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Abstract. The limitations of high-performance comput-
ing (HPC) significantly constrain the development of numeri-
cal models. Traditional numerical models often employ dou-
ble precision to ensure result accuracy, but this comes at a
high computational cost. While using lower precision can
substantially reduce computational expenses, it may intro-
duce round-off errors that can affect accuracy under certain
conditions. The quasi-double-precision algorithm (QDP al-
gorithm) compensates for these round-off errors by maintain-
ing corrections, thus improving result accuracy. To investi-
gate the effectiveness of this algorithm at enhancing the ac-
curacy of numerical model results, this paper applies it to the
single-precision version of the Model for Prediction Across
Scales – Atmosphere (MPAS-A), and its performance is eval-
uated across two idealized and two real-data cases. The re-
sults show that the application of the QDP algorithm reduces
the surface pressure bias by 68 %, 75 %, 97 %, and 96 % in
the respective cases. Compared to double-precision experi-
ments, the runtime is reduced by 28.6 %, 28.5 %, 21.1 %, and
5.7 %. This study demonstrates that the QDP algorithm pro-
vides effective and cost-efficient computational capabilities
for numerical models.

1 Introduction

Since the advent of modern computers in the 1950s,
numerical-simulation-based weather and climate modeling
has emerged as one of the most effective methods for ex-
ploring weather and climate systems, providing a new plat-
form for numerical model research (Bauer et al., 2015). How-
ever, in order to achieve more accurate and precise simula-
tion results, numerical weather and climate models are evolv-
ing towards higher resolutions and more complex physical
parameterization schemes (Bauer et al., 2015). With the in-
tegration of increasingly complex modules to meet diverse
requirements, numerical weather and climate models have
developed rapidly, and the next generation of these models
will feature unprecedented resolution and complexity (Hat-
field et al., 2019). In light of these circumstances, the demand
for more powerful high-performance computing (HPC) sys-
tems and more efficient computational methods has become
particularly urgent. As noted by Bauer et al. (2015), the com-
putational tasks of future numerical model prediction (NMP)
systems are expected to be 100 to 1000 times greater than
those of 2015’s systems. To bridge the gap between hard-
ware advancements and application performance, the design
of code and the selection of algorithms must focus on the
optimization of floating-point operations and memory usage
(Hatfield et al., 2019).
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Mixed precision is a promising research direction in op-
timizing computational resources within numerical models.
By reducing the bit width required for number representation
and thereby lowering the precision of floating-point num-
bers, mixed-precision methods enable storage and compu-
tations to be performed with fewer bits. This approach re-
duces the computational and communication costs in numer-
ical simulations such as climate modeling. Lower-precision
numerical representations are a feasible approach to reduc-
ing computational costs in complex numerical models (Daw-
son and Düben, 2017). Low-precision computations, defined
as operations utilizing fewer than 64 bits of significance,
remarkably decrease resource requirements but may intro-
duce round-off errors. To address this challenge, the study of
mixed-precision techniques has emerged.

In recent years, notable advancements have been made
in the application of mixed-precision computing in numer-
ical weather and climate models. Váňa et al. (2017) inves-
tigated the implementation of mixed-precision computing in
the Integrated Forecast System (IFS) prediction model. They
employed double precision in certain regions while utiliz-
ing lower precision in others. This approach significantly en-
hanced computational efficiency by an average of 40 % while
maintaining acceptable error margins. Dawson et al. (2018)
expanded the scope of mixed-precision methods, demon-
strating their applicability to simple thermal diffusion mod-
els, while key state variables are stored and updated with
higher precision. For more complex real-world land surface
schemes, they showed that using lower precision for the ma-
jority of computations while ensuring high-precision pro-
cessing of state variables could still meet the requisite accu-
racy standards. Concurrently, Nakano et al. (2018) conducted
an in-depth study on the dynamical core of the global com-
pressible nonhydrostatic model, particularly the baroclinic
wave tests by Jablonowski and Williamson. Nakano et al.
(2018) opted to use double precision for grid geometry calcu-
lations and single precision for other components. The results
indicated that this strategy not only successfully simulated
the growth of baroclinic waves with minimal error but also
reduced runtime by 46 %. This study further corroborated
the efficacy of mixed-precision computing in dynamical core
calculations. Hatfield et al. (2019) applied mixed-precision
computing to the Legendre transform in the IFS, successfully
implementing half-precision computations. Remarkably, this
modification reduced the computational cost to 25 % of that
in the double-precision reference test, significantly lowering
computational overhead. This achievement underscored the
substantial potential of mixed-precision computing in large-
scale numerical prediction models. Tintó Prims et al. (2019)
applied mixed-precision methods to the Nucleus for Euro-
pean Modelling of the Ocean (NEMO). They discovered that
95.8 % of the 962 variables could be computed using sin-
gle precision. Additionally, in the Regional Ocean Model-
ing System (ROMS), all 1146 variables could be computed
using single precision, with 80.7 % of them even using half

