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Abstract. Earth and other terrestrial and icy planetary bod-
ies deform viscoelastically under various forces. Numeri-
cal modeling plays a critical role in understanding the na-
ture of various dynamic deformation processes. This ar-
ticle introduces a newly developed open-source package,
CitcomSVE-3.0, which efficiently solves the viscoelastic
deformation of planetary bodies. Based on its predeces-
sor, CitcomSVE-2.1, CitcomSVE-3.0 is updated to account
for three-dimensional elastic compressibility and depth-
dependent density, which are particularly important in mod-
eling horizontal displacement for viscoelastic deformation.
We benchmark CitcomSVE-3.0 against a semi-analytical
code for two types of loading problems: (1) single har-
monic loads on the surface or as a tidal force and (2) the
glacial isostatic adjustment (GIA) problem with a realistic
ice sheet loading history (ICE-6G_D) and an updated ver-
sion of sea level equations. The benchmark results presented
here demonstrate the accuracy and efficiency of this package.
CitcomSVE-3.0 shows second-order accuracy in terms of
spatial resolution. For typical GIA modeling with a 122 kyr
glaciation–deglaciation history, a surface horizontal resolu-
tion of ∼ 50 km, and a time increment of 125 years, this
takes ∼ 3 h on 384 CPU cores to complete, with displace-
ment rate errors of less than 5 %.

1 Introduction

Observations and interpretations of solid Earth displacement
and deformation in response to surface loadings and tidal

forcing are essential in geoscience for at least three important
reasons. First, deglaciation on continents and sea level rise
as surface loading processes cause uplifts in glaciated con-
tinental regions and subsidence of the seafloor, respectively.
The amount of sea level rise during the deglaciation process
critically depends on the solid Earth response to such sur-
face loading processes (Mitrovica et al., 2001; Peltier, 1998).
Second, the dynamics and stability of ice sheets depend sig-
nificantly on the uplift rate of the underlying bedrock as ice
sheets melt (Gomez et al., 2018). This process may play an
important role in assessing the fate of West Antarctic ice
sheets, which have been losing their mass at an alarming rate.
Third, modeling the solid Earth response to surface loading
and comparing the model predictions with relevant observa-
tions (e.g., deglaciation-induced sea level change and crustal
displacements) is the primary way of inferring mantle viscos-
ity and rheology (Lambeck et al., 2017; Milne et al., 2001;
Peltier et al., 2015), which is essential for studies of mantle
dynamics and Earth’s evolution (Zhong et al., 2007).

The solid Earth response to forcing is determined by solv-
ing the equations of motion with relevant rheological proper-
ties of the mantle and crust. Under the assumption of spher-
ical symmetry in the viscoelastic structure (i.e., only one-
dimensional or radial dependence), analytical solutions to
the equations of motion are available in spectral- or normal-
mode domains for the displacement, strain, and stress (Long-
man, 1963; Takeuchi, 1950; Wu and Peltier, 1982). However,
Earth’s mantle structure has significant lateral variations, as
demonstrated by seismic imaging studies on both global (Rit-
sema et al., 2011; French and Romanowicz, 2015; Tromp,
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2020) and regional (e.g., Lloyd et al., 2020) scales. Because
of the high sensitivity of mantle viscosity to temperature, lat-
eral variations in mantle viscosity are expected to exceed sev-
eral orders of magnitude (e.g., Paulson et al., 2005; Ivins et
al., 2023). For the mantle with fully three-dimensional vis-
coelastic structures, numerical solution methods are required
to solve the equations of motion. The necessity for numerical
solution methods has become increasingly more evident as
more observations of higher quality (e.g., Bevis et al., 2012)
become available to place constraints on the models. In re-
cent years, numerous numerical methods have been devel-
oped, including spectral finite-element (Martinec, 2000; Kle-
mann et al., 2008; Tanaka et al., 2011; Bagge et al., 2021),
finite-element (Zhong et al., 2003, 2022; Paulson et al., 2005;
A et al., 2013; Wu, 2004; Huang et al., 2023; Weerdesteijn
et al., 2023), and finite-volume (Latychev et al., 2005) ones.
Some of them (Bagge et al., 2021; Klemann et al., 2008; Mar-
tinec, 2000; Paulson et al., 2005; Weerdesteijn et al., 2023;
Wu, 2004; Zhong et al., 2003, 2022) assumed an incompress-
ible rheology in their models, while others included the com-
pressibility.

CitcomSVE is a finite-element modeling package for solv-
ing load-induced viscoelastic deformation problems in a
three-dimensional spherical shell, a spherical wedge, or a
Cartesian domain. It solves the sea level equation and in-
corporates the effects of polar wander and apparent cen-
ter motion of a mass (Zhong et al., 2003, 2022; A et al.,
2013; Paulson et al., 2005). CitcomSVE works for three-
dimensional viscoelastic mantle structures with either lin-
ear or nonlinear viscosity. It works efficiently on massively
parallel computers (> 6000 CPU cores), making it feasi-
ble for routine high-resolution glacial isostatic adjustment
(GIA) modeling calculations (∼ 30 km horizontal resolution
on Earth’s surface and ∼ 10 km vertical resolution in the up-
per mantle). CitcomSVE, developed over the last 2 decades,
has been used in GIA studies for both the incompressible
(Zhong et al., 2003, 2022) and compressible (A et al., 2013)
mantle with temperature-dependent (Paulson et al., 2005)
and stress-dependent (Kang et al., 2022) viscosity and in tidal
deformation studies of the Moon (Zhong et al., 2012; Qin et
al., 2014; Fienga et al., 2024). CitcomSVE was built using
the CitcomS mantle convection modeling package (Zhong et
al., 2000, 2008) by replacing the viscous rheology and Eule-
rian formulation in CitcomS with a viscoelastic rheology and
a Lagrangian formulation, respectively (Zhong et al., 2003,
2022), and they share many features, including the grid. The
spherical shell of the mantle is divided into 12 caps of simi-
lar sizes, and each cap is divided further into a grid of cells
(i.e., elements) of similar sizes with eight displacement nodes
per element (Zhong et al., 2000, 2008, 2022). This design of
the finite-element grid is suitable for parallel computing, as
discussed in Zhong et al. (2008). An important feature of this
grid is its approximately uniform resolution from the polar to
equatorial regions (Zhong et al., 2000, 2003), which is differ-
ent from some of the other numerical GIA codes (e.g., Mar-

tinec, 2000; Klemann et al., 2008; Wu, 2004; Van Der Wal
et al., 2013; Huang et al., 2023). However, CitcomSVE also
supports regional grid refinement in order to achieve higher
horizontal resolutions in regions of interest.

Recently, Zhong et al. (2022) presented an expansive set
of benchmark calculations for single harmonic surface load-
ing, tidal loading, and glaciation–deglaciation loading his-
tories (i.e., ICE-6G) for a significantly improved version of
CitcomSVE-2.1. Compared with previous versions of Cit-
comSVE that only used 12 CPU cores (e.g., Zhong et al.,
2003; A et al., 2013), the most important improvement with
CitcomSVE-2.1 is its ability to efficiently use any large num-
ber of CPU cores, e.g., > 6000 as in Zhong et al. (2022).
CitcomSVE-2.1 has also become the first GIA modeling soft-
ware package that is open-source and publicly available via
GitHub (Zhong et al., 2022). However, CitcomSVE-2.1 is for
an incompressible mantle, which limits its applications, espe-
cially for studies on GIA-induced horizontal crustal motions
and where realistic elastic structures (e.g., the Preliminary
Reference Earth Model – PREM) are necessary (Mitrovica
et al., 1994).

