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Abstract. The Energy Exascale Earth System Model
(E3SM) Land Model (ELM) is a state-of-the-art land sur-
face model that simulates the intricate interactions between
the terrestrial land surface and other components of the
Earth system. Originating from the Community Land Model
(CLM) version 4.5, ELM has been under active develop-
ment, with added new features and functionality, including
plant hydraulics, radiation–topography interaction, subsur-
face multiphase flow, and more explicit land use and man-
agement practices. This study integrates ELM v2.1 with
the Weather Research and Forecasting (WRF; WRF-ELM)
model through a modified Lightweight Infrastructure for
Land Atmosphere Coupling (LILAC) framework, enabling
affordable high-resolution regional modeling by leverag-
ing ELM’s innovative features alongside WRF’s diverse
atmospheric parameterization options. This framework in-
cludes a top-level driver for variable communication be-
tween WRF and ELM and Earth System Modeling Frame-
work (ESMF) caps for the WRF atmospheric component and
ELM workflow control, encompassing initialization, execu-
tion, and finalization. Importantly, this LILAC–ESMF frame-
work demonstrates a more modular approach compared to
previous coupling efforts between WRF and land surface
models. It maintains the integrity of ELM’s source code

structure and facilitates the transfer of future developments
in ELM to WRF-ELM.

To test the ability of the coupled model to capture land–
atmosphere interactions over regions with a variety of land
uses and land covers, we conducted high-resolution (4 km)
WRF-ELM ensemble simulations over the Great Lakes re-
gion (GLR) in the summer of 2018 and systematically com-
pared the results against observations, reanalysis data, and
WRF-CTSM (WRF coupled with the Community Terrestrial
Systems Model). In general, the coupled WRF-ELM model
has reasonably captured the spatial distribution of surface
state variables and fluxes across the GLR, particularly over
the natural vegetation areas. The evaluation results provide a
baseline reference for further improvements in ELM in the
regional application of high-resolution weather and climate
predictions. Our work serves as an example to the model
development community for expanding an advanced land
surface model’s capability to represent fully-coupled land–
atmosphere interactions at fine spatial scales. The develop-
ment and release of WRF-ELM marks a significant advance-
ment for the ELM user community, providing opportunities
for fine-scale regional representation, parameter calibration
in coupled mode, and examination of new schemes with at-
mospheric feedback.
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1 Introduction

Land surface models (LSMs) solve the exchange of water,
energy, and carbon fluxes between the land surface and at-
mosphere (Fisher and Koven, 2020) and are frequently used
to simulate the response of the Earth’s surface to both anthro-
pogenic and natural forcings (Best et al., 2015). These mod-
els describe biogeophysical properties like surface rough-
ness, albedo, and evapotranspiration efficiency, characteris-
tics crucial for modeling the land’s influence on meteorolog-
ical processes (Xue et al., 1991; Dai et al., 2003; Dickinson,
1984; Sellers et al., 1986). Originally developed to support
weather and climate modeling, LSMs were designed to pro-
vide essential lower boundary conditions such as radiation,
energy, and water fluxes to the atmosphere.

Over time, LSMs have evolved significantly, with rep-
resentations of increasingly complex processes that impact
land surface dynamics and belowground processes, with their
feedback to the atmosphere being incrementally added in
newer-generation LSMs. As a consequence of all these ad-
vancements, the applicability and scope of LSMs has broad-
ened substantially from their initial versions, introducing so-
phisticated representations of plant hydraulics (Fang et al.,
2022; Xu et al., 2023), wildfire (Thonicke et al., 2010; Li et
al., 2012; Huang et al., 2020b, 2021), soil biogeochemistry
and nutrient cycling (Li et al., 1992; Parton et al., 1988; Jenk-
inson, 1990), dynamic vegetation distributions (Martín Belda
et al., 2022; Weng et al., 2015; Fisher et al., 2015; Liu
et al., 2019), radiation–topography interaction (Hao et al.,
2021), urban-scale processes (Oleson and Feddema, 2020;
Krayenhoff et al., 2020), subsurface multiphase flow (Bisht
et al., 2017; Qiu et al., 2024), and land use and manage-
ment (Huang et al., 2020a; Binsted et al., 2022; Calvin et
al., 2019). These improvements not only advance the capa-
bility of LSMs to model complex environmental interactions
but also facilitate a mechanistic understanding of changes
in land–atmosphere interactions under varying environmen-
tal conditions. Particularly, they can be used to predict the
disturbance of the land surface, for example Earth’s ecosys-
tem and surface hydrology, in response to climate change and
to quantify the respective biogeophysical and biogeochemi-
cal feedbacks to the climate system (Ban-Weiss et al., 2011;
Fisher and Koven, 2020).

