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Supplementary Materials 1 

 2 

Supplementary Text 1. Pre-calculated ocean function 𝑂(𝑡) for first outer 3 

iteration 4 

 As discussed in section 2.3, a pre-calculated ocean function accounting for the 5 

load/ocean transition is used for the first outer iteration in our SLE solver to make the 6 

solutions from the first outer iteration as good as possible. The goal is to make it possible to 7 

obtain accurate RSL results by running just one forward GIA calculation instead of 3-4 outer 8 

iterations, at least under some circumstances. It should be mentioned that the outer iterations 9 

are necessary if the initial topography used in the first outer iteration is not ideal, although in 10 

our case the present-day topography is a good approximation to the initial topography at the 11 

last interglacial period. 12 

 Here we describe our approach to derive the pre-calculated ocean function 𝑂(𝜃, 𝜙, 𝑡) 13 

for the first outer iteration. The idea is calculating the change of ocean area (i.e., ocean-14 

continent transitions) based on ice volume change (i.e.,  Δ𝐼(𝑡௜) ) and the present-day 15 

topography 𝑇଴(𝜃, 𝜙), assuming barystatic sea level change on a rigid Earth (i.e., no radial 16 

surface displacement). Note by assuming barystatic sea level change, we mean the total ocean 17 

water volume change causes a uniform sea level change globally, which caused the change of 18 

ocean area. First, it is easy to find ocean function if the barystatic sea level is known as 𝐻 19 

(meters higher than the present-day sea level), that is, 𝑂(𝜃, 𝜙, 𝐻) = 1 if  𝑇଴(𝜃, 𝜙) − 𝐻 > 0, 20 

and 𝑂(𝜃, 𝜙, 𝐻) = 0 otherwise. Then, the barystatic sea level at time 𝑡௜  can be determined 21 

from ice volume change Δ𝐼(𝑡௜). Define the ocean area A(𝐻) =  ∫ 𝑂(𝜃, 𝜙, 𝐻)𝑑𝑠
 

ஐ
, where Ω is 22 

the surface. By mass conservation, ∫ 𝜌௪𝐴(ℎ)𝑑ℎ = −𝜌௜௖௘Δ𝐼(𝑡௜)
ு

଴
, then, the barystatic sea 23 

level 𝐻 can be determined at stage 𝑡௜. Since the 𝑂(𝜃, 𝜙, 𝐻) is known, the 𝑂(𝜃, 𝜙, 𝑡௜) is thus 24 

determined for each stage 𝑡௜. 25 

 26 



Supplementary Text 2. A one-iteration solution method for the sea level 27 

equation. 28 

For our GIA benchmark with ICE-6G_D, we implemented the multiple outer iteration 29 

algorithm by Kendall et al., (2005) for the sea level equation in our semi-analytical code (A et 30 

al., 2013). For ICE-6G and VM5a, calculation K3 represents the reference case with 31 

convergent solutions after three outer iterations, based on Kendall’s original approach. The 32 

normalized ocean area which is a measure of the ocean function O(t) for K3 varies between 33 

~0.66 at the last glacial maximum (LGM) and ~0.71 at 122 kybp and the present-day (Fig. 34 

S1). Figure S1 also shows the ocean area after the first outer iteration for calculation K3, 35 

which, denoted as K1, differs significantly from that of K3. Calculation AS1 represents a 36 

single outer iteration model run using our pre-calculated ocean function O(t) as discussed in 37 

section 2.3, and AS2 represents the results from the second outer iteration after AS1 using the 38 

updated ocean functions O(t) and initial topography T0, Figure S1 clearly demonstrates that 39 

AS1, different from K1, is very similar to K3 and AS2, while the latter two are identical, 40 

indicating that the ocean function O(t) for our first outer iteration (AS1) is a fairly accurate  41 

representation of the convergent solutions of the Kendall’s original approach (K3). Note that 42 

the present-day topography is used as initial topography T0 for calculations AS1 and K1. As 43 

discussed below, the reliability of solution from AS1 depends on the differences between the 44 

true initial topography and the assumed one (i.e., present-day topography as used here). If 45 

there is significant difference between the assumed and true initial topography, updating 46 

initial topography is necessary. In our case, the initial stage is the last interglacial period 47 

which has similar ice volume to the present day, so the present-day topography is a good 48 

approximation to the initial topography. 49 

Using RSL from K3 as standard results, Fig. S2 shows that the maps of RSL 50 

difference (i.e., the accuracy) to K3 from calculations AS1, K1 and AS2 at 5 kybp, 10 kybp 51 

and 15 kybp. The absolute error in RSL from AS1 is negligibly small for most regions (Fig.  52 

