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Abstract. The Artificial-Intelligence-based Nonspherical
Aerosol Optical Scheme (AI-NAOS) is a newly devel-
oped aerosol optical module that improves the representa-
tion of aerosol optical properties for radiative transfer sim-
ulations in atmospheric models. It incorporates the non-
sphericity and inhomogeneity (NSIH) of internally mixed
aerosol particles through a deep learning method. Specif-
ically, the AI-NAOS considers black carbon (BC) to be
fractal aggregates and models soil dust (SD) as super-
spheroids, encapsulated partially or completely with hygro-
scopic aerosols such as sulfate, nitrate, and aerosol wa-
ter. To obtain AI-NAOS, a database of the optical prop-
erties for the models was constructed using the invariant
imbedding T-matrix method (IITM), and deep neural net-
works (DNN) were trained based on this database. In this
study, the AI-NAOS was integrated into the mesoscale ver-
sion 5.1 of Global/Regional Assimilation and Prediction
System with Chinese Unified Atmospheric Chemistry En-
vironment (GRAPES_Meso5.1/CUACE). Real-case simula-
tions were conducted during a winter with high pollution,
comparing BC aerosols evaluated using three schemes with
spherical aerosol models (external-mixing, core-shell, and
volume-mixing schemes) and the AI-NAOS scheme. The re-
sults showed that the NSIH effect led to a moderate esti-
mation of absorbing aerosol optical depth (AAOD) and ob-
vious changes in aerosol radiative effects, shortwave heat-
ing rates, temperature profiles, and boundary layer height.
The AAOD values based on three spherical schemes were

70.4 %, 125.3 %, and 129.3 % over the Sichuan Basin, bench-
marked to AI-NAOS results. Compared to the external-
mixing scheme, the direct radiative effect (DRE) induced by
the NSIH effect reached + 1.6 W m−2 at the top of the at-
mosphere (TOA) and −2.9 W m−2 at the surface. The NSIH
effect could enhance the shortwave heating rate, reaching
23 %. Thus, the warming effect at 700 hPa and the cooling
effect on the ground were strengthened by 21 % and 13 %,
reaching +0.04 and −0.10 K, which led to a change in the
height of the planetary boundary layer (PBL) by −11 m. In
addition, the precipitation was inhibited by the NSIH effect,
causing a 15 % further decrease. Therefore, the NSIH effects
demonstrated their non-negligible impacts and highlighted
the importance of incorporating them into chemical weather
models.

1 Introduction

Aerosols play a significant role in the Earth’s climate system
through various pathways, including direct scattering and
absorbing radiation, and also indirectly by affecting cloud
formation and dimming snow, hence influencing the energy
budget and climate processes. However, lager uncertainties
regarding aerosol radiative forcing still exist due to chal-
lenges in identifying their distribution, transportation, and
physical properties (Yu et al., 2006). The direct radiative ef-
fect (DRE) of aerosols, which refers to the radiation changes
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caused by aerosol absorption and scattering, is the primary
driver of aerosol–climate interactions. On the weather scale,
the aerosol–radiation interaction (ARI) is quite important for
predicting air quality as it can significantly alter the mete-
orology, affecting visibility and PM2.5 concentrations (Peng
et al., 2022; Wang et al., 2022a). Including ARI in mesoscale
weather forecasts is essential for more accurate radiation flux
estimation, particularly during dust storms or haze episodes
(Wang et al., 2010, 2015a, b).

Aerosol optical properties – namely, the extinction ef-
ficiency (qext), single-scattering albedo (ω), and asymme-
try factor (g) – are key parameters for understanding di-
rect aerosol–radiation interactions in weather/climate mod-
els. These optical properties of aerosols vary due to multi-
ple factors, including wavelength, complex refractive index,
and particle size and morphology. Among these factors, mor-
phological features are particularly challenging to address
and can be divided into two aspects: (1) nonsphericity and
(2) inhomogeneity. In general, simplified spherical models
are commonly used to represent hygroscopic aerosol parti-
cles such as sulfate, nitrate, and ammonium, which is con-
sistent with observations in both the field and the laboratory
(Buseck and Pósfai, 1999; Wise et al., 2007). However, insol-
uble aerosols like BC and mineral dust aerosols are nonspher-
ical (Adachi et al., 2007; Pósfai et al., 2013). Additionally,
BC and mineral dust aerosols are not always homogeneous
as they can mix with other particles during transport, result-
ing in embedded aerosols within coating materials (Adachi
et al., 2010).

Several electromagnetic scattering algorithms are avail-
able for calculating the optical properties of aerosol particles
with different morphological features. The Lorenz–Mie the-
ory is widely applied for calculating optical properties of ho-
mogeneous spherical particles (Bohren and Huffman, 1998).
The multiple-sphere T-matrix method (MSTM) is an imple-
mentation of a generalized Mie theory and is suitable for an-
alyzing multiple sphere domains, such as coated spheres and
fractal aggregates with spherical monomers (Mackowski,
2014). The discrete dipole approximation (DDA) method is a
general scattering algorithm for particles of arbitrary geom-
etry and composition in which the scatterer is divided into
small cubical subvolumes (Yurkin and Hoekstra, 2011). The
invariant imbedding T-matrix method (IITM) is a more ef-
ficient algorithm for analyzing randomly oriented nonspher-
ical and inhomogeneous particles, which are discretized in
terms of multiple inhomogeneous spherical layers (Bi and
Yang, 2014; Bi et al., 2013, 2022; Wang et al., 2023c).

The aerosol optical parameterization scheme in cli-
mate/weather models is closely tied to the capabilities
of electromagnetic scattering algorithms. Spherical aerosol
models are commonly used in climate/weather models due
to the relatively low computational time required by the
Lorenz–Mie theory. Examples of spherical aerosol models
include (1) the external-mixing model, where each kind of
aerosol is assumed to be a homogeneous sphere; (2) the

volume-mixing model, where all species are homogeneously
mixed; (3) the Maxwell Garnet model, where isolated
spherules are suspended in an embedding sphere; and (4) the
core-shell model for concentrically coated particles (Bond
and Bergstrom, 2006; Fast et al., 2006; Kotchenova and
Vermote, 2007). For example, in the Weather Research and
Forecasting model coupled with Chemistry (WRF-Chem),
multiple aerosol optical schemes are included, such as the
volume-mixing, the Maxwell Garnet, and the core-shell
models (Barnard et al., 2010). In the mesoscale version 5.1
of the Global/Regional Assimilation and Prediction System
coupled with the Chinese Unified Atmospheric Chemistry
Environment model (GRAPES_Meso5.1/CUACE), only the
external-mixing model is included (Gong and Zhang, 2008;
Wang et al., 2018). As a climate model, the Community
Atmosphere Model version 5 (CAM5) incorporates both
volume-mixing and core-shell treatments in the Aerosol
Two-dimensional bin module for formation and Aging Sim-
ulation (ATRAS) model using lookup tables (Matsui, 2017).

Implementing electromagnetic scattering algorithms in
climate and weather models is unrealistic due to the pro-
hibitively long computational time. Therefore, lookup tables
with pre-computed optical properties are typically used to
incorporate morphologically realistic aerosol models in op-
tical parameterization, reducing computational costs. For ex-
ample, the bare fractal aggregate model and core-grey-shell
model have been applied to address the nonsphericity and in-
homogeneity of BC using lookup tables in the Multi-scale
Atmospheric Transport and Chemistry model (MATCH) and
the Sectional Aerosol module for Large-Scale Applications
(SALSA) (Andersson and Kahnert, 2016). Recently, deep
learning has emerged as a new method to handle the opti-
cal properties of complex internal-mixing models. Wang et
al. (2022b) incorporated coated super-spheroid models for
mineral aerosols into the WRF-Chem model using a fully
connected neural network (Wang et al., 2022b).

