
Geosci. Model Dev., 18, 1463–1486, 2025
https://doi.org/10.5194/gmd-18-1463-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.

M
odeldescription

paperThe Water Table Model (WTM) (v2.0.1): coupled groundwater
and dynamic lake modelling
Kerry L. Callaghan1,2,3, Andrew D. Wickert2,4,5, Richard Barnes6, and Jacqueline Austermann3

1Department of Earth and Environmental Sciences, University of Illinois Chicago, Chicago, IL, USA
2Department of Earth and Environmental Sciences, University of Minnesota, Minneapolis, MN, USA
3Lamont–Doherty Earth Observatory, Columbia University, New York, NY, USA
4St. Anthony Falls Laboratory, University of Minnesota, Minneapolis, MN, USA
5Sektion 4.6: Geomorphologie, GFZ Helmholtz-Zentrum für Geoforschung, Potsdam, Germany
6National Energy Research Scientific Computing Center (NERSC), Lawrence Berkeley National Laboratory,
Berkeley, CA, USA

Correspondence: Kerry L. Callaghan (kerryc@uic.edu)

Received: 9 July 2024 – Discussion started: 18 July 2024
Revised: 1 December 2024 – Accepted: 25 December 2024 – Published: 10 March 2025

Abstract. Ice-free land comprises 26 % of the Earth’s sur-
face and holds liquid water that delineates ecosystems, af-
fects global geochemical cycling, and modulates sea levels.
However, we currently lack the capacity to simulate and pre-
dict these terrestrial water changes across the full range of
relevant spatial (watershed to global) and temporal (monthly
to millennial) scales. To address this knowledge gap, we
present the Water Table Model (WTM), which integrates
coupled components to compute dynamic lake and ground-
water levels. The groundwater component solves the 2D hor-
izontal groundwater flow equation using non-linear equation
solvers from the C++ PETSc (Portable, Extensible Toolkit
for Scientific Computation) library. The dynamic lake com-
ponent makes use of the Fill–Spill–Merge (FSM) algorithm
to move surface water into lakes, where it may evaporate
or affect groundwater flow. In a proof-of-concept applica-
tion, we demonstrate the continental-scale capabilities of the
WTM by simulating the steady-state climate-driven water ta-
ble for the present day and the Last Glacial Maximum (LGM;
21 000 calendar years before present) across the North Amer-
ican continent. During the LGM, North America stored an
additional 14.98 cm of sea-level equivalent (SLE) in lakes
and groundwater compared to the climate-driven present-day
scenario. We compare the present-day result to other simula-
tions and real-world data. Open-source code for the WTM is
available on GitHub and Zenodo.

1 Introduction

Over decades to millennia, global climate and hydrological
systems jointly modulate the terrestrial water table (Fig. 1).
The water table, defined as the surface below which ground
is water-saturated, controls both groundwater and lake-water
storage volumes (Fan et al., 2007, 2013). The volume of
stored water changes over time with water-table elevation
as a result of seasonality, human impacts, or longer-term
changes in climate and topography. These changes in lake
and/or groundwater systems significantly impact the hydro-
logical cycle on a global scale (Ni et al., 2018; Syed et al.,
2008).

The upper 2 km of continental crust holds an estimated
22.6× 106 km3 of groundwater (Gleeson et al., 2016). This
groundwater provides baseflow to rivers and lakes, defines
wetland locations (Fan et al., 2013; Zhu and Gong, 2014),
and provides a large store of freshwater for human use
(Wada, 2016). It also changes over time, with impacts on
ecosystems (Amanambu et al., 2020; Cuthbert et al., 2019b;
Hu et al., 2017), geochemical cycling (Dean et al., 2018;
Ringeval et al., 2010; Zhang et al., 2023b), and sea levels
(Konikow, 2011; Pokhrel et al., 2012; Sun et al., 2022; Wada
et al., 2012). Meanwhile, although lakes cover only about
3.7 % of the Earth’s ice-free land surface (Verpoorter et al.,
2014), they are numerous: Verpoorter et al. (2014) recorded
over 100 million lakes in their inventory. The total volume
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of the world’s lakes is about 181 900 km3 (Messager et al.,
2016). This lake-water storage impacts hydrologic connec-
tivity (Callaghan and Wickert, 2019) and, therefore, also af-
fects sediment and contaminant transport. Surface-water el-
evation also influences groundwater head and may exert a
stronger control on head in gradient-based groundwater mod-
els than other factors, including recharge and hydraulic con-
ductivity (Reinecke et al., 2019a). The extent of these water
stores highlights the importance of understanding how they
change in the long term.

High-performance computing and efficient algorithm de-
sign have enabled continental-scale modelling of modern-
day groundwater (Fan et al., 2013; Maxwell et al., 2015) and
streamflow (Döll et al., 2009; NOAA, 2016). However, we
lack models that are capable of global-scale transient simu-
lations lasting decades or longer. These timescales are highly
relevant for our understanding of the impacts of changing sea
levels and climate on groundwater stores and are of particu-
lar importance for understanding changes to the hydrological
system over human lifetimes. Existing models that simulate
groundwater at large spatial scales allow for either steady-
state simulations (Fan et al., 2013; Maxwell et al., 2015) or
transient simulations at timescales ranging from hours to a
few years (Maxwell et al., 2015; Kollet, 2009; O’Neill et al.,
2021). Some hydrologic projections over longer time peri-
ods (decades) do exist (Döll et al., 2020; Märker and Flörke,
2003), but these do not explicitly simulate the groundwater
table.

Built-in static assumptions and/or equilibrium approaches
prevent existing models from adequately considering the
possibly of dramatic long-term changes to lake volume, es-
pecially when lake extent in the real world is variable. Vari-
ous land-surface models (e.g. Decharme et al., 2019; Koirala
et al., 2014; Lawrence et al., 2019; Wiltshire et al., 2020;
Yokohata et al., 2020; Zeng et al., 2002) provide complex de-
pictions of surface and subsurface hydrology. Some include
lake components that influence the local climate (Oleson
et al., 2010), but they do not incorporate dynamic changes
in lake-water storage or lake surface area over time. For ex-
ample, Müller Schmied et al. (2021) comprehensively sim-
ulated surface hydrology, including the dynamics of lake
and wetland storage (Döll et al., 2020), but relied on static
mapped extents of lakes and wetlands. Many of the afore-
mentioned models also have substantial data input and cal-
ibration requirements, complicating the assessment of long-
term changes in the water table, which necessarily integrate
across timescales for which requisite data are scarce.

To address the challenge of long-term transient simula-
tions of the water table, we present the Water Table Model
(WTM). The WTM couples groundwater (Sect. 3) and lake-
water (Sect. 4) levels and flow to simulate water-table ele-
vation relative to the land surface across spatial scales rang-
ing from local catchments to the globe and over timescales
ranging from months to thousands of years and beyond. By
explicitly acknowledging the link between surface-water el-

evation and groundwater head, the WTM moves beyond the
common – but artificial – model truncation at the land surface
and instead solves the dynamically linked surface-water–
groundwater system (Reinecke et al., 2019a, b). Input data
for the WTM are commonly available for both the present
day and the recent geological past and are described in Ap-
pendix A1.

We designed the WTM with the following goals and
philosophies:

1. Simplicity. The focus of the model is on the simula-
tion of the water table alone. Vadose-zone processes,
climate, and streamflow are not directly simulated.

2. Computational efficiency. This enables the WTM to be
run across hundreds of millions of cells for thousands
of years.

3. Open-source model code. The source code for the
WTM is available on GitHub (v2.0.1; https://github.
com/KCallaghan/WTM/, last access: 30 April 2024)
and Zenodo (v2.0.1; https://doi.org/10.5281/zenodo.
10611076, Callaghan et al., 2024) for other researchers
to use and peruse.

4. Dynamic lakes. Lake locations are not predefined and
instead evolve alongside the rest of the water table.

5. Broad applicability. The WTM can be used across a
broad range of spatial scales, from catchments to global
scales, and can produce both transient and steady-state
water-table outputs.

In order to enable long-term, large-scale simulations of both
the groundwater table and dynamic lake surfaces, the WTM
makes use of Fill–Spill–Merge (FSM) (Barnes et al., 2021),
a highly efficient computational tool for routing water across
land surfaces and into depressions. The treatment of surface
water in FSM allows us to evaluate surface-water storage
with long time steps, neglecting detailed simulations of cell-
to-cell river flow. For groundwater, we solve the 2D horizon-
tal groundwater flow equation for saturated flow in an un-
confined aquifer, as discussed in Sect. 3. This follows the
saturated-type conceptual approach to groundwater simula-
tion, as classified in Condon et al. (2021). By focusing only
on 2D horizontal saturated flow, our formulation is simpli-
fied enough to enable large-scale (continental) and long-term
(monthly to millennial) simulations, which is our aim.

2 Model summary

The WTM (Callaghan et al., 2024) simulates water-table ele-
vation relative to the land surface (here referred to as the rel-
ative water-table elevation, zwr), including both groundwater
and dynamically changing lake surfaces. The water table is
controlled by sea levels and topography, as well as by water
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Figure 1. The water table, incorporating groundwater and lake surfaces, is an integral part of the global hydrologic system, interacting with
all other major hydrologic stores, including ice, the ocean, and the atmosphere. In this figure, the solid blue arrows indicate the direction of
surface-water flow, and the dotted darker-blue arrows indicate the direction of groundwater flow. ET: evapotranspiration. P : precipitation.

inputs (precipitation and ice melt) and outputs (evapotranspi-
ration and open-water evaporation). Groundwater flow is de-
pendent on local hydraulic conductivity, discussed further in
Sect. 3.2, and slows in permafrost regions. The WTM is im-
plemented in C++. The code can be acquired from GitHub
(https://github.com/KCallaghan/WTM) and Zenodo (v2.0.1;
https://zenodo.org/records/10611076).