S2a, S2d and S2g), whereas the absolute error from K1 is much worse, especially at 20 kybp 53 



(Fig. S2h). AS2 is identical to K3, the standard results (Fig. S2c, S2f  and S2i). Admittedly, 54 

there are relatively large errors in some localized regions for AS1, such as Hudson Bay and 55 

the Arctic Ocean near Fennoscandia for some periods (Fig. S2a and S2d), because we ignore 56 

the change in surface radial displacement when deriving the pre-calculated ocean function 57 

used in AS1. However, the largest errors in those areas mostly occur in the ocean, while along 58 

the coastlines where paleo-relative sea level records are available, the absolute errors are all 59 

less than 10 meters (Fig. S2a and S2d). Figure S3 shows the modeled RSL curves at four 60 

representative sites including Hudson Bay and Fennoscandia from K3, K1, AS1 and AS2 61 

calculations. The results are consistent with that from Figure S2 in that the errors in modeled 62 

RSL from AS1 (i.e., the single outer iteration model run using our revised method for ocean 63 

functions) are negligible, whereas the errors from K1 are evident, especially for far-field sites. 64 

Note that even at Churchill, which is on the coastline of Hudson Bay, AS1 has negligible 65 

errors in RSL calculations.  66 

To further assess the errors in RSL from our AS1 model, we tested two additional 67 

GIA calculations with extremely strong or weak mantle viscosity models. For both cases, the 68 

lithospheric thickness is 100 km. For the strong mantle case, the entire mantle below the 69 

lithosphere has a viscosity of 5x1022 Pas. For the weak mantle case, the 200 km thick 70 

asthenosphere below the lithosphere and the rest of the mantle have viscosities of 5x1018 Pas 71 

and 1020 Pas, respectively. Figure S4 shows similarly small errors for both cases to that of 72 

VM5a (Fig. S2), indicating the reliability of our AS1 model. 73 

Other pre-calculated ocean functions O(t) for any given ice model may be constructed 74 

to obtain more accurate RSL results in our AS1 method by replacing the “rigid Earth” 75 

approximation with others, for example, the isostasy approximation in which surface 76 

elevation changes to compensate the surface loads. Another possible way is to perform a full 77 

GIA modeling with three outer iterations (i.e., for outer iterations to converge) for a reference 78 

viscosity model and use the ocean functions from the last outer iteration as the pre-calculated 79 

ocean functions for any other GIA calculations with reasonable viscosity models in our AS1 80 



method. We test such a strategy by using a reference viscosity model which has a 100-km 81 

thick elastic lithosphere and its underlying mantle with a uniform viscosity of 1021 Pas and 82 

then applying the resulting pre-calculated ocean functions for those same two GIA cases with 83 

extremely strong or weak viscosity models as in Figure S4. The resulting errors in RSL for 84 

those two cases (Fig.  S5) are similar to that in Figure S4 for which the “rigid Earth” 85 

approximation was used in building the pre-calculated ocean functions. 86 

To quantify the upper bound of errors in RSL by using one outer iteration (e.g., our 87 

AS1 method), we compute 806 GIA models covering a wide range of mantle viscosities and 88 

determine RSL histories for a large number of sites in three regions including North America, 89 

Fennoscandia, and far fields using both AS1 and K3 methods. The numbers of sites are 18, 90 

12, and 36 for North America, Fennoscandia, and far fields, respectively. The North 91 

American and Fennoscandian sites are from Peltier et al., (2015), and the far-field sites are 92 

from Lambeck et al., (2014). These models, same as those in Kang et al., (2024), have three 93 

viscosity layers: a lithosphere of 100 km thick, the upper and lower mantles, and use ICE-94 

6G_D as the ice history (Peltier et al., 2015, 2018). The viscosity varies from 1019 Pas to 95 