In this study, we developed the comprehensive Artificial-
Intelligence-based Nonspherical Aerosol Optical Scheme
(AI-NAOS) to investigate the direct aerosol radiation effects
by employing morphologically realistic models based on the
deep learning method. In this scheme, insoluble aerosols,
such as soil dust (SD) and BC, were both treated as nonspher-
ical cores that are partially or fully embedded in a spheri-
cal or nonspherical shell consisting of hygroscopic aerosols.
Specifically, we modeled dust as super-spheroids, which has
proven to be successful in matching the optical properties of
dust samples and the polarized radiance observations from
Polarization and Anisotropy of Reflectances for Atmospheric
Science coupled with Observations from a Lidar (PARA-
SOL) (Lin et al., 2018, 2021). BC was assumed to exist as
fractal aggregates that could accurately reproduce the mea-
sured linear backscattering depolarization ratio (Luo et al.,
2019; Wang et al., 2023b). We developed optical property
databases of these two models using the IITM method. Sub-
sequently, several deep neural networks (DNNs) were trained
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based on the aforementioned databases and then integrated
into the AI-NAOS module. The AI-NAOS scheme was cou-
pled online with the chemical weather models, including
WRF-Chem and GRAPES_Meso5.1/CUACE.

In the remaining sections of this paper, we first
present the details of the AI-NAOS module in Sect. 2.
We analyze real-case evaluation performed by the
GRAPES_Meso5.1/CUACE model in Sect. 3. Finally,
in Sect. 4, we summarize and discuss the conclusions.

2 Methods

2.1 Aerosol optical modeling

In the aerosol module of the CUACE model, there are seven
aerosol species, including two insoluble aerosols; black car-
bon and soil dust; and five hygroscopic aerosols, such as or-
ganic carbon, sulfate, sea salt, nitrate, and ammonium. The
optical properties of these aerosols are accessed through a
series of lookup tables, where complex refractive indices are
implicitly represented. In the CUACE model, the refractive
indices of SD were obtained from the Aeolian Dust Exper-
iment on Climate Impact (ADEC) project, while the high-
resolution transmission molecular absorption database (HI-
TRAN) was applied to represent refractive indices of other
aerosols (Rothman et al., 2005; Wang et al., 2006). In the
aerosol optical modeling process, aerosol particles of each
species were simplified as spheres and completely dissolved
in aerosol water, which undergo hygroscopic growth and then
mix externally. This aerosol scheme is a typical external-
mixing scheme in which aerosol particles are always as-
sumed to be spherical and homogeneous.

As an update, the AI-NAOS module incorporates im-
provements related to nonsphericity and inhomogeneity into
the aerosol scheme. Additionally, two widely used internal-
mixing schemes, the volume-mixing and core-shell methods,
have also been integrated into the aerosol module to facili-
tate a better understanding of the differences between aerosol
schemes with various optical models.

Two nonspherical models, fractal aggregates, and super-
spheroids were incorporated to represent insoluble aerosols,
while hygroscopic aerosols were treated as a coating shell to
introduce inhomogeneity. Specifically, the fractal aggregate
model composed of identical spheres was found to be a good
fit for the morphology of BC particles. The following frac-
tal law was used to characterize aggregates (Sorensen, 2001;
Teng et al., 2019):

Ns = k0

(
Rg

R

)Df

. (1)

In Eq. (1), Df is the fractal dimension, k0 is the scaling pref-
actor, Ns is the number of spherical monomer, R is the ra-
dius of monomer, and Rg is the radius of gyration (Sorensen,
2011). The fractal dimension and the scaling prefactor are

major factors influencing the compactness of fractal struc-
ture, which is connected with the aging progress of BC (For-
rest and Witten, 1979; Li et al., 2016). Tuning a smaller scal-
ing prefactor or fractal dimension allows for the creation of a
looser and more linear structure, which shows better fitness
for newly emitted BC. Conversely, a larger scaling prefac-
tor and fractal dimension is more suitable for aged BC after
transportation. Generally, the fractal dimension ranges from
1.8 to 2.8 (Wang et al., 2017; Wu et al., 2023). In this study,
the fractal dimension was set to 2.1, and the scaling prefac-
tor was set to 1.2. A tuneable algorithm called FracVAL was
used to generate these fractal aggregates (Morán et al., 2019).
The refractive index of BC was assumed to be 1.95+ 0.79i
(Bond and Bergstrom, 2006); however, this value can be flex-
ibly adjusted in the module. All hygroscopic aerosols were
treated as a homogeneous spherical coating shell using the
volume-mixing method. The center of the spherical coating
shell was located at the midpoint of the major axis of the
fractal aggregates, which was defined based on two spherical
monomers with the greatest separations, partially embedding
the fractal framework as shown in Fig. 1a.

A simplified equation of super-ellipsoid (referred to as
super-spheroid) was used for geometric modeling (Barr,
1981; Bi et al., 2018a):

(x
a

) 2
n
+

(y
a

) 2
n
+

(z
c

) 2
n
= 1, (2)

in which n is the roundness parameter and a/c is the as-
pect ratio. In this case, the roundness parameter was fixed
at 2.6, which was suitable for optical modeling of SD (Lin
et al., 2018). The coating shell was also modeled as a super-
spheroid, with the roundness parameter ranging from 2.6 to
1.0, for which the core was fully embedded, as shown in
Fig. 1b.

2.2 Database of optical properties

Next, we discuss optical property databases that have been
constructed for nonspherical and inhomogeneous particles,
specifically encapsulated BC fractal aggregates and coated
SD super-spheroids. These databases utilized six parameters
to describe the microphysics of a certain particle, includ-
ing size parameter, volume fraction (vf), and complex re-
fractive indices of both insoluble aerosols and hygroscopic
aerosols. Three optical properties – namely, extinction effi-
ciency (qext), single-scattering albedo (ω), and asymmetry
factor (g) – were determined using these parameters. Vol-
ume fraction is a key parameter that describes the mixing
status and is defined as follows:

vf=
Vinsol

Vhygro+Vinsol
, (3)

in which Vinsol is the volume of insoluble aerosols and Vhygro
is the volume of hygroscopic aerosols in a single particle. The
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Figure 1. Optical modeling for (a) fractal aggregate framework of black carbon (BC) partially encapsulated with spherical coating of
hygroscopic aerosols and (b) super-spheroid framework of soil dust (SD) fully coated with another super-spheroid of hygroscopic aerosols
with various volume fractions.

size parameter (x) is a size defined relative to wavelength and
is given by

x =
πD

λ
, (4)

in which λ is the wavelength, andD is the diameter. For non-
spherical particles, the actual diameter is the length of the
major axis, which can be determined by two monomers with
the longest distance in fractal aggregates and the longest di-
mension in super-spheroids. Accounting for the convenience
of matching with spherical models, the diameter defined in
Eq. (4) was calculated based on the equivolume sphere. As
shown in Table 1, the size parameter exceeds 20, which is
sufficient to handle particles with diameters of less than 4 µm
even in photosynthetically active radiative bands. The com-
plex refractive indices for hygroscopic aerosols and two in-
soluble aerosols, BC and SD, are denoted by mrhygro and
mrinsol for the real part and mihygro and miinsol for the imag-
inary part. The volume fraction of insoluble aerosols ranges
from 0.04 to 1.0 for BC aerosols and from 0.15 to 1.0 for SD
aerosols. These parameters are summarized in Table 1.

