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Abstract. Cropland cultivation is fundamental to food secu-
rity and plays a crucial role in the global water, energy, and
carbon cycles. However, our understanding of how climate
change will impact cropland functions is still limited. This
knowledge gap is partly due to the simplifications made in
terrestrial biosphere models (TBMs), which often overlook
essential agricultural management practices such as irriga-
tion and fertilizer application and simplify critical physio-
logical crop processes.

Here, we demonstrate how, with minor, parsimonious en-
hancements to the TBM T&C, it is possible to accurately
represent a complex cropland system. Our modified model,
T&C-CROP, incorporates realistic agricultural management
practices, including complex crop rotations and irrigation
and fertilization regimes, along with their effects on soil bio-
geochemical cycling. We successfully validate T&C-CROP
across four distinct agricultural sites, encompassing diverse
cropping systems such as multi-crop rotations, monoculture,
and managed grassland.

A comprehensive validation of T&C-CROP was con-
ducted, encompassing water, energy, and carbon fluxes; leaf
area index (LAI); and organ-specific yields. Our model ef-
fectively captured the heterogeneity in daily land surface en-
ergy balances across crop sites, achieving coefficients of de-
termination of 0.77, 0.48, and 0.87 for observed versus sim-
ulated net radiation (Rn), sensible heat flux (H ), and latent
heat flux (LE), respectively. Seasonal, crop-specific gross
primary production (GPP) was simulated with an average
absolute bias of less than 10 %. Peak-season LAI was ac-
curately represented, with an r2 of 0.67. Harvested yields

(above-ground biomass, grain, and straw) were generally
simulated within 10 %–20 % accuracy of observed values, al-
though inter-annual variations in crop-specific growth were
difficult to capture.

1 Introduction

1.1 Climate change, food security, and the need for
process-based crop models

Understanding the impact of weather and field management
on cropland productivity is critical, not least in the face of
mounting challenges such as anthropogenic climate change
and shifting socio-demographics (Godfray et al., 2010; Fo-
ley et al., 2011; FAO et al., 2022; Cammarano et al., 2022;
Wang et al., 2022). The effects of climate change on both
local and global agri-food systems are expected to increase,
with shifts in the frequency, intensity, and timing of droughts
and heatwaves, all of which pose real threats to crop growth
(Dury et al., 2019; Ortiz-Bobea et al., 2021; FAO et al., 2022;
Kim and Mendelsohn, 2023). The effects of climate change
on agriculture are set to vary spatially, with a large degree of
heterogeneity between regions (Semenov, 2009; Waha et al.,
2013; Ukkola et al., 2020; Moustakis et al., 2021; Slater et
al., 2022). Therefore, mitigation efforts will demand a nu-
anced understanding of processes; causes; and, ultimately,
effects. For example, as a function of anthropogenic emis-
sions, global CO2 is rising roughly uniformly; however, its
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effect on crop growth dynamics, termed the CO2 fertiliza-
tion effect, is likely to vary regionally (McGrath and Lo-
bell, 2013), likely due to complex non-linear interactions be-
tween CO2, temperature, water, and nutrient availability. Pro-
cesses such as the above make the study of climate–crop in-
teractions particularly interesting and complex (Lawlor and
Mitchell, 1991; Polley, 2002; Fatichi et al., 2016; Cernusak,
2020; Hussain et al., 2021).

One way to address the challenges climate change poses to
crops is to deepen our understanding of climate–crop inter-
actions and their interface with field management practices
through the development of process-based models. A par-
ticular strength of this approach is its potential to enhance
our understanding and forecasting capabilities beyond cur-
rent or past observations (Boote et al., 2013; Muller and
Martre, 2019). Such research is vital to align agronomic
strategies with societal food demands, all whilst promoting
environmental sustainability, as emphasized by Cassman and
Grassini (2020).

1.2 Crop model diversity, strengths, and limitations

A vast array of models have been developed to capture the
interactions between soil, crops, climate, and field manage-
ment practices. It is possible to lump these models into one
of three categories; statistical, conceptual, or physics-based.
Statistical models are entirely data driven and contain lit-
tle to no pre-conceived representation of physical processes;
they rely on historical data to establish statistical relation-
ships between crop yield and climate variables (e.g. Lobell
and Burke, 2010; Gaupp et al., 2019; Van Klompenburg et
al., 2020; Ansarifar et al., 2021; Slater et al., 2022). Con-
ceptual models represent key physical processes in a simpli-
fied fashion which can then be parameterized or calibrated
to best fit observational data; an example is AquaCrop (Ste-
duto et al., 2009), but many other crop models have been de-
veloped with this approach (Di Paola et al., 2016). Physics-
based models codify state-of-the-art understanding of physi-
cal laws, such as conservation of energy, water, carbon, and
momentum, into a crop modelling framework. Examples of
this include CLM-CROP (Drewniak et al., 2013; Bilionis et
al., 2014; Sheng et al., 2018; Boas et al. 2021), JULES-crop
(Osborne et al., 2015; Williams et al., 2017), GECROS (Ing-
wersen et al., 2018), or ORCHIDEE-CROP (Wu et al., 2016).
These physics-based models are built on the latest scientific
understanding of soil–plant–atmosphere interactions. They
start by resolving photosynthesis and plant energy budgets
and incorporate key processes such as water and nutrient up-
take, crop phenology, and carbon allocation schemes (Fatichi
et al., 2019; He et al., 2021; Wiltshire et al., 2021). A compre-
hensive review on the respective limitations of different mod-
elling frameworks is provided by Roberts et al. (2017). Com-
parative studies have shown that, in terms of yield prediction,
process-based models are currently less effective than their
statistical counterparts (Leng and Hall, 2020). This may be

attributed to the higher complexity of physics-based models,
where yield is the by-product of multiple processes, and to
current data limitations that hinder the proper parameteriza-
tion and calibration of these models (He et al., 2017).

The following question thus arises: why prioritize fur-
ther development of physics-based models in agricultural re-
search? Firstly, physics-based models address several limi-
tations inherent to statistical crop models. These limitations
include issues such as multicollinearity between climate vari-
ables and yield, as well as lack of potential generalizability
beyond their calibration envelope. This latter point is cru-
cial as statistical models rely on historical climate–yield re-
lationships which may not hold true under future climates
(Sheehy et al., 2006; Boote et al 2013; Lobell and Asseng,
2017). Secondly, physics-based models offer explicit repre-
sentation of coupled dynamics, including water, carbon, and
nutrient cycles. These dynamics are expected to be signifi-
cantly impacted by climate change, making our understand-
ing of them crucial for accurate crop yield projections and
sustainable agricultural management. Lastly, whilst physics-
based models do currently face challenges due to data re-
quirements, such as climate forcing and crop-specific traits,
this obstacle is expected to diminish over time. The integra-
tion of evolving plant databases, such as the TRY database
(Kattge et al., 2020), and advancements in remote sensing
technologies (Khanal et al., 2020; Wu et al., 2023) are antic-
ipated to yield more comprehensive datasets. This increasing
availability of data is likely to enhance the effectiveness and
reliability of future physics-based crop models.