1021.5 Pas in the upper mantle and from 1020.5 Pas to 1023.5 Pas in the lower mantle. The 96 

relative error (i.e., the relative difference from the reference case K3) in modeled RSL for 97 

each site is defined as 𝜖௜ =
∫ หோௌ௅ೣ,೔(௧)ିோௌ௅಼య,೔(௧)หௗ௧

೅

బ

∫ หோௌ௅಼య,೔(௧)หௗ௧
೅

బ

, where 𝑅𝑆𝐿௫,௜ is the modeled RSL at site 𝑖 98 

for case K1, AS1, or AS2, 𝑅𝑆𝐿௄ଷ,௜ is for the reference case K3, and the integral is for the total 99 

model time duration. The regionally averaged relative error 𝜖 is defined as the average error 100 

among all sites within each region, i.e., 𝜖 =
ஊఢ೔

ே
, where 𝑁 is the total number of sites within 101 

each region. The maximum regionally averaged relative error among those 806 GIA models 102 

is less than 5% (Supplement Table 2) for our AS1 method.  103 

We also quantify the maximum absolute error in RSL, defined as the maximum of 104 

|𝑅𝑆𝐿௫(𝑡) − 𝑅𝑆𝐿௄ଷ(𝑡)| among all time periods 𝑡 and all sites in each region from those 806 105 

calculations (Supplement Table 2). For far-field sites where RSL is mainly controlled by 106 



ocean functions and ice volume changes, the maximum absolute error in RSL is less than 3 107 

meters for the AS1 method but more than 10 meters for the K1 method, consistent with Fig. 108 

S1 in that AS1 provides more accurate ocean functions than K1. However, the maximum 109 

absolute error in near-field RSL is more significant and up to ~23 meters for both AS1 and 110 

K1 methods, reflecting the fact that near-field ocean functions and paleo-topography are more 111 

affected by visco-elastic deformation. Fig. S6 shows the RSL curves for the site and viscosity 112 

model corresponding to the maximum absolute error of ~23 meters in RSL for AS1. Note that 113 

at the site for this case with the maximum absolute error, the total RSL change exceeds 600 114 

meters and the RSL from AS1 is not significantly different from that from K3 (Fig. S6). 115 

Depending on factors including the user’s goal, RSL data quality, and requirements for 116 

accuracy and efficiency of GIA calculations, AS1 could be a viable method to obtain reliable 117 

RSL in both far fields and near fields with minimal computational cost. 118 

We summarize our attempts to get accurate RSL results from a single complete GIA 119 

model run as follows. Since the purpose of multiple outer iterations is to update ocean 120 

function history and initial topography successively to be consistent with the present-day 121 

topography and a given ice model (Kendall et al., 2005), our strategy is to construct pre-122 

calculated ocean functions and initial topography that would lead to RSL solutions with an 123 

adequate level of accuracy with a single complete GIA model run (i.e., the AS1 method). The 124 

present-day topography would be a good approximation for initial topography if a model 125 

starts with an ice-sheet distribution similar to that of the present day (i.e., the interglacial 126 

period), as in the benchmark study here. We found that three outer iterations of complete 127 

model runs with successively updated ocean functions and initial topography could be 128 

replaced with our AS1 method, depending on users’ goals and requirements for the error 129 

levels. For example, studies on global properties of RSL could achieve adequately accurate 130 

results from one single complete run (i.e., AS1) with properly constructed pre-calculated 131 

ocean functions, as we discussed. If the goal is to model the RSL for one particular near-field 132 

site as accurately as possible, it would be more prudent to run two or three outer iterations of 133 



complete GIA runs with successively updated ocean functions and initial topography 134 

following Kendall et al. (2005). It is worthwhile to mention that, when modeling RSL 135 

changes, one should also consider other factors including the errors in RSL records (often 136 

exceeding 10 m in near field during the rapid deglaciation (Peltier et al., 2015; Lambeck et 137 

al., 2017)), the relatively low resolution of global ice models, inherent numerical errors, and 138 