This paper presents CitcomSVE-3.0, an extension of
CitcomSVE-2.1, by incorporating mantle compressibility as
in A et al. (2013). While the numerical techniques for im-
plementing mantle compressibility are the same as in A et
al. (2013), this paper includes significantly more detailed
benchmark calculations and an improved sea level equa-
tion solver. With its public availability via GitHub and ef-
ficient parallel computing, CitcomSVE-3.0 offers the scien-
tific community a powerful computational tool for solving an
important class of geodynamic questions, including the GIA
and tidal deformation for Earth’s mantle with realistic vis-
cosity and rheology. The paper is organized as follows. The
next section describes the governing equations for dynamic
loading problems and numerical methods. Section 3 defines
benchmark problems and presents benchmark results, includ-
ing error analyses. Discussions and conclusions are given in
the final section.

2 Governing equations and numerical methods

2.1 Governing equations and viscoelastic properties of
the mantle

The governing equations for load-induced deformation are
derived from the conservation laws of mass and momentum
and Newton’s law of gravitation, together with viscoelastic
constitutive equations (Wu and Peltier, 1982; A et al., 2013):

ρE
1 =−(ρ0ui) ,i, (1)

σij,j + ρ0φ,i − (ρ0gur) ,i − ρ
E
1 gi + ρ0Va,i = 0, (2)

φ,ii =−4πGρE
1 , (3)

where ρE
1 is the Eulerian density perturbation, ρ0 is the un-

perturbed mantle density and is horizontally homogenous

Geosci. Model Dev., 18, 1445–1461, 2025 https://doi.org/10.5194/gmd-18-1445-2025



T. Yuan et al.: CitcomSVE-3.0: a three-dimensional finite-element software package 1447

(i.e., radially layered), ui represents the displacement vec-
tor with ur in the radial direction, σij is the stress tensor,
φ is the perturbation of gravitational potential due to defor-
mation, Va is the applied potential (e.g., rotational and tidal
potentials) when applicable, gi is the gravitational acceler-
ation with g =

√
gigi , and G is the gravitational constant.

The equations are written in an indicial notation such that
A,i represents the derivative of variable A with respect to
coordinate xi and repeated indices indicate summation.

Both the surface (at radius r = rs) and core-mantle bound-
ary (CMB) (r = rb) experience zero shear force but are sub-
jected to normal forces

σijnj =−σoni for r = rs, (4)
σijnj = (−ρcφ+ ρcgur)ni for r = rb, (5)

where σo represents the pressure loads at the surface (e.g.,
glacial loads) as a function of time and space, ρc is the den-
sity of the core, and ni represents the normal vector of the
surface or CMB. The boundary conditions at the CMB con-
sider the self-gravitational effect for a fluid incompressible
core (e.g., Zhong et al., 2003). Except for this CMB condi-
tion, the core is not considered explicitly in our numerical
formulation. With such boundary conditions of forces, both
the surface and CMB can deform dynamically in the hori-
zontal and radial directions.

CitcomSVE has implemented formulations for both in-
compressible (e.g., Zhong et al., 2003, 2022) and compress-
ible (A et al., 2013) continua. In this study for a com-
pressible continuum, we follow the formulation by A et
al. (2013). Here, we will only provide a general descrip-
tion of the formulation and numerical analyses. The details
of the compressibility-related topics and numerical analyses
of CitcomSVE can be found in A et al. (2013) and Zhong et
al. (2022), respectively. Note that CitcomSVE also incorpo-
rates the effects of polar wander and apparent motion of the
center of mass (i.e., degree-1 deformation) and uses a refer-
ence framework centered at the center of mass, including the
mass of loads with no net rotation of the mantle and crust
(Zhong et al., 2022; Paulson et al., 2005; A et al., 2013).

Earth’s mantle is considered a compressible Maxwell
solid, and the constitutive equation can be written as (e.g.,
Wu and Peltier, 1982)

σ̇ij +
µ

η

(
σij −

1
3
σkkδij

)
= λε̇kkδij + 2µε̇ij , (6)

where η is the viscosity, λ and µ are the Lamé parameters,
and δij is the Kronecker delta function. The strain εij is re-
lated to the displacement by εij = 1

2 (ui,j +uj,i). Both Lamé
parameters (λ and µ) and the viscosity η can be fully three-
dimensional in CitcomSVE models in order to represent the
effects of temperature, composition, and stress on mantle me-
chanical properties (e.g., Zhong et al., 2003; A et al., 2013;
Kang et al., 2022). However, for this benchmark study, we
will only consider the radially layered λµ and η.

2.2 Numerical analysis

A finite-element method is employed in CitcomSVE to solve
the governing Eqs. (1)–(3) for load-induced displacement un-
der boundary conditions (Eqs. 4 and 5) with a Maxwell rhe-
ology (Eq. 6) (Zhong et al., 2003, 2022; A et al., 2013). How-
ever, before presenting a weak form of the governing equa-
tions for the finite-element analysis, it is necessary to intro-
duce an incremental displacement formulation, reformulate
the time-dependent rheological equation (i.e., Eq. 6), and dis-
cuss solution strategies for the gravitational potential that re-
sults from mass anomalies associated with mantle deforma-
tion via the Eulerian density perturbation ρE

1 as controlled by
Poisson’s equation (i.e., Eq. 3).

Define uni and un−1
i as displacements at times t and t−1t ,

respectively, where superscripts n and n− 1 represent time
steps. Incremental displacement at time t , vni , is defined as
vni = u

n
i − u

n−1
i and is related to the incremental strain 1εnij

as

1εnij =
1
2

(
vni,j + v

n
j,i

)
. (7)

The rheological Eq. (6) is discretized in time by integrating
it from time t−1t to t , and the stress tensor at time t , σ nij , is
given in terms of the incremental strain1εnij , stresses at time
step n− 1 (i.e., pre-stress), and material properties as (A et
al., 2013; Zhong et al., 2003)

σ nij = λ̃1ε
n
kkδij + 2µ̃1εnij + τ

pre
ij , (8)

where τ
pre
ij =

(
1− 1t

2α

)
/
(
1+ 1t

2α

)
σ n−1
ij +

1t
3α /

(
1+ 1t

2α

)
σ n−1
kk δij , λ̃=

[
λ+

(
λ+

2µ
3

)
1t
2α

]
/
(
1+ 1t

2α

)
,

µ̃= µ/
(
1+ 1t

2α

)
, α = η/µ is the Maxwell time, and τ pre

ij is
the pre-stress at time step n− 1 (A et al., 2013).

Poisson’s equation for gravitational potential anomaly φ
(i.e., Eq. 3) is solved in a spherical harmonic domain for
mass anomalies associated with the Eulerian density pertur-
bation ρE

1 and the loads (e.g., ice and water loads). For a com-
pressible mantle, ρE

1 exists throughout the mantle and crust
(see Eq. 1), and it is necessary to express ρE

1 at each depth
in terms of spherical harmonic degree l and order m. The
gravitational potential anomaly at radius r , time t , degree l,
and order m (φlm(r, t)) can be related to mass anomalies via
Green’s function formulation (e.g., A et al., 2013; Zhong
et al., 2008). The solution to φlm(r, t) needs to be recast to
finite-element grid points when solving the equation of mo-
tion (i.e., Eq. 2). It should be pointed out that the transfor-
mation for gravitational potential anomalies φ between the
spherical harmonic domain and the spatial domain is compu-
tationally rather expensive.

We now present the weak form of the equation of motion
(i.e., Eq. 2) for the compressible mantle as (A et al., 2013)
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∫
�

wi,j

[
λ̃vk,kδij + µ̃

(
vi,j + vj,i

)]
dV −

∫
�

ρ0g
(
wi,ivr +wrvi,i

)
dV +

∑
l

∫
S

wr1ρlgvrdSl

=−

∫
�

wi,j τ
pre
ij d+

∫
�

ρ0g
(
wi,iUr +wrUi,i

)
dV −

∫
�

wi,iρ0φdV

+

∑
l

∫
Sl

wr (1ρlφ−1ρlgUr + ρ0Va)dSl −
∫
S

wrσ0dS (9)

where the integration domain�, Sl , and S are the volume, the
horizontal surface at some depth with the lth density bound-
ary, and Earth’s surface, respectively. wi is the displacement
weighting function, Ui is the cumulative displacement at the
previous time step, Va is the applied potential that is only rel-
evant for tidal loading, and σ0 is the surface load. Note that
the gravitational potential anomalies φ in Eq. (9) depend on
the unknown incremental displacement vi . We decompose φ
into φ =8+1φ(vi), where 8 is the total potential at the
previous time step and 1φ(vi) is the incremental potential
determined by vi and other incremental mass anomalies at
the current time step.