1.3 Space for a new TBM crop model – needed
developments

In a bid to better capture the intricacies of cropland dynam-
ics, various previous studies have further developed existing
terrestrial biosphere models (TBMs) akin to T&C (Fatichi et
al., 2012, 2019). Examples include JULES-crop (Osborne et
al., 2015), CLM-Crop (Drewniak et al., 2013; Bilionis et al.,
2015; Sheng et al., 2018; Boas et al., 2021), ORCHIDEE-
Crop (Wu et al., 2016), and CARAIB DGVM (Jacquemin et
al., 2021). Commonly, model developments in the context of
TBMs centre on the introduction of new crop-specific mod-
ules, which incorporate crop-specific carbon pools and dy-
namics alongside harvest indexes and management options.
While these past endeavours represent a significant step for-
ward, they often introduce multiple modifications that may
not generalize well.

Despite these advancements, there remains a need to im-
prove the integration of crop management practices such
as sowing, harvesting, irrigation, and fertilizer application
within TBMs. This would more comprehensively capture the
coupled dynamics of plant growth and soil biogeochemical
cycles, as influenced by crop nutrient uptake and the timing
and quantity of NPK fertilizer application. For example, pre-
vious work with JULES-crop (2014) omitted nutrient limi-
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tations, while ORCHIDEE-Crop (Wu et al., 2016) addressed
nutrient limitation via a simple empirical 0–1 index limiting
crop growth. Furthermore, irrigation practices need better in-
corporation; ORCHIDEE-Crop (Wu et al., 2016) omitted ir-
rigation, while JULES-crop (Williams et al., 2017) assumed
perfect irrigation, neglecting soil moisture as a crop growth
stress factor. Additionally, there is a need to transition from
empirical harvest indices or harvest-specific carbon pools to
a fully integrated mechanistic approach, whereby crop yield
is derived from generalizable organ-specific carbon pools be-
ing harvested.

Most importantly, the goal of introducing crops into ter-
restrial biosphere models (TBMs) should be to do so with
minimal changes to the existing model structure for natu-
ral vegetation as most physical and biophysical processes
are similar. We argue that this can be accomplished with-
out adding additional carbon pools and/or without extensive
model modifications and parameter additions. The aim is to
demonstrate that accurate crop representation within a TBM
can be achieved in a parsimonious manner, avoiding the need
for crop-specific parameterizations that are difficult to gener-
alize. This approach differentiates our model from previous
formulations.

Our study introduces T&C-CROP to address the afore-
mentioned challenges, building on the success of previous
terrestrial biosphere models (TBMs). Previous developments
to T&C (Fatichi et al., 2012, 2019) have ensured that an ef-
fective representation of crops, irrigation, and fertilizer ap-
plication can now be seamlessly integrated into the estab-
lished vegetation carbon pool dynamics. This integration
links agricultural practices with water and energy budgets,
plant growth development, and soil biogeochemical cycling.
All enhancements of the original T&C model, made to better
represent crop processes, revolve around minimal structural
changes. Specifically, only three new parameters are added
to the original model, along with prescribed irrigation, fertil-
izer, and sowing and/or harvesting dates.

To assess the effectiveness of T&C-CROP, we evaluated
model performance in terms of energy, water, and carbon
fluxes with on-site eddy covariance data and benchmarked
it against other TBMs with dedicated crop-specific modules
at the same sites. We also assessed T&C-CROP’s skill in pre-
dicting crop yields, specifically examining carbon allocation
to various pools, making good use of detailed harvest data
available across the selected sites. The evaluation covers four
fields which employ varied management strategies and oper-
ate in diverse climates.

2 Materials and methods

2.1 Overview of T&C

T&C is a state-of-the-art terrestrial biosphere model (Fatichi
et al., 2012, 2019) which resolves the land surface energy

balance, water balance, and soil C–N–P–K dynamics. T&C
has been successfully used in several ecosystems globally,
covering a wide range of scenarios – for example, assessing
the impacts of fertilization on grassland productivity in the
European Alps (Botter et al., 2021) or assessing ecohydro-
logical changes after tropical conversion to oil palm (Manoli
et al., 2018). T&C operates across various timescales, tai-
loring its resolution to the specific process being resolved.
Specifically, the energy budget is resolved at hourly scales;
water and photosynthesis are computed at the hourly scale,
with the exception of soil water flow, which uses an adap-
tive sub-hourly step; and vegetation carbon pools and soil
C–N–P–K dynamics are resolved at the daily scale. Inputs
consist of hourly meteorological data (precipitation, temper-
ature, wind speed, atmospheric pressure, relative humidity,
shortwave and longwave radiation, atmospheric CO2 concen-
tration). Site parameterization requires site-specific informa-
tion, including soil texture, and plant-specific traits for tai-
loring the dynamic vegetation component. T&C does not use
predefined plant functional types but rather focuses on spe-
cific vegetation types (e.g. conifer, oak, grassland, palm) and
thus requires the model user to input parameter values based
on the particular vegetation type being simulated. T&C can
be run as a plot-scale version, i.e. without an explicit treat-
ment of the topography and lateral fluxes (e.g. Paschalis et
al., 2017; Manoli et al., 2018, and this study), or, alterna-
tively, in a spatially explicit manner (i.e. as a fully distributed
model defined on a regular 2D mesh), which accounts for
complex topography by considering local and remote so-
lar radiation shading effects and lateral transfer of water in
the surface and subsurface (e.g. Paschalis et al., 2017; Mas-
trotheodoros et al., 2020; Paschalis et al., 2022).

The hydrological module of T&C is physics-based and
models interception, throughfall, canopy water storage,
runoff, and soil water dynamics, as well as snow and ice hy-
drology. Soil water dynamics are represented in the point-
scale simulations via the 1-D Richards equation. In this
study, soil hydraulic conductivity and the shape of the water
retention curve are estimated based on user-defined soil tex-
ture following the Saxton and Rawls pedotransfer function
(Saxton and Rawls, 2006; Paschalis et al., 2022). However,
T&C can also use custom water retention curves, including
the van Genuchten model, and more complex soil hydraulic
functions accounting for soil structural effects (Fatichi et al.,
2020). Plant water uptake is simulated using a sink term,
with plant transpiration uptake thus being proportional to
root biomass, which decays exponentially with soil depth.
Both saturation and infiltration excess mechanisms are used
for runoff generation (Fatichi et al., 2012).