precision. This finding suggests that mixed-precision meth-
ods have extensive applicability in ocean modeling. Cotronei
and Slawig (2020) converted the radiation component of
the atmosphere in the European Centre Hamburg model
(ECHAM) to a single-precision algorithm, resulting in an ap-
proximately 40 % acceleration in radiation calculations. This
result indicates that applying single-precision computing in
atmospheric models can significantly enhance computational
efficiency while preserving computational accuracy to a rea-
sonable extent. Paxton et al. (2022) further investigated the
feasibility of reduced-precision computing, conducting tests
in the Lorenz system, shallow water approximation over
a ridge, and the simplified parameterized coarse-resolution
spectral global atmospheric model SPEEDY. The findings re-
vealed that single precision sufficed for most computational
needs, and in numerous cases, half precision was also able
to achieve the desired results. This provides an important
reference for adopting lower-precision computing in various
models in the future. In 2024, Banderier et al. (2024) fur-
ther substantiated the effectiveness of mixed-precision meth-
ods in the regional weather and climate model COSMO. The
study found that the differences between double-precision
and single-precision simulations were minimal, typically de-
tectable only in the initial few hours or days of the simu-
lation. However, single-precision simulations reduced com-
putational costs by approximately 30 %. In the same year,
Chen et al. (2024) applied the principle of limited iterative
development to identify equations that were insensitive to
precision in weather and climate modeling tests, modifying
them from double precision to single precision. This opti-
mization resulted in a reduction in the runtime of the model’s
hydrostatic solver, nonhydrostatic solver, and tracer trans-
port solver by 24 %, 27 %, and 44 %, respectively, thereby
substantially enhancing computational efficiency. In sum-
mary, mixed-precision computing exhibits broad application
prospects and potential advantages in numerical weather and
climate modeling. By flexibly applying varying precision
computing methods while ensuring predictive accuracy, it
is feasible to significantly enhance computational efficiency
and reduce computational costs.

When utilizing mixed-precision computation, low-
precision calculations inevitably introduce round-off errors,
particularly when adding numbers with significantly differ-
ent magnitudes. In such scenarios, the limited precision can
cause the larger number to effectively “swallow” the smaller
number, thereby compromising the accuracy of the result.
For instance, consider the variables A= 0.7315× 103 (a
large number) and B = 0.4506× 10−5 (a small number). If
the precision of the result is reduced to 4 significant digits,
the outcome will be 0.7315× 103, with the large number
effectively overshadowing the small one. This phenomenon
is especially pertinent in numerical modeling, where the
introduction of biases into fundamental fields often neces-
sitates the addition of large and small numbers, inherently
causing round-off errors. These errors can accumulate over
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successive computations, leading to a degradation in model
accuracy or even complete failure. Therefore, this issue
cannot be overlooked.

Some methods have been developed to address the round-
off errors. In an early study, Gill (1951) proposed a fourth-
order, four-step explicit Runge–Kutta method aimed at cor-
recting round-off errors during computation. This method
constructs auxiliary variables at each step to compensate for
the round-off errors generated, thereby further refining the
results to achieve higher precision. However, this method
is not applicable to other forms of numerical solutions. In
addition to this, compensated summation methods can en-
hance the accuracy of summation by utilizing the floating-
point precision supported by lower-level hardware (Higham,
2002). These methods rely on recursive summation and in-
corporate correction terms to reduce round-off errors. Subse-
quently, Møller (1965) and Kahan (1965) proposed the quasi-
double-precision (QDP) algorithm and the Kahan algorithm,
respectively. The primary idea behind both methods is to
make slight adjustments to the total sum to avoid the pre-
cision loss caused by adding a small, precise value to a much
larger one in floating-point addition. The QDP algorithm has
been validated in solving ordinary differential equations us-
ing the fourth-order Runge–Kutta method (Møller, 1965),
where the error after precision reduction is essentially mini-
mized to zero.

Currently, methods for compensating round-off errors are
primarily employed in the step-by-step integration of or-
dinary differential equations (Thompson, 1970; Tomonori
and Hideko, 1995; Dmitruk and Stpiczyński, 2023). How-
ever, their validation in numerical models remains uncertain.
Considering the broader applicability of the QDP algorithm,
which can be utilized for recursive summation in any format,
and its superior performance in HPC environments compared
to the Kahan algorithm (Kahan, 1965), this study aims to
implement the QDP algorithm in the Model for Prediction
Across Scales – Atmosphere (MPAS-A). The application of
the QDP algorithm to a realistic numerical model, as pre-
sented in this study, represents a novel contribution to the
field, with no prior research exploring this specific imple-
mentation.

Most work involving numerical models that reduce numer-
ical precision adopt a mixed-precision scheme, where some
variables use single precision while others remain in double
precision to ensure integration stability, as demonstrated in
the work of Chen et al. (2024). Currently, there are very few
studies that almost entirely employ low precision (32 bit) in
numerical models; this was only applied in IFS by Váňa et al.
(2017). However, they only utilize single precision without
considering error compensation for it. In this study, all vari-
ables in the numerical model were implemented using single
precision, and the QDP algorithm was applied to key vari-
ables. Using the QDP algorithm, we can maintain integration
stability comparable to that of applying the double-precision
scheme while significantly reducing memory requirements

Figure 1. The iterative process of the QDP algorithm in a step-by-
step integration.

by lowering the numerical precision of all variables and im-
proving the accuracy compared to applying the single preci-
sion. This approach not only reduces communication pres-
sure but also allows for substantial increases in computa-
tional speed through vectorization optimization. The struc-
ture of this paper is as follows: Sect. 2 introduces the QDP
algorithm, the MPAS model, application of the QDP algo-
rithm in MPAS-A, and the experimental design and configu-
ration. Section 3 provides a case study in MPAS. Section 4
presents conclusions and discussion of the experiments.

For clarity, the abbreviations and glossary shown in Ta-
ble 1 are used throughout the entire paper.

