

Supplement of

Enhancing single precision with quasi-double precision: achieving doubleprecision accuracy in the Model for Prediction Across Scales – Atmosphere (MPAS-A) version 8.2.1

Jiayi Lai et al.

Correspondence to: Lanning Wang (wangln@bnu.edu.cn) and Yizhou Yang (yang.yizhou@outlook.com)

The copyright of individual parts of the supplement might differ from the article licence.

Supplementary Information

model
QDP control test using single precision and quasi double-precision algorithm test c2_DBLbenchmark using double precision. (The Jablonowski and Williamson baroclinic wave test case) atmosphere_model run the model time.ncl script to produce plots of spatial evolution spatial.ncl script to produce plots of spatial evolution init_atmosphere_model namelist options available when running the MPAS namelist.atmosphere namelist options available when running the MPAS initialization README namelist options available when running the MPAS initialization stream_list.atmosphere the output of MPAS stream_strongphere.output -the output of MPAS streams.atmospherethe XML stream configuration file for an MPAS initialization c2_SGLbenchmark using double precision. c2_QDPbenchmark using double precision. c5_DBLbenchmark using double precision. c5_SGLbenchmark using double precision. c5_QDPbenchmark using double precision. c7_240km_DBLbenchmark using double precision. c7_240km_DBLbenchmark using double precision. benchmark using double precision.
 c7_240km_SGLbenchmark using double precision. c7_240km_QDPbenchmark using double precision. c7_120km_DBLbenchmark using double precision. c7_120km_SGLbenchmark using double precision. c7_120km_QDPbenchmark using double precision.

Figure S1. The code layout of the research. The model part represent the model code including benchmark using double precision(DBL), control test using precision and control test using single precision(SGL) and quasi double-precision algorithm(QDP). The three models are run separately in 4 tests includes the Jablonowski and Williamson baroclinic wave test case, super cell, real data with 240km and real data with 120km. All configurations can be found in the test file. Only the case 7 use the GFS data, it can

25 also be found under folder case7. Model code and plotting data related to this manuscript is available at: https://doi.org/10.5281/zenodo.<u>13765421</u>.

Figure S2. The pseudo-code for variable of U.