Equation (9) is discretized onto a set of finite-element
grids to form a system of matrix equations with unknown
vectors of incremental displacement {V }:

[K]{V } = {F 0}+ {F(1φ)}, (10)

where [K] is the stiffness matrix, {F 0} is the force vector
representing contributions from the previous time step, and
F(1φ) represents contributions from the incremental poten-
tial 1φ that depends on the unknown displacement {V } and
other incremental mass anomalies. An iteration scheme is
applied to Eq. (10) to obtain a convergent solution for {V }
(Zhong et al., 2003).

The matrix equation (Eq. 10) is solved with a parallelized
full multigrid method (Zhong et al., 2000, 2008). The general
solution strategy in CitcomSVE follows an iterative scheme
that can be summarized as follows (Zhong et al., 2003; A et
al., 2013):

1. At a given time t , {F 0} is first evaluated using pre-
stress τ

pre
ij , gravitational potential 8, and displace-

ment Ui at the previous time step t −1t and set {F } =
{0}.

2. Solve Eq. (10) using the full multigrid method for in-
cremental displacements {V } with {F 0} and {F }.

3. Compute incremental potential 1φlm(r, t) by solving
Eq. (3) with the incremental displacements from step 2,
and then re-evaluate {F }. Go back to step 2 to solve
for {V } again.

4. Repeat steps 2 and 3 until {V } converges to a given
threshold error tolerance (specified by users: 0.3 % in
this study). Then go back to step 1 to march forward in
time.

In the implementation of Eq. (10) in CitcomSVE, all the
variables and parameters are normalized to be dimension-
less, and the outputs are also dimensionless. CitcomSVE
uses the following normalization scheme. The coordinates xi
and displacements ui and vi are all normalized by the ra-
dius of a planet rs. The time is normalized by a reference
mantle Maxwell time α = ηr/µr, where ηr and µr are the
reference mantle viscosity and shear modulus, respectively.
ηr is also used to normalize the mantle viscosity; µr is used
to normalize the elastic moduli, stress tensor, and pressure;
and the density is normalized by the reference density ρ0.
Gravitational potential and centrifugal potential are normal-
ized by 4πGρ0r

2
s , and the geoid anomalies are normalized

by 4πGρ0r
2
s /g. Any other variables can be normalized by

combining the abovementioned scales. However, model in-
put parameters are defined by users as dimensional values.
For example, three-dimensional mantle viscosity and elas-
ticity models are given by users in separate files on a regu-
lar grid (e.g., a 1°

× 1° grid) at different depths. CitcomSVE
reads these parameters from the files, normalizes them, and
interpolates them onto the finite-element grids. Along with
public releases of CitcomSVE-2.1 and CitcomSVE-3.0 on
GitHub, a user manual is available to describe the usage of
the code and the input and output files.

We now finish this section by highlighting the two main
differences between incompressible and compressible mod-
els in CitcomSVE (i.e., versions 2.1 and 3.0). First, the com-
pressible model presented here does not include the pres-
sure term, which is a key component of incompressible mod-
els. The absence of the pressure term simplifies the matrix
equation (i.e., Eq. 10) and its solution procedure, but for
the incompressible model a two-level Uzawa algorithm is
needed to solve for both the pressure and displacement. Sec-
ond, mantle compressibility causes mass anomalies or Eule-
rian density perturbation ρE

1 throughout the mantle, while for
an incompressible mantle mass anomalies only exist at the
surface and CMB. Consequently, the compressible model is
computationally more expensive, particularly when calculat-
ing the gravitational potential anomalies.

2.3 Sea level change and sea level equation

Understanding and modeling sea level change is important
for GIA studies. Sea level change is controlled by ice vol-
ume change, GIA-induced vertical crustal motion, and grav-
itational potential change. Therefore, the records of sea level
change provide essential constraints on GIA processes, in-
cluding ice volume change and mantle viscosity. Moreover,
sea level change acts as a change in the load on a surface,
affecting solid Earth deformation and gravitational potential.
Modeling the GIA processes, one of the major applications
of the CitcomSVE package, requires an accurate sea level
equation that describes the sea level change in this process.
A major improvement of CitcomSVE-3.0 over its previous

Geosci. Model Dev., 18, 1445–1461, 2025 https://doi.org/10.5194/gmd-18-1445-2025



T. Yuan et al.: CitcomSVE-3.0: a three-dimensional finite-element software package 1449

versions is in modeling sea level changes, and a detailed de-
scription is given in this section.

The original sea level equation formulated by Farrell and
Clark (1976) provides an elegant way of incorporating the
sea level change into GIA models and can explain the di-
verging pattern of sea level change in different regions (e.g.,
near or far away from former ice sheets). However, the sim-
plified formulation by Farrell and Clark (1976) ignored sev-
eral factors affecting the accuracy of sea level change mod-
eling. One key simplification is the time-dependent ocean–
continent function that describes the ocean and continent dis-
tribution, which was assumed to be constant through time in
their formulation. The ocean area has varied by several per-
cent since the Last Glacial Maximum because of the shore-
line evolution induced by sea level rise or fall (Fig. S1 in
the Supplement). Accounting for the time-dependent ocean–
continent function requires modifications of the sea level
equation and affects the predicted sea level change by tens
of meters for some regions compared to that based on Far-
rell and Clark’s formulation (Kendall et al., 2005). Kendall
et al. (2005) provide a modified sea level equation that ac-
counts for the time-dependent ocean function, in which the
variation of the ocean area is mainly attributed to two factors:
(1) formation or melting of marine ice sheets (i.e., ice sheets
that lie below sea level) and (2) the evolution of shorelines
related to the sloping bathymetry and local sea level change.
In previous versions of CitcomSVE, we only considered the
variation of the ocean function related to marine ice sheets
(A et al., 2013; Zhong et al., 2022). In our new formulation,
the sea level equation is modified to follow the formulation
of Kendall et al. (2005). The new sea level equation can be
summarized as follows:

L0(θ,φ, t)= [N(θ,φ, t)−U(θ,φ, t)+ c(t)]O(θ,φ, t)

− T0(θ,φ) [O(θ,φ, t)−O (θ,φ, t0)] , (11)

where t is the time with t0 as the initial time (i.e., the onset
of loading); θ and φ are the co-latitude and longitude, re-
spectively; L0 is the change in sea level relative to the initial
stage; N and U are the GIA-induced geoid anomalies and
surface radial displacement; O is the ocean function (1 for
ocean and 0 elsewhere); T0 is the initial topography at t0;
and c is introduced for the conservation of water mass and is
defined as

c(t)=
1

A0(t)

{
−
Mice(t)

ρw
−

∫
[N(θ,φ, t)

−U(θ,φ, t)]O(θ,φ, t)dS+
∫
T0(θφ) [O(θ,φ, t)

−O (θ,φ, t0)]dS
}
, (12)

where Mice is the ice mass change relative to the initial stage
(i.e., t0), A0 is the ocean area at time t , ρw is the water den-
sity, N and U are relative to t0, and the integral is for the
surface of Earth. Following Kendall et al. (2005), a check
for grounded ice is incorporated using the criterion that, at

any location with topography T and ice of thickness I and
density ρi, the ice is considered grounded if Iρi >−T ρw.
Only grounded ice is treated as an ice load, whereas re-
gions with non-grounded ice (i.e., floating ice) are treated as
oceans. Note that regions with topography T < 0 and without
grounded ice are considered ocean.