2 Methodology, model, and experiments

2.1 Quasi-double-precision algorithm

The QDP algorithm, proposed by Møller (1965), aims to ad-
dress the precision loss that occurs when adding small val-
ues to large values in floating-point arithmetic. This preci-
sion loss typically arises from coarse-truncation operations.
The QDP algorithm reduces round-off errors by keeping cor-
rections. Primarily applied in the step-by-step integration of
ordinary differential equations, the algorithm significantly
corrects rounding errors in the sum, particularly on comput-
ers where truncation operations are not followed by proper
rounding.

A brief introduction to the algorithm is as follows, with
a detailed derivation available in Møller (1965). Define the
floating-point numbers u, v, s, and c, where at each step of
the time integration, s = u+ v. By introducing a correction
variable c before computing the sum (s) of u and v in each
step, the final s is adjusted to reduce round-off errors. This
algorithm is illustrated in Fig. 1. It illustrates the iterative
process (lines 3–7) and its role in error compensation, which
enhances accuracy in time integration.

The process can be viewed as v being continuously incor-
porated into u; however, in numerical model computations,
it is impossible to ensure that u is always greater than v. To
enhance the precision of the correction process, a precondi-
tion of magnitude comparison is added to the algorithm, as
shown in Fig. 2.

It is important to note that the applicability of the QDP al-
gorithm has been thoroughly analyzed (Møller, 1965); cases
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Table 1. Key abbreviations and the glossary used in this study.

Abbreviation Definition/description

MPAS-A The atmospheric component of the Model for Prediction Across Scales (MPAS)

DBL Double-precision simulation, used as the benchmark

SGL Single-precision simulation

QDP Single-precision simulation with the QDP applied (in this study, we apply the quasi-double precision method only
to single-precision simulations. For convenience, we refer to the simulations using the QDP method in
single precision as QDP.).

QDP algorithm Quasi-double precision, an algorithm to compensate for round-off errors in low-precision computations (to distinguish
between the quasi-double-precision algorithm and single-precision simulations utilizing the quasi-double-precision
algorithm, we refer to the QDP algorithm as the QDP algorithm and the simulations as QDP.).

Figure 2. The QDP algorithm with magnitude preconditioning for
identifying large and small numbers.

of inapplicability are exceedingly rare. Considering the nu-
merous summation operations involved in numerical models,
even if a few inapplicable instances occur, their impact on
the overall result is negligible. Therefore, in practical appli-
cations, these infrequent cases are typically not considered.

2.2 MPAS-A

MPAS-A is a compressible, nonhydrostatic atmospheric nu-
merical model developed by the National Center for Atmo-
spheric Research (NCAR). It employs an unstructured cen-
troidal Voronoi grid (mesh or tessellation) and a staggered C
grid for state variables as the basis for horizontal discretiza-
tion in the fluid flow solver. MPAS-A consists of two main
components: the model, which includes atmospheric dynam-
ics and physics, and the initialization component, which gen-
erates initial conditions for the atmosphere and land surface,
updates for sea surface temperature and sea ice, and lateral
boundary conditions. Both components (model and initial-
ization) are integral constructs within the MPAS software
framework and utilize the same drivers and software infras-
tructure.

MPAS-A solves the fully compressible, nonhydrostatic
equations of motion (Skamarock et al., 2012). The spa-
tial discretization uses a horizontal (spherical) centroidal

Voronoi mesh with a terrain-following geometric-height ver-
tical coordinate and C-grid staggering for momentum. The
temporal discretization uses the explicit time-split Runge–
Kutta technique from Wicker and Skamarock (2002) and
Klemp et al. (2007).

The algorithm applied here primarily addresses the round-
off error compensation between large and small numbers in
addition. Currently, it is only applicable to the time integra-
tion process and has not been implemented in the spatial dis-
cretization process. Therefore, this section will provide a de-
tailed introduction to the time integration scheme. For the
spatial discretization scheme, please refer to Skamarock et al.
(2012), as it will not be introduced here.

The formulation of the scheme can be considered in one
dimension as Eq. (1):

∂φ

∂t
= RHSφ . (1)

The variable Ø represents any prognostic variable in the
prognostic equations, while RHS represents the right-hand
side of the prognostic equations (i.e., the spatial discretiza-
tion equation). In MPAS-A, a forward-in-time finite differ-
ence is used, and it can be written as Eq. (2):

φn+1
i −φni

1t
= RHSφ, (2)

where the superscript represents the time step, and the sub-
script represents the position of grid zone.

The second-order Runge–Kutta time scheme used in
MPAS-A is described in Gear (1973) as Eqs. (3), (4), and (5):

φ∗ = φt +
1t

2
·RHS

(
φt
)
, (3)

φ∗∗ = φt +
1t

2
·RHS

(
φ∗
)
, (4)

φt+1t = φt +1t ·RHS
(
φ∗∗

)
. (5)

In this study, version 8.2.1 of MPAS-A was used for the
following reasons.
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1. This research primarily focuses on the accumulation of
variables in time integration, specifically the accumula-
tion of time integration variables within the dynamical
core. Version 8.2.1 supports the option to close physi-
cal processes during model construction, preventing the
influence of physical processes on the results of the
dynamical core. Therefore, this version was chosen. It
should be noted that all cases in this study have closed
physical processes.

2. This version supports single-precision operations, re-
ducing the repetitive work of code modification. It is
not the only version that supports single precision, but
it is the latest version currently released.