Within the WTM, separate model components for the sim-
ulation of groundwater (Sect. 3) and dynamic lakes (Sect. 4)
are run sequentially in a repeated cycle to allow for feedback
between groundwater and surface water in the terrestrial hy-
drological system (see Fig. 2). Both the groundwater and dy-
namic lake components use the same sets of input data and
modify the same water-table array to produce one final water
table, with groundwater represented as negative zwr values
and lakes as positive zwr values. Any water that exfiltrates
during the groundwater step is moved downslope into lakes
or the ocean during the surface-water step; conversely, seep-
age from lakes may occur during the surface-water step, and
lake water is included in the hydraulic head field used to cal-
culate groundwater movement. The steps followed within the
model are visualised in Fig. A1.

The WTM captures broad natural patterns in water-table
elevations. Its simplified treatment of groundwater flow
makes it most appropriate for large spatial scales, rang-
ing from continent-spanning catchments to the globe. Ad-
ditionally, the WTM’s assumption that surface water always
completes its travel to depressions or the ocean makes this
model most appropriate for long temporal scales, ranging
from months to millennia. The WTM can be used to simu-
late both transient and steady-state water-table conditions for
any given set of input data. For steady-state model runs, the
user must run the model for long enough to allow the wa-
ter table to equilibrate to the given topography and climate.
If users wish to monitor changes in the water table, values
indicating the total change in the array are saved to a text
file, and the full water table is saved at user-defined intervals.

For transient runs, the user simply selects the amount of time
for which to run the simulation and provides input data at
the start and end points of the simulation. The methodology
for both transient and steady-state simulations is broadly the
same, with the only practical difference being the possibility
of topographic and climatic changes over time, which may
occur in the case of the transient model run. The input data
required by the WTM are listed in Appendix A1. As an out-
put, the WTM returns a 2D array (zwr), which corresponds
to the water-table elevation minus the land-surface elevation
(positive values indicate exposed surface water, while nega-
tive values indicate groundwater).

3 The groundwater component

3.1 Computing the groundwater table

We compute the groundwater table at each time step us-
ing the 2D horizontal groundwater flow equation (Eq. 1)
for saturated groundwater flow in an unconfined, hetero-
geneous aquifer (Freeze and Cherry, 1979). This method
applies the Dupuit–Forchheimer approximation, which as-
sumes that flowlines are horizontal and that the hydraulic
gradient is equal to the slope of the water table and does not
vary with depth below the water table. These assumptions
are valid when the slope of the water table is small (Freeze
and Cherry, 1979), which is usually the case at the spatial
resolutions used in the simulations in Sect. 6.
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Here, we solve for h, the groundwater head. T is the
transmissivity (depth-integrated hydraulic conductivity; see
Sect. 3.2). Moreover, t represents time, and x and y are
the two dimensions of groundwater movement. R represents
recharge; details on how values for R are selected are given
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Figure 2. A schematic of the WTM. (a) A cross section of a hypo-
thetical portion of a landscape, including hillslopes and a depression
that may hold a lake. Inputs to the WTM include precipitation (P );
evapotranspiration (ET); surface-water evaporation (ESW), used in
place of ET when lakes are present; topography; the topographic
slope; the runoff ratio; hydraulic conductivity; porosity; and win-
ter temperatures. A starting water table may be provided, or for
steady-state runs, the water table is initialised at the land surface.
(b) The groundwater component executes, and groundwater flow
modifies the water table. Here, the water table is deeper below the
hilltops, and exfiltration has occurred on the hillsides. (c) FSM (the
dynamic lake component) has been executed. Surface water is now
distributed from hillslopes into lakes situated at the bottom of de-
pressions. The steps in panels (a) to (c) repeat until the user-defined
number of time steps have been completed. (d) The simulation is
complete, and the resulting water table is saved to a file.

in Sect. 3.3. Sy is the specific yield, here approximated as be-
ing equal to the porosity and provided as input data by the
user.

To solve Eq. (1), we use the Scalable Nonlinear Equa-
tions Solvers (SNES) component of the Portable, Extensi-
ble Toolkit for Scientific Computation (PETSc) (Balay et al.,
1997, 2022a, b) in C++. Full details on the discretisation and
implementation of this equation are given in Appendix B. In

the simulations included within this paper, we use the Ander-
son (1965) mixing method (selectable at runtime), which it-
eratively solves non-linear equations, to compute the ground-
water head, h, at regular time intervals. Converting h to the
relative water-table elevation, zwr, is trivial and expressed as
follows: zwr = z+h, where z is the elevation of the land sur-
face.

3.2 Transmissivity

Transmissivity (T ), the depth-integrated hydraulic conduc-
tivity from −∞ to zwr, is needed to solve for groundwater
flow (see Appendix B). To obtain T , we require knowledge of
the hydraulic conductivity values throughout the entire depth
of the aquifer. Data on variability in hydraulic conductivity
with depth are not available at the spatial scales we assess
here, so we follow the common assumption that this value
decreases exponentially with depth (Ameli et al., 2016; Car-
denas and Jiang, 2010; Fan et al., 2013). Users provide a sin-
gle near-surface hydraulic conductivity value for each cell of
the domain, which is used from the land surface to a depth of
1.5 m because global soil datasets are representative of con-
ditions up to approximately this depth. We refer to this value
as K1.5. Beyond depths of 1.5 m, hydraulic conductivity de-
cays exponentially from this near-surface value.

We specify the rate of this exponential decay using an
e-folding depth (fd). The local terrain slope is used as a
modifier: steeper slopes support less sediment, so hydraulic
conductivity decays more rapidly. A temperature-dependent
modifier (Tf ) further decreases the e-folding depth at loca-
tions where seasonal frost or permafrost occurs. Accordingly,
fd is expressed as

fd = f × Tf , (2)

where f is the slope-dependent term, defined as

f =max
(
fmin ,

a

1+ bS

)
, (3)

where S is the terrain slope, and a, b, and fmin are user-
selected calibration constants.
Tf is incorporated into the e-folding depth following the

method and temperature ranges used by Fan et al. (2013).
When the average winter temperature drops below−5 °C, we
assume that seasonal frost inhibits groundwater flow. When
average winter temperatures fall below −14 °C, we assume
that groundwater flow is affected by permafrost. This limits
lateral drainage, reducing the effective hydraulic conductiv-
ity (Fan and Miguez-Macho, 2011). We define Tf as

Tf =



1

if (TC >−5°C),
1.5+ 0.1TC

if (−14°C< TC <−5°C),
max(0.17+ 0.005TC , 0.05)

if (TC <−14°C),

(4)
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where TC is the temperature in degrees Celsius.
With this hydraulic conductivity structure in hand, we cal-

culate the transmissivity. We consider three possible cases:

1. The water table lies below 1.5 m depth, where the expo-
nential decay of hydraulic conductivity comes into play.
In this case, we must use the fd values computed earlier.

2. The water table lies in the shallow subsurface, above
1.5 m depth, where the unmodified hydraulic conduc-
tivity from our input data is representative of conditions
at the water table.

3. The water table lies above the land surface. In this case,
hydraulic conductivity is calculated at the level of the
land surface (i.e. it is identical to that for a fully satu-
rated substrate). The dynamic lake component (Sect. 4)
later moves the surface water into depressions or out of
the domain as appropriate.

Based on these three cases for hydraulic conductivity, we fol-
low the methods used by Fan et al. (2013) to calculate trans-
missivity as follows:

T =


fd×K1.5× exp

(
zwr+1.5
fd

)
if (zwr <−1.5m) (deep subsurface),

K1.5× (zwr+ 1.5+ fd)
if (−1.5m≤ zwr ≤ 0m) (shallow subsurface),

K1.5× (0+ 1.5+ fd)
if (0m< zwr) (above surface),

(5)

where T is the transmissivity, fd is the e-folding depth
(Eq. 2), K1.5 is the shallow-subsurface horizontal hydraulic
conductivity (assumed valid to a depth of 1.5 m), and zwr is
the relative water-table elevation. See Fan et al. (2013) for
more information on the derivation of these formulae.

3.3 Recharge and evaporation

We use the climatic water input (Win, including precipitation
and any other incoming water, such as ice melt), overland
evapotranspiration (ET), and open-water evaporation (ESW)
input arrays (see Appendix A1 for a full list of all required
input arrays), along with the optional runoff ratio array (rr),
to determine how much water is available to recharge the
groundwater table and how much surface water will evap-
orate.

When surface water is present, evaporation rates typically
increase. Physically, this is because actual evaporation can
equal potential evaporation at these locations. Both physi-
cally and algorithmically, the increased rate of evaporation
typically acts as a feedback that slows runaway lake growth
by decreasing the catchment-wide water balance as the lake
surface area increases. If lake water is present in a cell, then
sufficient evaporation can remove water from the cell. In cells
that do not contain lakes, sufficient evapotranspiration can
result in no water being available to add to the groundwater;
however, the Earth’s surface shields the groundwater itself

from evaporation. To account for changes in evaporation de-
pendent on the presence of surface water, the WTM recalcu-
lates the total water input to each cell (Eq. 6) at the beginning
of each groundwater–surface-water model cycle. This total
water input (Wtot) is given by

Wtot =


max(Win−ET,0)

if zwr ≤ 0 (subsurface),
Win−ESW

if zwr > 0 (above surface).

(6)

Optionally, a user can provide a spatially distributed runoff
ratio (rr), which sets the proportion of incoming water that
runs off over the land surface rather than infiltrating into the
subsurface. This runoff is routed over land via the dynamic
lake component of the model, discussed in Sect. 4, and the
remaining water is treated as local recharge and applied to
the water table. If unassigned, rr = 0 by default.