The sea level equation can only be solved iteratively for
three reasons: (1) the geoids, displacement, and ocean load
depend on each other for their calculation (Eqs. 4 and 11),
(2) the ocean load also depends on the ocean function, and
(3) the unknown initial topography T0 needs to be determined
iteratively to keep the modeled present-day topography con-
sistent with the observed present-day topography. Normal
single complete GIA modeling uses a predetermined initial
topography T0 and a time-dependent ocean function O(t)
to iteratively determine N(t), U(t), and L0(t) for each time
step t from t0 to the present day, where the iteration for each
step is considered converged when the changes in poten-
tial and/or displacement are smaller than a certain threshold.
The algorithm for solving the sea level equation in Kendall
et al. (2005) adds an outer layer of iterations to the single
complete GIA modeling. In the outer-iteration calculations,
at the end of each single complete GIA model run, the time-
dependent ocean function O(t) and paleotopography includ-
ing the initial topography T0 are updated using the newly
calculated U(t) and N(t) and the present-day topography,
and the updated T0 and O(t) are then used for the next GIA
model run. The iteration procedure continues until the initial
topography converges. In practice, the model results would
not be altered significantly beyond the second outer iteration.
However, there are noticeable differences in the results (e.g.,
modeled relative sea level – RSL – histories) between the
first and second outer iterations for some sites following the
algorithm developed by Kendall et al. (2005).

We implemented the algorithm developed by Kendall et
al. (2005) in our semi-analytical code (e.g., A et al., 2013)
and produced results that were consistent with their study.
However, running two or three outer iterations where each
iteration is a complete GIA model run of a glacial cycle is
computationally expensive, especially for numerical model-
ing such as in CitcomSVE, and it would be more efficient if
the results from the first outer iteration (i.e., a single com-
plete GIA model run) could be sufficiently accurate. In the
Kendall et al. (2005) algorithm, the time-dependent ocean
function O(t) for the first outer iteration is constructed us-
ing fixed shorelines identical to those of the present day, ex-
cept that the extent of the oceans may be limited by the exis-
tence of grounded marine ice sheets. However, we found that
the first iteration may produce much improved solutions if
O(t) for the first outer iteration is constructed by calculating
the change in ocean area (i.e., ocean–continent transitions)
based on ice volume change (i.e., Mice) and the present-
day topography (bathymetry), assuming a barystatic sea level
change on a rigid Earth (i.e., no radial surface displacement).
The ocean function generated in this way generally captures
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the shoreline evolution for regions experiencing ocean–land
transition, and this approximation makes it easy to derive
the time-dependent ocean function for any given ice model.
In the Supplement, we show the effectiveness of this single
outer-iteration method using the improved ocean function in
both our semi-analytical solution method and CitcomSVE-
3.0.

3 Example calculations and benchmark results

Two example problems solved using CitcomSVE-3.0 are pre-
sented here. They are (1) loading problems with a single
spherical harmonic in space (spectral load) and a step func-
tion (i.e., a Heaviside function) in time as either surface load
or tidal load and (2) GIA problems with the ICE-6G_D ice
history model. For each example problem, the elastic and vis-
cosity structures are chosen to be dependent only on the ra-
dius (i.e., one-dimensional) so that CitcomSVE solutions can
be benchmarked against semi-analytical solutions. The fol-
lowing benchmarks largely follow the approaches of Zhong
et al. (2022).

3.1 Spectral load with a step function in time

3.1.1 Definition of the spectral loading problem

For the first example problem, we consider a surface load σ0
(see Eq. 4) corresponding to the amplitude of the topographic
variation d with density ρ0 at a single harmonic function in
space (ranging from degree 1 to degree 64) and a step func-
tion in time:

σ0(t,θ,ϕ)= ρ0gd cos(mϕ)plm(θ)H(t)

= ρ0gdP lm(θ,ϕ)H(t), (13)

where H(t) is the Heaviside function (i.e., H(t)= 1 for
t ≥ 0, H(t)= 0 otherwise) and P lm(θ,ϕ)= cos(mϕ)plm(θ)
is the cosine part of spherical harmonic functions in real
form. Note that only cosine terms of longitudinal dependence
are considered for simplicity. A small amplitude of the load
height is used to avoid large grid deformations. We assume an
ocean-free Earth for this example and ignore any sea-level-
related calculations. The density and Lamé parameters for
the lithosphere and mantle are from PREM, except that for
the crust layer those properties are replaced with ones iden-
tical to the underlying mantle, and the viscosity structure is
from VM5a (Peltier et al., 2015). See Table 1 for the model
parameters. Time-dependent surface three-dimensional dis-
placements and gravitational potential anomalies are com-
puted using the newly updated CitcomSVE and compared
with those from semi-analytical solutions (Han and Wahr,
1995; Paulson et al., 2005; A et al., 2013). The results are
presented in terms of load Love numbers hl , kl , and ll at
harmonic degree l for radial displacement, gravitational po-
tential, and horizontal displacement, respectively. The defini-

Table 1. Model parameters for benchmarks.

Model parameter Value

Earth radius rs 6371 km
CMB radius rb 3485.5 km
Reference density r0 4400 kg m−3

Core density 10 895.62 kg m−3

Water density rw 1000 kg m−3

Ice density ri 917.4 kg m−3

Reference shear modulus m 1.4305× 1011 Pa
Modified fluid Love number k2f(1+ δ) 0.9521091
Mantle reference viscosity h 2× 1021 Pa s
Reference Maxwell time (h/m) 443 years
Gravitational acceleration g 9.82 m s−2

VM5a viscosity model

Surface to 60 km depth 1026 Pa s
60 to 100 km depth 1022 Pa s
100 to 670 km depth 4.853× 1020 Pa s
670 to 1170 km 1.5048× 1021 Pa s
1170 km to the CMB 3.095× 1021 Pa s

tions of load Love numbers in the context of CitcomSVE cal-
culations are given in Eqs. (37)–(41) of Zhong et al. (2022).
Similarly, one tidal loading benchmark with a (2, 0) tidal
force is conducted (named l2m0T in Table 2, where T stands
for tidal loading). The definitions of tidal force and tidal Love
numbers follow Zhong et al. (2022, Eqs. 44–47).

3.1.2 Benchmark results

We have computed a set of model cases using CitcomSVE for
four numerical resolutions and six loading harmonics. Seven
different loading harmonics are included for (1, 0), (2, 0),
(2, 1), (4, 0), (8, 4), (16, 8), and (64, 32), where the first and
second numbers in parentheses (l, m) indicate the spherical
harmonic degree l and order m, respectively. For the load-
ing at the (2, 1) harmonic, the polar wander effect is consid-
ered. For most cases, the four different numerical resolutions
of R1–R4 are for 12× (32× 32× 32), 12× (64× 64× 64),
12× (64×96×96), and 12× (64×128×128), respectively,
where the first number, 12, indicates the number of spherical
caps that the spherical surface is divided into and the subse-
quent numbers indicate the number of elements in the radial
direction and two horizontal directions in each cap (Zhong et
al., 2022). Each case is named according to its loading har-
monic and numerical resolution; for example, case l2m0_R1
corresponds to the case where the loading harmonic is (2, 0)
and the resolution is R1. For case l16m8, an additional cal-
culation with resolution 12× (80× 128× 128) is included
(i.e., l16m8_R5). For case l64m32, which has a much shorter
loading wavelength and requires higher numerical resolu-
tions, four calculations with resolutions of R5–R8 are in-
cluded (Fig. 1), where R6–R8 are 12× (80× 192× 192),
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Table 2. Comparison of load Love numbers hl , kl , and ll between CitcomSVE and semi-analytical solutions.