The surface energy balance is resolved by balancing net
radiation with latent, sensible, and ground heat fluxes. In
T&C, we use the two-stream approximation for estimating
net shortwave radiation, with a canopy being split into a
sun fraction and a shaded fraction (de Pury and Farquhar,
1997; Wang and Leuning, 1998; Dai et al., 2004). Latent and
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sensible heat fluxes are parameterized using the resistance
analogue, with aerodynamic, leaf boundary layer, stomatal,
and under-canopy air resistances, as well as soil resistance,
all included (e.g. Leuning, 1995; Niyogi and Raman, 1997;
Haghighi et al., 2013; Paschalis et al., 2017).

Plant carbon dynamics in T&C are inspired by Friedling-
stein et al. (1998) and Krinner et al. (2005). Vegetation is
conceptualized using seven carbon pools for woody vegeta-
tion (leaves, living sapwood, heartwood, dead leaves, roots,
carbohydrate reserves, and fruits and flowers) and five pools
for herbaceous species, with the sapwood and hardwood
carbon pools suppressed. Carbon allocation is governed by
phenology; environmental stresses; and stoichiometric con-
straints for C : N, C : P, and C : K ratios across all tissues,
which, in turn, depend on the potential of plants to acquire
necessary macronutrients (NPK) from the ground via root
uptake and mycorrhiza symbiosis. In T&C, for extratropical
climates, we have four phenological stages (dormant, maxi-
mum and normal growth, and senescence) defined by temper-
ature, day length, water stress, and leaf age. Initially, carbon
is assimilated via photosynthesis, which is based on Farquhar
et al. (1980) for C3 plants and on Collatz et al. (1991, 1992)
for C4 plants, with subsequent adjustments (Bonan et al.,
2011), and then scales from the leaf to canopy scale accord-
ing to a two-big-leaves approach (Wang and Leuning, 1998;
Dai et al., 2004). This approach has the benefit of taking into
account the vertical distribution of nitrogen and therefore
also of photosynthetic capacity. The CAM photosynthetic
pathway is currently not considered. Stomatal conductance
follows Leuning (1990, 1995) and has recently been adapted
to consider plant hydraulics (Paschalis et al., 2024), although
this scheme is not considered here. Any assimilated carbon
which is not respired via maintenance and growth respiration
is subsequently partitioned into one of five carbon pools (fo-
liage, living sapwood, roots, carbohydrate reserves, or fruits
and flowers) via an empirical allocation scheme largely based
on phenological stages and light and water availability. The
translocation of carbon between pools is also considered, en-
abling the depletion of carbon stored as reserves. This better
represents the responses of vegetation to stress and changes
in phenological stages. Details of plant phenology dynamics
are outlined in the Supplement of Fatichi et al. (2012).

The latest version of T&C includes soil carbon and nutri-
ent (nitrogen, phosphorus, and potassium) dynamics (Fatichi
et al., 2019). Options for anthropogenic nutrient applica-
tion (fertilizer) in both mineral and organic forms have been
added (Botter et al., 2021). Leaching of dissolved nutri-
ents is also computed by coupling soil biogeochemistry with
T&C’s soil hydrology module. Specifically, the biogeochem-
istry module separates plant litter into different pools based
on decomposability recalcitrance and accounts for different
soil organic carbon functional pools as mineral-associated,
particulate, and dissolved organic carbon. Its decomposition
and/or mineralization depend on the activities of microbial
biomass separated between bacteria, fungi, and macrofauna

Figure 1. Illustrating model developments implemented into the
pre-existing T&C model structure in order to develop T&C-CROP.

in the soil. NPK cycles (including fertilizer application) are
linked to microbial dynamics and, naturally, plant growth. A
comprehensive outline of T&C soil biogeochemistry is pro-
vided by Fatichi et al. (2019) and Botter et al. (2021).

2.2 From T&C to T&C-CROP

T&C-CROP adds parameterizations designed to enhance the
representation of crops within the T&C model, improving
its ability to simulate crop vegetation dynamics. Our ap-
proach aimed to be as parsimonious as possible, limiting
complexities which are often part of crop implementations in
process-based models (e.g. Ingwersen et al., 2018). The T&C
model structure was modified to better tailor the specific leaf
area, carbon allocation, leaf turnover, and photosynthetic ef-
ficiency of senesced leaves to crop conditions. It was possible
to achieve this by only adding three new crop-specific pa-
rameters (outlined below). Model developments are visually
outlined in Fig. 1 and are further discussed in this section.

Crops, like many plants, exhibit changes in their specific
leaf area (SLA) over time (Amanullah, 2015; Li et al., 2023),
defined as the leaf area divided by its dry weight (m2 kg−1).
Early in their growth stages, leaves tend to have a higher
SLA, indicating thinner and cheaper leaves that facilitate
rapid expansion of the leaf canopy and higher photosynthetic
rates for invested carbon, essential for early plant growth
post-germination. However, as leaves age, they typically be-
come thicker, resulting in a lower SLA. To better capture this
phenomenon and align with observed trends, we have imple-
mented a dynamic SLA in T&C-CROP. This dynamic SLA
is modelled with a linearly decaying rate from an initial max-
imum SLA until the leaf age reaches the value of the pheno-
logical stage of maximum growth, beyond which SLA retains
a constant value.

SLAnew =

{
SLA+

(
1− ageL

dmg

)
·SLemercrop, if ageL < dmg

SLA, if ageL ≥ dmg
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Here, SLA represents the fully grown crop’s static specific
leaf area (m2 gC−1); ageL denotes the age of the leaf in days;
SLemercrop is a new parameter representing the additional
SLA at emergence, which can be crop-dependent; and dmg
signifies the days of maximum leaf growth during the phe-
nology stage, which is a model parameter. Variable names
are intentionally kept identical to model parameters in T&C,
which can be accessed from our repository (see “Code and
data availability” section).