2.3 Bulk optical properties

In the aerosol module of the CUACE, aerosol particles are
categorized into 12 size bins based on their diameter, rang-
ing from 0.01 to 40.96 µm. When utilizing this model, it is
necessary to integrate the optical properties over the diame-
ter within each size bin to obtain bulk optical properties that
are more representative, as the oscillation of optical proper-
ties along with the particle size occurs. To achieve this, we
used the log-normal size distribution for each size bin, rang-
ing from the lower boundDmin to the upper boundDmax. The
probability density function (PDF) of log-normal distribution
is defined as follows:

n(D)=
1

D
√

2πσ
e
−
(lnD−lnDm)2

2σ2 , (5)

in which σ is the standard deviation, and Dm is the mean
diameter. Based on the PDF, bulk optical properties can be

calculated by integration as follows:

Qext =

∫ Dmax
Dmin

qextD
2n(D)dD∫ Dmax

Dmin
D2n(D)dD

, (6)

< SSA>=

∫ Dmax
Dmin

ωqextD
2n(D)dD∫ Dmax

Dmin
qextD2n(D)dD

, (7)

<G>=

∫ Dmax
Dmin

gωqextD
2n(D)dD∫ Dmax

Dmin
ωqextD2n(D)dD

, (8)

in which Qext, < SSA>, and <G> are the bulk extinction
efficiency, bulk single-scattering albedo, and bulk asymmetry
factor, respectively.

2.4 Deep neural networks

Aerosol optical parameterizing is a complex task that in-
volves various species and multiple processes, such as
aerosol mixture and hygroscopic growth, that need to be ad-
dressed. In the past, the lookup table method was widely used
for this purpose, but it had limitations in terms of simplifying
some processes and consuming a relatively large amount of
storage space. To overcome these challenges, a deep learn-
ing method can be applied. A deep neural network (DNN)
can efficiently and accurately provide continuous predictions
while requiring less storage space compared to a lookup ta-
ble (Yu et al., 2022a, b). Additionally, the DNN method elim-
inates the need for multiple interpolations among various di-
mensions, making it easier to compute the optical proper-
ties at the particle size, volume fraction, and complex re-
fractive indices based on the real-time status of aerosols.
A multiple-target DNN model that has been designed to
infer the single-scattering properties of encapsulated frac-
tal aggregates of BC was adapted to bulk optical property
inference in this study (Wang et al., 2023b). Four DNNs
have been trained based on bulk optical property databases
of spherical and NSIH particles using this architecture, in-
cluding spheres, core-shell spheres, encapsulated fractal ag-
gregates, and coated super-spheroids. Note that the present
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Table 1. Optical property database of nonspherical and inhomogeneous (NSIH) particles. Black carbon (BC) was modeled as encapsulated
fractal aggregates, while soil dust (SD) was assumed to be a coated super-spheroid.

Encapsulated fractal aggregates Coated super-spheroids

mrhygro 1.20, 1.25, 1.30, 1.35, 1.40, 1.45, 1.50, 1.55, 1.60 1.2, 1.3, 1.4, 1.5, 1.6, 1.8

mihygro 0, 0.001, 0.005, 0.01, 0.05, 0.1 10−5, 10−4, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5

vf (%) 3.66, 5.42, 8.46, 11.79, 16.77, 24.3, 35.82, 43.28, 14.68, 18.06, 22.51, 28.35, 36.02,
52.03, 61.74, 71.57, 80.78, 88.89, 94.99, 100 46.11, 59.38, 76.88, 100

mrinsol 1.65, 1.75, 1.85, 1.95 1.2, 1.4, 1.5, 1.6

miinsol 0.5, 0.6, 0.7, 0.8 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5

x 0.1–21.0 0.05–26.4

DNNs are different from those in previous studies in which
DNNs are obtained in terms of the single-scattering proper-
ties for general application purposes. More details regarding
the multiple-target DNNs are provided in the Appendix.

2.5 Nonspherical aerosol optical scheme

A basic process in the AI-NAOS module is the determina-
tion of particle states, including the volume of each kind of
particle, volume fraction of mixed particles, and morphology
of particles. Coupled with a size-segregated aerosol module,
the particle states are independent among every size bin. In
a specifical bin, all hygroscopic aerosols are first internally
mixed with aerosol water based on a volume-mixing assump-
tion and then encapsulate the other two insoluble aerosols
(BC and SD), respectively. The key issue is to determine
the amount of hygroscopic aerosols coating, i.e., the volume
fraction. The simplest method is to make all hygroscopic
aerosols be the coating, like the core-shell scheme, which
means the volume fraction ranges from 0 to 1. A more ap-
propriate method is to consider a lower limit of the volume
fraction based on worldwide field observations (Wang et al.,
2023a). Specifically, the lower limit of the volume fraction
was set to be 0.3 for BC and 0.6 for SD. Thus, not all hygro-
scopic aerosols were internally mixed with insoluble aerosols
when the volume of hygroscopic aerosols was large enough.
These extra mixed hygroscopic aerosols were assumed to be
homogeneous spheres. Due to hygroscopic growth, the di-
ameters of different hygroscopic aerosol species were also
different. Similarly to the core-shell method, the diameter of
internally mixed particles was determined using the volume-
weighted method. In this way, all seven aerosol species could
be treated as three kinds of internally mixed particles, includ-
ing two nonspherical and inhomogeneous particles (partially
encapsulated fractal aggregates of BC and fully coated super-
spheroid of SD) and the homogeneous and spherical particle
of hygroscopic aerosols.

Once the state of aerosols was determined, the optical
properties of three internally mixed aerosol particles were

inferred by the DNNs integrated in the AI-NAOS module.
The total optical properties were calculated based on the
external-mixing assumption in which extinction and scatter-
ing coefficients were the sum of each species. This imple-
mentation of the AI-NAOS module provided an efficient es-
timation of optical properties for nonspherical and inhomo-
geneous particles. Generally, three optical properties (extinc-
tion efficiency, single-scattering albedo, and asymmetry fac-
tor) were considered sufficient for the radiation transfer cal-
culation in the chemical weather model. The framework of
the AI-NAOS module is illustrated in Fig. 2.

The bulk optical properties are compared and shown in
Fig. 3 for different aerosol optical schemes, including the
external-mixing, volume-mixing, core-shell, and AI-NAOS
modules. The AI-NAOS module contained the encapsulated
fractal aggregate model of BC and coated super-spheroids
of SD. The calculations of bulk optical properties were per-
formed considering the presence of hygroscopic aerosols
and either BC or SD as the insoluble aerosol species. The
volume fraction of insoluble aerosols was assumed to be
0.33. The complex refractive indices of BC, SD, and hy-
groscopic aerosols were 1.95+0.79i, 1.5+0.01i, and 1.4+
0.0001i, respectively. Generally, BC aerosols are small par-
ticles with diameters around 0.2 µm and size parameters
around 0.9–1.6 for photosynthetically active radiative bands
(Wu et al., 2023). As shown in the top row of Fig. 3, the
extinction efficiency of the AI-NAOS scheme was smaller
compared to the core-shell scheme and the volume-mixing
scheme but larger compared to the external-mixing scheme.
As for SSA, it could be observed that the external-mixing
scheme yielded the largest results, while the other three
schemes were close. It is likely that the AI-NAOS scheme
led to improvements in the estimation of BC absorption as
the external-mixing scheme underestimated BC absorption
and the volume-mixing scheme overestimated this parameter
(Kahnert et al., 2012). The asymmetry factor calculated by
the AI-NAOS was slightly higher than other schemes, lead-
ing to a smaller backscattering fraction. With respect to SD
aerosol, the aerosols’ diameters were much larger, so we fo-
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Figure 2. The framework of the AI-NAOS module.

cus on the part where the size parameter was larger than
10.0, as shown in the bottom row in Fig. 3. The extinction
efficiency based on the AI-NAOS scheme was larger, and
the SSA was similar compared to other schemes for large
SD particles, indicating stronger absorption due to the NSIH
effect of the SD. The asymmetry factor of the AI-NAOS
scheme was the smallest.