2.3 Application of the QDP algorithm in MPAS-A

According to Eqs. (3), (4), and (5), we can observe that in
the time integration scheme, each step involves the process
of adding trends to the basic field φt . In numerical mod-
els, the basic field is generally much larger than the trends,
which aligns with the principles of numerical computation
regarding the addition of large and small numbers, as well as
the time integration process. It is important to note that the
QDP algorithm currently only addresses time integration and
has not been validated during the spatial discretization pro-
cess. The spatial discretization primarily involves subtrac-
tion, specifically the subtraction of a small number from a
large number or the subtraction of two close values. Whether
this algorithm is applicable to spatial discretization remains
uncertain; therefore, we will not apply it in this context.

Based on the application principles of the algorithm,
which involve the processes of adding large and small num-
bers as well as the time integration process, we have es-
tablished a strategy for applying the QDP algorithm within
MPAS-A. Specific improvements are provided based on
Eqs. (6), (7), (8), and (9):

∂V H

∂t
=−

ρd

ρm

[
∇ζ

(
p

ζz

)
−
∂zHp

∂ζ

]
− ηk×V H

− νH∇ζ ·V −
∂�νH

∂ζ
− ρd∇ζK

− eW cosαr −
νHW

re
+FV H , (6)

∂W

∂t
=−

ρd

ρm

[
∂p

∂ζ
+ gρ̃m

]
− (∇ · vW)ζ

+
uU + vV

re
+ e(U cosαr −V sinαr)+FW , (7)

∂2m

∂t
=−(∇ ·V θm)ζ +F2m , (8)

∂ρ̃d

∂t
=−(∇ ·V )ζ . (9)

The meaning of each variable in the equations follows
Skamarock et al. (2012), so we do not repeat the explanation

here. For a numerical model, the most crucial variables are
the prognostic variables. Therefore, in the MPAS-A model
we applied the QDP algorithm to the time integration process
of these prognostic variables, including horizontal momen-
tum (VH), dry air density (ρ̃d), potential temperature (2m),
and vertical velocity (W ), that is, the calculation process on
the left-hand side of Eqs. (6), (7), (8), and (9) (only the pre-
dictive equations for the dynamic core are presented here,
without the scalar transport). This study focuses on the dy-
namic core, involving the gravity wave and acoustic wave,
so we turned off the scalar transport in all cases. In order to
be understood well, we provide the pseudo-code in the sup-
plement.

2.4 Experimental design and configuration

This study aims to investigate whether the QDP algorithm
can effectively compensate for the round-off errors that are
caused by reduced numerical precision. Setting DBL as the
benchmark experiment, two control experiments are also es-
tablished: the first control experiment uses SGL, and the sec-
ond control experiment uses QDP. By comparing the spatial
root-mean-square error (spatial RMSE) and spatial mean ab-
solute error (spatial MAE) between these two control exper-
iments and the benchmark experiment, this study evaluates
the effectiveness of the QDP algorithm at reducing round-off
errors.

To assess the application effect of the QDP algorithm, we
selected these two ideal cases and the real-data case because
they are the only complete datasets available for download
on the MPAS website.

1. Jablonowski and Williamson baroclinic wave. A de-
terministic initial-value test case (Jablonowski and
Williamson, 2006) for dry dynamical cores of atmo-
spheric general-circulation models is presented that as-
sesses the evolution of an idealized baroclinic wave in
the Northern Hemisphere. The primary objective is to
assess the model’s efficacy in replicating the typical dy-
namics of moist atmospheric conditions across various
precision settings.

2. Supercell. A reduced-radius sphere (Klemp et al., 2015)
can be used to assess the behavior of nonhydrostatic
processes in global atmospheric dynamical cores, as
long as the simulated cases demonstrate good agree-
ment with the corresponding flows in Cartesian geome-
try, for which analytical solutions are available.

3. Real data. We used real data with initial conditions gen-
erated using Global Forecast System (GFS) data on 10
September 2014 at 00:00 UTC using two different total
domain sizes (120 km× 120 km and 240 km× 240 km).

To prevent the influence of other factors, the basic param-
eters of all cases are kept consistent, including the number
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Table 2. Key abbreviations and a glossary regarding the test cases
used in this study.

Abbreviation Definition/description

JW wave Jablonowski and Williamson baroclinic wave
SC Supercell
RD-120 Real data with a total domain size of 120× 120 km
RD-240 Real data with a total domain size of 240× 240 km

of acoustic steps per full Runge–Kutta (RK) step, config dy-
namics split steps, and config number of sub steps (integer),
among others.

For clarity, the abbreviations about test cases as shown in
Table 2 are used throughout the entire paper.

3 Results and analysis

In this section, we introduce spatial RMSE and MAE and
show results across four cases, including two ideal scenarios,
the Jablonowski and Williamson baroclinic wave and super-
cell, as well as two real cases (with initial conditions gener-
ated using GFS data) using two different total domain sizes.
Using the spatial RMSE and MAE for quantitative compari-
son, the differences between the benchmark and control ex-
periments are used to evaluate the effectiveness of the QDP
algorithm at reducing round-off error.

3.1 Spatial RMSE and MAE

To quantify the differences between the SGL, QDP, and DBL
(used as the benchmark), we calculate the spatial RMSE.
First, for each grid point, the temporal averages of the
variables (e.g., surface pressure, 500 hPa height) are com-
puted across the entire simulation period for each experiment
(SGL, QDP, and DBL). Then, the spatial RMSE is calculated
as the root-mean-square difference between the temporally
averaged fields of the control experiment (SGL or QDP) and
the benchmark DBL, following Eq. (10):

Spatial RMSE=

√√√√ 1
N

N∑
i=1

(Mi −Ci)
2, (10)

where, N is the total number of grid points, Mi is the tem-
porally averaged value at grid point i for the benchmark
double-precision experiment, and Ci is the temporally av-
eraged value at grid point i for the control experiment (SGL
or QDP).