We also aimed to enhance the portrayal of the initial leaf-
flushing period. At the onset of crop growth, carbon alloca-
tion to fruits and flowers is impeded, with newly assimilated
carbon instead being directed towards leaf development. As
the initial leaf flush concludes, carbon allocation shifts pre-
dominantly towards the fruit and flower pool, with a refer-
ence value allocation fraction ffr (–) to this pool, which is
significantly higher than for natural vegetation, while alloca-
tion to living sapwood is reduced or nullified if the crop does
not have a stem component through the use of a new crop-
specific parameter socrop (–), which is the carbon allocation
fraction to the stem. These values can be user-defined and
crop-specific, but generally, for crops, ffr is on the order of
0.2–0.5, and socrop is on the order of 0.0–0.1.

Typically, photosynthetic efficiency decreases as leaves
age. For example, this is the case with wheat (Suzuki et al.,
1987). To replicate the rapid drop in late-season photosyn-
thesis of senesced leaves, once a leaf’s age exceeds a critical
threshold (age_cr), the photosynthetic efficiency is reduced
as a power law (power of minus 8) of the relative age (rage),
where rage is the relative time from leaf onset taken to exceed
age_cr.

Additionally, we updated the leaf turnover function, which
represents the rate of leaf mortality due to ageing. Our up-
date is illustrated below in Eq. (2), where dla is the leaf death
rate (d−1) due to age, age_cr is the critical leaf age (a crop-
specific parameter), and AgeL (d) is the current average age
of the leaf (a prognostic variable). Previously, T&C applied a
linear relation for grass and extratropical evergreen trees and
a power law for deciduous tree leaves (Fatichi et al., 2012,
2019). Our modification, in the form of a sigmoidal func-
tion (Fig. S1 in the Supplement), ensures that the majority of
leaf turnover occurs as leaf age approaches the critical age
and completely suppresses leaf mortality in the early phases,
which is more realistic for crops.

dla=
(

1
agecr

)
×

(
1
2

tanh(10×
(

AgeL
agecr

)
− 7

)
+ 0.5 (1)

To enable crop representation in T&C-CROP, we have in-
troduced the option of user-defined sowing and harvesting
dates. In the model, sowing is conceptualized by introduc-
ing an initial carbon stock for fine-root biomass and non-
structural carbohydrates, comparable to typical seed appli-
cations, from which the crops evolve post-germination. Root
depth can be parameterized as a function of fine-root biomass
and fine-root growth if allometric relationships are avail-

able, or it can be kept constant if such knowledge is un-
available. After crop establishment, leaf age or environmen-
tal stress can trigger crop senescence before harvesting. Ad-
ditionally, to accommodate multiple crop management prac-
tices, users can define the fraction of the crop left in the field
post-harvest. This feature can be tailored to specific crops or
management practices, such as leaving stems behind while
harvesting only grains. This flexibility allows for a more nu-
anced representation of different cropping systems and prac-
tices within the model.

2.3 Simulation setup

T&C-CROP was run at a plot scale (i.e. neglecting topo-
graphic features) and used site-specific hourly meteorolog-
ical data, re-timed from the half-hourly data available from
local weather observations (Table 2). In T&C-CROP, the par-
titioning of shortwave radiation to direct or diffuse radiation
and to different wavelengths, such as photosynthetic active
radiation (PAR), was done using REST2, as implemented
in AWEGEN (Fatichi et al., 2011; Peleg et al., 2017). Site-
specific data, such as the dates of planting, sowing, irriga-
tion, and fertilizer application and soil type, were obtained
either from the available literature (references in Table 2) or
directly from the site’s principal investigator (PI). To balance
the soil carbon and nitrogen pools, an appropriate spin-up
was run; the length required to reach a dynamic steady state
was site-dependent but normally on the order of 200 years.

T&C-CROP, like T&C, does not use generic plant func-
tional types, meaning the user must input plant- or crop-
specific parameters, the most important of which are illus-
trated in Table 1. These were obtained from the literature and
the TRY database (Kattge et al., 2020; Fraser, 2020). How-
ever, the final values used in the model runs were adjusted
to be within a ± 30 % range of the reported values as part of
a manual trial-and-error calibration, necessary to best fit the
cultivar type being sown on each site (File S2 in the Supple-
ment). Therefore, the model needs to be re-parameterized for
certain parameters for each site. Temperature and day length
thresholds for phenological changes were retrieved with ex-
pert knowledge and manual calibration at each site, match-
ing leaf area observations. Furthermore, in T&C-CROP, the
user inputs the date of sowing; therefore, the start date for
crop growth is largely prescribed through crop management.
Other models, such as AquaCrop (Steduto et al., 2009), cal-
culate the sowing date dynamically based on local environ-
mental conditions. This is also possible in T&C-CROP, but
for this study, as sowing dates were available at all sites (Ta-
ble S1 in the Supplement), for the best realism, they were pre-
scribed. Following emergence, plant growth is purely depen-
dent on local climate and environmental conditions. Inputs
regarding fertilizer and/or irrigation application are inputted
based on the management log shared by the PI (e.g. Table S2
in the Supplement), or, where not available, we used typical
values for the region and crop type.
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Table 1. Illustrating some of the most important crop-specific parameters necessary to run T&C-CROP. The last three parameters in bold are
the new parameters introduced with this study.

Crop model variables
Parameter Unit Description

SL m2 gC−1 Specific leaf area
AGE_CR d Critical leaf age
TLO °C Temperature for leaf onset
DMG d Days of max growth
TRR gC m−2 d−1 Translocation rate
LDAY_MIN – Minimum day duration for leaf onset
LTR – Leaf-to-root ratio maximum
VCMAX µmol CO2 m−2 s−1 Maximum Rubisco capacity at 25 °C leaf level
BFAC – Leaf onset water stress threshold
ASE C3 / C4 Photosynthesis type
LDAYCRIT h Threshold for senescence (hours of daylight)
FF_R – Fraction of biomass allocated to fruit
SL_EMECROP m2 gC−1 Additional SLA at emergence
SO_CROP – Fraction of biomass allocated to stem
MAX_HEIGHT m Maximum crop height

2.4 Description of selected sites and validation data

It is crucial to model agricultural fields which experience
both monocropping and crop rotations as these practices are
significant and widespread (Eurostat, 2020). This modelling
approach also serves as an excellent benchmark for complex
mechanistic crop models such as T&C-CROP. An impor-
tant objective was to select sites with on-site observational
records that could demonstrate T&C-CROP’s capability to
continuously simulate field growth across various rotation
and management practices within a single simulation. This
contrasts with the common practice of starting a new simu-
lation for each crop individually. The benefit of a continuous
model simulation is that this allows T&C-CROP to account
for legacy soil conditions, including soil moisture and soil
carbon, based on historical management practices – such as
crop residue management, fertilizer application, and irriga-
tion. This approach ensures that our model accurately reflects
the cumulative impact of past agricultural practices on cur-
rent and future crop performance.