2.6 Model configuration

The AI-NAOS module was coupled online with chemical
weather model GRAPES_Meso5.1/CUACE. In a previous
study, the NSIH effect of SD had been evaluated using the
WRF-Chem model, revealing that the nonsphericity of SD
could cause more surface dimming and more solar heating
(Wang et al., 2022b). At that time, BC was still assumed to be
spherical and treated using the core-shell model. Thus, this
study primarily focuses on the NSIH effects of BC, where
various models of BC were compared while SD was always
assumed to be super-spheroids. Real-case simulations were
conducted using GRAPES_Meso5.1/CUACE to gain a bet-
ter understanding of the impact of aerosols on the weather.
Five different aerosol treatments were applied in the simu-
lations, including a control experiment without aerosol opti-
cal effects, the AI-NAOS scheme, the core-shell scheme with
spherical but inhomogeneous model, and the external-mixing
and volume-mixing schemes for the spherical and homoge-
neous model. To assess the NSIH effect from the BC aerosol,
different models were applied to only the BC aerosols, while
the SD aerosols were modeled as super-spheroids among all

schemes to avoid the influence due to SD. The AI-NAOS
scheme was directly connected with the shortwave radiation
scheme (Goddard Space Flight Center Scheme); namely, the
primary driver of the NSIH effect on aerosol–weather inter-
actions was a perturbation in the solar radiation.

Real-scene studies were conducted to investigate the NSIH
effect on the thermodynamic structure of the atmosphere un-
der a heavy-pollution scenario. The case was carried out
on 12 January 2018, running for 72 h, with the last 48 h
used for evaluation. The simulation domain covered east
China (20–50° N, 95–125° E) with a horizontal resolution
of 0.1°× 0.1°. The evaluations mainly focused on three re-
gions with high emissions: (1) the Sichuan Basin (28.5–
32.5° N, 103.5–108.5° E), (2) the middle Yangtze Plain
(27.5–32.5° N, 110.5–114.5° E), and (3) the North China
Plain (33–39° N, 114–120° E). The initial meteorological
field and lateral boundary conditions were constructed us-
ing the National Centers for Environmental Prediction fi-
nal (NCEP FNL) data on 0.25× 0.25 grids (National Cen-
ters For Environmental Prediction/National Weather Ser-
vice/NOAA/U.S. Department Of Commerce, 2015). The
Multi-resolution Emission Inventory model for Climate and
air pollution research (MEIC) was used for chemical emis-
sions (Li et al., 2017).

The configurations of physical and chemical processes in
GRAPES_Meso5.1/CUACE simulations are summarized in
Table 2.
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Figure 3. Optical properties of (a–c) black carbon (BC) and (d–f) soil dust (SD) with four optical modeling schemes (external-mixing,
AI-NAOS, core-shell, and volume-mixing scheme).

Table 2. Physical and chemical processes in the
GRAPES_Meso5.1/CUACE.

Process Scheme

Microphysics Thompson (Thompson et al., 2004)

Shortwave radiation Goddard (Chou et al., 1998)

Longwave radiation RRTM (Mlawer et al., 1997)

Surface layer SFCLAY (Pleim, 2007)

Land surface Noah (Chen et al., 1997)

Planetary boundary layer MRF (Hong and Pan, 1996)

Cumulus KFETA (Kain and Fritsch, 1993)

Gas-phase chemistry RADM2 (Stockwell et al., 1990)

Aerosol CUACE (Zhou et al., 2012)

Aerosol optics 1. NA (no aerosol optical effect)
2. external-mixing
3. AI-NAOS
4. core-shell
5. volume-mixing

3 Results

3.1 Performance of deep neural networks

Figure 4 illustrates the performance of DNNs for these two
NSIH models and three statistical metrics; namely, mean ab-
solute error (MAE), root mean square error (RMSE), and
coefficient of determination (R squared), were used to eval-

uate the DNN. Approximately 100 000 samples were ran-
domly selected from the entire database (training, valida-
tion, and testing sets) for each optical property of each NSIH
model. The scatter points in Fig. 4 represent the evalua-
tion results of the DNN predictions and IITM calculations,
with the color denoting the probability density scaled from
0 to 1. For coated fractal aggregates of BC, the RMSE of
the bulk extinction efficiency, bulk SSA, and bulk asym-
metry factor were 0.0114, 0.0017, and 0.0013, respectively.
For coated super-spheroids of SD, the RMSE values were
0.0240, 0.0062, and 0.0052, respectively. The R squared val-
ues for all three optical properties were above 0.99, indicat-
ing a good fit between the true values from the IITM cal-
culations and the predicted values from the DNNs. Overall,
the optical properties of NSIH models can be accurately pre-
dicted using DNN models.

3.2 Aerosol optical properties

It is essential to evaluate three bulk aerosol optical properties
(Qext, < SSA>, and <G>), which are directly refined in
the AI-NAOS module. To effectively display these properties
of the vertical atmospheric column, the column aerosol op-
tical properties, which include aerosol optical depth (AOD),
absorbing aerosol optical depth (AAOD), and column asym-
metry factor (G), are defined as follows (Taylor, 2012):

bext =
∑12

i=1

∑3
j=1

Qextij
π

4
D2
ijNij , (9)

AOD=
∫ HTOA

z=0
bextdz, (10)
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Figure 4. Comparison of optical properties calculated using the invariant imbedding T-matrix method (IITM) and predictions from deep
neural networks (DNNs). (a–c) Encapsulated fractal aggregate model for black carbon. (d–f) Coated super-spheroid model for soil dust. The
probability density is scaled from 0 to 1.

AAOD =
∫ HTOA

z=0
bext(1−< SSA>)dz, (11)

G=

∫ HTOA
z=0 bext < SSA><G> dz∫ HTOA

z=0 bext < SSA> dz
, (12)

where i is the index of the size bin, j is the index of the
aerosol particle, N is the number concentration of aerosol
particles, bext is the extinction coefficient, z is the height
above ground, and HTOA is the height of TOA.