In addition to the spatial RMSE, we also calculate the spa-
tial MAE to assess the magnitude of the difference between
the control experiments (SGL and QDP) and the benchmark
DBL, irrespective of the direction of the difference. Like the
spatial RMSE calculation, we first compute the temporal av-
erage for each grid point across the entire simulation period

Table 3. The spatial RMSE values of surface pressure compared to
DBL for cases (in Pa). Note that JW wave is the Jablonowski and
Williamson baroclinic wave, SC is the supercell, and RD-120/240
is real data with a total domain size of 120/240 km.

Case name SGL QDP
(proposed)

JW wave 3.42× 10−2 1.09× 10−2

SC 8.80× 10−4 2.27× 10−4

RD-120 6.33× 10−2 2.25× 10−3

RD-240 6.68× 10−2 2.25× 10−3

for each experiment. The MAE is then calculated as the av-
erage absolute difference between the temporally averaged
fields of the control experiment and the benchmark experi-
ment, following Eq. (11):

Spatial MAE=
1
N

N∑
i=1
|Mi −Ci |, (11)

where N is the total number of grid points,Mi represents the
temporally averaged value at grid point i for the benchmark
DBL, andCi represents the temporally averaged value at grid
point i for the control experiment (either SGL or QDP).

Spatial RMSE is primarily used to measure the difference
between predicted and actual values and is more sensitive
to large errors. Spatial MAE calculates the average absolute
prediction error and is less sensitive to outliers than spa-
tial RMSE, making it more suitable for conventional error
measurements. Therefore, the combination of spatial RMSE
and MAE provides a more comprehensive evaluation. When
comparing the performance of different experiments, spatial
RMSE may be used to quantify differences in extreme val-
ues (such as temperature fluctuations, ocean current speeds,
etc.), while spatial MAE is used to assess the accuracy of
the model’s overall trend. Combining both provides a better
reflection of the algorithm’s performance advantages.

As shown in Table 3 (spatial RMSE) and Table 4 (spa-
tial MAE), the addition of the QDP algorithm consistently
improves accuracy (compared to SGL) across all cases. For
specific analysis, please refer to the following sections (the
results of spatial RMSE and MAE are consistent, so to avoid
duplication, only the results of spatial RMSE are analyzed in
the following text).

3.2 Jablonowski and Williamson baroclinic wave

This case is a deterministic initial-value test case for dry
dynamical cores of atmospheric general circulation mod-
els (Jablonowski and Williamson, 2006) that assesses the
evolution of an idealized baroclinic wave in the Northern
Hemisphere. The initial zonal state is quasi-realistic and en-
tirely defined by analytical expressions, which are steady-
state solutions of the adiabatic, inviscid primitive equations
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Figure 3. Time evolution of differences in (a) total energy and (b) total mass between DBL and SGL and DBL and QDP (proposed) in the
JW wave. Both panels highlight QDP’s superior error compensation, especially over extended integration periods.

Table 4. The spatial MAE values of surface pressure compared to
DBL for cases (in Pa). Note that JW wave is the Jablonowski and
Williamson baroclinic wave, SC is the supercell, and RD-120/240
is real data with a total domain size of 120/240 km.

Case name SGL QDP
(proposed)

JW wave 1.29× 10−2 3.81× 10−2

SC 8.79× 10−4 2.26× 10−4

RD-120 5.38× 10−2 1.95× 10−3

RD-240 5.52× 10−2 1.94× 10−3

in a pressure-based vertical coordinate system (Jablonowski
and Williamson, 2006). The experimental configuration is
consistent with the test case presented by Jablonowski and
Williamson (2006), with a time step of 450 s, 26 vertical lev-
els, total domain size of 120 km× 120 km, and an integration
period of 15 d.

The bias begins to appear on day 10. Starting from day 10,
the bias of total energy and total mass caused by SGL can
be reduced using the QDP algorithm (Fig. 3a and b). Unlike
SGL, where the bias increases rapidly after more than 10 d,
QDP has a very small bias compared to DBL. Therefore, we
believe that QDP can be used to replace DBL in medium-
range weather forecasts.

We found that SGL can increase the round-off error in all
regions (Fig. 4a); especially in high-latitude regions such as
Southern Ocean westerly belt, its high wind speed increased
the error caused by SGL, but instability caused by high wind
speeds is more important. Surprisingly, the bias can be re-
duced significantly in QDP (Fig. 4b); it means that QDP
can improve stability compared to SGL. It should be empha-
sized that this does not mean that the higher the wind speed,

the better the improvement effect. Instead, the improvement
effect is more pronounced in areas with larger errors. The
spatial RMSE of surface pressure between DBL and SGL is
3.42× 10−2 Pa and 1.09× 10−2 Pa between DBL and QDP;
the error is reduced by 68 %.

The sources of unpredictability, as noted by Bauer et al.
(2015), include instabilities that inject chaotic noise at small
scales and the upscale propagation of their energy. For the
cases examined, both SGL and QDP begin to exhibit errors
after 10 d of integration. These errors arise from factors such
as round-off errors due to reduced numerical precision and
energy loss during the propagation process. The QDP algo-
rithm can reduce the impacts of these errors.

While we acknowledge other potential sources of uncer-
tainty such as initial-condition errors, we have not conducted
an in-depth study on them in this research. Our primary focus
remains evaluating the improvements provided by the com-
pensation algorithm when addressing round-off errors.