To showcase T&C-CROP’s capabilities, we selected four
well-monitored agricultural sites, all characterized by a
temperate climate but featuring diverse cropping systems
and management practices. These sites are affiliated with
FLUXNET (Heinesch et al., 2021) and have been previously
utilized for model evaluations (e.g. Boas et al., 2021), mak-
ing them ideal for model intercomparison and benchmark-
ing. Further details about the selected sites are provided in
Table 2.

2.5 Model intercomparison

The performance of T&C-CROP was compared with that
of three other similar leading models which have been pre-

viously validated on the same sites. Specifically, JULES-
crop was evaluated based on the US-NE1 site for maize;
CLM-CROP was evaluated based on the BE-LON site for
sugar beet, potatoes, and wheat; and ORCHIDEE-CROP was
evaluated based on the BE-LON site for wheat. The data
for this comparison were extracted from published works:
Williams et al. (2017) for JULES-crop, Boas et al. (2021) for
CLM-CROP, and Wu et al. (2016) for ORCHIDEE-CROP.
An open-source web-based tool, WebPlotDigitizer (see Ac-
knowledgements) was used to extract numerical data from
the plot images provided in the publications. Minor discrep-
ancies due to the accuracy of the graph digitizer are expected.

JULES-crop was run under conditions of sufficient irriga-
tion (no water stress) and no nitrogen limitation. Two model
runs were conducted: one where LAI and crop height were
prescribed from observations and another where they were
not. To ensure a fairer comparison, we used results from the
latter. In JULES-crop, input parameters were tuned based on
site observations. In the case of CLM-CROP, the default pa-
rameter set for winter wheat was found to perform poorly
in representing crop phenology across the evaluated sites.
Therefore, new parameter values were adopted based on the
literature or site-specific observations. For instance, adjust-
ments were made to the growing-season length and mini-
mum LAI parameter according to field data. All three models
– JULES-crop, CLM-CROP, and ORCHIDEE-CROP – used
prescribed sowing and harvest dates, except for ORCHIDEE-
CROP, where harvest timing was determined by crop devel-
opment processes. Notably, the ORCHIDEE-CROP model
was not calibrated for each site individually but was tested
for improvements in a more generic manner. Full details re-
garding the respective model simulation setups and crop pa-
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Table 2. Information regarding the agricultural sites used in this study.

Site Crops Years simulated Further site-specific
info

FLUXNET link

CH-OE2
(Solothurn,
Switzerland)

Wheat, barley, grass,
potato, rapeseed, peas
(rainfed)

2004–2020 Dietiker et al. (2010);
Ecosystem Thematic
Center et al. (2021).

https://fluxnet.org/sites/
siteinfo/CH-Oe2 (last access:
4 January 2025)

CH-CHA
(Zug, Switzerland)

Grass (rainfed) 2006–2015 Hörtnagl et al. (2018) https://fluxnet.org/sites/
siteinfo/CH-Cha (last access:
4 January 2025)

US-NE1
(Nebraska, USA)

Maize (irrigated) 2002–2013 Suyker et al. (2004) https://fluxnet.org/sites/
siteinfo/US-Ne1 (last access:
4 January 2025)

BE-LON
(Wallonia, Belgium)

Sugar beet, wheat,
potatoes, mustard
(cover crop), maize, oat
(rainfed)

2004–2020 Dufranne et al. (2011),
Buysse et al. (2017);
Dumont et al. (2023)

https://fluxnet.org/doi/
FLUXNET2015/BE-Lon
(last access: 4 January 2025)

rameter selection can be found in the published works as ref-
erenced above.

3 Results

3.1 Land surface energy balance

Across the four selected sites, the model captured the
monthly trends in energy fluxes, as illustrated in Fig. 2. The
mean monthly r2 across sites for net radiation (Rn) and sen-
sible (H ) and latent heat (QE) was 0.97, 0.85, and 0.96, re-
spectively (see Table S3 in the Supplement). Unpacking this
further, the Rn, H , and QE joint mean daily r2 was 0.68,
which is commendable given potential discrepancies in the
energy budget closure of flux tower measurements.

3.2 Gross primary productivity, ecosystem respiration,
net ecosystem exchange, and soil moisture

We found that, to capture the correct timing of gross primary
productivity (GPP) fluxes for each crop (Fig. 3), it was imper-
ative to draw on a trait-based approach as lumping different
crops into PFTs (plant functional types) showed significantly
worse performance. As illustrated in Fig. 3, the magnitude
and timings of the GPP fluxes are correctly captured, as are
the differences between crops and, to a lesser extent, between
seasons (same crop, different year). Additionally, in Table 3,
the modelled and observed seasonal sums of gross primary
productivity (GPP), ecosystem respiration (RECO), and their
difference, along with net ecosystem exchange (NEE), are
presented; a season is defined as the period between crop
emergence to harvest. T&C-CROP was able to capture the
seasonality of GPP across crops, roughly within a 10 % range
of observed values, as depicted in Table 3. However, it did
slightly less well at capturing seasonal RECO (Table 3), pos-

sibly due to the lack of knowledge regarding post-harvest
management, ploughing, crop residue, etc., and, of course,
there sometimes exists notable uncertainty in observed fluxes
(Hollinger and Richardson, 2005).

T&C-CROP’s skill in simulating soil water content (SWC)
is illustrated in Fig. 4. The maize monoculture site (US-NE1)
and the crop rotation site (BE-LON) were chosen for this
illustration due to their long observational SWC record. At
a depth of 25 cm, a correlation coefficient of r2

= 0.64 was
achieved between daily observed and modelled SWC at the
US-NE1 site; a similar value of 0.62 is achieved at the BE-
LON site (if we only include data until the sensor change in
2015).