Figure 5 illustrates three column optical properties at
0.55 µm based on the AI-NAOS scheme as well as anoma-
lies based on the other three aerosol optical schemes. All
properties were averaged over 48 h from the 25th to the 72nd
hour to yield a general picture. Three distinct centers with
extreme AOD values, Sichuan Basin, middle Yangtze Plain,
and North China Plain, are marked with black rectangles
from west to east. These three regions also stood out as ma-
jor sources of aerosol emissions. The North China Plain was
characterized by intense industrial manufacturing, while res-
idential activities and transportation played prominent roles
in the Sichuan Basin and middle Yangtze Plain compared
to the surrounding areas. Within the AI-NAOS module, the
spatial average of AOD was 0.29, 0.37, and 0.36 over the
Sichuan Basin, middle Yangtze Plain, and North China Plain,
respectively. The AOD values were larger compared to the
external-mixing scheme but slightly smaller compared to
the core-shell and volume-mixing schemes. With respect to
AAOD, the values were found to be 0.06, 0.08, and 0.08
averaged over the three marked regions from west to east,
respectively. Taking the results under the AI-NAOS module

as a benchmark, the AAOD values based on three spheri-
cal schemes (the external-mixing, core-shell, and volume-
mixing scheme) were 70.4 %, 125.3 %, and 129.3 % over the
Sichuan Basin; 70.0 %, 119.6 %, and 126.1 % over the mid-
dle Yangtze Plain; and 70.4 %, 116.0 %, and 124.4 % over
the North China Plain, respectively. The column asymmetry
factor is illustrated in the bottom panel of Fig. 5. The val-
ues based on the AI-NAOS module was 0.66, 0.64, and 0.63
averaged over the three marked regions, which was roughly
+0.03,+0.03, and+0.01 larger compared to the three spher-
ical schemes.

The spatially averaged column optical properties of the
three spherical schemes, all of which were benchmarked to
values under the AI-NAOS module, are summarized in Ta-
ble 3. It is clear that there was minimal variation in the
asymmetry factor, whereas a significant disparity existed in
the AAOD. The AAOD, indicating the aerosol absorption, is
greatly affected by aerosol optical modeling. Specifically, the
external-mixing scheme, lacking both nonspherical and in-
homogeneous effects, estimated notably weaker absorption,
while the core-shell model, only considering inhomogeneous
effects, estimated stronger absorption. The AI-NAOS mod-
ule is anticipated to correctly deal with the aerosol absorp-
tion, yielding a moderate estimation.

As shown in Fig. 6, we have used the daily AOD product
from the Moderate-Resolution Imaging Spectroradiometer
(MODIS) to validate our simulations on 13 January. The spa-
tial distribution of AOD observed by MODIS exhibits a simi-
lar pattern to our simulations, with high AOD values detected
over three regions characterized by high anthropogenic emis-
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Figure 5. Aerosol column optical properties based on the AI-NAOS scheme and anomalies based on three spherical schemes (external-
mixing, core-shell, and volume-mixing). Publisher’s remark: please note that the above figure contains disputed territories.

Table 3. Aerosol optical properties of three spherical schemes averaged over three marked regions, benchmarked to values under the AI-
NAOS module.

Optical properties Regions External-mixing Core-shell Volume-mixing

AOD Sichuan Basin 91.7 % 104.9 % 107.0 %
Middle Yangtze Plain 91.7 % 105.1 % 108.0 %
North China Plain 92.3 % 104.8 % 108.4 %

AAOD Sichuan Basin 70.4 % 125.3 % 129.3 %
Middle Yangtze Plain 70.0 % 119.6 % 126.1 %
North China Plain 71.4 % 116.0 % 124.4 %

G Sichuan Basin 96.2 % 94.9 % 98.8 %
Middle Yangtze Plain 96.0 % 94.8 % 98.3 %
North China Plain 96.2 % 95.4 % 98.0 %

sions: the Sichuan Basin, the middle Yangtze Plain, and the
North China Plain.

To gain a better understanding of the AOD distribution
pattern, we calculated the probability distribution function
(PDF) over a wide region where high AOD values were ob-
served (27–40° N, 105–118° E). Due to the presence of miss-
ing values in the MODIS AOD product, corresponding val-
ues in our simulations were also omitted. The simulations re-
veal a more concentrated distribution pattern, with the high-
est AOD values being slightly lower than those observed

by MODIS. The median values of simulated AOD within
external-mixing, AI-NAOS, core-shell, and volume-mixing
schemes are 0.206, 0.225, 0.232, and 0.238, respectively. The
MODIS median value of 0.217 falls between the external-
mixing and AI-NAOS schemes, indicating a good agreement
between our simulations and the observations.

The absorption enhancement (Eabs), defined as the ratio
between the absorption section of coated and bare BC parti-
cles, is an important metric of aerosol absorption. A signifi-
cant issue identified is that field observations typically reveal
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Figure 6. Spatial distribution of daily AOD on 13 January from (a) MODIS product [MOD08_D3] and (b) simulations with AI-NAOS.
(c) AOD probability distribution function of the AOD product and simulations with external-mixing, AI-NAOS, core-shell, and volume-
mixing schemes.

smaller Eabs values than those predicted by model simula-
tions. To mitigate this discrepancy, a series of modifications
aimed at managing the Eabs value were conducted, drawing
on microphysical complexities such as coating thickness and
morphology (Chen et al., 2023; Huang et al., 2023). How-
ever, these strategies were rooted in the core-shell model,
utilizing lookup tables or empirical formulas without ac-
counting for aerosol nonsphericity. This limitation poten-
tially leads to inaccuracies in estimations of aerosol absorp-
tion.

Figure 7 illustrates the distribution of the absorption en-
hancement and single-scattering albedo over the Sichuan
Basin. The Eabs value was the ratio of AAOD under the
external-mixing scheme and other internally mixed schemes.
The median values of Eabs under the AI-NAOS, core-shell,
and volume-mixing schemes were 1.42, 1.79, and 1.86, re-
spectively. It is clear that the encapsulated fractal models
in the AI-NAOS module could induce less absorption en-
hancement as the lensing effect was weak since the BC
core was only partially coated by non-absorptive hygroscopic
aerosols. The median values of the single-scattering albedo
were 0.81, 0.78, and 0.78 under the three schemes, which
could also be attributed to the lensing effect. The Eabs value
was at times extremely large (1.80± 0.29) when the BC was
heavily coated and dropped down to 1.22± 0.09 with thin
coating (Zhai et al., 2022). In most cases, the mean value of
Eabs observed in China was quite small, ranging from 1.17
to 1.50 (Ma et al., 2020; Sun et al., 2021; Wu et al., 2018;
Zheng et al., 2022). Taking all factors into consideration, the
AI-NAOS results, which provided a moderate estimation of
AAOD while maintaining a lower Eabs value, appeared to be
a favorable choice.

3.3 Shortwave direct radiation effect

The shortwave radiative flux is directly influenced by the
optical properties of the atmospheric column. Figure 8 de-
picts the aerosol shortwave DRE at the TOA, within the

atmosphere, and at the surface based on four aerosol op-
tical schemes (external-mixing, AI-NAOS, core-shell, and
volume-mixing). Similarly to Sect. 3.1, these DREs were av-
eraged over a 48 h period.

At the TOA, the spatially averaged DREs based on the
AI-NAOS module were +1.9, −2.8, and −1.2 W m−2 over
the three marked regions, respectively. The external-mixing
scheme yielded values of +0.3, −4.6, and −3.0 W m−2,
while the core-shell scheme showed values of +2.4, −2.8,
and −1.2 W m−2, and the volume-mixing scheme showed
values of +3.4, −1.8, and −0.4 W m−2. It is observed that
aerosols exhibited a warming impact on the Earth’s climate
system over the Sichuan Basin, whereas a cooling effect was
discovered over the middle Yangtze Plain and North China
Plain. In comparison to the AI-NAOS scheme, the warm-
ing effect was much weaker with the external-mixing scheme
but more pronounced with the core-shell and volume-mixing
schemes.