unaccounted processes in the current sea level equation (e.g., erosion and sedimentation). 139 
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Supplement Table 1:  Comparison of Load Love Numbers 𝒉𝒍 ,  𝒌𝒍 , and 𝒍𝒍  Between 141 
CitcomSVE and Semi-Analytical Solutions and the corresponding errors. 142 

case h(0) k(0)  |l(0)|  h(40)  k(40)  |l(40)|  ha ka la hd  kd 

Analytic_l1 -1.2543 -1.0000 0.8866 -1.4964 -1.0000 1.9090      

l1m0_R1 -1.2527 -1.0000 0.8869 -1.4943 -1.0000 1.9171 1.37E-03 2.00E-06 2.67E-03 3.99E-04 5.56E-05 

l1m0_R2 -1.2548 -1.0000 0.8859 -1.4967 -1.0000 1.9115 2.29E-04 1.00E-06 8.68E-04 1.01E-04 1.50E-05 

l1m0_R3 -1.2547 -1.0000 0.8846 -1.4968 -1.0000 1.9105 2.66E-04 0.00E+00 5.10E-04 4.39E-05 6.58E-06 

l1m0_R4 -1.2546 -1.0000 0.8864 -1.4968 -1.0000 1.9101 2.91E-04 0.00E+00 4.00E-04 2.50E-05 3.94E-06 

Analytic_l2 -0.9577 -0.3041 0.0200 -2.4066 -0.9396 0.8216      

l2m0_R1 -0.9549 -0.3037 0.0201 -2.4000 -0.9373 0.8305 2.43E-03 1.91E-03 7.19E-03 3.64E-04 4.13E-04 

l2m0_R2 -0.9578 -0.3039 0.0202 -2.4060 -0.9388 0.8242 1.24E-04 4.98E-04 2.19E-03 9.54E-05 1.04E-04 

l2m0_R3 -0.9585 -0.3042 0.0200 -2.4064 -0.9391 0.8232 1.79E-04 2.51E-04 1.38E-03 4.25E-05 4.61E-05 

l2m0_R4 -0.9574 -0.3038 0.0203 -2.4066 -0.9392 0.8229 2.30E-04 1.85E-04 1.10E-03 2.30E-05 2.65E-05 

Analytic_l2m1 -0.3058 1.0944 0.1118 0.6151 2.1973 0.1884      

l2m1_R1 -0.3094 1.0836 0.1103 0.5583 2.1294 0.1653 7.10E-02 2.08E-02 8.97E-02 8.10E-03 5.82E-04 

l2m1_R2 -0.3063 1.0925 0.1116 0.6077 2.1885 0.1847 1.01E-02 2.89E-03 1.46E-02 1.07E-03 6.46E-05 

l2m1_R3 -0.3100 1.0900 0.1111 0.6144 2.1964 0.1878 1.78E-03 4.93E-04 3.08E-03 8.14E-04 6.37E-05 

l2m1_R4 -0.3056 1.0948 0.1118 0.6178 2.2003 0.1891 2.99E-03 7.52E-04 2.34E-03 4.99E-04 3.60E-05 

Analytic_l4 -1.0251 -0.1342 0.0568 -4.4402 -0.9416 0.3411      

l4m0_R1 -1.0194 -0.1341 0.0565 -4.4105 -0.9339 0.3480 6.18E-03 7.58E-03 1.25E-02 3.70E-04 1.42E-03 

l4m0_R2 -1.0254 -0.1343 0.0569 -4.4354 -0.9397 0.3432 9.21E-04 1.94E-03 3.60E-03 9.21E-05 3.58E-04 

l4m0_R3 -1.0253 -0.1342 0.0569 -4.4384 -0.9407 0.3425 3.29E-04 9.63E-04 2.29E-03 4.22E-05 1.58E-04 

l4m0_R4 -1.0247 -0.1341 0.0569 -4.4395 -0.9410 0.3423 1.25E-04 6.08E-04 1.89E-03 2.39E-05 9.24E-05 