3.3 Crop development: LAI and biomass growth

T&C-CROP was able to capture the timing of leaf flushing
and growing-season length across various simulated sites and
crop types (Fig. 5). The model demonstrated considerable
skill in reproducing peak-season leaf area index (LAI), in-
dicated by a correlation coefficient (r2) of 0.75, 0.66, and
0.61 for CH-OE2, BE–LON, and USNE1, respectively. How-
ever, at CH-CHA, a grassland site, whilst the leaf growth
pattern was clearly captured, there was no significant corre-
lation between observed and simulated peak LAI, likely due
to the spread in recorded LAI values on each date. Impor-
tantly, T&C-CROP successfully captured most differences in
LAI among different crops, most clearly depicted with mus-
tard and wheat at the BE-LON site (Fig. 5b). The model’s
strongest performance was in replicating LAI dynamics at
the US-NE1 site (maize monoculture), achieving an r2 of
0.77, a satisfactory result considering the limited develop-
ments in T&C-CROP and the inherent heterogeneity in field-
based LAI sampling and in the different cultivars sown.
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Figure 2. This graph illustrates the comparison between modelled and observed energy fluxes across various sites: CH-CHA (grassland),
US-NE1 (maize), CH-OE2, and BE-LON (both with complex crop rotations). The hourly fluxes, representing the average diurnal cycle, are
depicted with different colours: green for latent heat flux (LE), red for sensible heat flux (H ), and blue for net radiation (Rn).

Figure 3. Validation of gross primary productivity (GPP) across the four simulated sites, covering a total of 10 different crops.

The validation of T&C-CROP against observed crop har-
vests (Table 4) demonstrates the model’s ability to accurately
capture biomass differences at harvest time among various
crops and to effectively partition assimilated carbon into dif-
ferent crop components, such as stems and grains. Across
the four simulated sites, T&C-CROP successfully predicted
the annual harvested above-ground biomass (AGB) within

approximately 20 % of the observed values, with a few ex-
ceptions (Table 4).

We also assessed dynamic carbon allocation mechanisms
throughout the growing season at the US-NE1 site using pub-
lished observations (Peng et al., 2018) as a reference (Fig. 6).
Our findings indicate that T&C-CROP effectively captures
the overall trend and magnitude of carbon allocation to spe-
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Figure 4. Validation of soil water content (SWC) across BE-LON (complex crop rotation) and US-NE1 (maize monoculture). Both sites
represent modelled and observed SWC at a depth of 25 cm. The dashed blue line represents the date of a sensor change.

Figure 5. Validation of leaf area index (LAI) across the four simulated sites.
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Table 3. Illustrating seasonal cumulative sum (sowing-harvest) of T&C-CROP flux estimates (MOD) compared to eddy-covariance-derived
data (OBS) across sites and crops. Note that we have also included percentage MOD-OBS differences (1). The AVG value corresponds to an
absolute average. Note that potatoes in CH-OE2 were a crop failure event due to hail, which is a phenomenon we currently do not simulate;
therefore, we discarded this from computed averages. At the BE-LON site, defoliant was applied to potatoes mid-season, a management
practice which was incorporated into T&C-CROP. At the US-NE1 site, presented values are the average of all seasons (sowing–harvest)
across 2002–2012. At CH-CHA, the presented values are the average of all periods (sowing–harvest) for which we had available site data,
covering 2006–2020.

CH-OE2: crop averages

CROP MODGPP OBSGPP 1 (%) MODRECO OBSRECO 1(%) MODNEE OBSNEE
(gC m−2) (gC m−2) (gC m−2) (gC m−2) (gC m−2) (gC m−2)

Wheat 1153 1300 −11 722 751 −4 −431 −504
Barley 1127 1069 5 662 575 15 −465 −408
Cover 433 414 5 294 308 −5 −139 −75
Rape seed 1254 1098 14 749 888 −16 −505 −366
Peas 377 386 −2 187 527 −65 −190 −366
Potato 1477 935 58 772 980 −21 −706 199

AVG 9 10

BE-LON: crop averages

Crop MODGPP OBSGPP 1 (%) MODRECO OBSRECO 1 (%) MODNEE OBSNEE
(gC m−2) (gC m−2) (gC m−2) (gC m−2) (gC m−2) (gC m−2)

Sugar beet 1353 1455 −7 537 664 −19 −816 −808
Wheat 1526 1496 2 801 887 −10 −725 −570
Potato∗ 531 556 −5 236 454 −48 −294 −149
Mustard 192 162 19 94 204 −54 −99 43
Maize 1876.3 1492.9 25.7 951.8 963.2 −1.2 −924 −595.4
Oat 280 288 −2 169 299 −43 −168 16

AVG 11 31

US-NE1

Crop MODGPP OBSGPP 1 (%) MODRECO OBSRECO 1 (%) MODNEE OBSNEE
(gC m−2) (gC m−2) (gC m−2) (gC m−2) (gC m−2) (gC m−2)

Maize 1785 1668 7 731 1161 −37 −1054 −566

CH-CHA

Crop MODGPP OBSGPP 1 (%) MODRECO OBSRECO 1 (%) MODNEE OBSNEE
(gC m−2) (gC m−2) (gC m−2) (gC m−2) (gC m−2) (gC m−2)

Grass 708 763 12.7 612 560 57 −156 −58

cific crop components such as leaves, stems, and grains. This
underscores the model’s promising ability to represent the
dynamic processes that drive crop growth and development.
Regarding Fig. 6, it is important to note that, in 2007, at the
US-NE1 site, our modelled above-ground carbon (AGC) was
slightly lower than observed, peaking at 9.5 t C ha−1 com-
pared to the observed 11.34 t C ha−1 (Fig. 7a).

We analysed crop rotations at two sites, CH-OE2 and
BE-LON, and also evaluated T&C-CROP’s performance on
maize at the US-NE1 site and on grassland at the CH-
CHA site. At the CH-OE2 site, we simulated 19 crop cy-
cles over 15 years (2004–2019). On average, the harvested

above-ground biomass (AGB) was simulated within 10 % of
recorded values. Grain and straw were simulated within 13 %
and 30 % of recorded values, respectively. However, inter-
annual variations in crop growth and carbon allocation to dif-
ferent pools (grain or straw) were difficult to capture.

At the BE-LON site, we simulated 21 crop cycles over
16 years (2004–2020). Winter wheat and maize were well
simulated, with AGB and grain values being, on average,
within 10 % of observations. Straw was slightly overesti-
mated by 27 % for wheat and by 13 % for maize. If we ac-
count for crop residues, particularly the first few centimetres
of straw, our simulated values could align more closely with
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observed values. Additionally, including the belowground
component of sapwood, which is currently excluded, would
likely bring simulated AGB values even closer to observa-
tions. For wheat, the average residue at BE-LON was 26 % of
AGB, with a standard deviation of 4 %. Potatoes at BE-LON
were more challenging to simulate accurately, partly due to
the defoliant treatment applied in mid-August, which is not
currently included in our model. This resulted in simulated
tuber biomass (daughter tubers) being about 50 % lower than
observed.