Recent advancements in LSMs have broad applications
in land-only simulations and within global climate mod-
els (GCMs) to capture the complex interactions surrounding
global climate change (Lawrence et al., 2019; Martín Belda
et al., 2022; Wiltshire et al., 2020). However, the application
within GCMs does not allow for the representation of land
processes at kilometer scales and extreme events occurring
at daily to weekly scales (such as extreme precipitation and
flash drought), which are more relevant to human society.
While regional refinement may appear to be a feasible so-
lution, the associated computational costs restrict their wide
adoption within the weather and climate modeling commu-

nity. Alternatively, combining advanced LSMs with regional
climate models (RCMs) could facilitate more in-depth exam-
inations of the climate change impacts on land surfaces and
the resulting feedback at scales that have greater relevance to
human society.

The U.S. Department of Energy’s Energy Exascale Earth
System Model (E3SM) Land Model (ELM) is an advanced
LSM that simulates the exchanges between terrestrial land
surfaces and other Earth system components, enabling us
to understand hydrologic cycles, biogeophysics, and the dy-
namics of terrestrial ecosystems (Burrows et al., 2020). The
Weather Research and Forecasting (WRF) model serves as
an essential tool that is widely used for regional weather pre-
diction and climate change analysis (Skamarock and Klemp,
2008). WRF can be run with various LSMs such as Noah,
Noah-MP, SSiB, and CLM4. It has also been coupled with
the Community Terrestrial Systems Model (CTSM) recently
(CTSM Development Team, 2024; UCAR, 2020). How-
ever, integrating ELM with WRF enables the comprehen-
sive representation of land processes, following recent ad-
vancements in ELM, for more computationally efficient re-
gional modeling applications. For instance, leaf to canopy
upscaling through a two-big-leaf parameterization in ELM
enables the simulation of the diffuse radiation fertilization
effect (Chakraborty et al., 2022) and thus better estimates
of surface water and carbon budget, a feature not present in
Noah. As another example, ELM incorporates gridwise sur-
face properties such as leaf area index (LAI), displacement
height, and vegetation top and bottom height. In contrast,
Noah and its variants use lookup tables with these proper-
ties prescribed for each land cover class, limiting their ability
to capture spatial heterogeneity in surface properties within
individual land cover types. Moreover, ELM simulations at
∼ 1 km resolution highlight the significance of considering
the radiation–topography interaction in simulating surface
energy balance and water budget, a process not yet consid-
ered by current land models in WRF (Hao et al., 2021; Yuan
et al., 2023).

This study integrates ELM v2.1 with WRF (hereafter
named WRF-ELM) using a modified coupler derived from
University Corporation for Atmospheric Research’s (UCAR)
Lightweight Infrastructure for Land Atmosphere Coupling
(LILAC) (UCAR, 2020). We evaluate the model perfor-
mance using a broad range of site observations and reanalysis
data, providing a benchmark for subsequent model enhance-
ments. This effort expands the capability of a global LSM,
which has been previously used within GCM frameworks,
allowing it to simulate higher-resolution land–atmosphere in-
teractions at regional scales. The introduction and release of
WRF-ELM also benefit the ELM user community by provid-
ing opportunities for them to test new land schemes with at-
mospheric feedbacks and calibrate model parameters in cou-
pled models.
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Figure 1. Schematic diagram of the E3SM model components. The
top-level coupler (CPL7) serves as the main program for commu-
nication between each component. The Model Coupling Toolkit
(MCT) cap in each component provides an interface between CPL7
and the physical core, which is responsible for memory allocation,
preprocessing, postprocessing, and input and output (I/O).

2 Methods

2.1 Coupler in E3SM

E3SM adopts a hub-and-spoke architecture to couple the dif-
ferent model components together, as shown in Fig. 1. In
this architecture, communication between the parallel com-
ponents is realized via the Model Coupling Toolkit (MCT;
Larson et al., 2005; Jacob et al., 2005). The version 7 cou-
pler (CPL7) calls model component initialization, execution,
and finalization methods through specified interfaces (Craig
et al., 2012). The MCT cap within each component provides
an interface between the CPL7 and the physical core, which
is responsible for memory allocation, preprocessing, post-
processing, and input and output (I/O). Importantly, the inter-
component communication is realized only through the cen-
tral hub instead of direct communication with one another.
The E3SM coupling framework imposes strict requirements
on how an atmospheric model can communicate with ELM.
One particular challenge is that many atmosphere models –
including WRF – expect to run the land model in the middle
of the time step sequence. Accomplishing this in the E3SM
architecture can require significant restructuring of the atmo-
sphere model. For this reason, ELM has not been coupled to
atmospheric models in the regional model community, limit-
ing its ability to address complex scientific challenges at fine
resolutions.

Figure 2. Schematic diagram of the coupling framework for WRF-
ELM. The top-level coupler (LILAC) is in charge of communication
between WRF ATM and ELM. The ESMF cap within ELM and
WRF ATM is responsible for memory allocation, preprocessing,
postprocessing, and input and output (I/O). PFT represents plant
functional type in the figure.