The amount of runoff, r , in each cell where Wtot > 0 is
expressed as

r = rrWtot. (7)

As its complement, recharge is defined as

R =Wtot− r. (8)

Equation (8) indicates that the WTM neglects unsaturated-
zone processes. We made this design decision for three rea-
sons. First, we sought to maintain the simplicity of the mod-
elling framework in order to understand and interpret its re-
sults. Second, the timescale of unsaturated-zone processes
becomes increasingly negligible with longer-term simula-
tions (Sousa et al., 2013), so we chose to neglect these pro-
cesses in the multi-millennial-scale simulations we include
here. Third, and most importantly, simulating the unsaturated
zone is computationally expensive (Maxwell et al., 2015) and
prohibits the multi-millennial, continental-scale model runs
presented in this work.

4 The dynamic lake component

The dynamic lake component uses a parsimonious graph-
based approach to move surface water into depressions and to
compute surface-water storage within these depressions. De-
pressions are defined as inwardly draining regions within the
topography, where water would naturally pool without being
able to flow away. The dynamic lake component proceeds in
two steps:

1. It computes a depression hierarchy (Barnes and
Callaghan, 2020) based on an input digital elevation
model (DEM).

2. It uses the Fill–Spill–Merge method – modified to in-
clude lake seepage and, optionally, infiltration – to
rapidly allocate runoff to these depressions (Barnes
et al., 2021) and to calculate the resulting depth of sur-
face water in all of the depressions.
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4.1 The depression hierarchy

Understanding the topological and geographical relation-
ships between depressions in the landscape allows us to more
rapidly calculate how these depressions will trap and store
water. An unfilled depression will retain water that flows into
it, while a depression that is already filled with water will
overflow either to another depression or to the ocean. The
depression hierarchy algorithm builds the depression hierar-
chy data structure (Barnes and Callaghan, 2019) by analysing
the input topography to determine the locations of internally
drained depressions and their catchments. We use this data
structure (for a full description, see Barnes and Callaghan,
2019, 2020) to compute surface-water flow using Fill–Spill–
Merge, as discussed in Sect. 4.2. The depression hierarchy
is scale-independent, though the accuracy of the computed
depression network depends on the quality and resolution of
the input DEM. For the implementation of the depression hi-
erarchy used in this work, we modified the code described
by Barnes et al. (2020) in two critical ways: we relaxed the
assumption of a uniform grid-cell size, and we added a pa-
rameter to account for groundwater storage in each cell.

4.1.1 Latitude-dependent variable cell areas

When performing computations using geospatial data repre-
sented on a latitude–longitude grid, cells at higher latitudes
have smaller areas than cells at lower latitudes due to the
roughly spherical shape of the Earth. Therefore, we gener-
alise the code to allow for latitude-dependent variable cell
sizes (Callaghan et al., 2024). This modification is crucial
for our ability to conserve water volume as water moves from
cell to cell.

4.1.2 Groundwater storage

Here, we modify the depression hierarchy to record the vol-
ume available for water storage below the land surface in a
given depression (i.e. the groundwater space below cells that
may receive an influx of surface water). This allows the algo-
rithm to more accurately assess the total capacity for water
storage in each depression. This change was necessary for
the WTM because we consider both surface and groundwa-
ter. When the water table is below the land surface, we as-
sume that the ground becomes saturated before surface water
begins to fill the depression.

4.2 Fill–Spill–Merge algorithm

The WTM computes lake levels using the Fill–Spill–Merge
(FSM) algorithm (Barnes and Callaghan, 2020; Barnes et al.,
2021). In this work, we modify the original FSM algo-
rithm from Barnes et al. (2021) by adding optional infil-
tration (Sect. 4.2.1), implementing seepage from lake cells
(Sect. 4.2.2), and allowing cell size to vary with latitude
(Sect. 4.2.3).

FSM rapidly routes surface water downslope into depres-
sions using a depression hierarchy (Barnes et al., 2020)
(Sect. 4.1). If a depression has been filled by precipitation or
runoff to the point where it cannot contain any more water,
it will spill, sending any additional water to its neighbouring
depression. If two neighbouring depressions are both filled,
they will merge to form a larger meta-depression, which
will then continue to fill with water. This process contin-
ues until all surface water has flowed to either a depression
or the ocean. This combination of the depression hierarchy
and FSM solves the aforementioned flow-routing and water-
distribution problem thousands of times faster than previous
models (Barnes and Callaghan, 2019; Barnes et al., 2021).

FSM is time-independent, always moving surface water
to its final destination in depressions, to the ocean, or out
of the model domain within a single time interval. We ap-
ply this process in the WTM under the assumptions that
surface-water movement is fast in comparison to groundwa-
ter movement and that only equilibrated surface-water results
are needed over the timescales we address using the WTM.
Overland flow, including streamflow, is implied through the
calculation of flow directions and the final locations of stand-
ing water but is not explicitly modelled. The output of FSM
is an array of the zwr result after infiltration has occurred (op-
tional) and surface water has completed flow into depressions
to form lakes or exited the domain.

4.2.1 Infiltration

Here, we add an optional infiltration component to FSM.
When the infiltration option is enabled, the FSM algorithm
first moves surface water downslope, cell by cell, using the
flow directions generated by the depression hierarchy. As the
water moves downslope, some may undergo infiltration; the
remainder continues along the flow path until it flows either
into the ocean, out of the domain, or into a pit cell (that is,
the cell within a depression that has the lowest elevation).

When the infiltration option is disabled, the land surface is
treated as impermeable in order to simulate the rapid evacu-
ation of surface water from each cell via river networks. To
speed up calculations, the algorithm skips cell-to-cell water
flow and instead uses the depression hierarchy data to move
water directly from each surface-water-containing cell to the
relevant depression in the hierarchy.

Our method for managing infiltration considers the verti-
cal hydraulic conductivity within the cell, the travel time of
water across the cell, and the amount of unsaturated below-
ground space in the cell that can potentially accommodate
infiltrating water. For full details on the method used, see Ap-
pendix C. Here, we summarise the amount of infiltration (I )
that occurs in a cell with the following equation:

I =min
(
−φzwr , Ipot

)
, (9)

where infiltration (I ) corresponds to the minimum value of
the amount of unsaturated below-ground space (or subsur-
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face porosity, φ), multiplied by the negative relative water-
table elevation (−zwr), and the maximum potential infiltra-
tion (Ipot) that could occur in the cell. Ipot is defined as

Ipot =

{
h0 if h5/3

0 ≤
5
3

n

S1/2 ksat1L,

ksattI otherwise,
(10)

where h0 is the initial height of the water entering the cell;
n is the Gauckler–Manning coefficient, here set to a default
value of 0.05 m−1/3 s; S is the slope; ksat is the infiltration
rate; and tI is the transit time taken by water to cross the cell.

Use of the infiltration module is only recommended for
cases in which the input data have a high enough resolution
to resolve hillslopes and river channels that fully occupy dis-
tinct individual cells. When using coarser-resolution input
data, a single pixel ultimately contains sections of both the
river network and hillslope, and the model does not have suf-
ficient information about the transit routes and times of water
across these different zones – determined by drainage density
and hillslope geometry – to realistically simulate infiltration.
When the input data resolution becomes high enough to dif-
ferentiate between the hillslope and channel components of
the landscape, the infiltration component adds an additional
element of realism to the model.

4.2.2 Seepage

When a lake is present in a depression, we allow the wa-
ter column to instantaneously seep into the subsurface until
either (a) the entire subsurface is saturated or (b) no surface
water remains. The WTM does not simulate any perched wa-
ter tables; the lake surface represents the water table, with
complete saturation occurring up to that elevation.

4.2.3 Variable cell areas

As mentioned in Sect. 4.1.1, cell areas for unprojected
geospatial data can vary dramatically based on latitude. The
same volume of water at two different latitudes would trans-
late to different heights of groundwater or surface water in
a cell. As with the depression hierarchy, we account for this
variable cell area when calculating zwr, allowing us to con-
serve water volume within the model.

5 Computational performance

In a scaling test, we found a scaling of approximately O(n2)

between the runtime and the number of cells in the do-
main. Our test used several square-sized datasets from the
GEBCO_2020 dataset (GEBCO Bathymetric Compilation
Group, 2020), with the smallest dataset covering 54–55° N,
102–103° W, and the largest dataset covering 43–73° N, 74–
104° W (northeastern North America). We used uniform val-
ues for other input data (precipitation, evapotranspiration,
porosity, hydraulic conductivity, and winter temperature).

All tests used a spatial resolution of 30 arcsec. Scaling tests
were run on a desktop computer with an Intel® Core™ i9-
10900 (2.80 GHz) processor, featuring two threads per core,
10 cores per socket, and 134 GB of RAM. For larger datasets,
such as those shown in Sect. 6, high-performance computing
(HPC) is recommended.

In this scaling test, the SNES convergence tolerance (stol)
was set to 10−6, and the Anderson (1965) solver was used
(this solver is recommended for all WTM runs). The major-
ity of the computation time was spent solving for ground-
water flow; performance metrics for FSM alone are given by
Barnes et al. (2021).

6 Proof-of-concept simulation: continental-scale
simulation

6.1 North America steady-state simulation: present
day

To demonstrate the capabilities of the WTM and benchmark
it against both models and data, we computed the steady-
state water table across North America for the climate-driven
present day (∼ 1958–2018) (Fig. 3) at a spatial resolution of
30 arcsec. While we do not simulate direct human interven-
tions (e.g. groundwater pumping or irrigation), the results
inherently reflect human impacts on climate and topogra-
phy through the input data. This simulation captures broad
climate-driven patterns in zwr at a continental scale. The drier
climate in the west results in deeper water tables, while the
wetter climates in the north and east result in shallower wa-
ter tables. Variable geology and topography add detail to this
overall pattern, which is driven by the climatic gradient. De-
tails on the input data used are given in Appendix E.