Over 11 years (2002–2012) at the US-NE1 site, simulated
maize yield (kernel) was within 8 % of recorded values on
average. For the grassland site CH-CHA, harvest data were
available for eight cuts from 2008 to 2010. Here, simulated
harvested biomass was within 20 % of recorded values on
average. Full results in a tabular format are included in Ta-
bles S4–S7 in the Supplement.

3.4 Model intercomparison

T&C-CROP simulations were compared to those of JULES-
crop (Williams et al., 2017). Figures 7 and 8 illustrate how
both models, relative to each other, represent AGB and LAI
over a course of 8 years at the maize (US-NE1) site. Despite
T&C-CROP being arguably more process-based and more
parameter parsimonious, both models did a comparable job
at capturing the correct magnitude and timing of LAI and
AGB, while neither model correctly simulated inter-annual
variations in peak LAI or AGB.

T&C-CROP simulations conducted over the crop rotation
site BE-LON were compared to those of CLM-CROP (Boas
et al. (2021). Figure 9 illustrates how both models simulate
grain yields for winter wheat across the four years which
were presented in the CLM-CROP paper. To produce this
comparison, we converted CLM-CROPS’s modelled values,
which are reported in T DM ha−1, to T C ha−1 using the av-
erage site-reported C content per unit of dry mass for wheat
grain during these 4 years, which was 40.5 %; there was little
inter-annual variation in this value (< 3 %). Unfortunately,
there is not sufficient data or variation in grain yield to truly
assess the efficacy of either model; however, based on the
presented observations, both capture the correct magnitude,
but neither captures the inter-annual observations of yield.
Figure 10 illustrates how both models successfully represent
LAI, as well as key land surface fluxes, over the years during
which sugar beet and potatoes were sown. Note that a defo-
liant was applied to potatoes at the BE-LON site (Aubinet et
al., 2009). To replicate this in T&C-CROP, we simulated a
sudden “cut” on the recorded date of defoliant application.

Lastly, T&C-CROP was evaluated against results from
ORCHIDEE-CROP (Wu et al., 2016) for the winter wheat
season at the BE-LON site in 2006 (Fig. 11). ORCHIDEE-
CROP (Wu et al., 2016) undershoots above-ground biomass
(AGB) by about 50 %, whilst T&C-CROP does a much bet-
ter job, albeit overshooting AGB by just under 10 %. More

specifically, T&C-CROP achieved a correlation coefficient
of r2

= 0.94 between simulated and observed AGB, whilst
this was 0.2 for ORCHIDEE-CROP.

4 Discussion

The integration of three new crop-specific parameters, com-
bined with streamlined model developments, has signifi-
cantly enhanced the representation of cropland sites in T&C-
CROP. Our findings include the successful validation of
over 10 different crops sown in four heterogeneous agri-
cultural fields, varying in terms of both management prac-
tices and climate conditions. Results also demonstrate that
T&C-CROP performs comparably to other leading terres-
trial biosphere models (TBMs) without having to increase
model complexity or introduce crop-specific carbon pools.
This underscores the effectiveness of T&C-CROP as a highly
parameter-efficient and process-based model for future stud-
ies.

This improved incorporation of croplands into T&C opens
new avenues for modelling land–surface interactions, hydrol-
ogy, carbon fluxes, and crop yields. For instance, the en-
hanced representation of sensible heat (H ), latent heat (LE),
and net radiation (Rn) facilitates more detailed research on
land–surface interactions. Similarly, improved modelling of
evapotranspiration (ET) and leaf area index (LAI) supports
hydrological and water sustainability studies (e.g. Bonetti
et al., 2022). Additionally, greater accuracy in terms of net
ecosystem exchange (NEE) and soil carbon storage could aid
contemporary carbon emission mitigation efforts.

The hydrological and carbon storage implications of land
use transitions – such as the conversion of crops, forests, and
pastures – are among the key applications foreseen for T&C-
CROP. Further studies could also focus on optimizing field
management practices, building on prior work with models
like the DNDC biogeochemical model (Zhang et al., 2019).
Applications might include investigating irrigation strategies
and fertilizer use under changing climatic conditions (e.g.
Botter et al 2021). These research directions align with ef-
forts to assess climate risk in agriculture and, ultimately, to
develop climate-smart agricultural practices.

Additionally, beyond the biomass, hydrological, and en-
ergy balance metrics validated in the Results section, T&C-
CROP can also simulate below-ground soil biogeochemi-
cal dynamics (Fatichi et al., 2019). We have included some
outputs for illustrative purposes (Fig. S2 in the Supple-
ment). T&C-CROP captures changes in nutrient leakage as
a function of local weather, crop type, fertilizer regime, and
legacies. Using the biogeochemistry module, we identified
a boost in microbial carbon post-harvest and in nutrient
flushing following fertilization, predominantly after rainfall
events.

Whilst we remain confident in T&C-CROP’s strength at
the field scale, particularly as we move toward an increas-
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Figure 6. Total fraction of above-ground biomass in leaves, stems, and grain at the maize site (US-NE1), illustrating the partitioning of
assimilated carbon by T&C. Leaves are represented by the foliage pool, stems include sapwood and dead-sapwood pools, and grain consists
of carbohydrate reserves and fruit and flower pools. Observed values are derived from the graphs in the supplementary material of Peng et
al. (2018).

Table 4. In T&C-Crop, crop carbon is distributed across six distinct biomass carbon pools: B1 denotes foliage, B2 denotes living sapwood,
B3 denotes fine roots, B4 denotes carbohydrate reserves, B5 denotes fruit and flowers, and B6 denotes standing dead foliage. In Table 4,
simulated above ground biomass (AGB) corresponds to the sum of all T&C-Crop’s biomass pools excluding B3 (fine roots); we assume that
all sapwood is above-ground, an approximation which is reasonable for most crops. Simulated grain is represented by the sum of B5 (fruit
and flowers) and B4 (carbohydrate reserves), which are expected to be contained mostly within the fruits of a crop, and simulated straw is
derived from the sum of B1 (foliage), B2 (living sapwood), and B6 (standing dead foliage). Validation for below-ground biomass (roots) was
not possible due to the absence of on-site data. Note that, for US-NE1, a value of 43 %, as suggested by the PI, was used to translate t ha−1

to t C ha−1. For CH-CHA, grass yields are annual, covering the period 2008–2010. ∗ Note that, at CH-OE2, OBS AGB refers to the total
AGB at the time of harvest, whereas, at BE-LON, C exported refers to the harvested component of the AGB. All values are in t C ha−1.