3.3 Supercell case

The test case (Klemp et al., 2015), on a reduced-radius
sphere, can evaluate the behavior of nonhydrostatic processes
in nonhydrostatic global atmospheric dynamical cores, pro-
vided that the simulated cases exhibit good agreement with
corresponding flows in Cartesian geometry and for which
there are known solutions. The settings include a time step of
3 s, 40 vertical levels, a total domain size of 84 km× 84 km,
and an integration period of 2 h.

In this case, for total mass (Fig. 5), the error caused by
SGL can be effectively improved in QDP. This improve-
ment exists throughout the entire integration period. Figure 6
shows the spatial distribution of perturbation theta, an im-
portant variable in numerical models: when reducing the nu-
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Figure 4. Spatial distributions of 1–15 d averaged surface pressure differences (Pa) in (a) DBL vs. SGL and (b) DBL vs. QDP in the JW wave
case. QDP reduces errors more effectively, particularly in midlatitude to high-latitude regions.

Figure 5. Time evolution of differences in total mass for the su-
percell case: DBL vs. SGL and DBL vs. QDP. The results highlight
the QDP algorithm’s effective error compensation, with benefits be-
coming more pronounced over time.

merical precision from double (Fig. 6a) to single (Fig. 6b), it
displays differences and it indicates a significant increase in
round-off error. In QDP, this difference can be compensated
(Fig. 6c). The spatial RMSE of surface pressure between
DBL and SGL is 8.95×10−4 Pa and it is 2.19×10−4 Pa be-
tween DBL and QDP; the error is reduced by 75 %.

3.4 Real-data cases

In this section, we will show the results from two cases
using different total domain sizes. The settings include a
time step of 720 s, 55 vertical levels, total domain sizes of
240 km× 240 km and 120 km× 120 km, and an integration
period of 15 d (except for the total domain size, all other con-
figurations are exactly the same).

Consistent with the analysis presented in Sect. 3.2, errors
are relatively small in the early stages and begin to emerge
after 140 h. This increase is attributed to the accumulation
of round-off errors and energy loss over time. The effects
become more pronounced beyond 140 h. Overall, the QDP
algorithm demonstrates a certain level of improvement in
addressing these errors. The case with the total domain of
240 km× 240 km (Fig. 7a) shows an error larger than in the
120 km× 120 km (Fig. 7b) case, and the error can be reduced
in QDP compared to SGL.

Figures 8 and 10 show spatial distributions of sur-
face pressure in the total domain. The error has reduced
throughout all the regions, and the improvement effect is
very obvious. From a spatial perspective, the case of SGL
with the total domain size of 240 km× 240 km (Fig. 8a)
shows a larger error than in the 120 km× 120 km domain
(Fig. 10a) case, and the errors in both were reduced by QDP
(Figs. 8b and 10b). The spatial RMSE of surface pressure at
240 km× 240 km between DBL and SGL is 6.68× 10−2 Pa,
and it is 2.25× 10−3 Pa between DBL and QDP; the error is
reduced by 97 %. The spatial RMSE of surface pressure at
120 km× 120 km between DBL and SGL is 6.33× 10−2 Pa,
and it is 2.25× 10−3 Pa between DBL and QDP; the error is
reduced by 96 %.

Figures 9 and 11 show spatial distributions of 500 hPa
height with different total domain sizes: 240 km× 240 km
(Fig. 9) and 120 km× 120 km (Fig. 11). The error improve-
ment effect is consistent with surface pressure. The spa-
tial RMSE of 500 hPa height at 240 km× 240 km between
DBL and SGL is 2.80× 10−1 m, and it is 1.40× 10−1 m be-
tween DBL and QDP; the error is reduced by 50 %. The spa-
tial RMSE at 120 km× 120 km between DBL and SGL is
4.35× 10−3 Pa, and it is 1.90× 10−3 Pa between DBL and
QDP; the error is reduced by 56 %.

In this research, we focus on the processes of summing the
basic field and trends. When the resolution is increased, the
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Figure 6. Perturbation theta at 5400 s in supercell development: (a) DBL, (b) SGL, and (c) QDP (in K). The circles highlight pattern biases
(consistent values in the same color). Error regions (blue) appear in (b) with single precision, while QDP reduces these errors in (c).

Figure 7. Temporal evolution of total energy differences for real-data simulations: DBL vs. SGL (blue) and DBL vs. QDP (red) at resolutions
of (a) 240 km× 240 km and (b) 120 km× 120 km. QDP consistently reduces errors from numerical precision loss, with resolution-dependent
improvements.

basic field remains relatively unchanged; however, the trends
become smaller. This characteristic aligns with the nature of
adding large and small numbers, making the advantages of
the QDP algorithm more pronounced. Thus, it is evident that
as the resolution increases, the improvement achieved by the
QDP algorithm also enhances.

On the other hand, it is important to note that the propa-
gation of round-off errors is not immediately apparent over
short timescales. However, as the number of iterations in-
creases, these errors can become more significant. The QDP
algorithm employs compensation mechanisms that help mit-
igate the propagation of these errors.

Due to the current limitations of the MPAS-A website,
which only provides a single set of terrain and initial-
condition fields for different experiments, our future plan is

to request assistance from the MPAS-A website to construct
different terrain and initial-condition fields for a specific ex-
periment. We aim to conduct a sensitivity analysis, particu-
larly for real-data experiments. Provided that computational
resources allow, we plan to carry out simulations with differ-
ent resolutions and initial conditions. This will help lay the
data foundation for future uncertainty analysis.