At the surface, the spatially averaged DREs based on the
AI-NAOS module were −21.5, −37.8, and −31.2 W m−2

over the three regions, respectively, indicating a cooling ef-
fect of aerosols at the surface. This cooling effect was weaker
with the external-mixing scheme and stronger with the core-
shell scheme and the volume-mixing scheme. This finding
can be attributed to atmospheric absorption, which was de-
termined by the difference between net solar fluxes of TOA
and the surface. It is evident that the changes in atmosphere
absorption based on the AI-NAOS scheme were extremely
large over the three regions, with values of +23.4, +35.0,
and +30.0 W m−2, respectively. As shown in the second
panel of Fig. 8, the atmosphere absorption based on the three
spherical schemes was also benchmarked to the AI-NAOS
scheme, with values of 80.7 %, 112.5 %, and 118.9 % over
the Sichuan Basin; 79.6 %, 109.2 %, and 115.7 % over the
middle Yangtze Plain; and 80.2 %, 105.8 %, and 114.3 %
over the North China Plain.

Taking into consideration of the NSIH effect, a warming
effect on the Earth’s climate system and a cooling effect
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Figure 7. Probability density function of absorption enhancement and single-scattering albedo over the Sichuan Basin within the AI-NAOS,
core-shell, and volume-mixing schemes.

Figure 8. Aerosol shortwave direct radiation effect based on four
aerosol optical schemes (external-mixing, AI-NAOS, core-shell,
and volume-mixing) (a) at the top of atmosphere (TOA), (b) within
the atmosphere, and (c) at the surface.

on the surface were found compared to the external-mixing
scheme. Specifically, the DRE induced by the NSIH effect
was +1.6, +1.8, and +1.8 W m−2 at TOA and −2.9, −5.3,
and −4.1 W m−2 at surface, over the three regions, respec-
tively. Furthermore, these effects can be strengthened using
the volume-mixing scheme, which may be too strong and
lead to an overestimation.

3.4 Thermodynamic structure

Solar radiation directly heats the Earth’s system and influ-
ences the thermodynamic structure of the atmosphere. Scat-
tering aerosols, such as sulfate, can partially offset the warm-
ing effects from greenhouse gases, while absorptive aerosols,
such as BC, can lead to strong warming effects (Kaufmann
et al., 2011; Ramanathan and Carmichael, 2008). The over-
all aerosol DRE could result in a spatially averaged surface
temperature decrease of −0.487 K over China (Persad and
Caldeira, 2018), with cooling reaching up to −0.7 K in spe-
cific regions like the Sichuan Basin (Giorgi, 2002).

Figure 9 illustrates the anomalies in temperature at
700 hPa, the height of the planetary boundary layer (HPBL),
and the 2 m temperature. As shown in the first column of
Fig. 9, the aerosol DRE induced a warming effect at 700 hPa
over the planetary boundary layer (PBL) and a cooling effect
at 2 m above surface, leading to a more stable atmosphere
layer and a decrease in HPBL. Within the AI-NAOS mod-
ule, anomalies in temperature at 700 hPa were+0.17,+0.12,
and +0.14 K, while anomalies in the 2 m temperature were
−0.83, −1.11, and −1.37 K over the three regions, respec-
tively. The values of decreases in HPBL were −75, −108,
and −90 m over the three regions, respectively.

The warming effect at 700 hPa and the cooling effect
on the ground were less prominent based on the external-
mixing scheme. The temperature anomalies between the two
schemes were +0.04, +0.03, and +0.02 K at 700 hPa and
−0.10, −0.14, and −0.17 K on the ground over the three re-
gions, respectively. The NSIH effect is observed to enhance
the temperature anomalies by at least 21 % at 700 hPa and
13 % on the ground. Similarly, the HPBL could be further de-
creased by the NSIH effect, with values of −11, −15, and
−12 m over the three regions, respectively. Generally, the
anomalies in temperature and HPBL could be more intensi-
fied by the core-shell and volume-mixing schemes, which
exhibited larger DRE anomalies.

Figure 10 illustrates the vertical profiles of perturbations
in temperature and aerosol shortwave radiation heating rate
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Figure 9. Anomalies in temperature at 700 hPa, height of planetary boundary layer, and 2 m temperature caused by the direct radiative effect
(DRE). The anomalies are calculated as the difference between the results under the AI-NAOS module and the control scheme without
aerosol effects (first column), as well as the difference between the results under three spherical schemes and the AI-NAOS module (second
to fourth columns). Publisher’s remark: please note that the above figure contains disputed territories.

(HR) based on the four optical aerosol schemes averaged
over three specific areas. The aerosol heating effect decreases
with the height as aerosol concentrations are higher near the
emission source on lower levels. The HR values within the
AI-NAOS module were 0.64, 0.72, and 0.66 K d−1 at the
surface and 0.29, 0.34, and 0.31 K d−1 at 700 hPa over the
three specific areas, respectively. When vertically averaged,
the values within the AI-NAOS module were 0.45, 0.51,
and 0.46 K d−1, which were+0.09,+0.10, and+0.09 K d−1

higher than the values within the external-mixing scheme,
over the three specific areas, respectively. Therefore, the
NSIH effect could enhance the heating rate by at least 23 %.
This enhancement could be even stronger within the core-
shell and volume-mixing schemes, reaching 30 % and 41 %,
respectively, over the Sichuan Basin.

Temperature perturbations increased with height, indicat-
ing a cooling effect at the surface and a warming effect above
the PBL. Vertically averaged temperature perturbations un-
der the AI-NAOS module were −0.31, −0.31, and −0.34 K
across the three regions, respectively, indicating an over-

all cooling effect. This cooling effect of the three spherical
schemes was 96 %, 113 %, and 108 % compared to the AI-
NAOS module over the Sichuan Basin, respectively. In gen-
eral, NSIH effects induce direct changes in the heating rate
based on anomalies of atmosphere absorption, further influ-
encing temperature and thermodynamic structures.

3.5 Precipitation

We then examined the impact of aerosol-induced changes in
thermodynamic structure on precipitation anomalies. The di-
rect radiation effect plays a role in reducing solar radiation
flux, temperature and moisture fluxes at the surface, leading
to the inhibition of convection and a decrease in precipita-
tion (Nabat et al., 2015). Additionally, the semi-direct effect,
caused by aerosol absorption heating the lower atmosphere,
results in increased atmospheric stability and suppression of
convection within the PBL while inducing stronger convec-
tion above this boundary layer (Allen et al., 2019). Collec-
tively, these two effects contribute to reduced precipitation in
east Asia. However, anomalous circulations driven by direct
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Figure 10. Vertical profiles of (a–c) temperature and (d–f) shortwave heating rate anomalies based on four aerosol optical schemes (external-
mixing, AI-NAOS, core-shell, and volume-mixing). The solid lines represent the median value, and the shaded areas encompass the range
from the 25th to the 75th percentile.

radiation effect can impact moisture transport, leading to en-
hanced precipitation in south China but reduced precipitation
in north China (Chen et al., 2018; Huang et al., 2007).