CH-OE2 yields

Crop OBS AGB SIM AGB 1 OBS STRAW SIM STRAW 1 OBS GRAIN SIM GRAIN 1

(t C ha−1) (%) (%) (%)

Wheat 4.3 3.7 14.0 1.7 1.3 23.5 2.6 2.4 −7.7
Barley 3.9 3.9 0.0 0.7 1.2 −71.4 3.2 2.7 −15.6
Rape seed / / / / / / 2.0 2.2 10
Peas / / / / / / 3.5 6.1 74.3

BE-LON yields

Crop C exported SIM AGB 1 OBS STRAW SIM STRAW 1 OBS GRAIN SIM GRAIN 1

(%) (%) (%)

Sugar beet / / / / / / 8.9 6.9 −2.5
Wheat 5.5 5.9 −6.0 1.8 2.5 −27.0 3.7 3.5 −5.4
Potato / / / / / 3.3 2.2 −33.3
Maize 7.8 7.2 7.1 3.6 4.2 −13.4 4.2 4.2 0.0

US-NE1 yields

Maize / / / / / / 5.5 4.9 −10.9

CH-CHA

Grass 0.85 1.00 17.6 / / / / / /

ingly data-rich future, where the integration of data-driven
and process-based approaches into crop modelling will en-
hance predictive capabilities, the utility or potential of a ver-
satile tool like T&C-CROP presently lies in its ability to per-
form at the regional scale. However, validating its efficacy at
this level presents significant challenges due to sparse com-
prehensive data and the multitude of factors influencing crop
growth, including socio-economic variables.

Many of the issues we encountered during site-level val-
idations are expected to diminish at broader scales as local

variations average out and climatic variables assume greater
importance. For instance, representing microscale field man-
agement proved to be challenging during validation efforts.
Accounting for different cultivar types; accurately determin-
ing crop-specific carbon allocation parameters; and incorpo-
rating practices such as the use of growth regulators, the ap-
plication of defoliant or fungicide treatments (e.g. at sites like
BE-LON; Dufranne et al., 2011), or addressing hail damage
(e.g. at CH-OE2; Revill et al., 2019) proved to be difficult.
Moreover, T&C-CROP struggled to simulate post-harvest
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Figure 7. Simulation of above-ground biomass by both T&C-CROP and JULES-crop models compared to observations at the US-NE1
(maize) site.

Figure 8. Simulation of LAI by both T&C-CROP and JULES-crop models compared to observations at the US-NE1 (maize) site.

Figure 9. Side-by-side comparison of CLM-CROP and T&C-
CROP.

processes, likely due to insufficient knowledge regarding
practices such as residue management and soil preparation
or tillage.

These factors, while critical at the field scale, are likely
to exert less influence on crop growth across larger spa-
tial scales, where climatic conditions are expected to dom-
inate. Nonetheless, addressing these challenges could im-
prove model performance at all scales. It is also worth noting
that our manual trial-and-error calibration of crop parameters
(within a ±30 % range of literature values) could likely be
improved using systematic calibration techniques to achieve
more robust validation. However, this was beyond the scope
of this introductory paper due to the substantial computa-
tional resources required, particularly given the high dimen-
sionality of T&C-CROP. Advancing in this direction would
significantly enhance the precision of model outputs and re-
mains an important objective for future work.

5 Conclusions

T&C-CROP was introduced to enhance T&C’s representa-
tion of croplands and associated carbon, energy, and nutrient
fluxes. In this study, we have assessed the extent to which
T&C-CROP accurately depicts crop growth and associated
land surface fluxes across four distinct agricultural sites, CH-
OE2, BE-LON, CH-CHA, and US-NE1. Each site was sub-
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Figure 10. Simulation of leaf area index (LAI), net ecosystem exchange (NEE), latent heat flux (LE), sensible heat flux (HE), and net
radiation (Rn) across both T&C-CROP and CLM-CROP for sugar beet and potatoes cultivated at the BE-LON site.

Figure 11. Illustrating a comparison of ORCHIDEE-CROP outputs from Wu et al. (2016) and T&C-CROP outputs from this paper for
winter wheat sown at BE-LON. Note that both latent (QE) and sensible heat (H ) were smoothed using a weekly time step to improve graph
readability. Note that, here, AGB refers to total AGB and not only harvestable AGB.
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ject to varying management practices such as irrigation, fer-
tilizer, and defoliant application and had several types of
crops, either as a monoculture or as a crop rotation scheme.
Our model validation covers over 50 years and 61 crop cy-
cles, encompassing more than nine staple crops, and also in-
cludes a comparison with results from other leading TBMs.

This study demonstrates how, with minimal model struc-
tural changes and only three additional parameters, it is
possible to accurately represent gross primary productivity
(GPP), LAI (leaf area index), and organ-specific harvests not
only in monocultures but also in sites with complex crop ro-
tations and diverse management practices. Of particular nov-
elty is that we adapted the carbon allocation scheme for crops
and implemented a novel routine which allowed for multi-
ple cropping cycles within 1 calendar year within the same
model run. This enhancement enables more realistic simula-
tions of field dynamics.

Our approach with T&C-CROP is grounded in practical
utility. While our validation efforts were thorough, they were
not overly fixated on meticulously simulating variables such
as yield considering the fact that this is only one of the many
model outputs. We were realistic with limitations in terms
of parameter constraints as a high-level granularity was not
a primary objective. We prioritized broad applicability over
micro-management details, such as cultivar choice, which are
unlikely to be available at larger scales.

T&C-CROP’s research horizon is to explore, in a single
model, the concurrent effects of various crops on yields,
energy dynamics, and carbon fluxes, as well as to assess
how major climatic factors (temperature, precipitation, CO2,
relative humidity, etc.) interact with management practices
(fertilizer, irrigation) to influence crop yields but also by-
products such as nutrient runoff, soil degradation, and carbon
sequestration.

Future studies with T&C-CROP are envisioned to be con-
ducted over broader spatial scales, where detailed manage-
ment practices or specific cultivar information are less im-
portant. T&C-CROP’s ability to capture geographical differ-
ences induced by climate and soil properties are expected to
overshadow local variations due to specific cultivars or man-
agement practices. This capability makes it an invaluable tool
for understanding and predicting large-scale environmental
patterns and their implications.

Code and data availability. The model used to generate the re-
sults presented in this paper, T&C-CROP, is archived on Zenodo
(https://doi.org/10.5281/zenodo.13343701, Buckley, 2024). The
archive also includes the input data and scripts required to run the
model and to reproduce the plots for all simulations discussed in
this paper.

Supplement. The supplement related to this article is available on-
line at https://doi.org/10.5194/gmd-18-1287-2025-supplement.
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