To reach a steady state, we ran this simulation for over
20 000 years. This duration is significantly longer than the
global median groundwater response time of 5727 years
noted by Cuthbert et al. (2019a); furthermore, Cuthbert et al.
(2019a) report a groundwater response time of 1238 years
when excluding hyper-arid regions and note that approx-
imately 25 % of the Earth’s land surface responds within
100 years. To confirm whether our simulation had reached
a reasonable degree of equilibration, we computed e-folding
response times for the equilibration of our simulated water
table for every cell in the domain. We found that the median
e-folding response time for our present-day WTM simulation
was 2792 years. Our 20 000-year-long simulation was more
than 7 times the length of this e-folding response time, mean-
ing that we expected the water table to be more than 99.9 %
equilibrated.

6.1.1 Model validation: comparison with observations

We compare our simulation results to water-table observa-
tional data covering 2.87 % of the cells within our North
American domain. This coverage comprises 21 % groundwa-
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Figure 3. Simulated climate-driven water table for present-day North America. This simulation is representative of the climate-driven steady-
state water table for the time period from∼ 1958–2018, following a 20 000-year spin-up to a steady state. Positive values indicate lake depths,
and negative values indicate the depth of groundwater tables beneath the land surface. The basemap includes both ocean (pale cyan) and land
(grey). Continental ice thickness from ICE-6G (Peltier et al., 2015) varies from thin (blue-grey) to thick (white), with most modern ice being
thin.

ter wells, 25 % lake cells, and 54 % wetlands. Groundwater-
table data come from an extensive archive of water-table
observations gathered by Fan et al. (2013). After removing
readings with negative water-table depths, water-table depths
greater than the listed maximum well depth for the dataset,
and “nodata” values provided for either the water table or
the topography, more than 900 000 data points remained. We
then averaged the values in cases with multiple data points
per grid cell, leaving over 500 000 cells containing ground-
water observations. Lake data (Kourzeneva et al., 2012) con-
sisted of spatially distributed bathymetry measurements for
large lakes and mean depths for thousands of smaller lakes,
including a default value of 10 m where depth was unknown.
In some cases, the extents of those lakes represented by
only mean depth from the Kourzeneva et al. (2012) dataset
exceeded those represented by flat surfaces in the GEBCO
Bathymetric Compilation Group (2020) topographic dataset,
causing spurious results in the data–model comparison. To
prevent this, we reduced the size of all lakes by five 30 arcsec
cells. Although some good data were removed through this
process, it also removed the problematic data and allowed
for a more reliable data–model comparison. Finally, we pro-
cessed the wetland data (Zhang et al., 2023a) to remove the
“permanent water” (i.e. lake) class since lakes are better rep-
resented by the Kourzeneva et al. (2012) dataset. Because this
dataset does not include water-table depths, we assumed that
wetlands had a relative water-table elevation equal to 0 m –
i.e. that the water table was at the land surface. The Zhang
et al. (2023a) dataset has a spatial resolution of 30 m; we de-
fined each of our 30 arcsec cells as a wetland if it contained

more than 50 % wetlands based on the finer-resolution data.
The locations of cells containing each type of observation are
given in Fig. F1.

A comparison of the distributions of water-table depths in
both the simulation and the observations (Fig. 4) shows a
strong match across most depths. Because the wetland data
cover a larger spatial area than the groundwater and lake
data, they represent a high proportion of the data in these his-
tograms. The histograms also emphasise several issues with
the observed dataset: (1) the Kourzeneva et al. (2012) lake
dataset provides only mean depths for the majority of the
lakes included, and, in addition, the lake size had to be re-
duced to avoid spurious data where the lake extents did not
spatially match with the lakes in the GEBCO Bathymetric
Compilation Group (2020) topography. As a result, there are
few very shallow-water lake cells in the observations com-
pared to the simulation. (2) Although we assume that wetland
cells have water tables exactly at the land surface, they may,
in reality, lie above or below it. Our assumption that wetlands
have a water table corresponding to the land surface results
in a peak in the data at 0 m, while near-zero values remain
undersampled. (3) Groundwater wells might not sample the
full range of actual groundwater depths, especially in loca-
tions with very shallow or very deep water tables (Fan et al.,
2013). (4) Groundwater pumping may occur at or near some
wells, depressing the observed water table. These issues may
account for a substantial amount of the discrepancy seen be-
tween the simulation and observations. Improvements in ob-
served data in the future will enable us to better test simulated
results. Improvements in model inputs (such as input gridded
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data products), including observations and simulations of to-
pography and climate, should also increase the accuracy of
WTM results in the future.

Scatter plots show some variation between simulated and
observed water tables on a cell-by-cell basis (Fig. 5), though
it is notable that many simulated cells match the observa-
tions. The many potential reasons for discrepancies include
seasonal variations in observed data, the water table not be-
ing in a steady state in the real world, and differences in the
water table and topography within the 30 arcsec cell size. On
the other hand, there is very close agreement between the
modelled and observed hydraulic head, indicating that the
hydraulic head is likely dominated by the topographic sig-
nal. It is notable that data–model matches are significantly
more correlated in lake and wetland regions than in ground-
water. This highlights an important difference between the
data types used in the observations of each of these: lake and
wetland data represent the water depth across the entire area
of a cell, while groundwater well data represent the depth at
a single point within the cell. Since the topography within a
30 arcsec cell may be variable, the depth to groundwater also
varies; our model aims to provide a mean value for the cell.

A few discrepancies in the comparison of water-table
depths in Fig. 5a can be explained by an inadequacy in the
input data used for the WTM in this simulation: our data for
the open-water evaporation layer did not account for lake ice
reducing evaporation in northern-latitude lakes. As a result,
some lakes in northern North America are simulated with wa-
ter that is significantly shallower than in reality. This causes
the vertical line seen at a simulation value of 0, as well as
the diagonal lines extending out from it. These issues could
likely be resolved, and more accurate lake depths acquired,
by including lake ice in the input data.

It should be noted that our results are highly dependent
on the input data used. Uncertainty in the input data will,
as with all models, propagate into the results. We attempt to
reduce any issues with short-term weather variability by av-
eraging the climate data over multiple years, as discussed in
Appendix E. As such, the validation in this section is relevant
only for the particular datasets used in this simulation.

6.1.2 Model benchmarking: comparison with other
simulations

Here, we compare results from the WTM’s present-day
simulation to results from two steady-state simulations of
the present-day climate-driven groundwater table for North
America – the Fan et al. (2013) model and the Reinecke et al.
(2019b) model (G3M). We choose these models as compar-
ative datasets because they are both prominent models that,
like ours, aim to improve large-scale representations of the
water table. They both provide continental-scale simulations
of the groundwater table, with an approach to groundwater
movement that has similarities to our own. The key differ-

Figure 4. Simulated versus observed present-day climate-driven
water tables for North America. (a) Relative water-table eleva-
tion. (b) Hydraulic head. Observations include lake, wetland, and
groundwater well data from Kourzeneva et al. (2012), Zhang et al.
(2023a), and Fan et al. (2013), respectively. The dates represented
by these data span the period from 1927 (for some of the wells) to
2020. A small proportion of both observed and simulated relative
water-table elevations and heads lie outside the x-axis limits.

ences include our inclusion of dynamic lake surfaces and the
capability of our model to produce transient results.

The Fan et al. (2013) 30 arcsec resolution simulation did
not include lake water and instead assumed that all water
above the land surface would either evaporate or run off. A
comparison with the WTM is shown in Fig. 6a and b. G3M
(Reinecke et al., 2019b), like the WTM, focuses on simplic-
ity and drives groundwater flow using hydraulic head. How-
ever, the 5 arcmin resolution G3M simulation treats surface
water as a static boundary condition, with prescribed propor-
tions of both lake and wetland extents in each model cell.
Positive water-table elevation values in the G3M outputs do
not represent actual lake depths, and surface water may be
exported to the static lake and wetland classes (not included
within the reported results). A comparison with the WTM
simulation is shown in Fig. 6c and d.
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Figure 5. Observations vs. present-day climate-driven simulation
results from the WTM. (a) Relative water-table elevation. (b) Hy-
draulic head. Observations include lake, wetland, and groundwater
well data from Kourzeneva et al. (2012), Zhang et al. (2023a), and
Fan et al. (2013), respectively. The dates represented by these data
span the period from 1927 (for some of the wells) to 2020. These
comparisons include only model cells that contain observations.

The inclusion of dynamic lakes in the WTM simulation
accounts for a large proportion of the difference in the rel-
ative water-table elevation distribution between this simula-
tion and the other two. We note that, due to the inclusion of
lake surfaces in our work, we also expect water tables in ar-
eas surrounding lakes to be higher than those simulated by
Fan et al. (2013) or G3M (Reinecke et al., 2019b), due to
the increased hydraulic head in these regions. As expected,
the WTM shows positive relative water-table elevations (in-
dicative of lake depths) and a larger proportion of cells in
the −0.5 to 0.5 m range (incorporating shallow groundwa-
ter) than either of the other simulations. The Fan et al. (2013)
and G3M (Reinecke et al., 2019b) simulations instead exhibit
greater proportions of cells in slightly deeper groundwater
categories. The significantly lower proportion of cells in the
−0.5 to 0.5 m range in the G3M simulation may be a result of
the export of water to their wetland and lake classes, which
were not provided in their results. Head values, which are

largely dominated by topography, align well across the sim-
ulations. The WTM output contains fewer low head values
than either of the other simulations. This may result from the
inclusion of lake surfaces in the WTM, which increases the
average head.

6.2 North America steady-state simulation: Last
Glacial Maximum

To demonstrate the ability of the WTM to simulate the depth
to the water table at different times under different geo-
graphic and climatic conditions, we used the WTM to sim-
ulate the steady-state water table at a 30 arcsec spatial res-
olution for the North American continent at 21 ka (21 000
calendar years before present), i.e. during the Last Glacial
Maximum (LGM) (Fig. 7; for input data, see Appendix E).
This proof-of-concept simulation shows how the WTM can
be used to simulate the water table at different times through-
out the Earth’s history. During the LGM, the world was on
the verge of experiencing thousands of years of dramatic sea-
level rise, ice retreat, and climate change. Additionally, lower
sea levels, greater ice extent, and different climate conditions
at that time all contributed to a water table that differed from
today’s.