Analytic_l8 -1.2376 -0.0772 0.0302 -8.8405 -0.9605 0.0958      

l8m4_R1 -1.2172 -0.0767 0.0301 -8.5145 -0.9171 0.1048 3.09E-02 3.94E-02 3.54E-02 6.22E-04 4.94E-03 

l8m4_R2 -1.2354 -0.0772 0.0302 -8.7607 -0.9492 0.0980 7.26E-03 1.01E-02 8.95E-03 1.60E-04 1.21E-03 

l8m4_R3 -1.2359 -0.0771 0.0304 -8.7960 -0.9544 0.0977 3.85E-03 5.29E-03 8.55E-03 7.12E-05 5.91E-04 

l8m4_R4 -1.2372 -0.0772 0.0303 -8.8084 -0.9563 0.0977 2.63E-03 3.56E-03 8.50E-03 4.21E-05 3.02E-04 

Analytic_l16 -1.6868 -0.0574 0.0229 -17.8470 -0.9726 0.0479      

l16m8_R1 -1.5913 -0.0544 0.0225 -15.0636 -0.7883 0.0329 1.39E-01 1.74E-01 2.55E-01 1.00E-03 2.05E-02 

l16m8_R2 -1.6660 -0.0568 0.0228 -17.0264 -0.9179 0.0418 3.88E-02 4.92E-02 9.26E-02 2.52E-04 4.86E-03 

l16m8_R3 -1.6781 -0.0572 0.0228 -17.3994 -0.9437 0.0430 2.06E-02 2.54E-02 7.45E-02 1.12E-04 2.14E-03 

l16m8_R4 -1.6825 -0.0573 0.0228 -17.5347 -0.9530 0.0435 1.40E-02 1.69E-02 6.71E-02 6.60E-05 1.20E-03 

l16m8_R5 -1.6805 -0.0572 0.0228 -17.6230 -0.9579 0.0464 1.04E-02 1.31E-02 2.26E-02 6.50E-05 1.33E-03 

ha, ka, and la are amplitude errors for Love numbers h, k, and l, respectively.hd and kd are 143 
dispersion errors for Love numbers h and k, respectively. 144 

145 



Supplement Table 2: Maximum errors in modeled RSL from different cases 146 
compared to the reference case (K3) among an ensemble of semi-analytical 147 
calculations with a wide range of viscosity models 148 
 

North Americaa Fennoscandia Far Field 

K1c 6.54% (22.8 m)b 4.81% (10.0 m) 4.69% (10.6 m) 

AS1 4.53% (23.2 m) 4.89% (11.0 m) 2.97% (2.7 m) 

AS2 0.49% (4.5 m) 0.32% (0.8 m) 0.19% (0.4 m) 

 149 

a. “North America”, “Fennoscandia”, and “Far Field” are regions with groups of sites used in 150 
calculating RSL. The numbers of sites are 18, 12, and 36 for North America, Fennoscandia, 151 
and Far Field, respectively. The North American and Fennoscandian sites are from (Peltier et 152 
al., 2015). The far-field sites are from (Lambeck et al., 2014). 153 

b. The relative error in modeled RSL for each site is defined as 𝜖௜ =
∫ หோௌ௅ೣ,೔(௧)ିோௌ௅಼య,೔(௧)หௗ௧

೅

బ

∫ หோௌ௅಼య,೔(௧)หௗ௧
೅

బ

, 154 

where 𝑅𝑆𝐿௫,௜  is modeled RSL at site 𝑖  for case K1, AS1, or AS2, and 𝑅𝑆𝐿௄ଷ,௜  is for the 155 
reference case K3. The regionally averaged relative error is defined as the average error 156 
among all sites within each region, i.e.,

ஊఢ೔

ே
, where 𝜖௜ is the error for each site 𝑖 and 𝑁 is the 157 

total number of sites within each region. The numbers out of parenthesis represent the 158 
maximum region-averaged relative error among the 806 calculations of varying mantle 159 
viscosity. The numbers inside parenthesis represent the maximum absolute error (i.e., 160 
max(|𝑅𝑆𝐿௫(𝑡) − 𝑅𝑆𝐿௄ଷ(𝑡)|)) among all time periods 𝑡 and all sites in each region from those 161 
806 calculations of varying mantle viscosity. Those numbers measure the maximum possible 162 
error for each case among reasonable mantle viscosity structures. 163 

c. The meaning of case K1, AS1, and AS2 can be found from the main text. 164 
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 168 