2.2 LILAC–ESMF (Earth System Modeling
Framework) coupler

The traditional way of coupling between LSMs (CLM4,
Noah, Noah-MP, and SSiB) and WRF is through internal
subroutines and interfaces within the WRF codebase. This
tight coupling means that the LSM is often compiled and run
as an integral part of the WRF model. As the LSMs grow
to integrate more land processes, the tight coupling approach
can become less scalable and harder to manage. Addition-
ally, maintaining the coupled system updated with the latest
versions of WRF and LSMs can be challenging due to the
need for synchronized updates and compatibility checks. In
contrast, modern approaches such as LILAC–ESMF offer a
more modular and flexible way of coupling, facilitating eas-
ier integration and updates of different model components.

We have developed an ESMF (Hill et al., 2004) cap which
wraps ELM to facilitate seamless communication with the
central hub driver that connects WRF ATM (atmospheric
model) and ELM (Fig. 2). The central hub driver, LILAC, is
developed using ESMF and provides the fundamental func-
tions to support the integration of an LSM within an RCM,
including (1) creating the list of fields passed from WRF
ATM to ELM and vice versa; (2) initializing ESMF caps for
WRF ATM and for ELM; (3) coordinating calls of the ESMF
caps and ELM and exchanging data between these compo-
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nents; and (4) providing missing atmospheric fields, specifi-
cally for atmospheric aerosols.

Within the coupling framework, the ESMF cap provides
the functions of (1) converting the input data from LILAC to
the land model and vice versa; (2) supplying any additional
input fields that ELM requires but are not provided by WRF
ATM, for example gross domestic product, population den-
sity, and lightning that are used to predict fire ignitions in
ELM; and (3) setting the domain decomposition and gener-
ating the land mesh. The ESMF cap, which provides the nec-
essary infrastructure to connect LILAC and ELM physics,
serves as an example for similar coupling work between
other LSMs and RCMs.

2.3 Exchange variables between WRF and ELM

ELM is driven by meteorological forcings including precip-
itation, downward shortwave radiation, downward longwave
radiation, zonal wind at reference height (zatm), meridional
wind at zatm, pressure at zatm, specific humidity at zatm, and
air temperature at zatm. In the coupled version, the meteoro-
logical forcings are provided by WRF ATM with the ELM
model time step set to match the integration time step in
the WRF ATM. The reference height refers to the height of
the lowest atmosphere model level. The radiation scheme in
WRF further splits the shortwave radiation to direct and dif-
fuse components, as well as visible and near-infrared radia-
tion. Precipitation is divided into rainfall and snowfall based
on the frozen precipitation ratio, which are then inputted into
ELM. The ELM output includes skin temperature, 2 m air
temperature, 2 m specific humidity at the surface, friction
velocity, surface albedo, sensible heat flux, latent heat flux,
ground heat flux, surface emissivity, and roughness length
for momentum and heat transfer, which will be exchanged
with the WRF ATM component.

2.4 Mesh data and surface parameters

In addition, mesh data are used in the WRF ATM to de-
fine the latitude and longitude of the grid. The domain in-
formation is necessary for the coupler and the land model
during runtime. These data include a mask that informs the
land model where to run and a land fraction that the coupler
uses to combine fluxes from various surface types over a grid
cell. The surface data configure the spatially implicit features
(e.g., spatial fraction coverage, leaf and soil albedo, leaf and
soil emissivity) of subgrid elements within grid cells (topo-
graphic unit, land cover, soil columns, and vegetation).

While a regular latitude–longitude grid is widely used for
domain and surface data in the land-only mode, when cou-
pled with WRF ATM, ELM needs to adopt the Lambert con-
formal projection used in WRF. To create a domain file of
Lambert conformal projection, a grid descriptor file based
on the WRF Pre-Processing System (WPS) output (e.g.,
geo_em.d01) needs to be created, which is then used to create

the domain file used in ELM. A similar workflow is needed
for surface data, which contain a large number of input files
that need to be interpolated by the land model. To generate
both domain files and surface data, we employ the ELM pre-
processing tools that derive the input data and grid descriptor
files for each dataset, produce mapping files from the input
data grid to our target grid, and then use the mapping weight
files for interpolation.

2.5 Parallelization

Instead of adopting ELM’s native round-robin domain de-
composition strategy, our parallelization strategy for WRF-
ELM is to use geographic domain decomposition, like in
WRF ATM. As shown in Fig. 3, different grid cells in the
model’s physical domain are running on separate proces-
sors preassigned by the user. On each processor, ELM within
WRF employs parallel I/O to read atmospheric forcings, uses
the surface properties and land use datasets to configure indi-
vidual land cells, and then conducts massively parallel simu-
lations over these grid cells within each subdomain indepen-
dently. In WRF ATM, the “halo” arrays share memory be-
tween processors, and message passing between processors
is accomplished using the message passing interface (MPI;
Gropp et al., 1996).

3 Model validation

3.1 WRF-ELM configuration

For our first WRF-ELM application, we study the land–
atmosphere interactions over the Great Lakes region (GLR),
a hydrodynamically complex and heavily populated region
with both natural surface heterogeneity and significant land
management practices. This domain also includes the world’s
largest freshwater system, comprising lakes Superior, Michi-
gan, Huron, Erie, and Ontario. This region is the focus of the
U.S. Department of Energy’s (DOE) Coastal Observations,
Mechanisms, and Predictions Across Systems and Scales,
Great Lakes Modeling (COMPASS-GLM) project, which
has an overall goal of developing a fully coupled (lake–
land–atmosphere) regional earth system model centered on
the GLR (Kayastha et al., 2023). Here, we report the initial
implementation of the WRF-ELM framework to support its
ability to capture atmospheric, coastal, urban, and rural in-
teractions, providing a baseline reference solution for further
model development.