Casea hl(0)b kl(0) |ll(0)| hl(40) kl(40) |ll(40)|

l1m0_R4 −1.2546 (−1.2543) −1.0000 (1.0000) 0.8864 (0.8866) −1.4968 (−1.4964) −1.0000 (−1.0000) 1.9101 (1.9090)
l2m0_R4 −0.9574 (−0.9577) −0.3038 (−0.3041) 0.0203 (0.0200) −2.4066 (−2.4066) −0.9392 (−0.9396) 0.8229 (0.8216)
l2m1_R4 −0.3056 (−0.3058) 1.0948 (1.0944) 0.1118 (0.1118) 0.6178 (0.6151) 2.2003 (2.1973) 0.1891 (0.1884)
l4m0_R4 −1.0247 (−1.0251) −0.1341 (−0.1342) 0.0569 (0.0568) −4.4395 (−4.4402) −0.9410 (−0.9416) 0.3423 (0.3411)
l8m4_R4 −1.2372 (−1.2376) −0.0772 (−0.0772) 0.0303 (0.0302) −8.8084 (−8.8405) −0.9563 (−0.9605) 0.0977 (0.0958)
l16m8_R4 −1.6825 (−1.6868) −0.0573 (−0.0574) 0.0228 (0.0229) −17.535 (−17.847) −0.9530 (−0.9726) 0.0435 (0.0479)
l16m8_R5 −1.6805 (−1.6868) −0.0572 (−0.0574) 0.0228 (0.0229) −17.623 (−17.847) −0.9579 (−0.9726) 0.0464 (0.0479)
l64m32_R7 −2.3469 (−2.3851) −0.0227 (−0.0231) 0.0109 (0.0111) −21.4626 (−22.5878) −0.2901 (−0.3084) 0.1034 (0.1081)
l2m0T_R4c 0.6074 (0.6076) 0.3033 (0.3035) 0.0855 (0.0855) 1.8611 (1.8609) 0.9215 (0.9202) 0.6217 (0.6229)

a Case names follow this notation: l1m0 stands for the loading harmonics for l = 1 and m= 0. All CitcomSVE solutions in this table are for resolution R4 (12× 64× 128× 128), except for
l16m8_R5 with a resolution of 12× 80× 128× 128 (R5) and l64m32_R7 with a resolution of 12× 80× 256× 256 (R7). b Load Love numbers are provided at 0 and 40 Maxwell times. Each
entry includes semi-analytical solutions inside parentheses and CitcomSVE solutions outside parentheses. c l2m0T: tidal Love numbers for a Heaviside (2, 0) tidal load. Each entry includes
semi-analytical solutions inside parentheses and CitcomSVE solutions (with a resolution of 12× 64× 128× 128) outside parentheses.

12×(80×256×256), and 12×(96×256×256), respectively.
Grid size in the vertical direction is not uniform since grids
are refined vertically in the upper mantle and lithosphere for
each model. For cases with 64 elements in the vertical di-
rection (R2, R3, and R4), the vertical resolutions are about
20 km, 40 km, and more than 50 km in the lithosphere, up-
per mantle, and lower mantle, respectively. R5, with a total
of 80 elements in the vertical direction, has vertical resolu-
tions of ∼ 10 km in the lithosphere and ∼ 20 km in the upper
mantle, whereas R8 is∼ 7 km in the lithosphere and∼ 10 km
in the upper mantle. Each case is computed for 40 Maxwell
times (i.e., 40a or a non-dimensional time of 40) using a non-
dimensional time increment of 0.2. Figure 1 shows hl(t),
kl(t), and |ll(t)| for cases with different loading harmonics
and numerical resolutions, together with semi-analytical so-
lutions. Table 2 shows both numerical and analytical results
of these Love numbers at t = 0 and 40 for a selected set of
cases (see Table S1 in the Supplement for all the cases). Solu-
tions at t = 0 represent the elastic responses of Earth, and the
magnitudes of those Love numbers generally increase with
time due to viscous relaxation and finally reach nearly stable
states after certain time periods (Fig. 1).

The comparison shows good agreement between nu-
merical solutions and semi-analytical solutions. For long-
wavelength loadings (e.g., l1m0, l2m0, l2m0T, and l4m0),
numerical solutions at different resolutions (R1–R4) are
nearly identical to semi-analytical solutions, as shown in
Fig. 1. However, for l2m1 cases with the polar wander effect,
resolution R1 shows significant numerical errors, whereas
calculations with higher resolutions (R2–R4) deliver a re-
markable fit to the semi-analytical solution, suggesting that
polar wander is more challenging to compute in numerical
models (e.g., Paulson et al., 2005; A et al., 2013; Zhong et
al., 2022). For shorter wavelengths (such as l8m4, l16m8,
and l64m32), low-resolution numerical results differ notice-
ably from semi-analytical solutions. As the numerical reso-
lution increases, the results match the semi-analytical solu-
tions much more closely (Fig. 1). For case l16m8, R5 signif-

icantly reduces errors in ll compared to R4. Note that R5 has
a higher vertical resolution in the upper mantle but the same
horizontal resolution as R4 (Fig. 1 and Table 2). For case
l64m32, increasing vertical resolution does not reduce the
misfit from R7 to R8, indicating that horizontal resolution
is the controlling factor. Note that the load Love number for
horizontal displacement is presented as |ll(t)|, because Cit-
comSVE only conveniently determines l2l (t) (Zhong et al.,
2022), although it is possible to determine ll based on vec-
tor spherical harmonic decomposition of horizontal surface
motion (Wu and Peltier, 1982).

We determine the numerical errors by computing ampli-
tude and dispersion errors (e.g., Zhong et al., 2003, 2022;
A et al., 2013). Amplitude error εa and dispersion error εd
are computed using the following equations (Zhong et al.,
2022):

εa =

T∫
0
|Sn (l0,m0, t)− Ssa (l0,m0, t) |dt

T∫
0
|Ssa (l0,m0, t) |dt

, (14)

εd =

T∫
0

max[|Sn(l,m, t)|]dt

T∫
0
|Ssa (l0,m0, t) |dt

, (15)

where l0 and m0 represent the loading harmonic degree and
order, Sn and Ssa are solutions of load Love numbers from
the CitcomSVE and semi-analytical methods, T is the total
model time (i.e., 40), and in Eq. (15) for the dispersion error
max represents the maximum value for all the non-loading
harmonic degrees l and orders m. The response should only
occur at the loading harmonic for the spherically symmetric
mantle structure considered here. Therefore, amplitude er-
ror εa measures the accuracy at the loading harmonic and
dispersion error εd measures the accuracy at other harmon-
ics. Note that the errors defined in Eqs. (14) and (15) are
similar to norm-1 errors.
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Figure 1. Love numbers h, k, and l for cases with different loading harmonics from CitcomSVE and analytical solutions. The first, second,
and third columns are for Love numbers h, k, and |l| (i.e., the absolute values of Love number l), respectively. The first row (a, f, k) is for
loading harmonics l1m0, l2m0, and l4m0. The following rows (b–o) are for loading harmonics l2m1, l8m4, l16m8, and l64m32, respectively.
Each loading case has solutions from four different spatial resolutions (R1–R4), except that loading case l16m8 has an additional calculation
with resolution R5, and cases with l64m32 (i.e., e, j, o) have resolutions from R5 to R8. Note that the legend in panel (i) is used for all the
panels, except those in the last row (e, j, o).
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Figure 2. Amplitude errors of Love numbers h (a), k (b), and l (c) as functions of numerical resolutions (i.e., R1–R4, corresponding to
horizontal resolutions of approximately 200 to 50 km). For Love number k of load (1, 0), all calculations with different resolutions have a
relative error of less than 10−5 and are not shown in this figure. Note that R4 and R5 have the same horizontal resolution but different vertical
resolutions, and R5 has smaller relative errors compared to R4.