Figure 11 depicts the anomalies in height of PBL and
accumulated precipitation over the last 48 h, comparing the
AI-NAOS scheme with a control scheme of zero AOD. The
analysis focused on a specific region (29.5–34.5° N, 101.5–
112.5° E), encompassing parts of the Sichuan Basin and
the middle Yangtze Plain. The results indicate a suppres-
sion effect on precipitation accompanied by a decrease in
PBL height in this region. The spatially averaged precipi-
tation anomaly was −0.24 mm for the AI-NAOS module,
with anomalies of −0.21, −0.26, and −0.27 mm for the
external-mixing, core-shell, and volume-mixing schemes, re-
spectively. The PBL height anomalies for AI-NAOS and the
three spherical schemes were −56.8, −48.7, −63.0, and
−64.4 m, respectively. Notably, the suppression effect was
less significant in the external-mixing scheme. The NSIH ef-
fect amplified the suppression effect by approximately 15 %.
In the core-shell and volume-mixing schemes, this effect was
even more pronounced, similarly to the thermodynamic ef-
fect. Despite the complexity of aerosol–precipitation rela-
tionship, the suppression effect observed in our study can
be attributed primarily to the aerosol-induced stability lead-
ing to weaker convection, as evidenced by the changes in the
PBL height. Figure 11. Anomalies in (a) height of planetary boundary layer and

(b) accumulative precipitation between the AI-NAOS module and
the control scheme over a specific region within the precipitation
center (29.5–34.5° N, 101.5–112.5° E).
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4 Conclusion

A new aerosol optical module, referred to as AI-NAOS, was
developed to incorporate the nonsphericity and inhomogene-
ity of aerosol particles. Using integrated DNNs, aerosol op-
tical properties were effectively calculated based on NSIH
aerosol models. This newly developed aerosol optical mod-
ule was coupled online with the chemical weather model,
GRAPES_Meso5.1/CUACE.

In the AI-NAOS scheme, BC was assumed to be fractal
aggregates, while soil dust was modeled as super-spheroids.
Both of these insoluble aerosols were either fully or par-
tially encapsulated with hygroscopic aerosols, which were
treated using the volume-mixing method. The aerosol opti-
cal properties were computed using the IITM algorithm. Two
databases of optical properties for BC and SD were estab-
lished, including more than 700 000 records. Directly incor-
porating the two optical property databases into the aerosol
parameterization scheme using the lookup table method is
inconvenient. This method consumes a significant amount of
storage and introduces additional errors from interpolation.
To address this issue, two DNNs were trained based on the
two optical property databases. A unified interface was im-
plemented in the AI-NAOS scheme to calculate the optical
properties of BC and SD using the DNNs.

Real-scenario simulations were conducted to as-
sess the NSIH effect of BC aerosols using the
GRAPES_Meso5.1/CUACE model. In the simulation,
five aerosol treatments were applied, including the control
experiment without aerosol optical effects, the AI-NAOS
module, and three spherical schemes.

The AI-NAOS module provided a moderate estimation
of AAOD, falling between the underestimation from the
external-mixing scheme and the overestimation from the
core-shell and volume-mixing schemes. For example, the
AAOD values based on the three spherical schemes were
70.4 %, 125.3 %, and 129.3 % over the Sichuan Basin bench-
marked to the AI-NAOS results. The absorption enhance-
ments were 1.42, 1.79, and 1.86 based on the AI-NAOS,
core-shell, and volume-mixing schemes. It was clear that
the lowest absorption enhancement value was induced un-
der the AI-NAOS module, indicating a favorable choice that
matched low Eabs measurements. It is worth noting that the
asymmetry factor based on the NSIH scheme was the largest
among all schemes, indicating the weakest backscattering
fraction.

The aerosol shortwave DRE is directly influenced by the
NSIH effect. Compared to the external-mixing scheme, the
DRE induced by the NSIH effect was +1.6, +1.8, and
+1.8 W m−2 at TOA and −2.9, −5.3, and −4.1 W m−2 at
the surface over three regions, respectively. This effect was
stronger within the core-shell and volume-mixing schemes,
which could mainly be attributed to the difference in aerosol
absorption. Compared to the AI-NAOS scheme, the DREs in
the atmosphere were 80.7 %, 112.5 %, and 118.9 % over the

Sichuan Basin based on the three spherical schemes, respec-
tively.

The NSIH effect also resulted in changes in the thermal
structure. The heating rates within the AI-NAOS module
were 0.64, 0.72, and 0.66 K d−1 on the ground and 0.29,
0.34, and 0.31 K d−1 at 700 hPa. Compared to the external-
mixing scheme, the NSIH effect could enhance the heat-
ing rate, reaching at least 23 %. This enhancement could be
stronger within the core-shell and volume-mixing schemes,
reaching 30 % and 41 %. The temperature anomalies un-
der the AI-NAOS scheme were +0.17, +0.12, and +0.14 K
at 700 hPa and −0.83, −1.11, and −1.37 K on the ground
over three regions, respectively. Compared to the external-
mixing scheme, the NSIH effect could enhance the temper-
ature anomalies by at least 21 % at 700 hPa and 13 % on the
ground. This anomaly could be larger within the core-shell
and volume-mixing schemes. The vertically averaged tem-
perature anomalies of the three spherical schemes were 96 %,
113 %, and 108 % benchmarked to the AI-NAOS scheme
over the Sichuan Basin. As a result, the PBL becomes
more stable, with its height changing by at least −11 m due
to the NSIH effect. The precipitation was suppressed with
weaker convection in the stable atmosphere at−0.24 mm un-
der the AI-NAOS module. Compared to the external-mixing
scheme, the NSIH effect enhanced the suppression effect by
15 %.

In this study, a comprehensive assessment was conducted
to analyze the NSIH effect of BC aerosols. The findings indi-
cated that the NSIH effect cannot be disregarded in weather
forecast models. A crucial aspect is that the estimation of
aerosol absorption can be improved by incorporating the
NSIH effect. However, additional real-case studies, encom-
passing weather and climate scales, should be undertaken in
the future.

Temporarily, the refractive indices and fractal dimension
of BC were fixed. As the AI-NAOS module is driven by
DNNs, it is convenient to adjust refractive indices without
rebuilding the DNN. This flexibility proves advantageous for
investigating the absorption ability of BC. Additionally, there
are plans to train a new DNN that incorporates BC parti-
cles with various fractal dimensions, aiming to support more
detailed research in this area. As for SD, the database of
coated super-spheroids for large particles will be updated
when a computational program based on the ray tracing tech-
nique is available. In the current AI-NAOS module, the non-
sphericity and inhomogeneity are only considered with insol-
uble aerosol particles. Although hygroscopic aerosols, such
as sea salt, may be completely dissolved in aerosol water
after deliquescence, a solid core coated with liquid saline
still exists until the relative humidity reaches 97 % (Zeng
et al., 2013). The NSIH effect has a significant impact on
the single-scattering properties of sea salt, especially with
respect to depolarization (Bi et al., 2018b; Kanngießer and
Kahnert, 2021; Lin and Bi, 2024). Additionally, it was found
that the NSIH effect on optical properties could induce a
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cooling effect, weaken vertical velocity, and reduce the ac-
cumulated rainfall of Typhoon Fitow (Zhu et al., 2022). Note
that the NSIH effect of sea salt aerosol is not important in
this study because we focused on the land area. In the future,
we will consider the NSIH features of sea salt particles, de-
veloping a more comprehensive nonspherical and inhomoge-
neous aerosol optical scheme. Furthermore, it is anticipated
that the AI-NAOS scheme will be routinely updated and im-
plemented in various chemical weather, climate, and radia-
tion transfer models as well as utilized for data assimilation
purposes.