3.5 Computational performance

In comparison with the SGL, there is a slight increase in
runtime, although it is minimal: only 6.0 % (JW wave),
0.3 % (SC), 2.2 % (RD-120), and 17.8 % (RD-240) (Table 5).
This slight increase is attributed to the addition of a small
number of global variable arrays when using the QDP algo-
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Figure 8. Spatial distributions of averaged (1–15 d) surface pressure differences (Pa) in (a) DBL vs. SGL and (b) DBL vs. QDP (domain size
is 240 km× 240 km). The RMSE is 6.68×10−2 Pa for (a) and 2.25×10−3 Pa for (b), highlighting QDP’s significant error reduction across
regions and its effectiveness at correcting errors by several orders of magnitude.

Figure 9. Spatial distributions of averaged (1–15 d) 500 hPa height differences (m) in (a) DBL vs. SGL and (b) DBL vs. QDP (domain size
is 240 km× 240 km). The RMSE decreases from 2.80× 10−1 m in (a) to 1.40× 10−1 m in (b), indicating notable spatial error reduction
with QDP.

rithm. Compared to DBL, QDP demonstrated relatively bet-
ter performance across different cases, reducing the runtime
by 28.6 % (JW wave), 28.5% (SC), 21.1 % (RD-120), and
5.7 % (RD-240) (Table 5).

4 Conclusions and discussion

This study aims to demonstrate the potential application of
the QDP algorithm in numerical models. Although QDP al-
gorithms have been widely used for time integration of or-
dinary differential equations, their application in real-world
numerical models has not yet been explored. This research
bridges this gap by introducing a novel implementation of
the QDP algorithm, thus extending its scope and potential
impact in the field of numerical forecasting. As the QDP
algorithm manages round-off errors through corrections for

Table 5. Comparative analysis of computational efficiency: QDP
vs. DBL and QDP vs. SGL.

Case name DBL SGL QDP (proposed)

Runtime Runtime Runtime vs. DBL vs. SGL

JW wave 1768 s 1191 s 1263 s −28.6 % +6.0 %
SC 1507 s 1073 s 1077 s −28.5 % +0.3 %
RD-120 19 126 s 14 765 s 15 092 s −21.1 % +2.2 %
RD-240 1397 s 1118 s 1317 s −5.7 % +17.8 %

Note that JW wave is the Jablonowski and Williamson baroclinic wave, SC is the supercell, and
RD-120/240 is real data with a total domain size of 120/240 km.
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Figure 10. Distributions of averaged (1–15 d) surface pressure differences (Pa) in (a) DBL vs. SGL and (b) DBL vs. QDP (domain size is
120 km× 120 km). The RMSE decreases from 6.33× 10−2 Pa in (a) to 2.25× 10−3 Pa in (b). Note that the color bars differ between (a)
and (b). QDP significantly reduces errors across all regions.

Figure 11. Spatial distributions of averaged (1–15 d) 500 hPa height differences (m) in (a) DBL vs. SGL and (b) DBL vs. QDP (domain
size is 120 km× 120 km). The RMSE decreases from 4.35×10−3 m in (a) to 1.90×10−3 m in (b), consistent with the overall improvement
shown in Fig. 10.

both large and small numbers, it aligns with numerical mod-
els where basic fields significantly exceed tendency fields.
Therefore, we have developed a strategy to apply the QDP
algorithm in the MPAS-A model. In this study, the applica-
tion of the QDP algorithm in the single-precision version re-
duced surface pressure errors by 68 %, 75 %, 97 %, and 96 %
in four cases, while the runtime decreased by 28.6 %, 28.5 %,
21.1 %, and 5.7 % compared to the double-precision experi-
ments (see Sect. 3). Overall, the QDP algorithm achieves a
balance between maintaining accuracy and reducing compu-
tational cost.

However, the application of the QDP algorithm has certain
limitations. First, the algorithm relies on the iterative process
of time integration, and its effectiveness depends on the num-
ber of iterations; generally, increasing the number of itera-
tions enhances the error compensation. Second, although the
application of QDP mitigates errors to some extent, it still ex-

hibits errors when compared to DBL, making it less suitable
for situations that require high precision. Furthermore, the
application of the QDP algorithm necessitates the introduc-
tion of additional variables, which increases the complexity
to some degree.

Furthermore, whether the QDP algorithm is applicable
to the spatial discretization process requires further inves-
tigation. Although floating-point operations such as addi-
tion, multiplication, and division are often performed multi-
ple times during spatial discretization, which can introduce
round-off errors, these errors do not accumulate and am-
plify as they do in time integration. This is primarily because
spatial computations generally do not involve the repetitive
time accumulation process. Additionally, the errors in spatial
discretization mainly stem from discretization errors (such
as grid resolution) and the choice of discretization meth-
ods (e.g., central difference, forward difference), which dif-
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fer from round-off errors and are primarily related to the dis-
cretization method and grid design. Therefore, the effective-
ness of the QDP algorithm in this context may not be as pro-
nounced as it is in time integration. As a result, this study
does not apply the QDP algorithm to the spatial discretiza-
tion process.

In large-scale numerical simulations, the impact of round-
off errors cannot be ignored, which is why double preci-
sion is commonly employed to maintain the accuracy of re-
sults. However, double-precision computations significantly
increase computation time and resource consumption, which
is often impractical for large-scale simulations. Using the
QDP algorithm, we not only reduced memory and communi-
cation overhead but also enhanced scalability, particularly in
ultra-large parallel simulations where inter-node communi-
cation can become a major performance bottleneck. More-
over, while our experiments did not include vectorization
strategies, there is considerable potential for further perfor-
mance improvements.