From 30 to 20 ka, sea levels and ice extent changed rela-
tively little compared to the deglaciation that followed (Lam-
beck et al., 2014). Therefore, although it is still unlikely that
the water table was fully in a steady state, it is a more reason-
able assumption with respect to the LGM than for any subse-
quent time period until the late Holocene. To reach a steady
state, we ran the simulation for over 20 000 years, which,
again, is significantly longer than the present-day global me-
dian groundwater response time of 5727 years (Cuthbert
et al., 2019a). As before, we evaluated the e-folding re-
sponse time within our LGM simulation of North America
and found it to be 4559 years; we therefore expected our wa-
ter table to be more than 98 % equilibrated. In this simula-
tion, we used a palaeotopography that accounts for glacial
isostatic adjustment (GIA) and is forced by past ice sheets
(Peltier et al., 2015) and outputs from palaeoclimate general
circulation models (GCMs) (He, 2011).

In comparison with the present-day climate-driven water
table shown in Fig. 3, the LGM water table (Fig. 7) is notice-
ably higher in the eastern portions of the continent, and there
is significantly more lake water visible in the west and south
(Fig. 8a). Note also the larger ice extent and lower sea level
during the LGM. Broadly speaking, the changes in water-
table depth match the changes in P−ET (precipitation minus
evapotranspiration) (Fig. 8b). Most regions with increased
levels of P −ET experienced higher water tables, and vice
versa. The ice sheets and associated glacial isostatic adjust-
ment also played a role: ice thickness provided a pressure
head that drove both surface-water and groundwater flow,
and ice melt both added water and altered the topography,
which here also includes ice-sheet contributions to driving
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Figure 6. Comparing the WTM-computed present-day results against (a, b) the Fan et al. (2013) simulation results and (c, d) the G3M
simulation results. These histograms compare the probability density functions of relative water-table elevation (a, c) and hydraulic head
values (b, d), with the WTM simulations indicated by grey regions and the other simulations represented by black lines. Note the y-axis
break in panels (a) and (c), which accommodates the peak in near-zero values.

Figure 7. Simulated water table for North America during the LGM (21 ka). This simulation is representative of the climate-driven steady-
state water table for 21 000 calendar years before the present, following a 20 000-year spin-up to reach a steady state. Positive values indicate
lake depths, and negative values indicate the depth of groundwater tables beneath the land surface. The basemap includes both ocean (pale
cyan) and land (grey). Continental ice thickness from ICE-6G (Peltier et al., 2015) varies from thin (blue-grey) to thick (white).

flow (see the LGM ice extent in Figs. 7 and 8). GIA pri-
marily caused land uplift from the LGM to the present day,
thereby increasing the elevation head. The higher head values
in northern North America during the LGM (from overlying
ice) may have played a role in moving groundwater further
south – consistent with the model-based findings of Lemieux

et al. (2008) – resulting in higher water tables to the south of
the ice-sheet margin at that time.

In total, water tables during the LGM were higher than
those of the present day (Fig. 3), with the difference be-
tween the two simulations amounting to 14.98 cm of sea-
level equivalent (SLE) (approximately 54.2× 1015 L of wa-
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Figure 8. The present-day climate-driven water table minus the
LGM water table (a). The Great Lakes filled with water following
their deglaciation. A warmer and drier climate (b) reduces terrestrial
water storage more broadly, especially in the west. The solid dark-
grey line in panel (b) represents the ice extent during the LGM.

ter). Over this time period, lake storage increased by 5.77 cm
SLE – predominantly as a result of the Great Lakes be-
coming deglaciated. Despite this change in lake volume, we
can observe, as shown in Fig. 7, that many now-vanished
lakes existed, especially along the ice margin and in currently
arid regions. Meanwhile, groundwater storage decreased by
20.75 cm SLE from the LGM to the present day. This change
appears to have been largely driven by changes in climate.
Note that both simulations assumed a steady-state water ta-
ble and that this result may be different when simulating a
transient change in the water table.

7 Conclusions

Long-term changes in the water table impact the entire
hydrologic cycle, including sea levels and climate. De-
spite this, little is known about changes in the water table
over timescales longer than decades. The WTM provides a
new capability for computing long-term, continental-scale
changes in water tables and terrestrial water storage, includ-
ing both the groundwater table and dynamically changing
lake surfaces. The WTM’s simple input requirements mean

that it can simulate water tables from the distant past or fu-
ture as the climate continues to change, and the model is ca-
pable of both steady-state and transient simulations. Initial
proof-of-concept model runs have indicated that water stor-
age across a continent can change by several centimetres of
sea-level equivalent under natural climate change conditions
and that changes in water-table depth broadly follow the pat-
terns of changing levels of P −ET.

Appendix A: Model inputs, logical flow, and outputs

A1 Data input requirements

The WTM requires the following 2D, horizontally dis-
tributed input arrays for all steady-state or transient model
runs:

– Topography. This refers to land elevation above sea
level (metres). At the user’s discretion, this can be mod-
ified to include overlying ice.

– Slope. This refers to the topographic slope, which
should be based on the input topography data (unitless).

– Ocean mask. A binary mask is used, with values of 1
indicating land cells and values of 0 indicating ocean
cells.

– Climatic water input. Precipitation, along with (if appli-
cable) ice melt or any other water entering the system,
serves as the climatic water input (metres per year).

– Evapotranspiration. Evapotranspiration refers to the ac-
tual ET occurring over land (metres per year).

– Open-water evaporation. This refers to the evaporation
(potential ET) that occurs when there is open surface
water, e.g. a lake (Appendix D) (metres per year).

– Winter temperature. This concerns temperatures during
the months of December, January, and February in the
Northern Hemisphere and during the months of June,
July, and August in the Southern Hemisphere (degrees
Celsius).

– Shallow-subsurface hydraulic conductivity – horizon-
tal. This refers to horizontal hydraulic conductivity
(K1.5 in Eq. 5), representative of near-surface conditions
(metres per second).

– Porosity. This refers to shallow-subsurface porosity (φ
in Eq. 9) (unitless).

For transient model runs, separate input arrays are required
for the start and end times for the topography, slope, cli-
matic water input, evapotranspiration, open-water evapora-
tion, winter temperature, and runoff ratio (optional). The val-
ues of these arrays change linearly over time, from the start
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to the end values. In addition, transient model runs require a
starting relative water-table elevation.

In some cases, the following optional input data may be
used:

– Starting relative water-table elevation. This input, re-
quired for transient model runs, is also provided as an
option for steady-state runs. It allows users to reach a
steady state more rapidly if there is some initial knowl-
edge about the water table, or it allows users to break
the model run up into several shorter runs by using pre-
vious outputs as input for this array. The relative water-
table elevation (zwr) is defined as the water-table ele-
vation minus the elevation of the land surface (metres).
Positive values indicate the presence of a lake, while
negative values indicate a groundwater table. If this in-
put is not supplied, zwr will be initialised at a value of 0
(corresponding to the land surface), and the model must
first be run to a steady state before any transient model
runs can be performed. The simulations included in this
paper initialised the water table at a value of 0.

– Runoff ratio. (This is optional, i.e. at the user’s dis-
cretion.) If provided, the difference between precipita-
tion and evapotranspiration (P −ET) will be split into
groundwater recharge and overland runoff using this
array of runoff ratios. If not provided, this difference
(P −ET) is used entirely as recharge and is added di-
rectly to the groundwater table in the cell where it falls.

– Shallow-subsurface hydraulic conductivity – vertical.
(This is optional, i.e. only required if the infiltration op-
tion is enabled – see Sect. 4.2.1.) Vertical hydraulic con-
ductivity representative of near-surface conditions (me-
tres per second) is used. If this input is not provided, the
infiltration option must be disabled.

A2 Logical flow

The logical flow of the WTM is shown in Fig. A1. Model
inputs, as described in Appendix A1, are provided, and the
depression hierarchy for the given topography is calculated.
In transient runs, the input files are updated over time as con-
ditions change; the depression hierarchy is recalculated as
the topography changes. The model then adds the appropri-
ate recharge to the water table and (1) moves groundwater,
(2) moves surface water, and (3) calculates the climatic wa-
ter balance (precipitation minus evapotranspiration, plus ice
melt or any other water inputs/outputs) for the next time step.
The evapotranspiration field is updated to use the Penman
equation result (Appendix D), i.e. the “open-water evapo-
ration” input file, wherever the water table lies above the
surface, and the evapotranspiration input file is used else-
where. The model concludes after it reaches the prescribed
total number of time steps. At this point, it writes the outputs
to a file. Outputs are also saved at regular intervals through-
out the model run.

Figure A1. Steps taken by the WTM. The two red boxes indicate the
components used to couple groundwater (GW) and surface water.

A3 Outputs

The WTM generates two outputs:

– the relative water-table elevation (gridded raster), saved
at the end of the model run and at regular intervals
throughout;

– a text file recording the number of cycles completed and
the amount of water-table change occurring during each
step of the simulation.