The RCM used in the numerical simulation is based on
WRF model version 4.4.2 with the Advanced Research WRF
dynamic core (Skamarock and Klemp, 2008). Following
Wang et al. (2022a), the model domain is centered at 45.5° N
and 85.0° W and has dimensions of 544× 485 grid points
in the west–east and south–north directions. The simulation
domain covers the GLR, with a spatial resolution of 4 km
(Fig. 4). The 50 vertical layers from the surface to 50 hPa are
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Figure 3. Schematic of the parallel domain decomposition scheme in WRF-ELM. The dotted area indicates “halo” arrays in which memory
is shared between processors (P0 and P1). WRF ATM and ELM are calculated using the same processor.

Figure 4. Fractional coverage (%) of the major land units used in WRF-ELM: (a) lake, (b) urban, (c) natural vegetation, and (d) crop.

adopted with denser layers at lower altitudes to sufficiently
resolve the planetary boundary layer (PBL). We conduct five
ensemble members in 2018, starting with initial conditions
12 h apart between 00:00 UTC on 12 May and 00:00 UTC
on 14 May and ending at 00:00 UTC on 1 September 2018.
The resulting simulations are analyzed during June, July, and
August (JJA) 2018.

The meteorological initial condition (IC) and lateral
boundary conditions (LBCs) have been derived from

ECMWF Reanalysis v5 (ERA5; Hersbach et al., 2020) at
0.25° horizontal resolution and 3 h temporal intervals (Ta-
ble 1). The WRF model incorporates Thompson micro-
physics (Thompson et al., 2004, 2008), the Rapid Radia-
tive Transfer Model for GCMs (RRTMG) longwave and
shortwave radiation schemes (Iacono et al., 2008), and the
Yonsei University (YSU) planetary boundary layer scheme
(Hong and Lim, 2006). We turn off cumulus parameteriza-
tion, considering the convection-permitting resolution of the

https://doi.org/10.5194/gmd-18-1427-2025 Geosci. Model Dev., 18, 1427–1443, 2025
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Table 1. Model configuration in WRF and ELM.

WRF specific options and schemes

Meteorological IC and LBCs ERA5
Microphysics Thompson microphysics
Radiation RRTMG for longwave and shortwave
Land surface ELM or CTSM
Planetary boundary layer YSU scheme
Lake surface temperature NOAA GLSEA

ELM and CTSM input data

Land use and land cover ELM and CTSM default parameter
Vegetation ELM and CTSM default parameter
Soil color ELM and CTSM default parameter
Topography ELM and CTSM default parameter
Number of plant functional types (PFTs) 16

ensemble simulations. The lake skin temperature is obtained
from the NOAA Great Lakes Surface Environmental Analy-
sis (GLSEA) data set (Schwab et al., 1992) derived from an
advanced, very high-resolution radiometer.

For the land surface model, we adopt the ELM with satel-
lite phenology (ELM-SP) mode which utilizes the season-
ally varying leaf area index prescribed based on the MODIS
data. The default ELM land surface parameters have been
used in the coupled model simulation, including land use
and land cover information, vegetation biogeophysical prop-
erties, soil properties, and topography. The surface parameter
is also applicable in CTSM (Table 1). A detailed descrip-
tion of the ELM and CTSM default parameter can be found
in Li et al. (2024). The current version of WRF-ELM does
not enable the biogeochemistry (ELM-BGC) mode and thus
does not simulate carbon and nitrogen cycles. In addition, we
also conduct simulations using the WRF coupled with Com-
munity Terrestrial Systems Model (CTSM ctsm5.1.dev114)
(Lawrence et al., 2019) (WRF-CTSM hereafter), which can
be compared with WRF-ELM’s performance in capturing
the land–atmosphere exchanges of energy and water fluxes.
CTSM is also referred to as the Community Land Model
version 5 (CLM5) afterwards. We emphasize that the com-
parison against WRF-CTSM is not intended to demonstrate
the superior performance of WRF-ELM but to show that the
newly developed WRF-ELM performs comparably well to
WRF-CTSM, one of the most advanced and sophisticated
land surface models.

It is noteworthy that there are several distinctions between
WRF-ELM and the version of WRF-CTSM we use here.
WRF-CTSM aims for a relatively fast calculation speed; thus
it has simplified the description of land cover and kept the
single dominant land unit and single dominant plant func-
tional types (PFTs). In our simulation region, WRF-CTSM
identifies the Great Lakes in the center of the simulation do-
main, with the natural vegetation prevailing in the northern
and southeastern regions and crops dominating the south-

western areas (Fig. 4). On the other hand, WRF-ELM pre-
serves the comprehensive description of subgrid heterogene-
ity. As a result, the fluxes calculated from various surface
types are merged using a weighted-average method before
transferring to the upper-level WRF ATM. This is particu-
larly important in regions with mixed vegetation types, such
as the southwestern part of our study domain. Moreover,
within the natural vegetation land unit, WRF-ELM simulates
the blend of needleleaf and broadleaf trees (evergreen and de-
ciduous combined) around the Great Lakes and the mixture
of crops and grasses in the southwestern part of the domain
(Fig. 5).