Figure S1. Normalized ocean areas determined from the ocean functions from five different 169 

semi-analytical calculations: K1, K2, K3, AS1, and AS2.). Calculation K3, the reference case, 170 

represents the convergent solutions after the third outer iteration based on the algorithm from 171 

Kendall et al., (2005), while K1 is that after the first outer iteration and K2 is the after the 172 

second outer iteration. AS1 represents the first outer iteration based on the pre-calculated 173 

ocean functions determined assuming rigid Earth, and AS2 is the second outer iteration with 174 

updated ocean functions and initial topography following AS1. Note that K2, K3 and AS2 are 175 

almost overlapping with each other.  176 

  177 



 178 

Figure S2. Comparison of modeled relative sea level (RSL) at 5 kybp (the top row), 10 kybp (the 179 

middle row), and 15 kybp (the bottom row) among four different semi-analytic calculations: K1, 180 

K3, AS1 and AS2. Shown here are the differences (or the errors) in RSL to reference case K3 from 181 

AS1 (the left column, a, d, and g), K1 (the middle column, b, e and h), and AS2 (the right column, 182 

c, f, and i), respectively. The difference (or error) at a given time is defined as (𝑅𝑆𝐿௫ − 𝑅𝑆𝐿୏ଷ) ∙183 

𝑂௫  , where 𝑥 is AS1, K1, or AS2, 𝑂௫ is the ocean function. Note that RSL is only meaningful for 184 

ocean regions (including coastlines), since RSL records at one site can exist only if this site is 185 

ocean for that time period. The red triangles in the last column represent sites in Figure S3. Note 186 

the ice model and viscosity model used are ICE6G and VM5a. 187 

  188 



 189 

 190 

Figure S3. Comparison of modeled RSL curves at four sites from four semi-analytic calculations 191 

(AS1, K1, AS2, and K3 as in Figure S1): Churchill (Hudson Bay) (a), Vasterbotten (b), Barbados 192 

(c), and Geylang (d) (i.e., same sites as in Figure 6 where their longitudes and latitudes are given). 193 

The locations of those four sites are also shown in Figure S2.  194 

  195 



 196 

Figure S4. The RSL differences to calculation K3 from calculation AS1, or (𝑅𝑆𝐿஺ௌଵ − 𝑅𝑆𝐿୏ଷ) ∙197 

𝑂஺ௌଵ, for the case with an extremely strong mantle (the left column, a, c, and e for 5 kybp, 10 kybp 198 

and 15 kybp, respectively), and the case with an extremely weak mantle (the right column, b, d, 199 

and f for 5 kybp, 10 kybp and 15 kybp, respectively). Note that the pre-calculated ocean functions 200 

for both cases are constructed assuming a “rigid Earth”. 201 

  202 



 203 

Figure S5. The same as in Figure S4, except for using different pre-calculated ocean functions. 204 

The RSL differences to calculation K3 from calculation AS1, or (𝑅𝑆𝐿஺ௌଵ − 𝑅𝑆𝐿୏ଷ) ∙ 𝑂஺ௌଵ, for the 205 

case with an extremely strong mantle (the left column, a, c, and e for 5 kybp, 10 kybp and 15 kybp, 206 

respectively), and the case with an extremely weak mantle (the right column, b, d, and f for 5 kybp, 207 

10 kybp and 15 kybp, respectively). The pre-calculated ocean functions for both cases are 208 

constructed from the convergent solutions (i.e., with three outer iterations) using Kendall et al., 209 

(2005) for a reference viscosity model (i.e., 100-km thick lithosphere overlying the mantle with 210 

uniform viscosity of 1021 Pas). Note that the reference viscosity model is only used for 211 

constructing the pre-calculated ocean functions. 212 

  213 



 214 

Figure S6. The modeled RSL (a) for calculations for the site and the viscosity model that yields 215 

the maximum absolute error presented in Supplement Table 2 (i.e. 23.20 m, the maximum 216 

absolute error for AS1 in North America).  (b) shows the differences in RSL between K1, AS1, 217 

and AS2 to the reference case K3 for that site and viscosity model. The site is Churchill, and the 218 

mantle viscosities are 1.26x1020 Pas and 1.26x1023 Pas for upper and lower mantle, respectively. 219 

 220 