Figure 2 shows the amplitude errors of load Love numbers
as a function of horizontal numerical resolution (i.e., the hori-
zontal grid size ranging from∼ 200 to∼ 50 at the surface for
resolutions R1–R4) for all the cases except l64m32, which
has a different range of horizontal resolutions. For most of
the calculations with different loading harmonics, the am-
plitude errors decrease with decreasing horizontal grid size
with a slope of close to 2 in the log–log plot of Fig. 2, es-
pecially for Love numbers hl and kl . This suggests that the
error is roughly proportional to the square of the grid size,
aligning with the expected second-order accuracy for trilin-
ear elements in CitcomS (e.g., Zhong et al., 2008). It is worth
noting that, from R1 to R4, the increase in vertical resolution
is not proportional to the increase in horizontal resolution,
which may cause the slope in Fig. 2 to deviate from 2. Fig-
ure 2 shows that, with a horizontal resolution of∼ 50 km, the
accuracy of CitcomSVE is better than 0.1 % up to spherical
harmonics of degree 4 and better than 2 % up to spherical har-
monics of degree 16 in terms of Love numbers hl and kl . For
Love number ll , the errors are slightly larger than those for hl
and kl . Compared to the benchmark results of CitcomSVE-
2.1 (Zhong et al., 2022), the errors presented here are gen-
erally larger for cases with the same resolutions, which is
understandable considering that CitcomSVE-3.0 solves for
models with higher complexity (i.e., the internal density vari-
ations caused by compressibility and density discontinuities).

3.2 Glacial isostatic adjustment using ICE-6G_D
and VM5a

Since one of the most important applications of CitcomSVE
is to model the GIA processes, it is essential to perform a
benchmark with the glaciation–deglaciation history as sur-
face loads, considering the effects of polar wander, appar-
ent center of mass motion, and ocean loads determined by
the sea level equation. A GIA model calculation requires the
governing equations (Eqs. 1–3) to be solved together with

the boundary conditions (Eqs. 4 and 5) and the sea level
equation (Eq. 11), with the floating ice criterion to deter-
mine time-dependent gravitational potential anomalies and
displacements at Earth’s surface and sea level changes. Note
that the same type of benchmark has been published for the
incompressible version CitcomSVE-2.1 (Zhong et al., 2022),
and we largely follow the setups of that previous work, ex-
cept that the current calculations consider mantle compress-
ibility (i.e., the PREM model) and the updated sea level equa-
tion is used as discussed above and in the Supplement (i.e.,
the AS1 method). As discussed in Sect. 2.3, to deal with
the nonlinear nature of the sea level equation, multiple (usu-
ally three to four) iterations of complete GIA model runs
may be needed (Kendall et al., 2005). CitcomSVE-3.0 fully
supports the multiple-outer-iteration approach using prepro-
cessing and postprocessing to update ocean functions and
the initial topography. However, in the Supplement (Supple-
mentary Text 2), we demonstrate how the one-iteration so-
lution method discussed in Sect. 2.3 may be used to achieve
adequate accuracy of GIA solutions. In the following GIA
benchmark, we compare the results from a single complete
CitcomSVE model run with our semi-analytical solutions of
the first outer iteration (i.e., the AS1 method in the Supple-
ment), using the precalculated ocean functions constructed
by assuming a “rigid Earth” and the present-day topogra-
phy as the initial topography. This comparison ensures that
CitcomSVE and semi-analytical calculations have the same
ocean functions and initial topography, such that the dif-
ferences in solutions between the CitcomSVE and semi-
analytical methods are solely related to numerical errors and
not differences in the models.

3.2.1 Definition of the GIA problem

This section presents the setup of the GIA benchmark with
the ICE-6G_D ice model (Peltier et al., 2015). The Earth
model used in this case is the same as the one used for
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single harmonic loading examples in the previous section.
In this case, the surface load consists of a full glaciation–
deglaciation cycle based on the ICE-6G_D ice model (Peltier
et al., 2015, 2018) that includes the last 122 kyr from the
last interglacial period to the present day. We assume that
Earth was in a state of equilibrium at the onset of loading
(i.e., 122 ka BP) and that the surface displacements and grav-
itational potential anomalies since 122 ka BP have been in-
duced by ice height variations relative to the initial stage
and the corresponding changes in ocean loads. We com-
puted seven cases using CitcomSVE-3.0 with different spa-
tiotemporal resolutions and cutoff values for the maximum
spherical harmonic degrees used to calculate the gravitational
potential (Table 3). Cases GIA_R1, GIA_R2, and GIA_R3
have spatial resolutions of 135, 81, and 50 km (i.e., total ele-
ment numbers of 12× 48× 48× 48, 12× 48× 80× 80, and
12× 64× 128× 128), respectively, and a temporal resolu-
tion of 125 years per step. Case GIA_R3_LT is the same
as case GIA_R3, except with a longer time increment of
250 years per step before the LGM (i.e., 26 ka BP). Cases
GIA_R3_LT_SH20 and GIA_R3_LT_SH64 have cutoff val-
ues of 20 and 64 for the maximum spherical harmonic de-
grees compared to 32 for the other cases. Note that, as
with CitcomSVE-2.1 (Zhong et al., 2022), computing grav-
itational potential in the spherical harmonic domain can be
computationally expensive. On the other hand, the semi-
analytical solution is obtained using spherical harmonic de-
grees and orders up to 256.

It should be noted that, in the current implementation, Cit-
comSVE reads in ice loads defined on regular grids (e.g., a
1°× 1° grid) and then interpolates the loads to the irregu-
lar finite-element grids, whereas semi-analytical calculations
use spherical harmonic expansions of ice loads to a maxi-
mum spherical harmonic degree and order (i.e., 256 in this
study) as inputs. The interpolation may cause inconsistent
representations of ice loads between CitcomSVE and the
semi-analytical calculations. To understand the potential er-
ror resulting from the interpolation, we test another case,
GIA_R3B, which is the same as GIA_R3, except that, for
this case, we let CitcomSVE read in ice loads that are com-
puted on CitcomSVE finite-element grid points by summing
all the spherical harmonics as used for the analytical solu-
tions, thus avoiding the interpolation from the regular grids
to the finite-element grids and ensuring that CitcomSVE cal-
culations use the exact same ice loads as for the analytical
solutions.

3.2.2 Benchmark results

We compare the three-component displacement rates and
geoid rates at the surface for three different times (i.e.,
the present day, 15 ka BP, and 26 ka BP) obtained from Cit-
comSVE and the semi-analytical code. Figure 3 shows
the present-day displacement rate in the vertical, eastern,
and northern directions and the present-day geoid rate for

case GIA_R3 from CitcomSVE. Large uplift rates for the
present day occur in North America, Fennoscandia, and West
Antarctica (Fig. 3a), suggesting ongoing rebound induced by
ice melting since the Last Glacial Maximum in these regions.
Horizontal displacement rates usually have much smaller
amplitudes than those in the radial direction in these regions.

Figure 3 also shows the differences in present-day dis-
placement rates and geoid rates between CitcomSVE and
semi-analytical solutions. The differences are small com-
pared with the magnitudes of displacement rates and geoid
rates. Relatively large magnitudes of errors are mainly in
short wavelengths (e.g., localized regions), which may par-
tially reflect the fact that CitcomSVE tends to have poorer
accuracy at shorter wavelengths (Figs. 1 and 2). Following
Zhong et al. (2022), we define relative root mean square
(rms) differences (i.e., errors) in displacement rates between
CitcomSVE and semi-analytical solutions as

ε(t)=

√√√√6
[
fFE(θ,φ, t)− fS(θ,φ, t)

]2
6
[
fS(θ,φ, t)

]2 , (16)

where fFE(θ,φ, t) and fS(θ,φ, t) are the fields of interest
at a given time t from CitcomSVE and semi-analytical solu-
tions, respectively, and the summation is based on a regular
1°
×1° grid. To interpolate the CitcomSVE solutions onto the

regular grid, we use the nearest-neighbor method provided by
generic mapping tools (GMTs) (Wessel et al., 2019). We also
report errors calculated by unweighted summation on the Cit-
comSVE grid given the relatively uniform grid size on the
spherical surface in CitcomSVE, and the differences in errors
from these two methods of calculation are insignificant. We
compute errors for radial and horizontal components at three
times: the present day, 15 ka BP, and 26 ka BP. Note that, for
horizontal error, we square the difference for each horizontal
component (i.e., north and east) and add them together for
each location.