3.2 Data for validation

Observational and reanalysis data from multiple sources have
been used to evaluate WRF simulation results (Table 2). We
select 12 paired sites from the Automated Surface Observ-
ing System (ASOS) to acquire 5 min 2 m air temperature (Ta)
and 2 m dew point temperature over the urban and rural area
in the GLR (https://www.ncei.noaa.gov, last access: Novem-
ber 2023). The 2 m relative humidity (RH) is derived from Ta
and dew point. We compute hourly averages of Ta and RH
from the 5 min data to match the hourly WRF outputs.

In addition, we collect measurements of latent heat (LH)
and sensible heat (SH) from six flux tower sites provided
by AmeriFlux (http://ameriflux.lbl.gov, last access: Novem-
ber 2023). Initially, 16 AmeriFlux sites had been selected
within our study domain for the JJA 2018 period, which in-
cluded measurements over grassland, mixed forest, and de-
ciduous broadleaf forest. However, 10 sites are filtered out
because their land cover types differ from the dominant ones
used in WRF-CTSM. The latitudes and longitudes of se-
lected sites have been documented in Table 3. The hourly
LH and SH data from AmeriFlux have been reduced to daily
averages to validate the model simulation of surface energy
fluxes.

Geosci. Model Dev., 18, 1427–1443, 2025 https://doi.org/10.5194/gmd-18-1427-2025
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Figure 5. Fractional coverage (%) of the major plant functional types used in WRF-ELM: (a) needleleaf forest (deciduous and evergreen
combined), (b) broadleaf forest (deciduous and evergreen combined), (c) shrub, and (d) grass.

Table 2. Dataset for validation in the study.

Dataset Variables Spatial resolution Temporal resolution Reference

ASOS Air temperature at 2 m,
dew point

Point Hourly Nadolski (1992)

AmeriFlux Latent heat,
sensible heat

Point Hourly Law (2005)

Daymet Maximum air temperature at 2 m,
maximum air temperature at 2 m,
precipitation

1 km Monthly Thornton et al. (2022)

NLDAS Air temperature at 2 m, precipitation 0.125° Monthly Xia et al. (2012)

ERA5-Land Air temperature at 2 m, latent heat,
sensible heat

9 km Monthly Muñoz-Sabater et al. (2021)

NCEP stage IV Precipitation 4 km Monthly Lin and Mitchell (2005)

We also acquire reanalysis datasets to evaluate the model
performance in simulating the climate variables and energy
fluxes. All datasets are resampled using bilinear interpolation
to a 4 km resolution to align with the WRF grids. We employ
the Daymet dataset from https://daymet.ornl.gov (last access:
October 2023), which provides daily, gridded (1 km× 1 km)
estimates of solar radiation, 2 m maximum (Tmax) and min-
imum (Tmin) temperature, precipitation (PRE), snow water

equivalent, and water vapor across the contiguous United
States (CONUS; Thornton et al., 2022). It uses local regres-
sion algorithms to interpolate and extrapolate daily meteoro-
logical observations from the Global Historical Climatology
Network (GHCN). Daymet considers the effects of elevation
on climate and generates daily meteorological variables for
a particular grid cell using the weighted-linear-regression-
based approach. We download monthly Tmax, Tmin, and pre-

https://doi.org/10.5194/gmd-18-1427-2025 Geosci. Model Dev., 18, 1427–1443, 2025
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Table 3. AmeriFlux site information (LCF: land cover type; DBF: deciduous broadleaf tree; MF: mixed forest; PI: principal investigator;
NEON: National Ecological Observatory Network).

Site ID Latitude Longitude LCF PI(s) DOI

US-xST 45.5089 −89.5864 DBF NEON https://doi.org/10.17190/AMF/1617737 (NEON, 2024a)
US-xTR 45.4937 −89.5857 DBF NEON https://doi.org/10.17190/AMF/1634886 (NEON, 2024b)
US-WCr 45.8059 −90.0799 DBF Ankur Desai https://doi.org/10.17190/AMF/1246111 (Ankur Desai, 2024a)
US-xUN 46.2339 −89.5373 MF NEON https://doi.org/10.17190/AMF/1617741 (NEON, 2024c)
US-PFa 45.9459 −90.2723 MF Ankur Desai https://doi.org/10.17190/AMF/1246090 (Ankur Desai, 2025)
US-Syv 46.242 −89.3477 MF Ankur Desai https://doi.org/10.17190/AMF/1246106 (Ankur Desai, 2024b)

cipitation from Daymet version 4.5 and average the temper-
atures to compare against model-simulated daily mean Ta.