Appendix B: Solving the non-linear groundwater
equation

We solve for the change in groundwater head over time us-
ing the 2D horizontal groundwater equation for saturated
groundwater flow in an unconfined aquifer within a het-
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erogeneous medium, which is assumed to be horizontally
isotropic due to a lack of directional data for hydraulic con-
ductivity (Freeze and Cherry, 1979). We invoke the Dupuit–
Forchheimer theory of free-surface flow, which is based on
two assumptions: (1) flow is horizontal, and (2) the hydraulic
gradient is equal to the gradient of the water-table surface and
does not vary with depth. The equation is as follows:

Sy
∂h
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=
∂

∂x

(
T
∂h

∂x

)
+
∂

∂y

(
T
∂h

∂y

)
+R, (B1)

where h is the groundwater head, T is the transmissivity, t is
the length of a single time interval, x and y are the two di-
mensions of groundwater movement, R represents recharge,
and Sy is the specific yield of the aquifer (here approxi-
mated as being equal to the porosity). Note that our assump-
tions that the aquifer is unconfined and that groundwater
flows in two dimensions allow us to use T in this formula,
where T =Kh and K is the hydraulic conductivity. More
information about our treatment of transmissivity is given in
Sect. 3.2.

When using the Dupuit–Forchheimer approximation, dis-
charge (Q) is defined as follows (Eq. 5.28 in Freeze and
Cherry, 1979):

Q=−T
1h

1d
, (B2)

where 1d refers to the distance in either the x (S–N) or y
(W–E) direction, as appropriate.

Combining Eqs. (B2) and (B1) gives
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Defining Q for each of the cardinal directions gives
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Here, i is the cell index along the x (S–N) axis and j is the
cell index along the y (W–E) axis. Note that we assess T at
the cell boundaries rather than at the cell centres. We do this
because mass transfer occurs across these cell boundaries, so
calculating the gradients here provides more accurate direc-
tional water discharges. We indicate this cell-boundary-based
calculation with the “+1/2” and “−1/2” subscripts.

Substituting these definitions of Q into Eq. (B3) and ex-
panding the left-hand side gives
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Solving for the head at the next time step, ht+1, gives

ht+1(i,j) =

[
T(i+1/2)

(
ht (i+1,j)−ht (i,j)

1x2

)
− T(i−1/2)

(
ht (i,j)−ht (i−1,j)

1x2

)
+ T(j+1/2)

(
ht (i,j+1)−ht (i,j)

1y2

)
− T(j−1/2)

(
ht (i,j)−ht (i,j−1)

1y2

)
+R

]
1t

Sy
+ht (i,j). (B9)

This equation can now be broken down into the thing that
we want (ht+1) and the things that we know. We solve
the equation using the PETSc SNES solver (Balay et al.,
1997, 2022a, b).

Appendix C: Infiltration of surface water

C1 Transit time across a cell

To calculate the amount of infiltration that happens while wa-
ter is in transit across a cell, we must consider the total time
that water takes to cross the cell. The longer water remains
in a cell, the more time it has to infiltrate. Water takes longer
to flow across cells that are larger or have shallower slopes,
as well as when the water depth – and consequently its flow
velocity – is smaller.

We use Manning’s equation to estimate the time taken for
water to flow across a cell. This equation is expressed as

u=
1
n
R

2/3
h S1/2, (C1)

where u is the mean (i.e. vertically averaged) velocity of
the surface water moving across the cell, n is the Gauckler–
Manning coefficient, Rh is the hydraulic radius, and S is the
slope. By default, we set the n value in Manning’s equation
to 0.05 m−1/3 s. We make the assumption that the height of
the water in the cell, h, is much smaller than the cell width.
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This allows us to simplify the hydraulic radius to be equal to
h, as shown in the following:

u=
1
n
h2/3S1/2. (C2)

Because S and n are both constants, for convenience, we will
combine them into a constant (k0), where

k0 =
S1/2

n
, (C3)

so that

u= k0h
2/3. (C4)

The next step is to consider the infiltration rate,

dh
dtI
=−ksat. (C5)

By separating the variables, integrating, and defining h= h0
at tI = 0, we obtain

h= h0− ksattI . (C6)

We substitute Eq. (C6) into Eq. (C4) and use the definition
of velocity as the time derivative of position to set up the final
equation in order to integrate as follows:

dL
dt
= k0(h0− ksattI )

2/3, (C7)

where L is the displacement in an arbitrary orientation. By
separating the variables and solving via a u substitution, we
obtain

L= k0

ti∫
0

(h0− ksattI )
2/3dt

=−
3
5
k0

ksat
(h0− ksattI )

5/3
+ c, (C8)

where c is the constant of integration. Defining L as 0
when tI = 0 (i.e. with the clock starting when the water first
touches the cell margin), we obtain

c =
3
5
k0

ksat
h

5/3
0 . (C9)

This means the distance crossed by the water is given as

L=
3
5
k0

ksat

(
h

5/3
0 − (h0− ksattI )

5/3
)
. (C10)

We rearrange this expression to find the amount of time
that this transit takes because this is the amount of time that
the water has to infiltrate into the ground in the cell. Solving

for the transit time and substituting S and n back into the
equation gives

tI =

[
h0−

(
h

5/3
0 −

5
3
n

S1/2 ksat1L

)3/5
]/

ksat. (C11)

In the WTM, we limit the topographic slope, S, to a min-
imum value of 10−6 to allow for movement over flat cells in
the DEM. We calculate L based on the direction of travel be-
tween the two cells (north–south, east–west, or diagonally)
and the latitude of the cells.

C2 Infiltration

We now understand the time (tI ) it takes for water to cross a
cell as a function of the distance travelled by the water from
cell to cell (L), slope (S), and flow depth (h). When water
flows across a cell that is not already groundwater-saturated,
the flow depth decreases as it crosses the cell due to infil-
tration. This occurs at a rate governed by the saturated ver-
tical hydraulic conductivity (ksat); for simplicity, we do not
consider transient wetting and drying effects in the unsatu-
rated zone. Some water will undergo infiltration, and some
will continue to flow downslope as infiltration-excess over-
land flow (Horton and Htrata, 1955). When water crosses
a cell that is already fully saturated (i.e. when the ground-
water table is at the land surface), no infiltration is possi-
ble, and saturation-excess overland flow (Dunne and Black,
1970) will occur.

There are two possible solutions for the potential total
amount of water infiltration (Ipot), given by

Ipot =

{
h0 if h5/3

0 ≤
5
3

n

S1/2 ksat1L,

ksattI otherwise.
(C12)

In the first case, the entire column of water that enters the
cell may undergo infiltration before it crosses the cell. For the
“=” subcase, the travel time corresponds precisely to the in-
filtration time; for the “<” subcase, the solution to Eq. (C11)
becomes undefined because all the water undergoes infiltra-
tion before completing its crossing. In the second case, the
potential infiltration simply equals the saturated hydraulic
conductivity multiplied by the amount of time that this wa-
ter can infiltrate before it crosses the cell; remaining water
continues to flow into the next cell.

Converting Ipot to the actual amount of infiltration that oc-
curs, I , requires consideration of the space available to ac-
commodate infiltration water. Combining Eq. (C12) with the
amount of groundwater space available in the cell – given
by −φzwr, where φ is the subsurface porosity (assumed con-
stant with depth) and zwr is the relative water-table elevation
– provides the general solution, expressed as

I =min
(
−φzwr , Ipot

)
. (C13)

This amount of infiltrated water is then subtracted from the
flow depth, h. If h > 0 as the water exits the cell, then the
water continues onwards to the next downslope cell.
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Appendix D: Open-water evaporation

We calculate open-water evaporation by solving and apply-
ing the Penman equation (Dingman, 1994) together with the
Charnock (1955) expression for the roughness length over
open water as a function of wind-induced waves. This evap-
oration rate overrides the input evapotranspiration rate when-
ever the water table crops out above the ground surface,
forming an exposed waterbody (Fig. A1). The effects of ice
cover are not considered.

The Penman (1948) equation combines radiative, sensi-
ble, and latent heat transfer to solve for evaporation. Though
this equation is well established (Finch and Calver, 2008;
Valiantzas, 2006; Vörösmarty et al., 1998; Zotarelli and
Dukes, 2010), we choose to include a brief derivation of
the Penman equation due to (1) the central role evaporation
plays in our study; (2) the fact that most derivations centre
on the Penman–Monteith equation (Monteith, 1965), which
involves plant transpiration that is not relevant to our ap-
plication to lakes; and (3) our inclusion of a wind-speed-
determined roughness length for modulating wind-driven
turbulent energy transfers, which seems reasonable to in-
clude but did not appear in our review of the literature. Here,
we use variable nomenclature that is more common to ther-
modynamics than to hydrology.

D1 Penman equation (general form)

The Penman equation relates the evaporation rate (E), which
corresponds to latent heat flux, to net radiation flux (Rn – in-
coming and outgoing shortwave and longwave radiation) and
sensible heat flux due to turbulent atmospheric heat transfer
(QH,s – where the subscript “H” indicates enthalpy and the
subscript “s” indicates that this enthalpy is sensible). Accord-
ingly, E is expressed as

E =
Rn−QH,s

ρw1Hvap
. (D1)

Here, ρw is water density and 1Hvap is the latent heat of
vaporisation of water. These denominator terms convert the
energy fluxes (W m−2) into evaporation (m s−1).

D2 Input data products

Inputs for our solution come from the TerraClimate and
GEBCO_2020 datasets. TerraClimate (Abatzoglou et al.,
2018) comprises monthly gridded data products at a
2.5 arcmin resolution (∼ 5 km from N–S) for the following:

– incoming solar (shortwave) radiation

– monthly averaged minimum and maximum daily tem-
peratures

– wind speed

– vapour pressure.

GEBCO_2020 (GEBCO Bathymetric Compilation Group,
2020) is a global gridded topographic and bathymetric
dataset with a 15 arcsec resolution (∼ 0.5 km from N–S). We
resampled this dataset to 2.5 arcmin to align with the resolu-
tion of TerraClimate.

D3 Net radiation

In the field, acquiring net radiation requires paired upward-
and downward-facing pyranometers and pyrgeometers to
measure incoming and outgoing shortwave and longwave ra-
diation. Here, we use a combination of calculations and re-
motely sensed data products to assemble a solar-radiation
data product at an appropriate resolution for our continental-
scale modelling example.