Table 3 lists the errors for displacement rates, geoid
rates, and RSL at these three times for all the cases, to-
gether with the total CPU time and the number of CPUs
used for each case. The errors decrease significantly from
GIA_R1 to GIA_R3. For GIA_R3, the errors of displace-
ment rates are less than 5 %. GIA_R3B, which avoids in-
terpolation of input ice loads from the regular input grid
into the CitcomSVE finite-element grid in order to eliminate
the potential inconsistency in ice loads between CitcomSVE
and semi-analytical calculations, has slightly smaller errors
than GIA_R3, indicating a relatively small error induced
by the interpolation. GIA_R3_LT with a higher time res-
olution before 26 ka BP has larger errors in displacement
rates at 26 ka BP but similar error levels at 15 ka BP and
the present day. For geoid rates, since CitcomSVE-3.0 only
calculates them up to certain degrees (i.e., degrees 20, 32,
or 64 in our cases), which are much smaller than that used in
the analytical solution (i.e., degree 256), the solutions from
CitcomSVE-3.0 lack short-wavelength features and are much
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Figure 3. Displacement rate and geoid rate for the present day from case GIA_R3 and their differences from semi-analytical solutions. The
top three rows (a–f) show displacement rates in the radial (a), eastern (c), and northern (e) directions and the differences from semi-analytical
solutions for the radial (b), eastern (d), and northern (f) directions. The last row (g, h) shows the geoid rate (g) and its differences from the
semi-analytical solution (h).

smoother spatially, even for cases with high grid resolutions.
Therefore, the errors in geoid rates are larger and generally
less sensitive to model resolutions than to cutoff degrees. In
general, those errors in displacement rates are close to those
from CitcomSVE-2.1 (Zhong et al., 2022). CitcomSVE-3.0

is about 3 times slower than CitcomSVE-2.1 for the same
resolutions since internal density variations make the com-
putation more expensive, as discussed in Sect. 2.2. We found
that, for GIA_R1, GIA_R2, and GIA_R3, calculating gravi-
tational potential anomalies takes up about one-fourth to half
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Table 3. Relative errors for surface three-component displacement rates for the GIA benchmark.

GIA_R1 GIA_R2 GIA_R3 GIA_R3Ba GIA_R3_LTb GIA_R3_LT_SH20c GIA_R3_LT_SH64

Resolution 48× 48× 48 48× 80× 80 64× 128× 128 64× 128× 128 64× 128× 128 64× 128× 128 64× 128× 128
Total steps 976 976 976 976 592 592 592
No. of cores 96 96 384 384 192 192 384
Runtime (h) 5.57d 4.89 3.01 3.13 3.88 3.34 3.77
Core hours 535 469 1156 1202 745 641 1448
εr(0)e 17.1 % (15.8 %)f 8.7 % (8.1 %) 4.9 % (4.4 %) 4.4 % (3.8 %) 4.6 % (4.4 %) 5.0 % (4.8 %) 4.7 % (4.4 %)
εh(0) 14.8 % (15.0 %) 6.9 % (6.9 %) 3.9 % (3.9 %) 3.5 % (3.4 %) 3.9 % (3.9 %) 3.9 % (3.9 %) 3.9 % (3.9 %)
εg(0) 10.5 % (10.2 %) 5.6 % (5.6 %) 4.7 % (4.7 %) 4.5 % (4.5 %) 4.7 % (4.7 %) 9.2 % (9.2 %) 3.0 % (2.9 %)
εr(15) 7.9 % (6.7 %) 4.5 % (4.1 %) 3.4 % (3.0 %) 2.8 % (2.3 %) 3.1 % (3.0 %) 3.1 % (3.0 %) 3.2 % (3.0 %)
εh(15) 4.4 % (3.9 %) 2.6 % (2.4 %) 1.8 % (1.7 %) 1.6 % (1.5 %) 1.7 % (1.7 %) 1.7 % (1.7 %) 1.7 % (1.7 %)
εg(15) 14.2 % (14.9 %) 13.7 % (14.3 %) 13.6 % (14.3 %) 13.7 % (14.3 %) 13.6 % (14.3 %) 18.3 % (19.4 %) 7.0 % (7.3 %)
εr(26) 7.9 % (6.6 %) 3.8 % (3.3 %) 2.8 % (2.3 %) 2.3 % (1.8 %) 3.1 % (3.0 %) 3.0 % (2.9 %) 3.2 % (3.1 %)
εh(26) 4.4 % (3.9 %) 2.3 % (2.0 %) 1.5 % (1.3 %) 1.4 % (1.1 %) 1.9 % (1.8 %) 1.9 % (1.8 %) 1.9 % (1.9 %)
εg(26) 6.4 % (6.5 %) 6.1 % (6.2 %) 6.1 % (6.2 %) 6.1 % (6.2 %) 6.1 % (6.2 %) 8.2 % (8.5 %) 3.2 % (3.3 %)
εRSL(15)g 13.1 % 2.3 % 1.6 % 1.3 % 1.6 % 1.6 % 1.6 %
εRSL(26) 12.3 % 1.8 % 1.3 % 1.0 % 1.3 % 1.3 % 1.3 %

a The differences between cases GIA_R3B and GIA_R3 are discussed in Sect. 3.2.1. b The “LT” in GIA_R3_LT means larger time increments between time steps, where the increments are 250 and
125 years before and after 26 ka BP, respectively. Cases GIA_R1, GIA_R2, and GIA_R3 have a uniform time increment of 125 years. c The “SH20” in GIA_R3_LT_SH20 means that the cutoff of degrees
and orders of spherical harmonics in this calculation is 20. Similarly, case GIA_R3_LT_SH64 has a cutoff at degrees and orders of 64. Other cases are cut off at degrees and orders of 32. d For this case, the
solution converges slowly, causing longer CPU times. All the cases are computed on the NCAR supercomputer Derecho. e εr, εh, and εg are errors of displacement rates in the radial and horizontal directions
and errors of geoid rates, respectively. The errors are given for the present-day (0), 15 ka BP, and 26 ka BP. Note that the geoid rates include the contribution from the centrifugal potential. f Numbers outside
parentheses are errors calculated based on regular grids, whereas numbers inside parentheses are calculated based on CitcomSVE grids. g εRSL is similar to εh but for relative sea level. The errors are
calculated based on regular grids.

of the total calculation times, depending on the time spent
solving the displacement field. It is possible to speed up the
calculations of the gravitational potential anomalies by using
a grid-based method (e.g., Latychev et al., 2005) or direct in-
tegration (e.g., Wang and Li, 2021) for the Poisson equation
instead of the currently used spherical harmonic transform.
The maximum degree of spherical harmonics used for poten-
tial calculation, varying between 20 (GIA_R3_LT_SH20),
32 (GIA_R3_LT), and 64 (GIA_R3_LT_SH64), affects the
modeled change rates of geoid and gravity, as shown in the
varying errors of the geoid rates (Table 3), such that the er-
ror decreases with an increasing maximum degree. However,
it has insignificant effects on surface displacement and RSL
(Tables 3 and 4).