Monthly Ta from the North American Land Data Assim-
ilation System (NLDAS) version 2 with Noah LSM is used
as an additional source of reanalysis data to evaluate WRF-
ELM. These data are available beginning in 1979 at a 0.125°
resolution (Xia et al., 2012). NLDAS constructed a forc-
ing dataset from a daily gauge-based precipitation analysis,
bias-corrected shortwave radiation, and surface meteorology
reanalyses from the North American Regional Reanalysis
(NARR) to drive four different LSMs to derive surface fluxes
and state variables. We acquire the product derived using
the Noah model (https://disc.gsfc.nasa.gov, last access: Oc-
tober 2023) because it is one of the most commonly used
LSMs and has been frequently coupled with climate and at-
mospheric models.

The ERA5-Land reanalysis provides surface variables at
0.1°× 0.1° resolution (Muñoz-Sabater, 2019). The data are
produced under the offline mode forced by meteorologi-
cal fields from ERA5 (Muñoz-Sabater et al., 2021) with-
out coupling to the atmospheric module of the ECMWF’s
Integrated Forecasting System. ERA5-Land datasets have
also been widely used for a variety of land condition
assessments (Pelosi et al., 2020; Stefanidis et al., 2021;
Wang et al., 2022b). We acquire monthly Ta, SH, and
LH in ERA5-Land from Google Earth Engine (collec-
tion ECMWF/ERA5_LAND/MONTHLY_AGGR; last ac-
cess: October 2023).

Lastly, we acquire precipitation data from the National
Centers for Environmental Prediction (NCEP) stage IV
dataset (Lin and Mitchell, 2005), a gridded product with 4 km
spatial resolution and hourly temporal resolution that cov-
ers the period from 2002 to the present. NCEP compiles the
stage IV product using data from 140 radars and approxi-
mately 5500 gauges across the CONUS. The Stage IV prod-
uct provides highly accurate precipitation estimates, partic-
ularly for medium to heavy precipitation, and has therefore
been widely used as a reference for precipitation evaluation
(Nelson et al., 2016).

Table 4. Evaluation metrics of June–July–August 2 m air tempera-
ture between each model result and the reanalysis product. CORR:
spatial correlation coefficient; RMSE: root mean square error.

Daymet NLDAS ERA-Land

WRF-ELM
Bias 1.70 0.34 1.20
CORR 0.94 0.94 0.86
RMSE 2.18 1.43 2.30

WRF-CTSM
Bias 1.79 0.43 1.29
CORR 0.94 0.93 0.86
RMSE 2.30 1.57 2.40

3.3 Results

3.3.1 Temperature

The spatial distribution of Ta from the WRF-ELM and WRF-
CTSM models, along with reanalysis data such as Daymet,
NLDAS, and ERA5-Land, is illustrated in Fig. 6. Both WRF-
ELM and WRF-CTSM have reasonably captured the spatial
pattern observed in the reanalysis datasets, demonstrating a
spatial correlation coefficient (CORR) ranging from 0.86 to
0.95 (Table 4). The highest CORR is observed with Daymet,
while the lowest one is with ERA5-Land. Both models ex-
hibit a warm bias compared to reanalysis products. However,
WRF-ELM shows a slightly lower bias and RMSE compared
with WRF-CTSM (Table 4). Additionally, WRF-ELM dis-
plays a smoother gradient in comparison to WRF-CTSM,
particularly over the GLR where needleleaf trees, broadleaf
trees, grasses, and croplands coexist (Fig. 7).

Despite the overall good performance of the model simu-
lation of Ta, it is slightly different among different land units
(Fig. 8). The largest warm bias is found over the lake sur-
face, in which both models have overestimated Ta by 3–5 K
(Table 5, Fig. 8). For urban and crop areas, WRF-ELM and
WRF-CTSM show a slightly warmer temperature by 2–3 K
than all reanalysis data, which makes sense since reanalysis
datasets do not capture urban-scale warming signals (Chen
et al., 2024). The Ta over the natural vegetation is well cap-
tured, with the average value in both models within the range
of average Ta over all datasets.
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Figure 6. June–July–August mean 2 m air temperature (K) in (a) WRF-ELM, (b) WRF-CTSM, (c) Daymet, (d) NLDAS, and (e) ERA-Land.

Figure 7. June–July–August mean skin temperature (K) in (a) WRF-ELM and (b) WRF-CTSM; the zoomed-in view focuses on the area
surrounding Lake Michigan.
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Figure 8. Boxplots of June–July–August 2 m air temperature (K) over (a) lake, (b) urban, (c) crop, and (d) natural vegetation in simulations
and reanalysis products.

Table 5. June–July–August 2 m air temperature over each land unit in simulations and reanalyses.