Appendix A: Deep neural networks of bulk optical
properties

As shown in Table A1, there were three input parameters (x,
mrhygro, mihygro) for spheres in the volume-mixing scheme
and six parameters (x, mrhygro, mihygro, vf, mrinsol, miinsol)
for the core-shell model and two NSIH models of BC and
SD. The architecture of the DNNs included fully connected
(FC) layers and duplicated residual blocks, as depicted in
Fig. A1. Specifically, the first two hidden layers consisted of
fully connected layers with 40 and 20 nodes, respectively.
The following setup included three branches correspond-
ing to the extinction efficiency, single-scattering albedo, and
asymmetry factor. In each branch, two residual blocks were
included, and each block was composed by two fully con-
nected layers with 20 nodes and a shortcut connection. The
architecture is similar to our previous work (Wang et al.,
2023b). However, in this study, the DNNs were applied to
bulk optical properties in various size bins, and the scatter-
ing matrices were excluded from the database. Additionally,
we followed the method proposed in Wang et al. (2022b)
to constrain the extrapolation of the DNN for large coated
super-spheroids using the asymptotic values of the core-shell
model.

Figure A1. The architecture of DNNs in this study.
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Table A1. DNNs of bulk optical properties (used in the AI-NAOS module).

Aerosol Particle model DNN input DNN output

Hygroscopic aerosols volume-mixing
(sphere)

(x, mrhygro, mihygro)

BC

core-shell (Qext, < SSA>, <G>)

encapsulated fractal
soot

(x, mrhygro, mihygro,
vf, mrinsol, miinsol)

SD coated super-spheroid

Appendix B: Training of DNN and tuning of
hyperparameters

All DNNs used in this study were trained using the same
architecture and configurations. Here, we specifically discuss
the DNN for the encapsulated fractal model.

Firstly, the dataset of bulk optical properties was di-
vided into three parts: 75 % for training, 10 % for validation,
and 15 % for testing. Since the dataset was well organized,
these three parts were randomly sampled without redistribu-
tion. Notably, the training dataset was not subjected to pre-
processing such as normalization. We found that the DNN
performed well even without the pre-processing step, mak-
ing it more convenient for application as no additional data
transforms were required before and after inference.

Next, a series of configurations were determined. Based on
the same DNN architecture, the Leaky Rectified Linear Unit
with a negative slope of 0.01 was chosen as the activation
function. The loss value was calculated using RMSE, and the
parameters of DNN were optimized using the Adam algo-
rithm. Several hyperparameters, including batch size, initial
learning rate, and number of nodes in the first fully connected
(FC) layer, were fine-tuned. The learning rate was annealed
using a cosine function, and the number of nodes in subse-
quent hidden layers was set to be half of the number in the
first FC layer. To determine the optimal hyperparameters, the
Asynchronous Successive Halving Algorithm (ASHA) was
employed. The search process was allowed to proceed for a
maximum of 200 epochs unless early stopping criteria were
met. The results of the hyperparameter tuning are summa-
rized in Table B1.

It was clear from the results that the loss value decreased as
the number of nodes increased, but this improvement became
less significant when the number of nodes exceeded 40. After
balancing DNN performance and efficiency, the number of
nodes in the first FC layer, batch size, and initial learning rate
were set to the values of 40, 200, and 5× 10−3, respectively.
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Table B1. Optimal values of hyperparameters.

Nodes of first Batch Initial learning Loss value in
FC layer size rate validation

60 100 10−3 2.3× 10−3

50 100 10−3 2.6× 10−3

40 200 5× 10−3 3.4× 10−3

30 100 5× 10−3 8.8× 10−3

20 200 5× 10−3 1.2× 10−2

Appendix C: Generalizability

To assess the generalizability of the DNN, we compared
its predictions against the rigorous results obtained from
the IITM for microphysical parameters not included in the
database. Given that the parameter range in the database en-
compasses nearly all potential values of refractive indices
and volume fractions, our focus was primarily on evaluat-
ing the interpolation accuracy. Specifically, we chose com-
plex refractive indices of 1.33+ 0i for hygroscopic aerosols
(coat) and 1.95+ 0.79i for black carbon (core), with a vol-
ume fraction set at 0.33. However, we examined the per-
formance of both interpolation and extrapolation in terms
of the size parameter, which extended beyond the database
maximum value of 16 to 24. We did not consider size pa-
rameters larger than 24 due to the significant increase in
computational time required by the IITM and the rarity of
particles exceeding these values in reality. As illustrated
in Fig. C1, the RMSE values of bulk extinction efficiency,
single-scattering albedo, and asymmetry factor were 0.0149,
0.0065, and 0.0050, respectively. At the size parameter of 24,
the errors in these three bulk optical properties were+0.012,
−0.004, and+0.001, respectively. Overall, the DNN demon-
strated good generalizability. It is worth noting that the size
parameter in this study was defined for the midpoint of the
size bin. For a more detailed analysis of the DNN’s general-
izability for the single-scattering properties without size in-
tegration, please refer to Wang et al. (2023b).

Figure C1. Comparison of bulk optical properties of encapsulated fractal aggregates computed from the IITM and DNN: (a) extinction
efficiency, (b) single-scattering albedo, and (c) asymmetry factor. The complex refractive indices of hygroscopic aerosols and BC were
1.33+ 0i and 1.95+ 0.79i, respectively. The volume fraction was 0.33.
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Appendix D: Time complexity

Once the DNN is well trained using the IITM database, the
DNN is significantly faster than the IITM for obtaining new
results. An experiment was carried out on a dual-CPU node
equipped with 28 processors (Intel Xeon E5-2680 v4). As a
parallel algorithm, the IITM leveraged all 28 threads to com-
pute the optical properties of a single particle. Subsequently,
bulk optical properties were obtained based on 10 quadrature
points. In contrast, the DNN was employed to directly calcu-
late the inferred values within a single thread over a million
iterations. The results, illustrated in Fig. D1, demonstrate a
clear trend: the computational cost of IITM increases sharply
with the size parameter, whereas the inference time of DNN
remains relatively stable. Compared to the IITM, the com-
putational efficiency of the DNN was found to be 109, 1010,
1011, and 1012 times higher for size parameters of 2.0, 3.0,
8.0, and 16.0, respectively. Notably, the DNN has been ver-
ified as a reliable acceleration algorithm, even for the effi-
cient Lorenz–Mie theory, achieving a speedup of 103 times
(Kumar et al., 2024).

In weather chemical models, the aerosol optical proper-
ties were commonly accessed using lookup tables. However,
directly comparing the AI-NAOS scheme with the lookup ta-
ble method was challenging due to the lack of integration
of the bulk optical property database into weather chemi-
cal models. Therefore, we evaluated AI-NAOS against other
existing schemes, including the external-mixing scheme
in GRAPES_Meso5.1/CUACE and core-shell and volume-
mixing schemes in WRF-Chem V4.2.1. Additionally, we in-
troduced a modified version of the AI-NAOS scheme, de-
noted as AI-NAOS*, which excluded the DNN inference for
the zero-AOD case, allowing for the separation of prior pro-
cesses for internal mixing and the DNN inference. We con-
ducted triplicate 12 h simulations with 75 551 grids using
four nodes, with a grid spacing of 0.1° for GRAPES/CUACE
and 9 km for WRF-Chem. The total computation times for
these simulations are summarized in Fig. D1. Compared to
core-shell and volume-mixing schemes, AI-NAOS required
an additional 2.2 % and 2.8 % of computational time, respec-
tively. In contrast, when compared to the external-mixing
scheme, AI-NAOS needed extra 17.7 % of time, which was
comprised of 6.2 % for the DNN inference and 11.4 % for
prior processes. Generally, there was not substantial differ-
ence between invoking the DNN and using lookup tables.
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Figure D1. (a) Comparison of computation time required by the IITM and DNN. (b) Comparison of computation time of simulations
between external-mixing, AI-NAOS*, AI-NAOS, core-shell, and volume-mixing.
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