We also compare the cumulative radial displacements at
different spherical harmonic degrees from the CitcomSVE
and semi-analytical solutions, following previous works
(Paulson et al., 2005; A et al., 2013; Kang et al., 2022; Zhong
et al., 2022). The spherical harmonic coefficients of the sur-
face displacement field are provided as an output of Cit-
comSVE (see Zhong et al., 2022, for the spherical harmonic
expansion used in CitcomSVE). The degree amplitude for
each l is calculated by

al(t)=

√√√√ 1
l+ 1

l∑
m=0

[
Clm(t)

2
+ Slm(t)

2
]
, (17)

where Clm and Slm denote the cosine and sine parts of the
spherical harmonic coefficients expanded from the radial dis-
placement fields at time t . Figure 4a–c show the amplitude al
of surface radial displacement at selected spherical harmonic
degrees (l = 1, 2, 5, 9, 16, and 23) for the three CitcomSVE

cases, together with the corresponding semi-analytical so-
lutions. As with CitcomSVE-2.1 (Zhong et al., 2022), the
lowest-resolution case is adequate for relatively long wave-
lengths (l = 1, 2, 5, and 9), whereas higher-resolution mod-
els are required for accuracy at shorter wavelengths (l = 16
and 23) (Fig. 4c). Figure 4d shows the results for the har-
monic of l = 2 and m= 1 that corresponds to the polar wan-
der. Similar to findings from single harmonic benchmarks in
the previous section and Zhong et al. (2022), high spatial res-
olution is required to obtain an accurate solution for the polar
wander term. Note that the amplitudes of the polar wander
mode are much smaller than other long-wavelength modes
like l = 2, 5, and 9.

Following Zhong et al. (2022), we use the time-integrated
relative error of degree amplitude εl to quantify the time-
averaged error for a given degree l. εl is defined as

εl =

√√√√√√√√√
T∫
0

[
alFE(t)− alS(t)

]2dt

T∫
0
alS(t)

2dt

, (18)

where alFE(t) and alS(t) represent the degree amplitudes at
time t from the CitcomSVE and semi-analytical solutions,
respectively, and T is the entire calculation period. The errors
for each case are shown in Table 4. As expected, the errors
decrease with increasing spatial resolution for each degree,
and errors for shorter wavelengths are larger than those for
longer wavelengths, except for the polar wander term with
relatively large errors.
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Table 4. Relative errors for surface radial displacements at different harmonics.

GIA_R1 GIA_R2 GIA_R3 GIA_R3_LT GIA_R3_LT_SH20 GIA_R3_LT_SH64

ε1 0.97 % 0.74 % 0.62 % 0.64 % 0.64 % 0.64 %
ε2 0.98 % 0.76 % 0.73 % 0.74 % 0.74 % 0.72 %
ε5 0.33 % 0.12 % 0.13 % 0.14 % 0.14 % 0.14 %
ε9 2.30 % 1.37 % 0.77 % 0.77 % 0.77 % 0.77 %
ε16 7.56 % 3.30 % 1.45 % 1.45 % 1.45 % 1.45 %
ε23 13.66 % 6.69 % 3.10 % 3.10 % N/Ab 3.10 %
εa

2,1 17.53 % 6.58 % 1.48 % 1.39 % 1.39 % 1.80 %

a ε2,1 represents the errors for the polar wander term (l = 2, m= 1). b N/A, the cutoff of degrees and orders of spherical harmonics, is
20 for this case, and we only output the spherical harmonics up to the cutoff value in CitcomSVE.

Figure 4. Amplitudes of cumulative radial surface displacement at different spherical harmonic degrees as a function of time for the semi-
analytical solutions (Analytical) and three CitcomSVE calculations (GIA_R1, GIA_R2, and GIA_R3) for l = 1,2 (a), l = 5,9 (b), l =
16,23 (c), and the polar wander mode with l = 2, m= 1 (d).

Figure 5 shows the comparisons of modeled relative sea
levels at different periods (5, 10, and 15 ka BP) for GIA_R3
and the semi-analytical solutions on map views. The regions
with localized, relatively large errors (Fig. 5b, d, and f) are
mostly around the edges of ice sheets in North America,
Fennoscandia, and Antarctica, similar to those for the dis-
placement rates as shown in Fig. 3b. Figure 6 compares mod-
eled RSL curves for several sites from semi-analytical solu-
tions and three CitcomSVE calculations with different spa-
tial resolutions. Increasing spatial resolution reduces the off-

sets to semi-analytical solutions for near-field sites (i.e., sites
close to ice sheets) (Fig. 6a and b) but does not appear to
affect the far-field solutions as much (Fig. 6c and d), reflect-
ing the facts that the RSL at far-field sites is not sensitive to
numerical resolutions and the offsets to semi-analytical solu-
tions are caused by other factors, e.g., the interpolation of the
ocean function from a regular grid to the CitcomSVE grid or
the interpolation of results on the CitcomSVE grid to RSL
sites.
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Figure 5. Map of the modeled relative sea levels at 5 ka BP (a), 10 ka BP (c), and 15 ka BP (e) from GIA_R3 and their differences from
semi-analytical solutions at 5 ka BP (b), 10 ka BP (d), and 15 ka BP (f), respectively.

4 Conclusion and discussion

This study introduces CitcomSVE-3.0, an enhanced
finite-element package that builds upon its predecessor
CitcomSVE-2.1 (Zhong et al., 2022), an efficient package
that utilizes massively parallelized computers with up to
thousands of CPUs. The new version incorporates elastic
compressibility (e.g., the PREM model) based on the work
of A et al. (2013) and improves the algorithm for solving sea
level equations following the work of Kendall et al. (2005),
which considers the changes in ocean loads and ocean
functions related to ocean–continent transitions and the
existence of floating ice. Two benchmark problems are
computed with different numerical resolutions: (1) surface
and tidal loads of different single harmonics and (2) the GIA
problem with the ICE6G_D ice model.

Extensive comparisons between CitcomSVE-3.0 calcula-
tions and semi-analytical solutions are presented to validate

the accuracy of the CitcomSVE package. The accuracy of
CitcomSVE with a horizontal resolution of∼ 50 km is better
than 0.1 % up to spherical harmonics of degree 4 and better
than 2 % up to degree 16 in vertical motion and gravitational
potential for single harmonic loading problems. The single
harmonic benchmarks show that CitcomSVE has a second
order of accuracy; i.e., the errors would be reduced to 0.25
if the element sizes were reduced by a factor of 2. For GIA
problems with realistic ice models and dynamically deter-
mined ocean loads, the average errors for CitcomSVE mod-
els with ∼ 50 km horizontal resolution are less than 5 % in
displacement rates and relative sea levels.

As shown in the benchmark work for CitcomSVE-2.1
(Zhong et al., 2022), CitcomSVE has a parallel compu-
tational efficiency of > 75 % for up to 6144 CPU cores.
Although CitcomSVE-3.0 is about 3 times slower than
CitcomSVE-2.1 for most of our tests because of the added
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Figure 6. Relative sea level curves for the last 26 kyr at four sites from semi-analytical solutions (Analytic) and three CitcomSVE calcu-
lations at different resolutions: cases GIA_R1, GIA_R2, and GIA_R3. The four sites are Churchill (a), Vasterbotten (b), Barbados (c), and
Geylang (d) with latitudes and longitudes of (58.70, 265.60), (64.00, 19.90), (13.04, 300.45), and (1.31, 103.87), respectively. The symbols
represent the observed RSL changes. The observed RSL values are from Peltier et al. (2015) and Lambeck et al. (2014).

computational expense for gravitational potential introduced
by the layered density structure and compressibility, it can
complete a high-resolution global GIA calculation within
several hours on supercomputers with a modest number of
CPU cores. With its accuracy and efficiency in modeling
viscoelastic responses to surface loads and tidal forces, the
open-source package CitcomSVE has the ability to advance
research in planetary and climatic sciences, including GIA-
related problems.

Code and data availability. The version of CitcomSVE-3.0 used
to produce the results in this paper is deposited on Zenodo at
https://doi.org/10.5281/zenodo.13932410 (Yuan, 2024), as are the
input data (including the ice model and Earth model used in this
paper) and the scripts for running the model and producing the
plots for all the calculations presented in this paper. CitcomSVE-
3.0 can also be accessed from GitHub: https://github.com/shjzhong/
CitcomSVE (last access: 4 March 2025).

Supplement. The supplement related to this article is available on-
line at https://doi.org/10.5194/gmd-18-1445-2025-supplement.
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