WRF-ELM WRF-CTSM Daymet NLDAS ERA5-Land

Lake 295.5 295.4 292.1 292.3 290.6
Urban 298.5 299.0 296.2 296.7 296.0
Crop 298.4 298.6 295.8 297.4 296.5
Natural vegetation 292.6 292.6 291.7 292.9 292.4

We use ASOS sites to investigate the representation of ur-
ban and lake effects on air temperature and relative humid-
ity over the metropolitan area, emphasizing the interaction
between the urban heat island (UHI; Rizwan et al., 2008)
and lake breeze in WRF-ELM and WRF-CTSM. Six ur-
ban sites along the west coast of Lake Michigan were se-
lected, paired with six adjacent crop sites as reference points
(Fig. 9a). Compared to the rural crop sites, the urban sites
exhibit higher minimum Ta during the night, as urban areas
retain more heat during the daytime and gradually release it
after sunset. During late morning to noon, the lake breeze
tends to cool urban air, resulting in a lower daily maximum
Ta than observed in crop areas (Wang et al., 2023). In the af-
ternoon, urban sites show a more gradual decline in Ta com-
pared to rural sites, driven by the cumulative heating effect of
solar radiation absorption and the heat release by urban ma-
terials throughout the day (Soltani and Sharifi, 2017). This
characteristic of urban areas leads to a smaller diurnal tem-

perature range of 7.0 K, compared to a 9.0 K range over crop
sites (Fig. 9b–c). The urban dry island (UDI) effect is also ev-
ident in 2 m RH observations from ASOS, with urban areas
showing lower RH values at night (Fig. 9d–e).

Both WRF-ELM and WRF-CTSM capture the warmer
nighttime Ta due to the UHI effect and the cooler daytime Ta
caused by the lake breeze over urban sites, adequately repro-
ducing the smaller diurnal range. WRF simulations, particu-
larly WRF-ELM, reasonably capture urban RH at night, but
both models underestimate RH over crop areas, so the UDI
is not well captured in the simulations. Notably, WRF-ELM
generally exhibits smaller biases in both Ta and RH com-
pared to WRF-CTSM (Fig. 9). However, both models sys-
tematically overestimate T2 and underestimate RH in both
urban and crop areas, suggesting a persistent warm and dry
bias needs to be further investigated in the ELM and CTSM
component.
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Figure 9. (a) The location of ASOS sites. (b–c) June–July–August hourly-averaged 2 m air temperature over (b) urban and (c) crop land
units for ASOS, WRF-ELM, and WRF-CTSM. (d–e) The same as (b)–(c) but for 2 m relative humidity. The numbers in (b)–(e) indicate the
diurnal ranges of air temperature and relative humidity from ASOS, WRF-ELM, and WRF-CTSM. The dashed lines highlight the nighttime
Ta and RH when urban and crop contrasts are significant.

3.3.2 Energy fluxes

We evaluated the simulated LH and SH fluxes from the
WRF model simulations against ERA5-Land reanalysis data.
The spatial correlation coefficient (CORR) values range from
0.53 to 0.58 (Fig. 10a–f). Overall, both models capture the
LH gradient across the study domain, with higher LH ob-
served in the southern region and lower LH in the northern
region. Similarly, both the reanalysis data and the models
show a higher SH in the northern region and lower SH in
the south. A systematic underestimation of LH (ranging be-
tween 22–35 W m−2) and overestimation of SH (averaging
21–31 W m−2) are evident in both WRF-ELM and WRF-
CTSM. The observed evaporative fraction ranges from 0.6 to
0.8 in most vegetated grids; however, the corresponding sim-
ulated evaporative fraction is approximately 0.6. This eval-
uation further confirms that our models tend to underesti-
mate LH fluxes while overestimating SH fluxes. These biases
may be largely attributed to the surface parameter uncertain-
ties used in the current simulations, such as LAI or rough-
ness length. These parameters have not been thoroughly cal-
ibrated in coupled E3SM simulations focusing on the Great
Lakes region.

A further comparison of daily LH values from six Amer-
iFlux sites over deciduous broadleaf forests is illustrated
in Fig. 11. WRF-ELM exhibits a smaller bias in reproduc-
ing the magnitude of LH than WRF-CTSM; however, nei-

ther model captures the temporal variations well. Comparing
regional model simulations with site-level observations re-
mains a consistent difficulty due to the inherent scale mis-
match between point observations and grid-based simula-
tions. Additionally, since we examined a relatively short pe-
riod without interannual variability or seasonal cycles, the
temporal variations in surface energy are mostly related to
the simulation of cloud and precipitation variations, which
are among the most uncertain parts of regional climate simu-
lations.

3.3.3 Precipitation

Figure 12 presents the spatial distribution of precipitation
from models and observations. It is important to note that
stage IV primarily focuses on the CONUS region, while
significant areas of our simulation domain in Canada re-
main uncovered. Compared with Daymet (PREDaymet =

3.55 mm d−1), both WRF-ELM and WRF-CTSM capture
the regional mean value (PREWRF-ELM = 3.14 mm d−1 and
PREWRF-CTSM = 2.96 mm d−1) and the spatial distribution
of precipitation, exhibiting CORR ranging from 0.43 to 0.55.
The precipitation over the southeastern part of our study do-
main is well captured, while that on the western side of
Lake Michigan is slightly underestimated, with WRF-ELM
demonstrating a lower bias than WRF-CTSM. This under-
estimation of precipitation aligns with the underestimation
of latent heat and evapotranspiration, suggesting that sup-
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Figure 10. (a–c) Spatial distribution of latent heat in (a) ERA5-Land, (b) WRF-ELM, and (c) WRF-CTSM. (d–f) Spatial distribution of
sensible heat in (d) ERA5-Land, (e) WRF-ELM, and (f) WRF-CTSM. (g–h) Comparison of evaporative ratio between (g) WRF-ELM and
ERA5-Land and (h) WRF-CTSM and ERA5-Land over the natural vegetation grids.

pressed evapotranspiration may reduce moisture availability
and transport, particularly to the western GLR. Conversely,
an overestimation of precipitation is evident along the east-
ern boundary of our study domain.