In future work, we plan to explore vectorization strate-
gies for the QDP algorithm, building on successful im-
plementations of vectorized compensated summation algo-
rithms. Dmitruk and Stpiczyński (2023) have efficiently vec-
torized Kahan and Gill-Møller’s compensated summation al-
gorithms using Intel AVX-512 intrinsics, with paralleliza-
tion handled through OpenMP constructs. Numerical exper-
iments have shown that the vectorized summation algorithm
achieves performance comparable to traditional summation
algorithms, especially for large problem sizes, while main-
taining high accuracy. So we intend to apply similar vector-
ization techniques to the QDP algorithm in numerical mod-
els, utilizing single instruction, multiple data (SIMD) exten-
sions in modern multicore processors to accelerate the com-
putation of compensated summation and other time-stepping
algorithms. Future implementations will also include paral-
lelization via easy-to-use constructs like OpenMP’s “declare
reduction”, which can further speed up execution, especially
for large-scale problems. However, for smaller problem sizes
or when summation is part of a more complex computation,
we may find parallelization to be beneficial even at smaller
scales. By incorporating these vectorization and paralleliza-
tion strategies, we aim to significantly enhance the efficiency
and accuracy of the QDP algorithm in HPC environments.

Looking ahead, we plan to extend the application of the
QDP algorithm to additional components of the MPAS-A
model. Currently, the QDP algorithm is implemented only
within the time integration scheme of the dynamic core, with
no consideration for its application to tracer transport. Tracer
transport processes involve numerous operations where both
large and small values are added together, making them par-
ticularly sensitive to precision requirements. In addition, the
QDP algorithm has been applied to ideal and real-data tests
at low and medium resolutions, while its performance at high
resolutions has not yet been studied. In future work, we will
focus on these fields.

Code and data availability. The repository provided includes all
relevant code necessary for the study, categorized into four main
components.

1. Download model source code. This includes source code of
MPAS-v8.2.1 for different simulation modes.

a. DBL and SGL

– Both DBL and SGL are available on GitHub: https:
//github.com/MPAS-Dev/MPAS-Model/releases/tag/v8.2.1
(Duda, 2024).

– Note. If the source code is obtained via the official
GitHub repository of the MPAS model, to build a
dycore-only MPAS-A model, users need to comment-
out or delete the definition of PHYSICS in the Make-
file located in the src/core_atmosphere/, e.g.,
# PHYSICS=-DDO_PHYSICS.

– Note. The source code for SGL is identical to DBL. The
difference lies in the compilation process, where a specific
compilation option is used to enable single-precision ex-
ecution. To compile the model in single precision, simply
add the PRECISION=single flag during the build pro-
cess.

– DBL and SGL are also available on Zenodo:
https://doi.org/10.5281/zenodo.14576893 (Lai, 2024)(lo-
cated in code_and_data/model/DBL/ and
code_and_data/model/SGL/).

b. QDP (proposed)

– QDP is available on Zenodo:
https://doi.org/10.5281/zenodo.14576893 (Lai, 2024) (lo-
cated in code_and_data/model/QDP/).

– Note. Add the PRECISION=single flag during the build
process.

2. Compile model source code. This step includes generating the
executable files for init_atmosphere and atmosphere.

– Compile init_atmosphere using the following command:
make ifort CORE=init_atmosphere.

– Clean previous builds for atmosphere (if necessary) using
the following command: make clean CORE=atmosphere.

– Compile atmosphere using the following command: make
ifort CORE=atmosphere.

– To compile the model in single precision, add the
PRECISION=single flag: make ifort CORE=atmosphere
PRECISION=single.

3. Case setup and run. Specific case setups and configurations
used in the experiments are provided, including input files,
namelist configurations, and scripts for running idealized and
real-world scenarios. These allow users to replicate the exact
experiments conducted in the study. The steps are as follows.

– Download the archive file for the test cases, which in-
cludes mesh files, decomposition files, and the namelist
file, from the official MPAS website at http://mpas-dev.
github.io/ (MPAS, 2025). The idealized test cases cur-
rently available on the official website include the super-
cell, mountain wave, and Jablonowski and Williamson baro-
clinic wave. These can also be downloaded directly from
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https://doi.org/10.5281/zenodo.14576893 (Lai, 2024) (located
in code_and_data/test/).

– Link the init_atmosphere and atmosphere executable
files, compiled in the first part, to the case folder.

– If the code is downloaded directly from Zenodo, users can run
the cases by following the instructions in the README file
or directly executing the run.sh script. Before running the
simulations, adjust the number of nodes in the script accord-
ing to the available computational resources to optimize per-
formance.

4. Visualization and postprocessing code. In order to reproduce
the figures in this paper, follow the instructions below.

– For Figs. 3 and 4, run the NCL scripts ncl time.ncl
and ncl spatical.ncl. Navigate to the directory
code_and_data/test/c2_DBL/.

– For Figs. 5 and 6, run the NCL scripts ncl time.ncl
and ncl spatical.ncl. Navigate to the directory
code_and_data/test/c5_DBL/.

– For Figs. 7a, 8, and 9, run the NCL scripts ncl
time.ncl and ncl spatical.ncl. Navigate to the di-
rectory code_and_data/test/c7_240km_DBL/.

– For Figs. 7b, 10, and 11, run the NCL scripts ncl
time.ncl and ncl spatical.ncl. Navigate to the di-
rectory code_and_data/test/c7_120km_DBL/.

Supplement. The supplement related to this article is available on-
line at https://doi.org/10.5194/gmd-18-1089-2025-supplement.
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