TerraClimate (Abatzoglou et al., 2018) provides the in-
coming shortwave radiation flux, Rin,s. The outgoing short-
wave radiation is equal to the incoming radiation multiplied
by the surface albedo, α. Therefore, the net shortwave radia-
tion, Rn,s, is given by

Rn,s = (1−α)Rin,s. (D2)

We use α = 0.06 as the characteristic value for open water.
We lack data on net longwave radiation, Rn,l, but know

that (1) the outgoing longwave flux is proportional to surface
temperature using the Stefan–Boltzmann law and (2) that in-
coming longwave radiation is related to greenhouse gases in
the atmosphere that absorb and re-emit this outgoing radia-
tion. We therefore follow and modify the approach taken by
Zotarelli and Dukes (2010) in both approximating the surface
temperature with the maximum and minimum air tempera-
ture values and using vapour pressure and cloudiness to esti-
mate the impact of greenhouse gases on longwave absorption
and re-radiation, as shown in the following:

Rn,l = σ
T 4

max+ T
4

min
2

(
0.34− 0.00014e1/2

a

)
C. (D3)

Here, σ is the Stefan–Boltzmann constant, T represents tem-
perature (expressed in kelvin), ea is the near-surface atmo-
spheric vapour pressure, and C is what we choose to call the
“cloud function”.

We can estimate the value of the cloud function using
the difference between the clear-sky solar radiation, Rin,s,CS,
and the solar radiation received at the land surface, Rin,s.
To compute the clear-sky solar radiation, we first compute
the top-of-atmosphere (i.e. extraterrestrial) solar radiation
(Rin,s,TOA); see sunpos.py in Wickert (2020). We then
modify it based on the elevation (Zotarelli and Dukes, 2010),
which determines the atmospheric thickness above a given
location as follows:

Rin,s,CS =
(

0.75+ 2× 10−5z
)
Rin,s,TOA, (D4)

where z, as in the main text, is the surface elevation in metres.
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This method works only where sufficient incoming solar
radiation exists to produce a meaningful difference between
Rin,s,TOA and Rin,s. Based on our tests, a reasonable cutoff
value for incoming solar radiation is 15 W m−2.

C =

1.35 Rin,s
Rin,s,TOA

− 0.35 if Rin,s,TOA ≥ 15,[
1.35 Rin,s

Rin,s,TOA
− 0.35

]
15–20

otherwise,
(D5)

where the lower term represents the average of the upper
term when 15<Rin,s,TOA < 20. This is an obvious kludge
for the sake of generating proof-of-concept model outputs,
and it generates a reasonable but inaccurate cloud-function
value for the polar regions.

The final step is straightforward. Net radiation flux is sim-
ply the sum of the net shortwave and longwave fluxes:

Rn = Rn,s+Rn,l. (D6)

D4 Sensible heat flux

Deriving the Penman equation for sensible heat flux, QH,s,
results in the following (Dingman, 1994):

QH,s =
KHu

1P,T

[
E

KEu
− (esat− ea)

]
. (D7)

Here, KH and KE are coefficients of turbulent conductance
(kg m s−1 K−1) for sensible heat and water vapour (i.e. la-
tent heat), respectively. Moreover, u represents wind speed,
which is conventionally measured 2 m above the surface.
1P,T is the slope of the liquid-to-vapour phase transition of
water at air temperature (Ta), which likewise is measured
2 m above the surface. Similarly, esat is the saturation wa-
ter vapour pressure at Ta, while ea is the actual water vapour
pressure.

The turbulent-conductance coefficients, KH and KE, are
defined based on the ratios of heat (KH) and water vapour
(KE) transfer to momentum transfer (Dingman, 1994):

KH =
DH

DM
cpρa

(u∗
u

)2
, (D8)

KE =
DWV

DM

1ρa

Pρw

Ra

Rv

(u∗
u

)2
. (D9)

Here, DH represents thermal diffusivity in air, DM is the dif-
fusivity of momentum, and DWV is the diffusivity of water
vapour. For a stable atmosphere, which we assume, the same
turbulent eddies result in the transfer of heat, momentum, and
water vapour. Therefore, DH/DM =DWV/DM = 1, simpli-
fying Eqs. (D8) and (D9) to the following:

KH = cpρa

(u∗
u

)2
, (D10)

KE =
ρa

Pρw

Ra

Rv

(u∗
u

)2
. (D11)

We restate the variable definitions from the main text for con-
venience: cp is the specific heat capacity of air at constant

pressure, ρa represents air density, u∗ represents wind shear
velocity, u is the measured wind velocity (typically at 2 m
elevation above the surface), ρw represents water density, P
represents atmospheric pressure, and Ra/Rv = 0.622 is the
ratio of the gas constants of air and water vapour.

D5 Full Penman equation

The process of combining Eqs. (D1) and (D7) and solving for
evaporation results in the common full form of the Penman
equation (see Dingman, 1994), given by

E =

[
Rn+

(
KHu
1P,T

)
(esat− ea)

]
[
ρw1Hvap+

(
KH
KE

1
1P,T

)] . (D12)

Substituting in the definitions of coefficients KH and KE, we
obtain Eq. (E1).

D6 Variable water surface roughness

The u∗ term in the diffusivity of momentum, DM, can be
evaluated by solving for the boundary-layer velocity profile,
given by the logarithmic “law of the wall”, in which

u(z)=
u∗

κ
ln
(
zα

z0

)
. (D13)

Here, κ = 0.407 is the von Kármán constant, zα is the height
of the air above the land surface, and z0 is the surface rough-
ness length. It is then possible to solve for u∗ by knowing
the wind velocity (u) at a known elevation (zα = z1), which
is typically 2 m above the surface, and the surface roughness
length scale.

When wind flows over open water, it generates waves,
thereby making the roughness length itself a function of wind
speed. This makes Eq. (D13) non-linear, thereby adding a
layer of complexity not included in models of overland evap-
oration.

To address this problem, we first turn to Charnock (1955),
who found a quadratic relationship between wave-generated
z0 and u∗. Hersbach (2011) expanded this work and de-
fined z0 over a broader range of conditions by showing that
it depends on kinematic viscosity, ν, in light winds and on
a shear-velocity-squared (Charnock, 1955) relationship in
strong winds. Accordingly, z0 is given by

z0 =Kν
ν

u∗
+Kwave

u2
∗

g
, (D14)

whereKν = 0.11 andKwave ≈ 0.018 are the coefficients. We
then substitute this expression for z0 into Eq. (D13) and solve
for u∗ using the known u value at an elevation of z1:

u∗ = κu

/
ln
(

z1

Kνν/u∗+Kwaveu2
∗/g

)
. (D15)

With our single known wind speed at an elevation of z1 =

2 m (Abatzoglou et al., 2018), we can solve this equation for
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u∗ in two different ways. First, we can use a numerical root
finder, which we implement using the root_scalar
method within SciPy (Wickert, 2020; Virtanen
et al., 2020) (see https://github.com/umn-earth-surface/
TerraClimate-potential-open-water-evaporation, last access:
28 April 2021). The second option is to derive an analytical
solution. This is possible for the original Charnock (1955)
relationship, which uses the Lambert W function, but it is
not possible for the form given by Hersbach (2011). Roots
for Eq. (D15) exist and are numerically attainable for wind
velocities less than approximately 55 m s−1.

Appendix E: Model input data

We performed a steady-state WTM simulation for present-
day North America and another for North America during
the LGM. The required input data arrays are listed in Ap-
pendix A1. Here, we outline the data sources that were used
for each of the required input arrays.

For climate-based input data, we averaged inputs over
100 years (from 50 years before to 49 years after the listed
time) for our LGM simulation. Present-day data were also
averaged over multiple decades, as detailed in the follow-
ing sections. This was an attempt to reduce weather noise,
which is responsible for much of the internal variability ob-
served in climate simulations (Deser et al., 2012). As a re-
sult, our results better represent steady-state conditions for a
given point in the longer-term climate evolution of the sys-
tem, rather than for a single year, which may present its own
set of weather conditions.

E1 Topography

For the present-day simulation, we obtained topographic data
from the GEBCO_2020 grid (GEBCO Bathymetric Com-
pilation Group, 2020), which we coarsened from a resolu-
tion of 15 arcsec to a 30 arcsec resolution by averaging each
set of four original grid-cell elevations within each of our
30 arcsec grid cells. We added lake bathymetry to this DEM
using data from the Global Lake Database (Kourzeneva
et al., 2012), making use of all the included lakes except
for the Great Lakes, whose bathymetry is already included
in GEBCO_2020, and the Great Salt Lake. We updated the
bathymetry of the Great Salt Lake using data from Tarboton
(2017). At locations where ice exists, we consider the topog-
raphy under the ice and account for the impact of the ice
on water flow in the form of an added pressure head. To
do so, we use the difference between the ETOPO1 (Amante
and Eakins, 2009; NOAA National Geophysical Data Cen-
ter, 2009) ice-free and ice-included topographies to obtain
the ice thickness. We subtract this ice thickness from the
GEBCO_2020 topography and then add back the ice thick-
ness, multiplied by the ratio of ice density to water density

(0.9167 / 0.9998). This results in the final topography, in-
cluding the added ice pressure head.

We computed the topographic change resulting from
glacial isostatic adjustment (GIA) based on the ICE-6G
(Peltier et al., 2015) ice history and a spherically sym-
metric viscosity structure with an elastic lithospheric thick-
ness of 96 km, an upper-mantle viscosity of 0.5× 1021 Pa s,
and a lower-mantle viscosity of 20× 1021 Pa s. We used the
GIA algorithm described in Kendall et al. (2005) and Dalca
et al. (2013), with a maximum spherical harmonic degree of
256, to compute the relative sea level across the globe dur-
ing the LGM. After interpolating these GIA anomalies to a
30 arcsec resolution, we subtracted them from the aforemen-
tioned modern-day topography to obtain a past topography
corresponding to the LGM. Following this, we used the ICE-
6G ice history for the LGM to compute and add the ice pres-
sure head, with the aim of producing the final set of topo-
graphic (i.e. topography and ice pressure head) inputs for the
WTM.