4 Discussion and conclusions

This study introduces a framework integrating the state-
of-the-art land surface model, ELM, with the widely used
regional weather and climate model, WRF, named WRF-
ELM. Moving beyond the traditional way of coupling be-
tween LSMs and WRF through internal subroutines within
the WRF codebase. We adopt the LILAC–ESMF frame-
work, a modular approach which maintains the integrity of
ELM’s source code structure and facilitates the transfer of
future developments in ELM to WRF-ELM. After coupling
the two models, simulations using WRF-ELM have been
conducted over the Great Lakes region, and their perfor-
mance has been evaluated against observations and reanal-
ysis data from multiple sources and the WRF-CTSM simu-
lations. These model simulations have been conducted at a

resolution of 4 km× 4 km, facilitating direct model valida-
tion and verification with various data sources. The use of
seasonal mean simulation outputs and diurnal cycles show-
cases the capabilities of WRF-ELM in representing the tem-
poral and spatial variations in water and energy cycles over
the Great Lakes region.

In general, our findings suggest that the newly coupled
WRF-ELM effectively captures the spatial distribution of
surface state variables and fluxes across the GLR. The model
displays a smoother gradient in surface skin temperature than
WRF-CTSM due to the representation of subgrid features
within grid cells. The model’s performance is particularly
reasonable over the natural vegetation, while a minor warm
bias is detected over crop and urban grids.

The slight overestimation of air temperature in crop re-
gions could potentially be mitigated by incorporating a more
realistic representation of crops, such as crop rotation and
irrigation. Additionally, the application of spatially varying
crop parameters closely captures the observed magnitude and
seasonality of carbon and energy fluxes compared to the ob-
servations (Sinha et al., 2023). However, these improvements
have only been tested using the land-only ELM. Our general-
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Figure 11. June–July–August daily-averaged LH fluxes from six AmeriFlux sites and the corresponding model grids. The numbers indicate
biases between WRF-ELM (or WRF-CTSM) and AmeriFlux.

Figure 12. The spatial distribution of June–July–August precipitation (mm d−1) in (a) WRF-ELM, (b) WRF-CTSM, (c) Daymet, and
(d) stage IV. The numbers on the top right of (c)–(d) indicate the CORR between each observational product and the two simulation results.
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ized coupling framework supports future studies of sophisti-
cated crop–atmosphere interactions at finer spatial resolution
than those achieved with coarse GCM simulations.

In addition, the UHI effects in cities surrounding the GLR
are generally captured in both WRF-ELM and WRF-CTSM,
as indicated by the warmer night temperature in the cities.
While there is an overestimation of UHI compared to ASOS,
this could be due to the simplified urban representation in
ELM. For instance, the urban surface emissivity in CLM, and
thus ELM due to the shared model structure, is reported to be
noticeably lower than the values derived from satellites, re-
sulting in a surface UHI effect that is significantly higher than
satellite-derived values (Chakraborty et al., 2021). Another
potential contributing factor could be the lack of representa-
tion of urban vegetation. The presence of vegetation tends to
mitigate the UHI effect (Paschalis et al., 2021), and its ab-
sence in the urban subgrid would lead to an overestimation
of UHI values, with all else remaining equal.

Our research develops the WRF-ELM framework and pro-
vides the first assessment of its capabilities through high-
resolution model simulations that fully capture expected pat-
terns of land–atmosphere interactions. Based on the valida-
tion and assessment of WRF-ELM results, this study de-
livers a baseline reference, identifies common model biases
in high-resolution regional applications, and proposes path-
ways for subsequent model development for ELM, as well as
the coupled model. The coupled model provides an oppor-
tunity to investigate the impact of more sophisticated land
processes, such as plant hydraulics, dynamic vegetation dis-
tributions, and soil biogeochemistry, on weather and climate
predictions.

Code and data availability. The description and codes of
E3SM v2.1 (including ELM v2.1) are publicly available at
https://doi.org/10.11578/E3SM/dc.20230110.5 (E3SM Project,
DOE, 2023) and https://github.com/E3SM-Project/E3SM/releases/
tag/v2.1.0 (last access: 12 May 2023), respectively. Starting from
ELM 2.1, the model codes for WRF-ELM coupling described in
this paper are available at https://github.com/hhllbao93/ELM (last
access: 3 May 2024) and https://doi.org/10.5281/zenodo.11289807
(Huang, 2024).
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