FR 47.96 2.11 131 180
UTO Utö – Baltic Sea FI 59.78 21.37 8 57
WAO Weybourne GB 52.95 1.12 31 10
ZSF Zugspitze DE 47.42 10.98 2666 3
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Table D3. MER for all Level 1 synthetic experiments and all EU27 countries (excluding Malta), along with Norway, the United King-
dom, and Switzerland. These numerical values (in %) correspond to the maps displayed in Fig. 4. 1: Austria, 2: Belgium, 3: Bulgaria,
4: Croatia, 5: Cyprus, 6: Czechia, 7: Denmark, 8: Estonia, 9: Finland, 10: France, 11: Germany, 12: Greece, 13: Hungary, 14: Ireland,
15: Italy, 16: Latvia, 17: Lithuania, 18: Luxembourg, 19: the Netherlands, 20: Norway, 21: Poland, 22: Portugal, 23: Romania, 24: Slovakia,
25: Slovenia, 26: Spain, 27: Sweden, 28: Switzerland, 29: the United Kingdom.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

N50Lnone 20 −104 −204 −102 −126 31 −58 13 −9 −35 12 −142 −6 38
N100Lnone 27 −19 −125 −70 −130 42 −78 −20 0 −9 24 −152 −2 46
N200Lnone 46 −9 −84 −70 −119 50 −77 −18 3 19 38 −79 32 57
N300Lnone 52 −21 −64 −49 −93 52 −58 4 8 18 45 −69 32 64
N50L1500 39 −35 −74 −48 −51 47 −48 −19 6 −1 29 −42 9 52
N100L1500 38 −24 −42 −48 −5 52 −64 −17 19 12 34 −50 32 62
N200L1500 51 −4 −32 −46 −28 54 −68 −7 24 26 42 −38 40 65
N300L1500 54 −6 −34 −29 −26 56 −51 12 25 25 48 −45 37 68
N50L1000 41 −26 −34 −34 −10 51 −51 −21 9 5 33 −25 16 62
N100L1000 43 −15 −19 −37 9 58 −58 −13 22 20 38 −33 35 68
N200L1000 53 −0 −11 −30 7 58 −57 −3 32 29 46 −27 41 69
N300L1000 55 4 −21 −14 −5 60 −44 11 31 28 50 −41 39 70
N50L600 49 −8 −0 −15 −9 57 −36 −20 19 14 39 −14 19 73
N100L600 52 2 −0 −10 −1 65 −42 −9 25 28 45 −15 35 71
N200L600 56 7 0 −7 −0 62 −34 3 35 33 52 −16 40 72
N300L600 56 13 −5 1 −1 63 −22 11 34 32 54 −25 39 72
N50L200 54 −3 −0 −4 −0 60 −9 −4 32 28 49 −2 29 73
N100L200 57 1 0 4 0 66 −2 −0 35 31 52 −2 37 73
N200L200 57 11 −0 0 −0 65 −6 3 36 31 54 −2 39 73
N300L200 58 14 −0 −2 −0 65 −1 6 36 30 55 −2 37 73

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

N50Lnone −39 −15 −21 82 −106 −4 −23 28 −117 7 14 −3 11 13 6
N100Lnone −36 −26 5 46 −90 12 −23 14 −51 22 9 −6 12 7 43
N200Lnone −10 0 14 −37 −44 22 −13 43 −10 39 27 4 25 34 51
N300Lnone 1 12 27 −41 −24 10 −4 52 −7 38 29 16 34 45 55
N50L1500 −16 18 7 15 −78 1 −8 27 −41 19 −3 6 26 12 36
N100L1500 −10 −7 28 25 −64 26 −6 25 −20 33 19 2 30 19 53
N200L1500 4 25 29 −21 −31 30 −3 45 −7 41 28 17 34 41 58
N300L1500 8 25 32 −27 −15 17 3 50 −7 42 20 22 40 50 59
N50L1000 −14 28 14 −9 −72 4 −4 31 −33 27 3 14 30 15 45
N100L1000 −5 12 38 17 −48 31 1 24 −15 41 23 10 35 25 57
N200L1000 7 35 36 −7 −21 33 3 42 −5 44 21 21 39 44 62
N300L1000 10 34 36 −12 −8 23 7 44 −6 45 15 23 42 49 62
N50L600 −6 42 28 −12 −58 24 6 30 −20 41 5 20 36 22 54
N100L600 2 36 42 13 −27 33 8 22 −7 49 26 19 40 31 60
N200L600 9 41 42 8 −12 36 10 28 −2 50 16 24 42 47 63
N300L600 11 41 40 2 −3 31 11 30 −2 50 11 24 44 48 63
N50L200 13 27 22 53 −19 21 15 1 1 49 6 8 40 32 56
N100L200 13 28 25 39 −17 22 14 0 2 52 6 8 42 39 59
N200L200 14 27 24 29 −11 22 15 0 2 55 4 8 42 44 60
N300L200 14 27 22 17 −10 21 15 0 2 54 2 7 42 46 60

https://doi.org/10.5194/gmd-18-1505-2025 Geosci. Model Dev., 18, 1505–1544, 2025
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Code and data availability. The ICON and ART codes
are now open source and publicly available for down-
load at https://doi.org/10.35089/WDCC/IconRelease01
(ICON partnership, 2024). The CIF code featuring the
new EnSRF mode can be accessed via the following DOI:
https://doi.org/10.5281/zenodo.12742377 (Berchet et al.,
2022), while input data (fluxes, background concentrations,
and observations) are publicly available via the following
DOI: https://doi.org/10.5281/zenodo.12609041 (Berchet et al.,
2024). Complete and surface ERA5 reanalysis data are pub-
licly available via the Copernicus Climate Change Service at
https://doi.org/10.24381/cds.143582cf (Hersbach et al., 2017) and
https://doi.org/10.24381/cds.adbb2d47 (Hersbach et al., 2023),
respectively.
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