Note that because the ice pressure head is used to modify
the topography input data for the WTM, output water-table
depths are also relative to this modified topography. Results
must be adjusted to the true topography in post-processing.
This adjustment may produce englacial water tables that lie
above the land surface; because this water mass is already
accounted for in the ice model, we remove it here in order to
compare the groundwater levels against one another.

E2 Slope

We computed the slope input files with the topography de-
scribed above – modified by GIA, if needed, but without in-
cluding ice – using GRASS GIS (Neteler et al., 2012). We
used the ice-free slope because, within the WTM, the slope
data input is only used to determine the appropriate e-folding
depth (described in Sect. 3.2) for use with the hydraulic con-
ductivity. Water flow directions are computed directly from
the topography described above.

E3 Ocean mask

The ocean masks were created using the topography data
described above. Any cells below sea level that could be
grouped into a polygon of below-sea-level cells touching the
edges of the map were classed as ocean cells. This allowed
land cells that were below sea level to still be classed as land
cells (see Wickert et al., 2013).

E4 Climatic water input

For the present day, we obtained precipitation data from the
TerraClimate dataset (Abatzoglou et al., 2018). We summed
the averaged monthly data from TerraClimate over a total of
30 years, from 1981 to 2010 (inclusive), to obtain annual av-
erages. We resampled the spatial resolution of the TerraCli-
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mate data from 1/24° (150 arcsec) to 30 arcsec using a bi-
variate spline approximation.

For the past, we used modelled precipitation data from
the TraCE-21K simulation (He, 2011). For the LGM, we
averaged data from 50 years before to 49 years after the
given time, obtaining a 100-year average of precipitation.
We then performed an anomaly correction using the present-
day precipitation, as described above. We resampled the data
to a 30 arcsec resolution used in these runs using a bivariate
spline interpolation.

E5 Evapotranspiration

For the present day, we obtained evapotranspiration data
from the TerraClimate dataset (Abatzoglou et al., 2018) and
processed these data in the same way as described above for
precipitation.

For the past, we used modelled evapotranspiration data
from the TraCE-21K simulation (He, 2011). As with precip-
itation, we obtained a 100-year average and then performed
an anomaly correction of the data relative to the present day.
We resampled the data to our 30 arcsec resolution using a bi-
variate spline approximation.

E6 Open-water evaporation

We calculated the evaporation of surface water using the clas-
sic Penman (1948) equation, modified following Hersbach
(2011) to account for variable water surface roughness due
to wind-driven waves, as shown in the following:

E =
Rn+ (cpρau

2
∗)/(1P,Tu)

ρw1Hvap+Pcpρw(Rv/Ra)
(esat− ea) . (E1)

Here, E is the rate of open-water evaporation, Rn is the net
solar radiation, cp is the specific heat capacity of air at con-
stant pressure, ρa represents air density, u∗ represents wind
shear velocity, 1P,T is the gradient in temperature–pressure
space of the liquid-to-vapour phase transition for water, u
represents wind velocity (typically at 2 m elevation above the
surface), ρw represents water density,1Hvap is the latent heat
of vaporisation of water, P represents atmospheric pressure,
Rv/Ra = 1 / 0.622 is the ratio of the gas constants of water
vapour and air, esat represents water vapour pressure at satu-
ration, and ea represents water vapour pressure. Appendix D
contains our derivation.

For the present day, the open-water evaporation calcula-
tions were based on data from TerraClimate (Abatzoglou
et al., 2018) and the GEBCO Bathymetric Compilation
Group (2020) elevation dataset. The open-water evaporation
rates were calculated using monthly climatic data from 1958
to 1970 (inclusive).

For the past, the open-water evaporation calculations were
based on climate data from the TraCE-21K simulation (He,
2011). We obtained a 100-year average of open-water evap-
oration, before performing an anomaly correction relative to

the present day and resampling the data to the 30 arcsec res-
olution using a bivariate spline approximation.

E7 Winter temperature

For the present day, we used ERA5 reanalysis monthly-
mean 0.25° latitude–longitude grid data for winter temper-
atures (European Centre for Medium-Range Weather Fore-
casts, 2019). The data are long-term annual averages based
on monthly averages from 1979 to 2018 (inclusive). To ob-
tain the winter temperatures, we used monthly temperatures
from December, January, and February for the Northern
Hemisphere. We assumed that temperatures from the ERA5
data matched the mean topography within a 0.25° cell and
resampled these temperatures to a 30 arcsec resolution using
the 30 arcsec resolution topography and a wet adiabatic lapse
rate of 5 °C km−1 (Peirce et al., 1998), relative to these mean
temperatures.

For the past, we used modelled temperature outputs from
the TraCE-21K simulation (He, 2011). We took a 100-year
average and resampled this to the desired 30 arcsec resolution
using the topography and an adiabatic lapse rate, as described
above. We also performed an anomaly correction relative to
the present day.

E8 Shallow-subsurface hydraulic conductivity –
horizontal

Hydraulic conductivity values are based on the hy-
brid State Soil Geographic–Food and Agriculture Or-
ganisation soil texture database (hereafter STATSGO/-
FAO), available at https://ral.ucar.edu/solutions/products/
wrf-noah-noah-mp-modeling-system (last access: 10
November 2020), which provides 12 different soil texture
categories. We converted these to hydraulic conductivity
values using the representative values suggested by Clapp
and Hornberger (1978). The value for silt was not provided
by Clapp and Hornberger (1978), so we estimated it based
on nearby values and the range of possible values given by
Earle (2015). Similarly, we selected the value for bedrock
from the range given by Earle (2015). We took the value for
“organic materials” from the value listed as “peat” by Fan
et al. (2007).

Due to a lack of past hydraulic conductivity and soil tex-
ture data, we assume that these values do not change signifi-
cantly over the time intervals that we are interested in study-
ing here. Therefore, we use the same hydraulic conductivity
dataset for all time steps.

E9 Porosity

Porosity values are based on the same STATSGO/FAO soil
texture database as described above, which also uses repre-
sentative values suggested by Clapp and Hornberger (1978),
Earle (2015), and Fan et al. (2007). We likewise assume that
porosity does not change significantly over the time intervals
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that we are studying and use the same porosity dataset for all
time steps.

E10 Runoff ratio

We computed the potential runoff ratio (C) following the for-
mula provided in Liu and Smedt (2004):

C = C0+ (1−C0)
S

S+ S0
, (E2)

where C0 is the potential runoff ratio for a near-zero slope
(see Liu and Smedt, 2004), S is the surface slope (ex-
pressed as a percentage), and S0 is the slope constant
for a given land use and soil type (see Liu and Smedt,
2004). The soil textures from the STATSGO/FAO soil texture
database, available at https://ral.ucar.edu/solutions/products/
wrf-noah-noah-mp-modeling-system, were used to select
values for C0 and S0. Since land cover is not known to our
model, we averaged the values for forest and grass to ob-
tain the best estimate at all locations. We used the slopes de-
scribed above for each time step. The values for C0 and S0
are considered to be constants over the time period we are
studying.

E11 Starting relative water-table elevation

Data on the starting relative water-table elevation are a re-
quirement for transient simulations. Users can use the out-
put of a steady-state simulation as the starting relative water-
table elevation for transient simulations, when appropriate.
Our steady-state simulations initialised the water table at the
land surface.

E12 Vertical hydraulic conductivity

We opted not to enable the infiltration option for this set of
model runs; therefore, no vertical hydraulic conductivity in-
put was needed. It is possible to obtain this input from hori-
zontal hydraulic conductivity values using anisotropy values,
such as those listed by Fan et al. (2007).

E13 e-folding constants

Calibration constants for the e-folding depth were set to a =
100, b = 150, and fmin = 2.5, following Fan et al. (2013).

Appendix F: Locations of validation data

As discussed in Sect. 6.1.1, we performed model validation
using groundwater well (Fan et al., 2013), lake (Kourzeneva
et al., 2012), and wetland (Zhang et al., 2023a) datasets. The
locations of cells containing each type of data are shown in
Fig. F1.

Figure F1. Location and spatial extent of each of the three data
sources used to validate the depth to the water table.

Code availability. Complete, well-commented source code for
the WTM is available on GitHub (v2.0.1; https://github.com/
KCallaghan/WTM/) and Zenodo (v2.0.1; https://doi.org/10.5281/
zenodo.10611076, Callaghan et al., 2024).

Data availability. Water table depths for the two simulations (LGM
and present day) are available from https://doi.org/10.4211/hs.
9eaa891ef9c44a19b3d40cdfcb1fe824 (Callaghan et al., 2025). The
simulations presented in this work used topographic, climatic,
ice thickness, and soil texture datasets. The GEBCO_2020 bathy-
metric and topographic grid is available from https://doi.org/10.
5285/a29c5465-b138-234d-e053-6c86abc040b9 (GEBCO Bathy-
metric Compilation Group, 2020). The ETOPO1 global relief model
is available from https://doi.org/10.7289/V5C8276M (Amante and
Eakins, 2009). ICE6G ice thickness is available from https://www.
atmosp.physics.utoronto.ca/~peltier/data.php (Argus et al., 2014;
Peltier et al., 2015). TerraClimate data are available from https://doi.
org/10.7923/G43J3B0R (Abatzoglou et al., 2017). ERA5 data are
available from https://doi.org/10.24381/cds.adbb2d47 (Hersbach et
al., 2023). STATSGO/FAO soil textures are available from https:
//ral.ucar.edu/model/wrf-noah-modeling-system (NCAR, 2025).
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